JP5159963B1 - Silver alloy sputtering target for forming conductive film and method for producing the same - Google Patents

Silver alloy sputtering target for forming conductive film and method for producing the same Download PDF

Info

Publication number
JP5159963B1
JP5159963B1 JP2012005053A JP2012005053A JP5159963B1 JP 5159963 B1 JP5159963 B1 JP 5159963B1 JP 2012005053 A JP2012005053 A JP 2012005053A JP 2012005053 A JP2012005053 A JP 2012005053A JP 5159963 B1 JP5159963 B1 JP 5159963B1
Authority
JP
Japan
Prior art keywords
silver alloy
sputtering target
target
mass
alloy sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012005053A
Other languages
Japanese (ja)
Other versions
JP2013144823A (en
Inventor
昌三 小見山
真一 船木
慎也 小池
聖 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2012005053A priority Critical patent/JP5159963B1/en
Priority to TW101116355A priority patent/TWI535876B/en
Priority to PCT/JP2012/061872 priority patent/WO2013105285A1/en
Priority to CN201280058004.4A priority patent/CN103958727B/en
Priority to KR1020147013670A priority patent/KR101854009B1/en
Application granted granted Critical
Publication of JP5159963B1 publication Critical patent/JP5159963B1/en
Publication of JP2013144823A publication Critical patent/JP2013144823A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】アーク放電およびスプラッシュをより一層抑制することができる導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法を提供する。
【解決手段】Snを0.1〜1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有し、結晶粒の平均粒径が30μm以上120μm未満であり、結晶粒の粒径のばらつきが平均粒径の20%以下である銀合金スパッタリングターゲットであり、溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより製造され、その熱間圧延工程では、1パス当りの圧下率が20〜50%でひずみ速度が3〜15/secの仕上げ熱間圧延をパス後の温度が400〜650℃で1パス以上含んでおり、冷却工程では、200〜1000℃/minの冷却速度にて急冷する。
【選択図】 なし
A silver alloy sputtering target for forming a conductive film capable of further suppressing arc discharge and splash and a method for producing the same.
SOLUTION: Sn is contained in an amount of 0.1 to 1.5% by mass, the balance is composed of Ag and inevitable impurities, the average grain size of the crystal grains is 30 μm or more and less than 120 μm, and the grain size of the crystal grains Is a silver alloy sputtering target having a variation of 20% or less of the average particle size, and is produced by subjecting a molten cast ingot to a hot rolling step, a cooling step, and a machining step in this order. It includes finishing hot rolling with a rolling reduction per pass of 20 to 50% and a strain rate of 3 to 15 / sec at a temperature of 400 to 650 ° C. after the pass. Rapid cooling is performed at a cooling rate of 1000 ° C./min.
[Selection figure] None

Description

本発明は、有機EL素子の反射電極やタッチパネルの配線膜などの導電性膜を形成するための銀合金スパッタリングターゲットおよびその製造方法に関する。   The present invention relates to a silver alloy sputtering target for forming a conductive film such as a reflective electrode of an organic EL element or a wiring film of a touch panel, and a method for producing the same.

有機EL素子は、有機EL発光層の両側に形成した陽極と陰極の間に電圧を印加し、陽極より正孔を、陰極より電子をそれぞれ有機EL膜に注入し、有機EL発光層で正孔と電子が結合する際に発光する原理を使用する発光素子であり、ディスプレイデバイス用として近年非常に注目されている。この有機EL素子の駆動方式には、パッシブマトリックス方式と、アクティブマトリックス方式とがある。このアクティブマトリックス方式は、画素一つに、一つ以上の薄膜トランジスタを設けることにより高速でスイッチングすることができるため、高コントラスト比、高精細化に有利となり、有機EL素子の特徴を発揮できる駆動方式である。
また、光の取り出し方式には、透明基板側から光を取り出すボトムエミッション方式と、基板とは反対側に光を取り出すトップエミッション方式とがあり、開口率の高いトップエミッション方式が、高輝度化に有利である。
The organic EL element applies a voltage between the anode and the cathode formed on both sides of the organic EL light emitting layer, injects holes from the anode and electrons from the cathode into the organic EL film, and generates holes in the organic EL light emitting layer. It is a light-emitting element that uses the principle of light emission when electrons and electrons are combined, and has recently attracted much attention as a display device. There are a passive matrix system and an active matrix system for driving organic EL elements. This active matrix method can be switched at high speed by providing one or more thin film transistors per pixel, which is advantageous for high contrast ratio and high definition, and can drive the characteristics of organic EL elements. It is.
There are two types of light extraction methods: a bottom emission method that extracts light from the transparent substrate side, and a top emission method that extracts light from the opposite side of the substrate. A top emission method with a high aperture ratio increases the brightness. It is advantageous.

このトップエミッション構造における反射電極膜は有機EL層で発光した光を効率よく反射するために、高反射率で耐食性の高いことが望ましい。また、電極として低抵抗であることも望ましい。そのような材料として、Ag合金およびAl合金が知られているが、より高輝度の有機EL素子を得るためには、可視光反射率が高いことからAg合金が優れている。ここで、有機EL素子への反射電極膜の形成には、スパッタリング法が採用されており、銀合金ターゲットが用いられている(特許文献1)。   The reflective electrode film in this top emission structure desirably has high reflectivity and high corrosion resistance in order to efficiently reflect light emitted from the organic EL layer. It is also desirable that the electrode has a low resistance. As such a material, an Ag alloy and an Al alloy are known. However, in order to obtain an organic EL element with higher luminance, the Ag alloy is excellent because of its high visible light reflectance. Here, a sputtering method is employed for forming the reflective electrode film on the organic EL element, and a silver alloy target is used (Patent Document 1).

ところで、有機EL素子製造時のガラス基板の大型化に伴い、反射電極膜形成に使用される銀合金ターゲットも大型のものが使われるようになってきている。ここで、大型のターゲットに高い電力を投入してスパッタを行う際には、ターゲットの異常放電によって発生する「スプラッシュ」と呼ばれる現象が発生し、溶融した微粒子が基板に付着して配線や電極間をショートさせたりすることにより、有機EL素子の歩留りを低下させる、という問題がある。トップエミッション方式の有機EL素子の反射電極層では、有機発光層の下地層となるため、より高い平坦性が求められており、よりスプラッシュを抑制する必要がある。
このような課題を解決するため、特許文献2および特許文献3では、ターゲットの大型化に伴い、ターゲットに大電力が投入されてもスプラッシュを抑制することができる有機EL素子の反射電極膜形成用銀合金ターゲットおよびその製造方法が提案されている。
By the way, with the enlargement of the glass substrate at the time of manufacturing the organic EL element, a large silver alloy target used for forming the reflective electrode film has been used. Here, when sputtering is performed with high power applied to a large target, a phenomenon called “splash” occurs due to abnormal discharge of the target, and the molten fine particles adhere to the substrate and become between the wiring and electrodes. There is a problem in that the yield of the organic EL element is reduced by short-circuiting. Since the reflective electrode layer of the top emission type organic EL element serves as a base layer of the organic light emitting layer, higher flatness is required, and splash must be further suppressed.
In order to solve such a problem, in Patent Document 2 and Patent Document 3, as the target becomes larger, the reflective electrode film for an organic EL element that can suppress splash even when large power is applied to the target. A silver alloy target and a manufacturing method thereof have been proposed.

国際公開第2002/077317号International Publication No. 2002/077317 特開2011−100719号公報JP 2011-100719 A 特開2011−162876号公報JP 2011-162876 A

これら特許文献2および特許文献3記載の反射電極膜形成用銀合金ターゲットにより、大電力が投入されてもスプラッシュを抑制することができるようになったが、大型銀合金ターゲットはターゲットの消耗に伴って、アーク放電回数が増加し、アーク放電によるスプラッシュが増加する傾向にあり、さらなる改善が求められている。
また、有機EL素子用反射電極膜の他に、タッチパネルの引き出し配線などの導電性膜にも、銀合金膜が検討されている。このような配線膜として、例えば純Agを用いるとマイグレーションが生じて短絡不良が発生しやすくなるため、銀合金膜の採用が検討されている。
The silver alloy target for forming a reflective electrode film described in Patent Document 2 and Patent Document 3 can suppress splash even when a large amount of electric power is applied. Thus, the number of arc discharges increases and the splash due to arc discharge tends to increase, and further improvement is required.
In addition to the reflective electrode film for organic EL elements, a silver alloy film has been studied for a conductive film such as a lead-out wiring of a touch panel. As such a wiring film, for example, when pure Ag is used, migration occurs and a short circuit failure is likely to occur. Therefore, adoption of a silver alloy film has been studied.

本発明は、このような事情に鑑みてなされたもので、アーク放電およびスプラッシュをより一層抑制することができる導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the silver alloy sputtering target for electroconductive film formation which can suppress arc discharge and a splash further, and its manufacturing method.

