TW200912388A - Peak-valley pattern formed sheet and method for producing the same - Google Patents

Peak-valley pattern formed sheet and method for producing the same Download PDF

Info

Publication number
TW200912388A
TW200912388A TW96142138A TW96142138A TW200912388A TW 200912388 A TW200912388 A TW 200912388A TW 96142138 A TW96142138 A TW 96142138A TW 96142138 A TW96142138 A TW 96142138A TW 200912388 A TW200912388 A TW 200912388A
Authority
TW
Taiwan
Prior art keywords
sheet
concave
convex pattern
light
resin
Prior art date
Application number
TW96142138A
Other languages
Chinese (zh)
Other versions
TWI448736B (en
Inventor
Toshiki Okayasu
Yukie Mori
Yasutake Fujiki
Original Assignee
Oji Paper Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007040694A external-priority patent/JP5211506B2/en
Priority claimed from JP2007151795A external-priority patent/JP4683011B2/en
Priority claimed from JP2007151676A external-priority patent/JP5391529B2/en
Priority claimed from JP2007151677A external-priority patent/JP5135539B2/en
Priority claimed from JP2007261176A external-priority patent/JP5391539B2/en
Application filed by Oji Paper Co filed Critical Oji Paper Co
Publication of TW200912388A publication Critical patent/TW200912388A/en
Application granted granted Critical
Publication of TWI448736B publication Critical patent/TWI448736B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

A peak-valley pattern formed sheet having a resin substrate; a resin rigid layer formed on one side of the resin substrate; and a peak-valley pattern formed on a surface of the rigid layer, wherein the difference (T2-T1) between the glass transformation temperature T2 of a resin forming the rigid layer and the glass transformation temperature T1 of a resin forming the substrate is 10 DEG C or more; and the average depth of a valley portion of the peak-valley pattern is 10% or more to the most frequent pitch of the peak-valley pattern as 100%, and the method for producing the same are provided.

Description

200912388 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種於光擴散體中所具備之凹凸圖案形成 片及其製造方法。又,本發明係關於一種使用有凹凸圖案 形成片之光擴散體。且本發明係關於一種作為用以製造於 表面上形成有凹凸圖案之光擴散體之模具而使用的光擴散 體製造用工程片原版。進而,本發明係關於一種光擴散體 之製造方法。 本發明係關於一種用作光擴散片等之光學片及光擴散 片。 本發明係關於一種使來自光源之光擴散之擴散導光體。 又,本發明係關於一種於液晶顯示裝置中所具備之背光單 元。 本發明係關於一種於防反射體或相位差板等光學元件中 所具備之凹凸圖案形成片及其製造方法。又,本發明係關 於一種使用有凹凸圖案形成片之防反射體、相位差板。 又,本發明係關於一種作為用以製造具有凹凸圖案之光學 元件之模具而使用的光學元件製造用工程片。 本申睛案根據20 07年2月21曰於曰本申請之日本專利特 願第2007-040694號、2007年6月7曰於曰本申請之曰本專 利特願第2007-15 1676號、2007年6月7日於日本申請之日 本專利特願第2007-15 1677號、2007年6月7日於日本申請 之曰本專利特願第2007-15 17%號、以及2〇〇7年1〇月4日於 曰本申請之日本專利特願第2007-261176號而主張優先 126510.doc 200912388 權’此處引用其中之内容。 【先前技術】 ‘ 一般而言,於表面上形成有你壯ππ π : ^ J 皮狀凹凸圖案之凹凸圖案形 成片被用作光擴散體。 例如,於專利文獻1中,揭 自不有如下光擴散體作為形成 有凹凸圖案之光擴散體,亦印,於透光性基材之至少一面 上形成有複數個突起體,突起體之高度為2〜2〇卿,突起 體之頂點之間隔為1〜10 μιη,空 / μ 犬起體之縱橫比為1以上。 又,於專利文獻i中,揭示有 有如下方法作為突起體之形成 方法,亦即’藉由KrF準分 ♦ 卞番射等此罝束之照射來對透 光性基材之表面進行加工。 於專利文獻2中,揭示有於— 、 面上形成有由波狀凹凸而 構成之異向性擴散圖案之光擴散體。又,於專利文獻2 中揭不有如下方法作為形成異向性擴散圖案之方法,亦 即’對感光性樹脂之薄膜照射雷射光而進行曝光、顯影, 【 卩形成在-面上形成有凹凸之主全息圖,將該主全息圖轉 印至金屬模具上,並使用該金屬模具來使樹脂成形。 [專利文獻1]曰本專利特開平10·1233〇7號公報 [專利文獻2]曰本專利特開2〇〇6_26丨〇64號公報 作為具有光擴散性等之光學片,已知於表面上形成有凹 凸之片材例如’於專利文獻3中’揭示有於基板表面上 形成有大量點狀凸部之光擴散片。於專利文獻3所揭示之 光學片中’藉由喷墨法將油墨喷出至基板上並使其固著, 以形成點狀之凸部。 126510.doc 200912388 [專利文獻3]日本專利特開2004-157430號公報 已知由微細之波狀凹凸所組成之凹凸圖案形成於表面, 且凹凸圖案之最頻間距為可見光之波長以下之凹凸圖案炉 成片可用作防反射體或相位差板等光學元件(參照非專利 文獻1)。 