本発明者らは鋭意研究の結果、Snを含有する銀合金ターゲットにおいて、ターゲットの消耗に伴うアーク放電回数の増加を抑制するためには、結晶粒を平均粒径で120μm未満にさらに微細化し、そのばらつきを平均粒径の20%以下に抑えることが有効であるとの知見を得た。
かかる知見の下、本発明の導電性膜形成用銀合金スパッタリングターゲットは、Agに固溶する元素であるSnを0.1〜1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した銀合金スパッタリングターゲットであって、該合金の結晶粒の平均粒径が30μm以上120μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする。
As a result of intensive studies, the inventors of the present invention have further refined crystal grains to an average grain size of less than 120 μm in order to suppress an increase in the number of arc discharges associated with target consumption in a silver alloy target containing Sn, It was found that it is effective to suppress the variation to 20% or less of the average particle diameter.
Under such knowledge, the silver alloy sputtering target for forming a conductive film of the present invention contains 0.1 to 1.5% by mass of Sn, which is an element dissolved in Ag, with the balance being composed of Ag and inevitable impurities. A silver alloy sputtering target having an average particle diameter of the alloy of 30 μm or more and less than 120 μm, and a variation in the particle diameter of the crystal grains is 20% or less of the average particle diameter To do.

Snは、Agに固溶してターゲットの結晶粒成長を抑制し、結晶粒の微細化に効果がある。ターゲットの硬さを向上させるので、機械加工時の反りを抑制する。スパッタにより形成された膜の耐食性および耐熱性を向上させる。0.1質量%未満では、上記効果が得られず、1.5質量%を超えると、膜の反射率や電気抵抗が低下する。
平均粒径を30μm以上120μm未満としたのは、30μm未満は現実的でなく製造コスト増を招くからであり、120μm以上であると、スパッタ時にターゲットの消耗に伴って異常放電が増加する傾向が顕著になるからである。
平均粒径のばらつきが20%を超えると、スパッタ時にターゲットの消耗に伴って異常放電が増加する傾向が顕著になる。
Sn dissolves in Ag, suppresses the growth of target crystal grains, and is effective in refining crystal grains. Since the hardness of the target is improved, warpage during machining is suppressed. Improve the corrosion resistance and heat resistance of the film formed by sputtering. If the amount is less than 0.1% by mass, the above effect cannot be obtained. If the amount exceeds 1.5% by mass, the reflectivity and electric resistance of the film decrease.
The reason why the average particle size is 30 μm or more and less than 120 μm is that if it is less than 30 μm, it is not practical and causes an increase in manufacturing cost. This is because it becomes prominent.
If the variation in average particle diameter exceeds 20%, the tendency of abnormal discharge to increase with the consumption of the target during sputtering becomes significant.

本発明の導電性膜形成用銀合金スパッタリングターゲットは、Agに固溶する元素であるSnを0.1〜1.5質量%含み、さらに、Agに固溶する元素であるSb、Gaのうち1種以上を合計で0.1〜2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金スパッタリングターゲットであって、該合金の結晶粒の平均粒径が30μm以上120μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする。
The silver alloy sputtering target for forming a conductive film of the present invention contains 0.1 to 1.5% by mass of Sn, which is an element that dissolves in Ag, and further includes Sb and Ga that are elements that dissolve in Ag. A silver alloy sputtering target containing at least one type of 0.1 to 2.5% by mass in total, with the balance being composed of Ag and inevitable impurities, the average grain size of the alloy crystal grains being 30 μm The crystal grain size variation is 20% or less of the average grain size.

SbおよびGaはAgに固溶して更に結晶粒成長を抑制する効果を有する。スパッタにより形成された膜の耐食性および耐熱性をよりいっそう向上させる。特にGaは膜の耐塩化性を向上させる。その含有量が0.1質量%未満では、上記効果が得られず、2.5質量%を超えると、膜の反射率や電気抵抗が低下するだけでなく、熱間圧延の際に割れが発生する傾向が現れる。   Sb and Ga have the effect of dissolving in Ag and further suppressing crystal grain growth. Corrosion resistance and heat resistance of the film formed by sputtering are further improved. In particular, Ga improves the chloride resistance of the film. When the content is less than 0.1% by mass, the above effect cannot be obtained. When the content exceeds 2.5% by mass, not only the reflectance and electrical resistance of the film are lowered, but also cracking occurs during hot rolling. The tendency to occur appears.

本発明の導電性膜形成用銀合金スパッタリングターゲットの製造方法は、Snを0.1〜1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造する方法であって、前記熱間圧延工程は、1パス当りの圧下率が20〜50%でひずみ速度が3〜15/secの仕上げ熱間圧延をパス後の温度が400〜650℃で1パス以上含んでおり、前記冷却工程は、200〜1000℃/minの冷却速度にて急冷することを特徴とする。   The method for producing a silver alloy sputtering target for forming a conductive film according to the present invention includes a hot-melted ingot containing 0.1 to 1.5% by mass of Sn and the balance being composed of Ag and inevitable impurities. A method of manufacturing a silver alloy sputtering target by performing a rolling process, a cooling process, and a machining process in this order, wherein the hot rolling process has a reduction rate of 20 to 50% per pass and a strain rate. It includes 3 to 15 / sec of finish hot rolling at a temperature of 400 to 650 ° C. after the pass, and the cooling step is rapidly cooled at a cooling rate of 200 to 1000 ° C./min. To do.

また、Snを0.1〜1.5質量%含み、さらに、Sb、Gaのうち1種以上を合計で0.1〜2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造する方法であって、前記熱間圧延工程は、1パス当りの圧下率が20〜50%でひずみ速度が3〜15/secの仕上げ熱間圧延をパス後の温度が400〜650℃で1パス以上含んでおり、前記冷却工程は、200〜1000℃/minの冷却速度にて急冷することを特徴とする。   In addition, it contains 0.1 to 1.5% by mass of Sn, further contains at least one of Sb and Ga in a total amount of 0.1 to 2.5% by mass, and the balance is composed of Ag and inevitable impurities. A hot-rolling step, a cooling step, and a machining step are performed in this order to produce a silver alloy sputtering target, wherein the hot-rolling step is a reduction per pass. The temperature after the pass of finishing hot rolling with a rate of 20 to 50% and a strain rate of 3 to 15 / sec is included at least 1 pass at 400 to 650 ° C., and the cooling step is performed at 200 to 1000 ° C./min. It is characterized by rapid cooling at a cooling rate.

仕上げ熱間圧延の1パス当りの圧下率を20〜50%としたのは、圧下率が20%未満では結晶粒の微細化が不十分となり、50%以上の圧下率を得ようとすると圧延機の負荷荷重が過大となり現実的ではないからである。
また、ひずみ速度を3〜15/secとしたのは、ひずみ速度が3/sec未満では、結晶粒の微細化が不十分となり、微細粒と粗大粒の混粒が発生する傾向が現れるからであり、15/secを超えるひずみ速度は圧延機の負荷荷重が過大となり現実的ではないからである。
各パス後の温度は、400℃未満では、動的再結晶が不十分となり、結晶粒径のばらつきが増大する傾向が顕著になる。650℃を超えると、結晶粒成長が進行し平均結晶粒径が120μm以上となる。
そして、この熱間圧延後に急冷することにより結晶粒の成長を抑制し、微細な結晶粒のターゲットを得ることができる。冷却速度が200℃/min未満では結晶粒の成長を抑制する効果に乏しい。1000℃/minを超えても、それ以上の微細化には寄与しない。
The reduction rate per pass of the finish hot rolling is set to 20 to 50% because if the reduction rate is less than 20%, the crystal grains are insufficiently refined, and rolling is attempted to obtain a reduction rate of 50% or more. This is because the load on the machine is excessive and not realistic.
Also, the strain rate was set to 3 to 15 / sec because if the strain rate is less than 3 / sec, the crystal grains are not sufficiently refined and a mixture of fine grains and coarse grains tends to appear. This is because a strain rate exceeding 15 / sec is not realistic because the load of the rolling mill is excessive.
If the temperature after each pass is less than 400 ° C., dynamic recrystallization becomes insufficient, and the tendency of variation in crystal grain size becomes remarkable. When it exceeds 650 ° C., crystal grain growth proceeds and the average crystal grain size becomes 120 μm or more.
And by rapidly cooling after this hot rolling, the growth of crystal grains can be suppressed and a fine crystal grain target can be obtained. When the cooling rate is less than 200 ° C./min, the effect of suppressing the growth of crystal grains is poor. Even if it exceeds 1000 ° C./min, it does not contribute to further miniaturization.

本発明によれば、スパッタ中に大電力を投入しても、アーク放電およびスプラッシュをより一層抑制することができるターゲットが得られ、このターゲットをスパッタすることにより、反射率が高く、優れた耐久性を有する導電性膜を得ることができる。   According to the present invention, a target capable of further suppressing arc discharge and splash even when high power is applied during sputtering is obtained. By sputtering this target, the reflectance is high and the durability is excellent. A conductive film having properties can be obtained.