凹凸圖案形成片可用作防反射體之理由如下: 當片表面上未設置有凹凸圖案時,會因片與空氣之界面 上的折射率之急遽變化而產生反射。然而,當在片表面, 亦即片與空氣之界面上設置有波狀之凹凸圖案時,於凹凸 圖案之部分,折射率之值呈現為空氣之折射率與凹凸圖案 形成片之折射率之間的值(以下,稱為中間折射率),並 且,該中間折射率向凹凸圖案之深度方向連續地變化。具 體而言,位置越深,則越接近凹凸圖案形成片之折射率。 因中間折射率如此般連續地變化,故不會引起如上所述之 界面上之折射率的急遽變化,從而可抑制光之反射。又, 若凹凸圖案之間距為可見光之波長以下,則於凹凸圖案部 分,難以引起由可見光之繞射亦即可見光之干涉所產生之 著色。 又,凹凸圖案形成片可用作相位差板之原因在於,於凹 凸圖案之部》’折射率互不才目同之空氣與凹凸圖案形成片 交替配置,結果對光表現出光學異向性。&而,當凹凸圖 案之間距與可見光之波長為相同程度或者為可見光之波長 以下時,t呈現出在較廣之可見光波長區域内顯示相同相 位差之現象。 126510.doc 200912388 2 二為上述凹凸圖案形成片之具體例,例如於非專利文獻 一提出種片,對已加熱之由聚二甲基矽氧烷構成之片 之-面蒸錢金而形成金屬層’其後進行冷卻藉此使由聚 -甲基石夕氧烧構成之片收縮’以於金屬層之表面上形成波 狀之凹凸圖案。 ;專利文獻4中提出-種片’於熱收縮性合成樹脂 ^之表面上’依次形成基底層及金屬層,其後使熱收縮 性5成樹脂薄膜熱收縮,以於金屬層之表面上形成波狀之 凹凸圖案。 於專利文獻5t提出—種片,形成由因曝光處理而體積 收縮之材料所構成之層,並對該層進行曝光處理,以使表 面形成凹凸。 」而專利文獻4、5及非專利文獻2中揭示之凹凸圖案 形成片之任-者,均未顯示出作為光學元件之優異性能了 具體而言,當用作防反射體時,無法使反射率充分地低, 又,當用作相位差板時,無法使相位差充分地大,且無法 遍及杈廣之波長區域而產生相同之相位差。 又,作為製造凹凸圖笨开4 Λ' ΰ > 、丄 圆茱形成片之方法,已知使用圖案遮 罩之可見光之光微影法。然而,該方法無法製造可用作光 學元件且具有光之波長以下之間距的凹凸圖案形成片。因 此’必須應料進行更微細之加卫之料線#射干涉法或 電子射線微影法。該等方法係'利用紫外線雷射干涉光或電 子射線對形成於基板上之光阻層進行曝光、顯影,以形成 光阻圖案層,並將該光阻圖案層作為遮罩,利用乾式餘刻 126510.doc 200912388 法等形成凹凸形狀。然而’當應用紫外線雷射干涉法 子射線微影法時,存在如下問題,亦 5電 雖从在超過1 〇 cm之較廣區域内進行加工,因而不適宜大量生產。 又,於專利文獻6中提出一方法,將粒子層酉己置於基板 上,並將粒子層作為餘刻料而對基板表面進行乾二姓 刻。然而’於此情形時,亦存在難以在超過3〇邮之較廣 區域内進行加工,因而不適宜大量生產之問題。 [專利文獻4]曰本專利特開昭63_3〇丨988號公報 [專利文獻5]日本專利特開2003J 875〇3號公報 [專利文獻6]日本專利特開2〇〇5-2798〇7號公報 [非專利文獻1]菊田久雄、岩田耕一著「光學」,曰本光 學會發行,第27卷,第1號,1998年,p.12-17 [非專利文獻2]内德.飽頓(Ned B〇wden)等著「自然 (Nature)」,第 393號,1998年,p 146 【發明内容】 [發明所欲解決之問題] 專利文獻1、2中揭示之光擴散體係具有充分之光擴散性 者。然而’存在的問題是’專利文獻1中揭示之能量束照 射之加工方法、專利文獻2中揭示之利用雷射對感光性樹 脂薄膜進行曝光、顯影之方法較為繁雜。又,並不能說專 利文獻1、2之光擴散體的擴散之異向性充分。 本發明係鑒於上述狀況而研製者,其目的在於提供一種 可用作光擴散體且可簡便地製造之凹凸圖案形成片。又, 本發明之目的在於提供一種可簡便地製造用作光擴散體之 I26510.doc -10- 200912388 凹凸圖案形成片的凹凸圖案形成片之製造方法。又,本發 明之目的在於提供一種擴散之異向性優異的光擴散體。進 而’本發明之目的在於提供一種光擴散體製造用工程片及 光擴散體之製造方法,該光擴散體製造用工程片可簡便且 大量地製造形成有與凹凸圖案形成片之最頻間距及平均深 度相同之凹凸圖案的光擴散體。 當欲藉由凹凸來控制光之擴散及反射時,若凹凸部彼此 之間隔為光之波長左右,則會產生因干涉而引起之著色問 題,又,若該間隔超過數! 0 μΓη,則有可能會被辨認為亮 線等,因此要求將凹凸部彼此之間隔設為20 μηι以下。然 而,對於專利文獻3中揭示之光學片,若凹凸部彼此之間 隔為數十微米〜數百微米,則可穩定地形成間隔,但當凹 凸部彼此之間隔為20 μιη以下時,則難以獲得所需之間 隔。 又,於光學片中,有時並不使光擴散性等光學特性均 勻,而是使光學特性不均勻,於特定位置處或高或低。例 如,對於液晶顯示器之背光單元中所使用之導光板而言, 為了防止配置於其側端面上之線狀光源之影像於導光板表 面映出,有時需提向該線狀光源附近之出光側表面之光擴 散性又,當液晶顯示器中使用具備複數個線狀光源或點 狀光源之直下型背光單元時,隨著自線狀光源或點狀光源 彼此之間靠近其正上方,有時需提高光擴散性。 為了對表面形成有凹凸之光學片進行調整以使光學特性 不均勻,考慮使凹凸部彼此之間隔隨位置而變化,但就專 126510.doc 200912388 凹凸部彼此之間隔設 。由此,專利文獻3中 位置處或高或低而不 利文獻3中揭示之光學片而言,在將 為20 μηι以下之後,難以使間隔變化 揭示之光學片難以使光學特性於特定 均勻。 因此,本發明之目的在於提供— jtL M ^ w 種目私光學特性(光擴 政優異且可使光學特性容易不均勾之光學片。又, 本發明之目的在於提供一種目標 ^ ^ ^ 0 九擴散性優異且可使光擴 散性谷易不均勻之光擴散片。 關於專利文獻1、2中揭示之擴散導 π狀等九體,由於光之擴散 之異向性不充分,故具備該算撼私道,# 胥忒寺擴政導光體之背光單元無法 使來自光源之光充分地異向性擴散。因此,來自擴散導光 體之出射光之冗度會根據部位而不同,從而於液晶顯示裝 置之圖像亮度中產生不均。 本發明之目的在於提供一種可使來自光源之光充分地異 向性擴散之擴散導光體及背光單元。 i 本發明之目的在於提供一種在用#防反射體或相位差板 等光學元件時顯示出優異性能之凹凸圖案形成片。又,本 發明之目的在於提供一種可簡便、大面積、且大量地製造 上述凹凸圖案形成片之凹凸圖案形成片製造方法。又,本 發明之目的在於提供一種反射率較低之防反射體、遍及較 廣波長區域而產生相同相位差之相位差板。進而,本發明 之目的在於提供一種光學元件製造用工程片,其可簡便且 大量地製造具有與凹凸圖案形成片之最頻間距及平均深度 相同之凹凸圖案的光學元件。 126510.doc -12- 200912388 [解決問題之技術手段] 本發明包含以下態樣: π]—種凹凸圖案形成片,其特徵在於:具備樹脂製基材、 及设置於該基材之一面上之樹脂製硬質層,且於該硬質層 之表面上形成有沿著一方向之凹凸圖案,構成硬質層之樹 脂的玻璃轉移溫度τα與構成基材之樹脂的玻璃轉移溫度 Tgl之差(丁82-丁§1)為10。〇以上,凹凸圖案之最頻間距超過工 μηι且為20 μηι以下,凹凸圖案之底部之平均深度為將上述 最頻間距設為100%時之i0%以上。 [2] -種凹凸圖案形成片之製造方法,其特徵在於:包括以 下步驟’亦即,於樹脂録材之—面i,設置表面平滑、 厚度超過0.05叫且為5.〇 μπι以下之樹脂製硬質層,以形成 積層片,以及使上述積層片之至少硬質層以摺疊之方式而 變形;且硬質層藉由玻璃轉移溫度相較於構成基材之樹脂 高出1 o°c以上之樹脂所構成。 [3] 如[2]之凹凸圖案形成片之製造方法,其中使 向加熱收縮性薄膜作為樹脂製基材,且於使硬質層以摺最 之方式而變形之步驟中,對積層片進行加熱以使:: 加熱收縮性薄膜收縮。 ° ⑷-種光擴散體’其具備⑴之凹凸圖案形成#, 凸圖案形成片之基材及硬質層為透明。 [5]-種凹凸圖案形成片,其特徵在於:具備樹脂製基材、 及設置於該基材之—面上之樹脂製硬質層’於該硬質 表面上形成有沿著—方向之凹凸圖案’硬質層由金屬或金 126510.doc •13- 200912388 屬化合物構成,凹凸_安 μηι 凸圖案之最頻間距超過1 μιη且為20 以下,凹凸圖案之麻;,[Technical Field] The present invention relates to a concave-convex pattern forming sheet provided in a light diffusing body and a method of manufacturing the same. Further, the present invention relates to a light diffusing body which forms a sheet using a concave-convex pattern. Further, the present invention relates to an engineering sheet original for optical diffuser production which is used as a mold for producing a light diffusing body having a concave-convex pattern formed on its surface. Further, the present invention relates to a method of producing a light diffuser. The present invention relates to an optical sheet and a light diffusing sheet which are used as a light diffusion sheet or the like. The present invention relates to a diffusing light guide that diffuses light from a light source. Further, the present invention relates to a backlight unit provided in a liquid crystal display device. The present invention relates to a concave-convex pattern forming sheet provided in an optical element such as an antireflection body or a phase difference plate, and a method of manufacturing the same. Further, the present invention relates to an antireflection body and a phase difference plate using a concave-convex pattern forming sheet. Further, the present invention relates to an engineering sheet for optical element manufacturing which is used as a mold for producing an optical element having a concave-convex pattern. The present application is based on Japanese Patent Application No. 2007-040694, filed on Feb. 21, 2007, and Japanese Patent Application No. 2007-040694, filed on Jun. 7, 2007. Japanese Patent Application No. 2007-15 1677, which was filed in Japan on June 7, 2007, and Japanese Patent Application No. 2007-15, 17%, and 2, 7 years, which were filed in Japan on June 7, 2007. The Japanese Patent Application No. 2007-261176 filed on the Japanese Patent Application No. 2007-261176, the priority of which is hereby incorporated by reference. [Prior Art] ‘In general, a concave-convex pattern formed on the surface with a strong ππ π : ^ J skin-like concave-convex pattern is used as a light diffuser. For example, Patent Document 1 discloses that a light diffuser is not used as a light diffuser in which a concave-convex pattern is formed, and a plurality of protrusions are formed on at least one surface of a light-transmitting substrate, and the height of the protrusions is disclosed. For 2~2〇, the apex of the protrusion is 1~10 μιη, and the aspect ratio of the empty/μ dog is 1 or more. Further, in Patent Document i, there is disclosed a method of forming a protrusion, that is, the surface of the light-transmitting substrate is processed by irradiation of the bundle by KrF quasi-spraying or the like. Patent Document 2 discloses a light diffusing body in which an anisotropic diffusion pattern composed of wavy irregularities is formed on the surface. Further, Patent Document 2 discloses a method of forming an anisotropic diffusion pattern, that is, 'exposing and developing a film of a photosensitive resin by irradiating laser light, and forming a bump on the surface of the crucible. The master hologram transfers the master hologram onto a metal mold and uses the metal mold to shape the resin. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. A sheet on which irregularities are formed, for example, 'Patent Document 3' discloses a light-diffusing sheet in which a large number of dot-like convex portions are formed on the surface of the substrate. In the optical sheet disclosed in Patent Document 3, ink is ejected onto a substrate by an inkjet method and fixed to form a dot-like convex portion. Japanese Laid-Open Patent Publication No. 2004-157430 discloses that a concave-convex pattern composed of fine wavy irregularities is formed on a surface, and a concave-convex pattern in which the most frequent pitch of the concave-convex pattern is below the wavelength of visible light is known. The furnace sheet can be used as an optical element such as an antireflection body or a phase difference plate (see Non-Patent Document 1). The reason why the uneven pattern forming sheet can be used as an antireflection body is as follows: When the uneven pattern is not provided on the surface of the sheet, reflection occurs due to a sudden change in the refractive index at the interface between the sheet and the air. However, when a wavy concave-convex pattern is provided on the surface of the sheet, that is, at the interface between the sheet and the air, the refractive index value is between the refractive index of the air and the refractive index of the concave-convex pattern forming sheet in the portion of the concave-convex pattern. The value (hereinafter referred to as an intermediate refractive index), and the intermediate refractive index continuously changes in the depth direction of the concave-convex pattern. Specifically, the deeper the position, the closer to the refractive index of the concave-convex pattern forming sheet. Since the intermediate refractive index changes continuously as described above, the sharp change in the refractive index at the interface as described above is not caused, so that the reflection of light can be suppressed. Further, when the distance between the concave-convex patterns is equal to or less than the wavelength of visible light, it is difficult to cause coloring due to interference of visible light, i.e., visible light, in the concave-convex pattern portion. Further, the reason why the concave-convex pattern forming sheet can be used as the phase difference plate is that the air and the concave-convex pattern forming sheet which are different in refractive index from each other in the portion of the concave-convex pattern are alternately arranged, and as a result, optical anisotropy is exhibited to the light. & However, when the distance between the concave and convex patterns is the same as the wavelength of visible light or below the wavelength of visible light, t exhibits the phenomenon of displaying the same phase difference in a wide visible light wavelength region. 