以下、本発明の導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法の実施形態を説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, an embodiment of a silver alloy sputtering target for forming a conductive film and a method for producing the same of the present invention will be described. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

このターゲットは、ターゲット表面(ターゲットのスパッタリングに供される側の面)が、0.25m以上の面積を有し、矩形ターゲットの場合には、少なくとも一辺が500mm以上であり、長さの上限は、ターゲットのハンドリングの観点から、3000mmが好ましい。一方、幅の上限は、熱間圧延工程で使用する圧延機で一般的に圧延可能なサイズの上限の観点から、1700mmが好ましい。また、ターゲットの交換頻度の観点から、ターゲットの厚さは、6mm以上が好ましく、マグネトロンスパッタの放電安定性の観点から、25mm以下が好ましい。 In this target, the target surface (surface on the side subjected to sputtering of the target) has an area of 0.25 m 2 or more, and in the case of a rectangular target, at least one side is 500 mm or more, and the upper limit of the length Is preferably 3000 mm from the viewpoint of target handling. On the other hand, the upper limit of the width is preferably 1700 mm from the viewpoint of the upper limit of the size that can be generally rolled by a rolling mill used in the hot rolling process. Further, from the viewpoint of target replacement frequency, the thickness of the target is preferably 6 mm or more, and from the viewpoint of discharge stability of magnetron sputtering, it is preferably 25 mm or less.

第1実施形態の導電性膜形成用銀合金スパッタリングターゲットは、Snを0.1〜1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成され、その合金の結晶粒の平均粒径が30μm以上120μm未満であり、結晶粒の粒径のばらつきが平均粒径の20%以下である。   The silver alloy sputtering target for forming a conductive film according to the first embodiment is composed of a silver alloy having a component composition containing 0.1 to 1.5% by mass of Sn and the balance of Ag and inevitable impurities, and the alloy. The average grain size of the crystal grains is 30 μm or more and less than 120 μm, and the grain size variation of the crystal grains is 20% or less of the average grain size.

Agは、スパッタにより形成された有機EL素子の反射電極膜やタッチパネルの配線膜に、高反射率と低抵抗を与える効果を有する。   Ag has an effect of giving high reflectivity and low resistance to the reflective electrode film of the organic EL element and the wiring film of the touch panel formed by sputtering.

Snは、ターゲットの硬さを向上させるので、機械加工時の反りを抑制する。特に、ターゲット表面が0.25m以上の面積を有した大型ターゲットの機械加工時の反りを抑制することができる。加えて、Snは、スパッタにより形成された有機EL素子の反射電極膜の耐食性、および耐熱性を向上させる効果がある。これは、Snが、膜中の結晶粒を微細化すると共に膜の表面粗さを小さくし、また、Agに固溶して結晶粒の強度を高め、熱による結晶粒の粗大化を抑制し、膜の表面粗さの増大を抑制したり、膜の腐食による反射率の低下を抑制したりする効果を有するためである。したがって、この導電性膜形成用銀合金スパッタリングターゲットを用いて成膜した反射電極膜または配線膜では、膜の耐食性および耐熱性が向上することから、有機EL素子の高輝度化やタッチパネル等の配線における信頼性の改善に寄与する。
Snの含有量を上記範囲に限定した理由は、0.1質量%未満では、上記に記載したSnを添加することによる効果が得られず、1.5質量%を超えて含有すると、膜の電気抵抗が増大したり、スパッタにより形成された膜の反射率や耐食性がかえって低下したりするので好ましくないためである。したがって、膜の組成は、ターゲット組成に依存するので、銀合金スパッタリングターゲットに含まれるSnの含有量は、0.1〜1.5質量%に設定される。より好ましくは0.2〜1.0質量%である。
Since Sn improves the hardness of the target, it suppresses warpage during machining. In particular, warping during machining of a large target having a target surface with an area of 0.25 m 2 or more can be suppressed. In addition, Sn has an effect of improving the corrosion resistance and heat resistance of the reflective electrode film of the organic EL element formed by sputtering. This is because Sn refines the crystal grains in the film and reduces the surface roughness of the film, and also increases the strength of the crystal grains by solid solution in Ag and suppresses the coarsening of the crystal grains due to heat. This is because it has an effect of suppressing an increase in the surface roughness of the film or suppressing a decrease in reflectance due to the corrosion of the film. Therefore, in the reflective electrode film or the wiring film formed using this silver alloy sputtering target for forming a conductive film, the corrosion resistance and heat resistance of the film are improved. Contributes to improving reliability in
The reason for limiting the content of Sn to the above range is that if the content is less than 0.1% by mass, the effect of adding Sn described above cannot be obtained, and if the content exceeds 1.5% by mass, This is because the electrical resistance is increased, and the reflectance and corrosion resistance of the film formed by sputtering are lowered, which is not preferable. Therefore, since the composition of the film depends on the target composition, the content of Sn contained in the silver alloy sputtering target is set to 0.1 to 1.5% by mass. More preferably, it is 0.2-1.0 mass%.

第2実施形態の導電性膜形成用銀合金スパッタリングターゲットは、Snを0.1〜1.5質量%含み、さらに、Sb、Gaのうち1種以上を合計で0.1〜2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成され、その合金の結晶粒の平均粒径が30μm以上120μm未満であり、結晶粒の粒径のばらつきが平均粒径の20%以下である。   The silver alloy sputtering target for forming a conductive film according to the second embodiment contains 0.1 to 1.5% by mass of Sn, and further 0.1 to 2.5% by mass of one or more of Sb and Ga. %, And the balance is composed of a silver alloy having a component composition composed of Ag and inevitable impurities, the average grain size of the alloy is 30 μm or more and less than 120 μm, and the variation in the grain size of the crystal grains is the average grain It is 20% or less of the diameter.

第2実施形態において、SbおよびGaはAgに固溶して更に結晶粒成長を抑制する効果を有する。スパッタにより形成された膜の耐食性および耐熱性をよりいっそう向上させる。特にGaは膜の耐塩化性を向上させる。スパッタにより形成された膜をタッチパネルの引き出し配線膜に用いる場合、タッチパネルは指で触れて操作されるため、人体からの汗に含まれる塩素成分への耐性が配線膜には必要であるが、Gaを添加することにより、耐塩化性に優れるものとなる。
これらSb、Gaの含有量は、0.1質量%未満では、上記効果が得られず、2.5質量%を超えると、膜の反射率や電気抵抗が低下するだけでなく、熱間圧延の際に割れが発生する傾向が現れる。
In the second embodiment, Sb and Ga have an effect of solid solution in Ag and further suppressing crystal grain growth. Corrosion resistance and heat resistance of the film formed by sputtering are further improved. In particular, Ga improves the chloride resistance of the film. When a film formed by sputtering is used as the lead wiring film of the touch panel, the touch panel is operated by touching with a finger, and therefore the wiring film needs to be resistant to the chlorine component contained in sweat from the human body. By adding, it becomes excellent in chloride resistance.
When the content of these Sb and Ga is less than 0.1% by mass, the above effect cannot be obtained. When the content exceeds 2.5% by mass, not only the reflectivity and electric resistance of the film are lowered, but also hot rolling. In this case, there is a tendency to crack.

以上の各組成の実施形態において、銀合金スパッタリングターゲット中の銀合金結晶粒の平均粒径は、30μm以上120μm未満である。銀合金結晶粒の平均粒径が、30μm未満は、現実的でなく製造コスト増を招く。また、均一な結晶粒を製造することが難しく、粒径のばらつきが大きくなり、大電力のスパッタ中に、異常放電が発生しやすくなり、スプラッシュが発生するようになる。一方、120μm以上であると、ターゲットがスパッタにより消耗するのに伴い、各々の結晶粒の結晶方位の違いによるスパッタレートの差に起因して、スパッタ表面の凹凸が大きくなるため、大電力でのスパッタ中に、異常放電が発生し易くなり、スプラッシュが発生し易くなる。   In the embodiment of each composition described above, the average particle diameter of the silver alloy crystal grains in the silver alloy sputtering target is 30 μm or more and less than 120 μm. If the average grain size of the silver alloy crystal grains is less than 30 μm, it is not practical and causes an increase in manufacturing cost. In addition, it is difficult to produce uniform crystal grains, and the dispersion of the grain size becomes large. Abnormal discharge is likely to occur during high-power sputtering, and splash occurs. On the other hand, when the target is 120 μm or more, as the target is consumed by sputtering, the unevenness of the sputtering surface increases due to the difference in the sputtering rate due to the difference in crystal orientation of each crystal grain. Abnormal discharge is likely to occur during sputtering, and splash is likely to occur.