126510.doc 200912388 2 is a specific example of the above-mentioned concave-convex pattern forming sheet. For example, in Non-Patent Document 1, a seed sheet is proposed, and a heated metal sheet composed of polydimethyl siloxane is steamed to form a metal. The layer 'following is followed by shrinking the sheet composed of poly-methyl oxy-oxygen to form a wavy concave-convex pattern on the surface of the metal layer. Patent Document 4 proposes that a seed sheet 'on the surface of the heat-shrinkable synthetic resin ^' sequentially forms a base layer and a metal layer, and thereafter heat-shrinks the heat-shrinkable resin into a resin film to form a surface of the metal layer. Wavy embossed pattern. In Patent Document 5t, a seed sheet is formed, and a layer composed of a material which is volume-shrinked by exposure processing is formed, and the layer is subjected to exposure treatment to form irregularities on the surface. None of the concave-convex pattern forming sheets disclosed in Patent Documents 4 and 5 and Non-Patent Document 2 shows excellent performance as an optical element. Specifically, when used as an antireflection body, reflection cannot be made. The rate is sufficiently low, and when used as a phase difference plate, the phase difference cannot be sufficiently large, and the same phase difference cannot be generated over the wide wavelength region. Further, as a method of producing a embossed pattern, a light lithography method using visible light using a pattern mask is known as a method of forming a embossed pattern of 凹凸 Λ ΰ gt 丄 。 。 。 。 。 。 。 。 。 。 。 。 。. However, this method cannot produce a concavo-convex pattern forming sheet which can be used as an optical element and has a distance between the wavelengths of light. Therefore, it is necessary to carry out a finer reinforcement of the material line #射干扰法 or electron ray lithography. These methods are: exposing and developing a photoresist layer formed on a substrate by using ultraviolet laser interference light or electron rays to form a photoresist pattern layer, and using the photoresist pattern layer as a mask, using dry remnant 126510.doc 200912388 The method forms a concave-convex shape. However, when the ultraviolet laser interference interferometric ray lithography method is applied, there are the following problems, and although the electric power is processed in a wide area of more than 1 〇 cm, it is not suitable for mass production. Further, in Patent Document 6, a method is proposed in which a particle layer is placed on a substrate, and the particle layer is used as a residual material to dry the surface of the substrate. However, in this case, there is also a problem that it is difficult to process in a wide area of more than 3 ticks, and thus it is not suitable for mass production. [Patent Document 4] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. No. Hei. No. Hei. Bulletin [Non-Patent Document 1] Kikuda Kyuo and Iwata Tatsuya, "Optics", Sakamoto Optical Publishing, Vol. 27, No. 1, 1998, p. 12-17 [Non-Patent Document 2] Ned. (Ned B〇wden) Waiting for "Nature", No. 393, 1998, p 146 [Summary of the Invention] [Problems to be Solved by the Invention] The light diffusion systems disclosed in Patent Documents 1 and 2 are sufficient. Light diffuser. However, there is a problem that the method of processing energy beam irradiation disclosed in Patent Document 1 and the method of exposing and developing a photosensitive resin film by laser using the laser disclosed in Patent Document 2 are complicated. Further, it cannot be said that the diffusion of the light diffusing body of Patent Documents 