ここで、銀合金結晶粒の平均粒径は、以下のようにして測定する。
ターゲットのスパッタ面内で均等に16カ所の地点から、一辺が10mm程度の直方体の試料を採取する。具体的には、ターゲットを縦4×横4の16カ所に区分し、各部の中央部から採取する。なお、本実施形態では、500×500(mm)以上のスパッタ面、すなわちターゲット表面が0.25m以上の面積を有する大型ターゲットを念頭に置いているので、大型ターゲットとして一般に用いられる矩形ターゲットからの試料の採取法を記載したが、本発明は、当然に、丸形ターゲットのスプラッシュ発生の抑制にも効果を発揮する。このときには、大型の矩形ターゲットでの試料の採取法に準じて、ターゲットのスパッタ面内で均等に16カ所に区分し、採取することとする。
次に、各試料片のスパッタ面側を研磨する。この際、#180〜#4000の耐水紙で研磨をした後、3μm〜1μmの砥粒でバフ研磨をする。
さらに、光学顕微鏡で粒界が見える程度にエッチングする。ここで、エッチング液には、過酸化水素水とアンモニア水との混合液を用い、室温で1〜2秒間浸漬し、粒界を現出させる。次に、各試料について、光学顕微鏡で倍率60倍もしくは120倍の写真を撮影する。写真の倍率は結晶粒を計数し易い倍率を選択する。
各写真において、60mmの線分を、井げた状に20mm間隔で縦横に合計4本引き、それぞれの直線で切断された結晶粒の数を数える。なお、線分の端の結晶粒は、0.5個とカウントする。平均切片長さ:L(μm)を、L=60000/(M・N)(ここで、Mは実倍率、Nは切断された結晶粒数の平均値である)で求める。
次に、求めた平均切片長さ:L(μm)から、試料の平均粒径:d(μm)を、d=(3/2)・Lで算出する。
このように16カ所からサンプリングした試料の平均粒径の平均値をターゲットの銀合金結晶粒の平均粒径とする。
Here, the average particle diameter of the silver alloy crystal grains is measured as follows.
A rectangular parallelepiped sample having a side of about 10 mm is collected from 16 points evenly within the sputtering surface of the target. Specifically, the target is divided into 16 vertical 4 × horizontal 4 locations and collected from the central part of each part. In the present embodiment, since a large target having a sputter surface of 500 × 500 (mm) or more, that is, a target surface having an area of 0.25 m 2 or more is taken into consideration, a rectangular target generally used as a large target is used. The method for collecting the sample was described, but the present invention naturally exhibits the effect of suppressing the splash generation of the round target. At this time, according to the method of collecting a sample with a large rectangular target, the sample is equally divided into 16 places on the sputtering surface of the target and collected.
Next, the sputter surface side of each sample piece is polished. At this time, after polishing with water resistant paper of # 180 to # 4000, buffing is performed with abrasive grains of 3 μm to 1 μm.
Furthermore, etching is performed to such an extent that the grain boundary can be seen with an optical microscope. Here, a mixed liquid of hydrogen peroxide water and ammonia water is used as an etching solution, and the mixture is immersed for 1 to 2 seconds at room temperature to reveal grain boundaries. Next, a photograph with a magnification of 60 times or 120 times is taken with an optical microscope for each sample. The magnification of the photograph is selected so that the crystal grains can be easily counted.
In each photograph, a total of four 60 mm line segments are drawn vertically and horizontally at intervals of 20 mm in the shape of a blister, and the number of crystal grains cut along each straight line is counted. The number of crystal grains at the end of the line segment is counted as 0.5. Average section length: L (μm) is determined by L = 60000 / (M · N) (where M is an actual magnification and N is an average value of the number of crystal grains cut).
Next, from the obtained average section length: L (μm), the average particle diameter of the sample: d (μm) is calculated by d = (3/2) · L.
Thus, let the average value of the average particle diameter of the sample sampled from 16 places be the average particle diameter of the silver alloy crystal grains of the target.

この銀合金結晶粒の粒径のばらつきが、銀合金結晶粒の平均粒径の20%以下であると、スパッタ時のスプラッシュを、より確実に抑制することができる。ここで、粒径のばらつきは、16カ所で求めた16個の平均粒径のうち、平均粒径との偏差の絶対値(|〔(ある1個の箇所の平均粒径)−(16カ所の平均粒径)〕|)が最大となるものを特定し、その特定した平均粒径(特定平均粒径)を用いて下記の様に算出する。
|〔(特定平均粒径)−(16カ所の平均粒径)〕|/(16カ所の平均粒径)×100(%)
When the variation in the grain diameter of the silver alloy crystal grains is 20% or less of the average grain diameter of the silver alloy crystal grains, splash during sputtering can be more reliably suppressed. Here, the dispersion of the particle size is the absolute value of deviation from the average particle size among the 16 average particle sizes obtained at 16 locations (| [(average particle size of one certain location) − (16 locations). Is determined as follows using the specified average particle size (specific average particle size).
| [(Specific average particle size) − (Average particle size at 16 locations)] | / (Average particle size at 16 locations) × 100 (%)

次に、本実施形態の導電性膜形成用銀合金スパッタリングターゲットの製造方法について説明する。
第1実施形態の導電性膜形成用銀合金スパッタリングターゲットは、原料として純度:99.99質量%以上のAg、純度:99.9質量%以上のSnを用いる。
まず、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のSnを添加し、その後、真空または不活性ガス雰囲気中で溶解して、Sn:0.1〜1.5質量%含み、残部がAgおよび不可避不純物からなる銀合金の溶解鋳造インゴットを作製する。
ここで、Agの溶解は、雰囲気を一度真空にした後、アルゴンで置換した雰囲気で行い、溶解後アルゴン雰囲気の中でAgの溶湯にSnを添加することは、AgとSnの組成比率を安定する観点から、好ましい。
Next, the manufacturing method of the silver alloy sputtering target for conductive film formation of this embodiment is demonstrated.
The silver alloy sputtering target for forming a conductive film according to the first embodiment uses Ag of purity: 99.99% by mass or more and Sn of purity: 99.9% by mass or more as raw materials.
First, Ag is melted in a high vacuum or an inert gas atmosphere, Sn having a predetermined content is added to the resulting molten metal, and then melted in a vacuum or an inert gas atmosphere, Sn: 0.1 A melting cast ingot of a silver alloy containing ˜1.5 mass% and the balance being made of Ag and inevitable impurities is produced.
Here, melting of Ag is performed in an atmosphere in which the atmosphere is once evacuated and then replaced with argon, and adding Sn to the molten Ag in the argon atmosphere after melting stabilizes the composition ratio of Ag and Sn. From the standpoint of

また、第2実施形態の導電性膜形成用銀合金スパッタリングターゲットでは、原料として純度:99.99質量%以上のAg、純度:99.9質量%以上のSn、Sb、Gaを用い、Agの溶湯に、Sn:0.1〜1.5質量%、Sb、Gaのうち1種以上を合計で0.1〜3.0質量%添加する。その場合も、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のSn、Sb、Gaを添加し、その後、真空または不活性ガス雰囲気中で溶解する。   Further, in the silver alloy sputtering target for forming a conductive film of the second embodiment, the purity is 99.99% by mass or more of Ag, and the purity is 99.9% by mass or more of Sn, Sb, Ga. One or more of Sn: 0.1 to 1.5% by mass and Sb and Ga are added to the molten metal in a total amount of 0.1 to 3.0% by mass. Also in that case, Ag is melted in a high vacuum or an inert gas atmosphere, Sn, Sb, and Ga of a predetermined content are added to the obtained molten metal, and then melted in a vacuum or an inert gas atmosphere.

また、以上の溶解・鋳造は、真空中または不活性ガス置換の雰囲気中で行うのが望ましいが、大気中溶解炉を用いることも可能であり、大気中溶解炉を用いる場合は、溶湯表面に不活性ガスを吹き付けるか、木炭等の炭素系固体シール材により溶湯表面を覆いながら溶解、鋳造する。これにより、インゴット中の酸素や非金属介在物の含有量を低減することができる。
溶解炉は成分を均一化するため誘導加熱炉が好ましい。
また、角型の鋳型で鋳造し直方体のインゴットを得るのが効率的で望ましいが、丸型の鋳型に鋳造した円柱状のインゴットを加工して概略直方体のインゴットを得ることもできる。
In addition, it is desirable to perform the above melting and casting in a vacuum or in an atmosphere of inert gas replacement, but it is also possible to use an atmospheric melting furnace, and when using an atmospheric melting furnace, It is melted and cast while spraying an inert gas or covering the surface of the molten metal with a carbon-based solid sealing material such as charcoal. Thereby, the content of oxygen and nonmetallic inclusions in the ingot can be reduced.
The melting furnace is preferably an induction heating furnace in order to make the components uniform.
Further, it is efficient and desirable to obtain a rectangular parallelepiped ingot by casting with a rectangular mold, but it is also possible to obtain a roughly rectangular ingot by processing a cylindrical ingot cast on a round mold.

得られた直方体状のインゴットを加熱して所定の厚さまで熱間圧延した後、急冷する。
この場合、熱間圧延の最終段階の仕上げ熱間圧延の条件が重要であり、この仕上げ熱間圧延条件を適切に設定することにより、結晶粒が微細で均一な銀合金板を製造することができる。
具体的には、仕上げ熱間圧延においては、1パス当りの圧下率が20〜50%でひずみ速度が3〜15/sec、各圧延パス後の圧延温度が400〜650℃とする。この仕上げ熱間圧延を1パス以上含みものとする。熱間圧延全体としての総圧延率は例えば70%以上とする。
ここで、仕上げ熱間圧延とは、圧延後の板材の結晶粒径に強く影響を及ぼす圧延パスであり、最終圧延パスを含み、必要に応じて、最終圧延パスから3回目までのパスであると考えてよい。この最終圧延より後に、板厚の調整のために前記圧延温度範囲で、圧下率7%以下の圧延を加えてもかまわない。
また、ひずみ速度ε(sec−1)は次式で与えられる。
The obtained rectangular parallelepiped ingot is heated and hot-rolled to a predetermined thickness, and then rapidly cooled.
In this case, the condition of the final hot rolling in the final stage of hot rolling is important. By appropriately setting the final hot rolling conditions, it is possible to produce a silver alloy plate with fine and uniform crystal grains. it can.
Specifically, in finish hot rolling, the rolling reduction per pass is 20 to 50%, the strain rate is 3 to 15 / sec, and the rolling temperature after each rolling pass is 400 to 650 ° C. This finish hot rolling shall include one or more passes. The total rolling rate of the entire hot rolling is, for example, 70% or more.
Here, the finish hot rolling is a rolling pass that strongly influences the crystal grain size of the plate material after rolling, including the final rolling pass, and, if necessary, from the final rolling pass to the third pass. You may think. After this final rolling, rolling with a rolling reduction of 7% or less may be added in the rolling temperature range for adjusting the plate thickness.
Further, the strain rate ε (sec −1 ) is given by the following equation.

Figure 0005159963
Figure 0005159963

上式において、H:圧延ロールに対する入側での板厚(mm)、n:圧延ロール回転速度(rpm)、R:圧延ロール半径(mm)、r:圧下率(%)であり、r‘=r/100である。
1パス当りの圧下率を20〜50%、ひずみ速度を3〜15/secとすることにより、比較的低温で大きなエネルギーによって強加工することになり、これにより粗大結晶粒の混在を防止し、動的再結晶により全体として微細で均一な結晶粒を生成することができる。1パス当りの圧下率が20%未満では結晶粒の微細化が不十分となり、50%を超える圧下率を得ようとすると圧延機の負荷荷重が過大となり現実的ではない。また、ひずみ速度が3/sec未満では、結晶粒の微細化が不十分となり、微細粒と粗大粒の混粒が発生する傾向が現れる。15/secを超えるひずみ速度は圧延機の負荷荷重が過大となり現実的ではない。
In the above formula, H 0 : sheet thickness (mm) on the entry side with respect to the rolling roll, n: rolling roll rotation speed (rpm), R: rolling roll radius (mm), r: rolling reduction (%), r '= R / 100.
By setting the rolling reduction per pass to 20 to 50% and the strain rate to 3 to 15 / sec, it will be strongly processed with large energy at a relatively low temperature, thereby preventing the mixing of coarse crystal grains, By dynamic recrystallization, fine and uniform crystal grains as a whole can be generated. If the rolling reduction per pass is less than 20%, the refinement of crystal grains is insufficient, and if it is attempted to obtain a rolling reduction exceeding 50%, the load on the rolling mill becomes excessive, which is not realistic. On the other hand, if the strain rate is less than 3 / sec, the crystal grains are not sufficiently refined and a mixture of fine grains and coarse grains tends to appear. A strain rate exceeding 15 / sec is not realistic because the load of the rolling mill is excessive.

各パス後の圧延温度は熱間圧延としては低温の400〜650℃とすることにより、結晶粒の粗大化を抑制する。圧延温度が400℃未満では、動的再結晶が不十分となり、結晶粒径のばらつきが増大する傾向が顕著になる。650℃を超えると、結晶粒成長が進行し平均結晶粒径が120μmを超えるようになる。
この最終の仕上げ熱間圧延を1パスから必要に応じて複数パス行う。
仕上げ熱間圧延のより好ましい範囲は、1パス当りの圧下率が25〜50%、ひずみ速度5〜15/sec、パス後の圧延温度500〜600℃であり、この仕上げ熱間圧延を3パス以上実施するのが好ましい。
なお、圧延開始温度は400〜650℃でなくともよく、最終段階の仕上げ熱間圧延での各パス終了時の温度が400〜650℃となるように、圧延開始温度、パススケジュールを設定する。
The rolling temperature after each pass is 400 to 650 ° C., which is a low temperature for hot rolling, to suppress the coarsening of crystal grains. When the rolling temperature is less than 400 ° C., dynamic recrystallization becomes insufficient, and the tendency of variation in crystal grain size becomes remarkable. When the temperature exceeds 650 ° C., crystal grain growth proceeds and the average crystal grain size exceeds 120 μm.
This final finish hot rolling is performed from one pass to multiple passes as necessary.
A more preferable range of finish hot rolling is a rolling reduction rate of 25 to 50% per pass, a strain rate of 5 to 15 / sec, and a rolling temperature of 500 to 600 ° C. after the pass. It is preferable to carry out the above.
Note that the rolling start temperature may not be 400 to 650 ° C., and the rolling start temperature and the pass schedule are set so that the temperature at the end of each pass in the final hot rolling at the final stage is 400 to 650 ° C.

そして、このような熱間圧延加工後に、400〜650℃の温度から例えば200℃以下の温度になるまで、200〜1000℃/minの冷却速度で急冷する。この急冷により結晶粒の成長を抑制し、微細な結晶粒の圧延板を得ることができる。冷却速度が200℃/min未満では結晶粒の成長を抑制する効果に乏しい。1000℃/minを超えても、それ以上の微細化には寄与しない。急冷の方法としては、1分間程度、水シャワーするとよい。   And after such a hot rolling process, it cools rapidly with the cooling rate of 200-1000 degrees C / min until it becomes the temperature of 200 degrees C or less from the temperature of 400-650 degreeC. By this rapid cooling, the growth of crystal grains can be suppressed, and a rolled plate having fine crystal grains can be obtained. When the cooling rate is less than 200 ° C./min, the effect of suppressing the growth of crystal grains is poor. Even if it exceeds 1000 ° C./min, it does not contribute to further miniaturization. As a method of rapid cooling, it is good to perform a water shower for about 1 minute.

このようにして得た圧延板を矯正プレス、ローラレベラー等により矯正した後、フライス加工、放電加工等の機械加工で所望の寸法に仕上げる。最終的に得られるスパッタリングターゲットのスパッタ表面の算術平均面粗さ(Ra)は0.2〜2μmであることが好ましい。   The rolled plate thus obtained is corrected by a correction press, a roller leveler or the like, and then finished to a desired dimension by machining such as milling or electric discharge machining. The arithmetic average surface roughness (Ra) of the sputtering surface of the finally obtained sputtering target is preferably 0.2 to 2 μm.

このようにして得られた本実施形態の導電性膜形成用銀合金スパッタリングターゲットは、スパッタ中に大電力を投入しても、異常放電を抑制し、スプラッシュの発生を抑制することができる。このターゲットをスパッタすることにより、反射率が高く、優れた耐久性を有する導電性膜が得られる。また、この導電性膜形成用銀合金スパッタリングターゲットを用いてスパッタすることで、良好な耐食性および耐熱性を有し、さらに低い電気抵抗の導電性膜を得ることができる。特に、ターゲットサイズが、幅:500mm、長さ:500mm、厚さ6mm以上の大型ターゲットである場合に有効である。   The silver alloy sputtering target for forming a conductive film of the present embodiment thus obtained can suppress abnormal discharge and suppress the occurrence of splash even when a large electric power is applied during sputtering. By sputtering this target, a conductive film having high reflectivity and excellent durability can be obtained. Further, by performing sputtering using this silver alloy sputtering target for forming a conductive film, a conductive film having good corrosion resistance and heat resistance and having a lower electric resistance can be obtained. This is particularly effective when the target size is a large target having a width of 500 mm, a length of 500 mm, and a thickness of 6 mm or more.