1 and 2 is sufficient. The present invention has been made in view of the above circumstances, and an object thereof is to provide a concavo-convex pattern forming sheet which can be used as a light diffusing body and which can be easily manufactured. Further, an object of the present invention is to provide a method for producing a concave-convex pattern forming sheet which can easily produce a concave-convex pattern forming sheet of I26510.doc-10-200912388 which is used as a light diffusing body. Further, it is an object of the present invention to provide a light diffuser excellent in diffusion anisotropy. Further, an object of the present invention is to provide an engineering sheet for producing a light-diffusing body and a method for producing a light-diffusing body, which can be manufactured in a simple and large-scale manner, and has a maximum frequency spacing between the concave-convex pattern-forming sheet and A light diffuser having a concave-convex pattern having the same average depth. When it is desired to control the diffusion and reflection of light by the concavities and convexities, if the distance between the concavo-convex portions is about the wavelength of light, coloring due to interference may occur, and if the interval exceeds the number! 0 μΓη may be recognized as a bright line or the like. Therefore, it is required to set the interval between the uneven portions to 20 μηι or less. However, in the optical sheet disclosed in Patent Document 3, when the interval between the uneven portions is several tens of micrometers to several hundreds of micrometers, the interval can be stably formed, but when the interval between the uneven portions is 20 μm or less, it is difficult to obtain The required interval. Further, in the optical sheet, the optical characteristics such as light diffusibility are not uniform, but the optical characteristics are not uniform, and may be high or low at a specific position. For example, in the light guide plate used in the backlight unit of the liquid crystal display, in order to prevent the image of the linear light source disposed on the side end surface thereof from being reflected on the surface of the light guide plate, it is sometimes necessary to lift the light near the linear light source. Light diffusing property of the side surface. When a direct type backlight unit having a plurality of linear light sources or point light sources is used in a liquid crystal display, sometimes the linear light source or the point light source is directly above the linear light source or the point light source. Need to improve light diffusivity. In order to adjust the optical sheets having irregularities on the surface to make the optical characteristics non-uniform, it is conceivable to change the interval between the uneven portions depending on the position, but the uneven portions are provided at intervals of 126510.doc 200912388. Therefore, in the optical sheet disclosed in Patent Document 3, which is high or low in the position of the document 3, it is difficult to make the optical characteristics of the optical sheet which is difficult to change the interval to be particularly uniform after the optical sheet of 20 μη or less. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an optical sheet which is excellent in optical expansion and which is easy to be optically uneven. Further, it is an object of the present invention to provide a target ^^^ 0 九A light-diffusing sheet which is excellent in diffusibility and which is easy to be uneven in light diffusing property. The nine-body such as the diffusion-conducting π-form disclosed in Patent Documents 1 and 2 has insufficient anisotropy of light diffusion.撼私道,# The backlight unit of the 胥忒寺 expansion light guide cannot diffuse the light from the light source sufficiently anisotropically. Therefore, the redundancy of the light emitted from the diffused light guide will vary depending The image brightness of the device is uneven. It is an object of the present invention to provide a diffusing light guide and a backlight unit that can sufficiently diffuse light from a light source. i The object of the present invention is to provide an anti-reflection A concave-convex pattern forming sheet exhibiting excellent performance when an optical element such as a body or a phase difference plate is used. Further, it is an object of the present invention to provide a simple, large-area, and large-scale manufacture of the above. A method for producing a concave-convex pattern forming sheet of a convex pattern forming sheet. Further, an object of the present invention is to provide an anti-reflecting body having a low reflectance and a phase difference plate which generates the same phase difference over a wide wavelength region. Further, the present invention It is an object of the invention to provide an optical element for manufacturing an optical element, which can easily and in large quantities produce an optical element having a concave-convex pattern having the same frequency spacing and average depth as that of the concave-convex pattern forming sheet. 126510.doc -12- 200912388 [Solution of the problem] Technical Solution The present invention includes the following aspects: a π]-concave-convex pattern forming sheet comprising a resin substrate and a resin hard layer provided on one surface of the substrate, and the hard layer is A concave-convex pattern along one direction is formed on the surface, and the difference between the glass transition temperature τα of the resin constituting the hard layer and the glass transition temperature Tgl of the resin constituting the substrate (D-82-D § 1) is 10. The mode-to-frequency spacing of the pattern exceeds the μηι and is 20 μηι or less, and the average depth of the bottom of the concave-convex pattern is i0% or more when the above-mentioned minimum frequency spacing is 100%. [2] A method for producing a concave-convex pattern forming sheet, comprising the steps of 'supplied to a resin having a smooth surface and a thickness exceeding 0.05 and 5. 〇μπι or less on the surface i of the resin recording material Forming a hard layer to form a laminated sheet, and deforming at least a hard layer of the laminated sheet in a folded manner; and the hard layer is made of a resin having a glass transition temperature higher than 1 o ° C or more than a resin constituting the substrate [3] The method for producing a concavo-convex pattern forming sheet according to [2], wherein the step of deforming the hard layer into a resin base material and deforming the hard layer in a most fold manner The sheet is heated to: :: shrink the heat shrinkable film. ° (4) - Light diffusing body 'The concave-convex pattern forming (1) is formed, and the base material and the hard layer of the convex pattern forming sheet are transparent. [5] A concave-convex pattern forming sheet comprising: a resin base material; and a resin hard layer provided on a surface of the base material; a concave-convex pattern along the − direction is formed on the hard surface 'The hard layer consists of metal or gold 126510.doc •13- 200912388 genus compound, and the FB_Anμηι convex pattern has a most frequent spacing of more than 1 μηη and is less than 20, and the embossed pattern is numb;

&amp; °卩之平均深度為將上述最頻間距設 100%時之10%以上。 [6] 如[5]之凹凸圖案形忐 Φ成片’其中硬質層由金屬構成。 [7] 如[5]之凹凸圖案形成片’其中金屬係選自由金、鋁、 銀、碳、銅、鍺、銦、鎂 '鈮、鈀、鉛、鉑、矽、錫、 鈦、釩、辞、鉍所組成之群中之至少一種金屬。 m-種凹凸圖案形成片,其特徵在於:包括以下步驟,亦 即,於樹脂製基材之-面上,設置表面平滑、厚度超過 0.01 μηι且為〇.2 _以下之金屬製或金屬化合物製硬質層, 以Φ成積層片,以及使上述積層片之至少硬質層以摺疊之 方式而變形;且硬質層由金屬或金屬化合物所構成。 [9]如m之凹凸圖案形成片之製造方法,其中使用單轴方 向加熱收縮性薄膜作為樹脂製基材,且於使硬質層以摺疊 之方式而變形之步驟中,對積層片進行加熱以使單軸方向 加熱收縮性薄膜收縮。 Π〇]—種光擴散體製造用工程片原版,其具備!^]、[5]或 [8]之凹凸圖案形成片,且其作為用以製造於表面上形成有 與該凹凸圖案形成片之最頻間距及平均深度相同之凹凸圖 案的光擴散體之模具而使用。 [11]一種光擴散體之製造方法’其包括以下步驟:於[1〇] 之光擴散體製造用工程片原版之形成有凹凸圖案的面上, 塗佈未硬化之硬化性樹脂;以及在使該硬化性樹脂硬化, 之後自工程月原版上剝離已硬化之塗膜。 126510.doc • 14- 200912388 U2]—種光擴散體之製造方法,其包括以下步驟:使片狀 之熱可塑性樹脂接觸到[10]之光擴散體製造用工程片原版 之形成有凹凸圖案的面;將該片狀之熱可塑性樹脂按壓於 工程片原版上’且於此狀態下進行加熱而使其軟化,其後 進行冷卻;以及自工程片原版上剝離已冷卻之片狀之熱可 塑性樹脂。 [13]—種光擴散體之製造方法,其包括以下步驟:於[1〇] 之光擴散體製造用工程片原版之形成有凹凸圖案的面上, 積層凹凸圖案轉印用材料;自上述工程片原版上剝離積層 於凹凸圖案上之凹凸圖案轉印用材料,以製作二次工程用 成形物;於該二次工程用成形物之已與上述工程片原版之 凹凸圖案接觸之一側之面上,塗佈未硬化之硬化性樹脂; 以及在使該硬化性樹脂硬化’之後自二次工程用成形物上 剝離已硬化之塗膜。 [14卜種光擴散體之製造方法,其包括以下步驟:於如 [10]之光擴散體製造用1程片原、版之形成有凹凸圖案的面 上,積層凹凸圖案轉印用材料;自上述 &lt;丄往片原版上剝離 積層於凹凸圖案上之凹凸圖案轉印用材料,以製作二欠工 程用成形物;使片狀之熱可塑性樹脂接觸到一 4必一次工程用 成形物之已與上述工程片原版之凹凸圖 _系镬觸之一侧之 面;將該片狀之熱可塑性樹脂按壓於-4 、一-人工程用成形物 上,且於此狀態下進行加熱而使其軟化, 共後進行冷卻; 以及自二次工程用成形物上剝離已冷卻 &lt;片狀之熱可塑性 樹脂。 126510.doc -15. 200912388 [15] —種光學片’其特徵在於:於平坦之一面或兩面上, 分散配置有具有凹凸之凹凸區域。 [16] 如[15]之光學片,其中凹凸區域不均勻地配置著。 Π 7] 一種光擴散片,其具備[15]之光學片。 [18] 如[17]之光擴散片’其中凹凸區域内之凹凸之最頻間 距A超過1 且為20 μιη以下,凹凸之平均深度B相對於最 頻間距Α之比(Β/Α)為0.1〜3_0。 [19] 如[18]之光擴散片,其中凹凸區域呈點狀分散。 [20] —種擴散導光體,其特徵在於:其係由在一面上形成 有蛇行之波狀凹凸圖案之透明樹脂層而構成,凹凸圖案之 最頻間距超過1·〇 μηι且為20 μιη以下,凹凸之平均深度3相 對於最頻間距Α之比(Β/Α)為0.1-3.0。 [21] —種背光單元,其特徵在於具備:[2〇]之擴散導光 體;反射板,其對向於該擴散導光體之與形成有上述凹凸 圖案之面相反侧的面而配設;以及光源,其配設於上述擴 散導光體及上述反射板之間。 [22] —種背光單元’其特徵在於具備:[2〇]之擴散導光 體;反射板,其對向於該擴散導光體之與形成有上述凹凸 圖案之面相反側的面而配設;以及光源,其鄰接於上述擴 散導光體之任^一個側面。 [23] —種凹凸圖案形成片,其特徵在於:具備樹脂製基 材、及設置於該基材外表面之至少一部分上之樹脂製硬質 層’且該硬質層具有波狀之凹凸圖案’構成硬質層之樹脂 的玻璃轉移溫度Tgz與構成基材之樹脂的破璃轉移溫度Tgi 126510.doc -16- 200912388 之差(Tg2-Tgl)^0。。以上,凹凸圖案之最頻間距為…以 下,凹凸圖案之底部之平均深度為將上述最頻間距設為 100°/。時之10%以上。 [24] —種凹凸圖案形成片之塑生 口示%取月炙Ik方法,其特徵在於:包括 以下步驟,Μ,於樹脂製基材外表面之至少一部分上, 設置表面平滑之樹脂製硬質&amp;,以形成積層片;以及使該 積層片之至4硬質層蛇行變形;且硬質層藉由玻璃轉移溫 度相較於構成基材之樹脂高出丨〇。〇以上之樹脂所構成。 [25] —種防反射體,其具備[23]之凹凸圖案形成片。 [26] —種相位差板,其具備[23]之凹凸圖案形成片。 [27] —種光學元件製造用工程片,其具備[23]之凹凸圖案 形成片之特徵,且其作為用以製造具有與該凹凸圖案形成 片之最頻間距及平均深度相同之凹凸圖案的光學元件之模 具而使用。 [發明之效果] 本發明之凹凸圖案形成片係可用作光擴散體、且可簡便 地製造者。 根據本發明之凹凸圖案形成另之製造方法,可簡便地製 造用作光擴散體之凹凸圖案形成片。 本發明之光擴散體在擴散之異向性方面優異。 根據本發明之光擴散體製造用工程片及光擴散體之製造 方法’可簡便且大量地製造形成有與凹凸圖案形成片之最 頻間距及平均深度相同之凹凸圖案的光擴散體。 本發明之光學片之目標光學特性優異,且可使使光學特 126510.doc •17- 200912388 性易不均勻。 本發明之光擴散片之目標光擴散性優異,且可使光擴散 性易不均勻。 根據本發明之擴散導光體及背光單元,可使來自光源之 光充分地異向性擴散。 本發明之凹凸圖案形成片可較好地用作防反射體或相位 差板等光學元件。又,本發明之凹凸圖案形成片亦可較好 地用作光學元件製造用工程片,該光學元件製造用工程片 作為用以製造具有波狀凹凸圖案之光學元件的模具而使 用。 於本發明之凹凸圖案形成片之製造方法中,可於表面容 易大面積地形成微細之凹凸圖案,