(実施例1)
純度99.99質量%以上のAgと添加原料として純度99.9質量%以上のSnを用意し、黒鉛るつぼで築炉した高周波誘導溶解炉に装填した。溶解時の総質量は約1100kgとした。
溶解に際しては、まずAgを溶解し、Agが溶け落ちた後、表1に示すターゲット組成となるように添加原料を投入し、合金溶湯を誘導加熱による攪拌効果により十分に攪拌した後、鋳鉄製の鋳型に鋳造した。
この鋳造により得られたインゴットの引け巣部分を切除し、鋳型に接していた表面を面削除去し、健全部として概略寸法640×640×180(mm)の直方体状のインゴットを得た。
Example 1
Ag having a purity of 99.99% by mass or more and Sn having a purity of 99.9% by mass or more were prepared as an additive material and loaded into a high-frequency induction melting furnace constructed with a graphite crucible. The total mass at the time of dissolution was about 1100 kg.
At the time of melting, Ag is first melted, and after Ag has melted down, an additional raw material is added so as to have the target composition shown in Table 1, and the molten alloy is sufficiently stirred by the stirring effect by induction heating, and then made of cast iron. Cast into a mold.
The shrinkage nest portion of the ingot obtained by this casting was excised, the surface that was in contact with the mold was removed, and a rectangular parallelepiped ingot having a rough dimension of 640 × 640 × 180 (mm) was obtained as a healthy portion.

このインゴットを、780℃まで加熱して、一方向に圧延を繰り返して640mmから1700mmまで伸ばし、これを90度回転させた後、更にもう一方の640mmの方向の圧延を繰り返し行い、概略1700×2200×19(mm)の寸法の板材とした。
この熱間圧延は全部で12回のパスを繰り返した。そのうち、最終パスから3回目までのパスの条件(1パス当りのひずみ速度、圧下率、パス後の板材温度)を表1の通りとした。熱間圧延全体の総圧延率は90%であった。
熱間圧延終了後、圧延後の板材を表1に示す条件で冷却した。
冷却後、板材をローラレベラーに通して、急冷によって生じたひずみを矯正し、1600×2000×15(mm)の寸法に機械加工してターゲットとした。
The ingot was heated to 780 ° C., rolled in one direction and extended from 640 mm to 1700 mm, rotated 90 degrees, and further rolled in the other direction of 640 mm, approximately 1700 × 2200. It was set as the board | plate material of a dimension of * 19 (mm).
This hot rolling was repeated a total of 12 passes. Among them, the conditions of the pass from the final pass to the third pass (strain rate per pass, rolling reduction, plate material temperature after pass) are as shown in Table 1. The total rolling rate of the entire hot rolling was 90%.
After the hot rolling was completed, the rolled plate was cooled under the conditions shown in Table 1.
After cooling, the plate material was passed through a roller leveler to correct distortion caused by rapid cooling, and machined to a size of 1600 × 2000 × 15 (mm) to obtain a target.

(実施例2〜10、比較例1〜10)
実施例1と同様にして、熱間圧延前のインゴットの加熱温度を510〜880℃、最終圧延後の板厚を9.5〜25.6mm、総パス回数を11〜14回、総圧延率を86〜95%の範囲で変量し、表1に示すターゲット組成、最終パスから3回目までのパスの条件、および熱間圧延後の冷却速度の条件でターゲットを作製した。表1中、冷却速度を表記したものは水シャワーにより冷却したものであり、水冷無しは単に放冷したものである。但し、機械加工後のターゲットの厚さは6〜21mmの範囲とした。
(Examples 2 to 10, Comparative Examples 1 to 10)
In the same manner as in Example 1, the heating temperature of the ingot before hot rolling is 510 to 880 ° C., the plate thickness after final rolling is 9.5 to 25.6 mm, the total number of passes is 11 to 14, and the total rolling rate Was varied in the range of 86 to 95%, and the target was produced under the conditions of the target composition shown in Table 1, the conditions of the pass from the final pass to the third pass, and the cooling rate after hot rolling. In Table 1, the cooling rate is indicated by cooling with a water shower, and no water cooling is simply allowed to cool. However, the thickness of the target after machining was in the range of 6 to 21 mm.

(実施例11〜13、比較例11)
実施例1と同様にして溶解鋳造して、概略寸法640×640×60(mm)のインゴットを作製し、このインゴットを680℃に加熱した後、熱間圧延して、概略1200×1300×15(mm)の寸法の板材とした。
この熱間圧延は全部で6回のパスを繰り返した。そのうち、最終パスから3回目までのパスの条件(1パス当りのひずみ速度、圧下率、パス後の板材温度)を表1の通りとした。熱間圧延全体の総圧延率は75%であった。
熱間圧延終了後、圧延後の板材を表1に示す条件で冷却した。
冷却後、板材をローラレベラーに通して、急冷によって生じたひずみを矯正し、1000×1200×12(mm)の寸法に機械加工してターゲットとした。
(Examples 11 to 13, Comparative Example 11)
It melt-casts in the same manner as in Example 1 to produce an ingot having an approximate size of 640 × 640 × 60 (mm), this ingot is heated to 680 ° C., and then hot-rolled to approximately 1200 × 1300 × 15. It was set as the board | plate material of the dimension of (mm).
This hot rolling was repeated a total of 6 passes. Among them, the conditions of the pass from the final pass to the third pass (strain rate per pass, rolling reduction, plate material temperature after pass) are as shown in Table 1. The total rolling rate of the entire hot rolling was 75%.
After the hot rolling was completed, the rolled plate was cooled under the conditions shown in Table 1.
After cooling, the plate material was passed through a roller leveler to correct distortion caused by rapid cooling, and machined to a size of 1000 × 1200 × 12 (mm) to obtain a target.

(実施例14〜21、比較例12〜14)
純度99.99質量%以上のAgと添加原料として純度99.9質量%以上のSn,Sb、Gaを用意し、黒鉛るつぼで築炉した高周波誘導溶解炉にて、まずAgを溶解し、Agが溶け落ちた後、表1に示すターゲット組成となるように添加原料を投入し、合金溶湯を誘導加熱による攪拌効果により十分に攪拌した後、鋳鉄製の鋳型に鋳造した。
これら実施例14〜21、比較例12〜14は、鋳造後、この鋳造により得られたインゴットから上記実施例11〜13、比較例11と同様にして概略寸法640×640×60(mm)のインゴットを作製し、680℃まで加熱した後、上記と同様に熱間圧延して、概略1200×1300×15(mm)の寸法の板材とした。
この熱間圧延は全部で6回のパスを繰り返した。そのうち、最終パスから3回目までのパスの条件(1パス当りのひずみ速度、圧下率、パス後の板材温度)を表1に示す通りとした。熱間圧延全体の総圧延率は75%であった。そして、表1に示す条件で冷却した後、板材をローラレベラーに通して、急冷によって生じたひずみを矯正し、1000×1200×12(mm)の寸法に機械加工してターゲットとした。
(Examples 14 to 21, Comparative Examples 12 to 14)
Ag having a purity of 99.99% by mass or more and Sn, Sb, Ga having a purity of 99.9% by mass or more are prepared as additive materials, and Ag is first melted in a high-frequency induction melting furnace constructed with a graphite crucible. After the melted, the added raw materials were introduced so as to have the target composition shown in Table 1, and the molten alloy was sufficiently stirred by the stirring effect by induction heating, and then cast into a cast iron mold.
In Examples 14 to 21 and Comparative Examples 12 to 14, the ingots obtained by this casting had an approximate size of 640 × 640 × 60 (mm) in the same manner as in Examples 11 to 13 and Comparative Example 11 described above. After producing an ingot and heating to 680 degreeC, it hot-rolled similarly to the above, and was set as the board | plate material of a dimension of about 1200x1300x15 (mm).
This hot rolling was repeated a total of 6 passes. Among them, the conditions of the pass from the last pass to the third pass (strain rate per pass, rolling reduction, plate material temperature after pass) were as shown in Table 1. The total rolling rate of the entire hot rolling was 75%. And after cooling on the conditions shown in Table 1, the board | plate material was passed through the roller leveler, the distortion | strain which arose by rapid cooling was corrected, and it machined to the dimension of 1000x1200x12 (mm), and set it as the target.

Figure 0005159963
Figure 0005159963

得られたターゲットについて、機械加工後の反り、平均粒径、そのばらつきを測定するとともに、スパッタ装置に取り付けてスパッタ時の異常放電回数を測定し、そのスパッタにより得られた導電性膜について、表面粗さ、反射率、耐塩化性、比抵抗を測定した。
(1)機械加工後の反り
機械加工後の銀合金スパッタリングターゲットについて、長さ1m当りの反り量を測定し、表2に、この結果を示した。
(2)平均粒径、そのばらつき
銀合金結晶粒の粒径測定は、上記のように製造したターゲットから、発明を実施するための形態に記載したように、16カ所の地点から均等に試料を採取して、各試料のスパッタ面から見た表面の平均粒径を測定し、各試料の平均粒径の平均値である銀合金結晶粒の平均粒径と銀合金結晶粒の平均粒径のばらつきを計算した。
For the obtained target, the warpage after machining, the average particle diameter, and its variation are measured, and the number of abnormal discharges during sputtering is measured by attaching to a sputtering device. Roughness, reflectance, chloride resistance, and specific resistance were measured.
(1) Warpage after machining The amount of warpage per 1 m of the silver alloy sputtering target after machining was measured, and Table 2 shows the results.
(2) Average particle diameter, variation thereof The particle diameter measurement of the silver alloy crystal grains was carried out from the target manufactured as described above, and samples were equally distributed from 16 points as described in the embodiment for carrying out the invention. The average particle size of the surface as viewed from the sputter surface of each sample is measured, and the average particle size of the silver alloy crystal grains and the average particle size of the silver alloy crystal grains, which are the average value of the average particle diameter of each sample, are measured. Variation was calculated.

(3)スパッタ時の異常放電回数
上記のように製造したターゲットの任意の部分から、直径:152.4mm、厚さ:6mmの円板を切り出し、銅製バッキングプレートにはんだ付けした。このはんだ付けしたターゲットを、スパッタ時のスプラッシュ評価用ターゲットとして用い、スパッタ中の異常放電回数の測定を行った。
この場合、はんだ付けしたターゲットを通常のマグネトロンスパッタ装置に取り付け、1×10−4Paまで排気した後、Arガス圧:0.5Pa、投入電力:DC1000W、ターゲット基板間距離:60mmの条件で、スパッタを行った。使用初期の30分間についての異常放電回数と、4時間の空スパッタと防着板の交換とを繰り返して、断続的に20時間スパッタすることによりターゲットを消耗させ、その後の30分間についての異常放電回数を測定した。これら異常放電回数は、MKSインスツルメンツ社製DC電源(型番:RPDG−50A)のアークカウント機能により計測した。
(3) Number of abnormal discharges during sputtering A disc having a diameter of 152.4 mm and a thickness of 6 mm was cut out from an arbitrary portion of the target manufactured as described above and soldered to a copper backing plate. Using this soldered target as a target for splash evaluation during sputtering, the number of abnormal discharges during sputtering was measured.
In this case, after attaching the soldered target to a normal magnetron sputtering apparatus and exhausting to 1 × 10 −4 Pa, Ar gas pressure: 0.5 Pa, input power: DC 1000 W, target substrate distance: 60 mm, Sputtering was performed. The number of abnormal discharges for 30 minutes in the initial period of use, 4 hours of empty sputtering and replacement of the protection plate are repeated, and the target is consumed by intermittently sputtering for 20 hours, and then abnormal discharges for the subsequent 30 minutes. The number of times was measured. The number of abnormal discharges was measured by an arc count function of a DC power supply (model number: RPDG-50A) manufactured by MKS Instruments.

(4)導電膜としての基本特性評価
(4−1)膜の表面粗さ
前記評価用ターゲットを用いて、前記と同様の条件でスパッタを行 い、20×20(mm)のガラス基板上に100nmの膜厚で成膜し、銀合金膜を得た。 さらに、耐熱性の評価のため、この銀合金膜を、250℃、10分間の熱処理を施し、この後、銀合金膜の平均面粗さ(Ra)を原子間力顕微鏡によって測定した。
(4−2)反射率
30×30(mm)のガラス基板上に前記と同様にして成膜した銀合金膜の波長550nmの絶対反射率を、分光光度計によって測定した。
さらに、耐食性の評価のため、前記と同様にして成膜した銀合金膜の波長550nmにおける絶対反射率を、温度80℃、湿度85%の恒温高湿槽にて100時間保持後、分光光度計によって測定した。
(4−3)耐塩化性
Ga添加の効果を確認するため、Gaを添加したターゲット(実施例19〜23、比較例10,11)を使用して前記と同様にして成膜した銀合金膜の膜面に5重量%のNaCl水溶液を噴霧した。噴霧は膜面から高さ20cm、基板端からの距離10cmの位置から、膜面と平行方向に行い、膜上に噴霧されたNaCl水溶液が極力自由落下して膜に付着するようにした。1分おきに噴霧を5回繰り返した後、純水ですすぎ洗浄を3回繰り返し、乾燥空気を噴射して水分を吹き飛ばし乾燥した。
上記の塩水噴霧後に銀合金膜面を目視で観察し、表面の状態を評価した。耐塩化性の評価基準としては、白濁又は斑点が確認できない又は一部のみに確認できるものを良「○」とすると共に、白濁又は斑点が全面に確認できるものを不良「×」として、2段階で表面の状態を評価した。Ga添加していないターゲットについては評価していないので、「−」と表記した。
(4−4)膜の比抵抗
前記と同様にして成膜した銀合金膜の比抵抗を測定した。
これらの各評価結果を表2に示す。
(4) Basic characteristic evaluation as a conductive film (4-1) Surface roughness of the film Sputtering was performed on the glass substrate of 20 × 20 (mm) under the same conditions as described above using the target for evaluation. A film having a thickness of 100 nm was formed to obtain a silver alloy film. Furthermore, in order to evaluate heat resistance, this silver alloy film was subjected to a heat treatment at 250 ° C. for 10 minutes, and then the average surface roughness (Ra) of the silver alloy film was measured by an atomic force microscope.
(4-2) Reflectance The absolute reflectance at a wavelength of 550 nm of a silver alloy film formed in the same manner as described above on a 30 × 30 (mm) glass substrate was measured with a spectrophotometer.
Further, for the evaluation of corrosion resistance, the spectrophotometer after holding the absolute reflectance at a wavelength of 550 nm of the silver alloy film formed in the same manner as described above for 100 hours in a constant temperature and high humidity bath at a temperature of 80 ° C. and a humidity of 85%. Measured by.
(4-3) Chlorination resistance In order to confirm the effect of Ga addition, a silver alloy film formed in the same manner as described above using a Ga-added target (Examples 19 to 23, Comparative Examples 10 and 11). A 5% by weight NaCl aqueous solution was sprayed on the membrane surface. Spraying was performed in a direction parallel to the film surface from a position of 20 cm in height from the film surface and a distance of 10 cm from the edge of the substrate, so that the NaCl aqueous solution sprayed on the film fell as freely as possible and adhered to the film. After spraying 5 times every minute, rinsing with pure water was repeated 3 times, and dry air was sprayed to blow off moisture and dry.
After spraying the salt water, the surface of the silver alloy film was visually observed to evaluate the surface state. As the evaluation criteria for chloride resistance, those with white turbidity or spots that cannot be confirmed or only partially confirmed are judged as “good”, and those with white turbidity or spots confirmed on the entire surface are judged as “bad” with two stages. The surface condition was evaluated. Since the target to which Ga was not added was not evaluated, it was written as “−”.
(4-4) Specific resistance of film The specific resistance of the silver alloy film formed in the same manner as described above was measured.
These evaluation results are shown in Table 2.

Figure 0005159963
Figure 0005159963

実施例のターゲット材においては、銀合金結晶粒の平均粒径は30μm以上120μm未満の範囲内にあり、銀合金結晶粒の粒径のばらつきは銀合金結晶粒の平均粒径の20%以内であった。機械加工後の反りも小さく、スパッタ時の異常放電回数も使用初期だけでなく消耗後においても少ないものであった。また、Sb、Gaを添加したものは、平均結晶粒径が小さくなる傾向にあり、異常放電回数も1回以下と少ないものであった。ただし、その添加量が多過ぎる(合計で2.5質量%を超える)ものは、仕上げ熱間圧延時にに割れが発生し、反りの測定ができなかった。
また、実施例のターゲット材により得た導電性膜は、反射率、比抵抗に優れており、表面粗さもRaが2μm以下と小さいものであった。
また、Gaを添加したターゲットから得られた導電性膜は耐塩化性にも優れており、タッチパネル等の導電性膜に有効であることがわかる。
In the target material of the example, the average grain diameter of the silver alloy crystal grains is in the range of 30 μm or more and less than 120 μm, and the variation in the grain diameter of the silver alloy crystal grains is within 20% of the average grain diameter of the silver alloy crystal grains. there were. The warpage after machining was small, and the number of abnormal discharges during sputtering was small not only at the beginning of use but also after consumption. In addition, in the case of adding Sb and Ga, the average crystal grain size tends to be small, and the number of abnormal discharges is as small as 1 or less. However, when the amount of addition was too large (over 2.5% by mass in total), cracking occurred during finish hot rolling, and the warpage could not be measured.
In addition, the conductive film obtained from the target material of the example was excellent in reflectance and specific resistance, and the surface roughness was as small as 2 μm or less.
In addition, it can be seen that the conductive film obtained from the Ga-added target has excellent chlorination resistance and is effective for a conductive film such as a touch panel.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

Claims (4)

Agに固溶する元素であるSnを0.1〜1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した銀合金スパッタリングターゲットであって、該合金の結晶粒の平均粒径が30μm以上120μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。 A silver alloy sputtering target containing 0.1 to 1.5% by mass of Sn, which is an element that dissolves in Ag , with the balance being a composition of Ag and inevitable impurities, the average grain size of the alloy crystal grains A silver alloy sputtering target for forming a conductive film, characterized in that the diameter is 30 μm or more and less than 120 μm, and the variation in the grain size of the crystal grains is 20% or less of the average grain size. Agに固溶する元素であるSnを0.1〜1.5質量%含み、さらに、Agに固溶する元素であるSb、Gaのうち1種以上を合計で0.1〜2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金スパッタリングターゲットであって、該合金の結晶粒の平均粒径が30μm以上120μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。 0.1 to 1.5% by mass of Sn, which is an element that dissolves in Ag, and 0.1 to 2.5 mass in total of one or more of Sb and Ga that are an element that dissolves in Ag %, And the balance is a silver alloy sputtering target having a component composition consisting of Ag and inevitable impurities, the average grain size of the alloy grains is 30 μm or more and less than 120 μm, and the grain size variation of the crystal grains Is a silver alloy sputtering target for forming a conductive film, characterized by being 20% or less of the average particle size. Snを0.1〜1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造する方法であって、前記熱間圧延工程は、1パス当りの圧下率が20〜50%でひずみ速度が3〜15/secの仕上げ熱間圧延をパス後の温度が400〜650℃で1パス以上含んでおり、前記冷却工程は、200〜1000℃/minの冷却速度にて急冷することを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。   By applying a hot rolling step, a cooling step, and a machining step in this order to a molten cast ingot containing 0.1 to 1.5% by mass of Sn and the balance being composed of Ag and inevitable impurities, silver is obtained. A method of manufacturing an alloy sputtering target, wherein the hot rolling step is performed after finishing hot rolling with a rolling reduction rate of 20 to 50% per pass and a strain rate of 3 to 15 / sec. The manufacturing method of the silver alloy sputtering target for conductive film formation characterized by including 1 pass or more at -650 degreeC, and the said cooling process quenches rapidly with the cooling rate of 200-1000 degreeC / min. Snを0.1〜1.5質量%含み、さらに、Sb、Gaのうち1種以上を合計で0.1〜2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造する方法であって、前記熱間圧延工程は、1パス当りの圧下率が20〜50%でひずみ速度が3〜15/secの仕上げ熱間圧延をパス後の温度が400〜650℃で1パス以上含んでおり、前記冷却工程は、200〜1000℃/minの冷却速度にて急冷することを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。   It contains 0.1 to 1.5% by mass of Sn, further contains at least one of Sb and Ga in a total amount of 0.1 to 2.5% by mass, and the balance is composed of Ag and inevitable impurities. The molten cast ingot is subjected to a hot rolling step, a cooling step, and a machining step in this order to produce a silver alloy sputtering target, wherein the hot rolling step has a reduction rate per pass. It includes 20 to 50% finish hot rolling with a strain rate of 3 to 15 / sec and the temperature after the pass includes one pass or more at 400 to 650 ° C., and the cooling step is a cooling rate of 200 to 1000 ° C./min. A method for producing a silver alloy sputtering target for forming a conductive film, characterized in that the method is rapidly cooled at a low temperature.
JP2012005053A 2012-01-13 2012-01-13 Silver alloy sputtering target for forming conductive film and method for producing the same Expired - Fee Related JP5159963B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012005053A JP5159963B1 (en) 2012-01-13 2012-01-13 Silver alloy sputtering target for forming conductive film and method for producing the same
TW101116355A TWI535876B (en) 2012-01-13 2012-05-08 Silver alloy sputtering target for forming conductive film, and method for manufacturing the same
PCT/JP2012/061872 WO2013105285A1 (en) 2012-01-13 2012-05-09 Silver-alloy sputtering target for conductive-film formation, and method for producing same
CN201280058004.4A CN103958727B (en) 2012-01-13 2012-05-09 Conductive film formation silver alloy sputtering target and manufacture method thereof
KR1020147013670A KR101854009B1 (en) 2012-01-13 2012-05-09 Silver-alloy sputtering target for conductive-film formation, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005053A JP5159963B1 (en) 2012-01-13 2012-01-13 Silver alloy sputtering target for forming conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JP5159963B1 true JP5159963B1 (en) 2013-03-13
JP2013144823A JP2013144823A (en) 2013-07-25

Family

ID=48013558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005053A Expired - Fee Related JP5159963B1 (en) 2012-01-13 2012-01-13 Silver alloy sputtering target for forming conductive film and method for producing the same

Country Status (5)

Country Link
JP (1) JP5159963B1 (en)
KR (1) KR101854009B1 (en)
CN (1) CN103958727B (en)
TW (1) TWI535876B (en)
WO (1) WO2013105285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216976A (en) * 2012-04-04 2013-10-24 Heraeus Materials Technology Gmbh & Co Kg Flat or tubular sputtering target and manufacturing method therefor
WO2014115712A1 (en) * 2013-01-23 2014-07-31 三菱マテリアル株式会社 Ag ALLOY FILM-FORMING SPUTTERING TARGET, Ag ALLOY FILM, Ag ALLOY REFLECTIVE FILM, Ag ALLOY ELECTROCONDUCTIVE FILM, Ag ALLOY SEMI-PERMEABLE FILM

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472353B2 (en) * 2012-03-27 2014-04-16 三菱マテリアル株式会社 Silver-based cylindrical target and manufacturing method thereof
JP2015079739A (en) * 2013-09-13 2015-04-23 三菱マテリアル株式会社 Reflective electrode film for organic el, laminated reflected electrode film, and sputtering target for reflective electrode film formation
JP6172230B2 (en) * 2014-09-18 2017-08-02 三菱マテリアル株式会社 Ag alloy sputtering target, Ag alloy film, and method for producing Ag alloy film
EP3168325B1 (en) * 2015-11-10 2022-01-05 Materion Advanced Materials Germany GmbH Silver alloy based sputter target
JP2018176493A (en) * 2017-04-07 2018-11-15 三菱マテリアル株式会社 LAMINATED FILM AND Ag ALLOY SPUTTERING TARGET
EP3862459A4 (en) * 2018-10-03 2022-05-11 Mitsubishi Materials Corporation Multilayer film, and ag alloy sputtering target

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801279B2 (en) * 2001-05-09 2011-10-26 石福金属興業株式会社 Sputtering target material
JP2004002929A (en) * 2001-08-03 2004-01-08 Furuya Kinzoku:Kk Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material
JP3765540B2 (en) * 2003-01-14 2006-04-12 田中貴金属工業株式会社 Silver alloy for reflective film of optical recording media
DE10327336A1 (en) * 2003-06-16 2005-01-27 W. C. Heraeus Gmbh & Co. Kg Alloy and its use
JP4384453B2 (en) * 2003-07-16 2009-12-16 株式会社神戸製鋼所 Ag-based sputtering target and manufacturing method thereof
JP4309227B2 (en) * 2003-10-16 2009-08-05 石福金属興業株式会社 Sputtering target material
JP4569863B2 (en) * 2004-04-27 2010-10-27 日立金属株式会社 Ag alloy sputtering target material and Ag alloy film
JP3907666B2 (en) * 2004-07-15 2007-04-18 株式会社神戸製鋼所 Read-only optical information recording medium for laser marking
CN102652182B (en) * 2009-12-22 2014-06-18 三菱伸铜株式会社 Manufacturing method of pure copper plates, and pure copper plate
JP5533545B2 (en) * 2010-01-12 2014-06-25 三菱マテリアル株式会社 Silver alloy target for forming reflective electrode film of organic EL element and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216976A (en) * 2012-04-04 2013-10-24 Heraeus Materials Technology Gmbh & Co Kg Flat or tubular sputtering target and manufacturing method therefor
WO2014115712A1 (en) * 2013-01-23 2014-07-31 三菱マテリアル株式会社 Ag ALLOY FILM-FORMING SPUTTERING TARGET, Ag ALLOY FILM, Ag ALLOY REFLECTIVE FILM, Ag ALLOY ELECTROCONDUCTIVE FILM, Ag ALLOY SEMI-PERMEABLE FILM
JP2014159628A (en) * 2013-01-23 2014-09-04 Mitsubishi Materials Corp SPUTTERING TARGET FOR FORMING Ag ALLOY FILM, Ag ALLOY FILM, Ag ALLOY REFLECTION FILM, Ag ALLOY CONDUCTIVE FILM, AND Ag ALLOY SEMITRANSPARENT FILM

Also Published As

Publication number Publication date
TWI535876B (en) 2016-06-01
KR20140113634A (en) 2014-09-24
KR101854009B1 (en) 2018-05-02
JP2013144823A (en) 2013-07-25
TW201329263A (en) 2013-07-16
WO2013105285A1 (en) 2013-07-18
CN103958727A (en) 2014-07-30
CN103958727B (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5612147B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP5159962B1 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP5159963B1 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP4793502B2 (en) Silver alloy target for forming reflective electrode film of organic EL element and method for producing the same
WO2012137461A1 (en) Silver alloy sputtering target for forming electroconductive film, and method for manufacture same
JP5533545B2 (en) Silver alloy target for forming reflective electrode film of organic EL element and method for producing the same
JP5522599B1 (en) Ag alloy sputtering target
JP5669014B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP5830907B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP5830908B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP5669015B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP2014196562A (en) Ag alloy sputtering target

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees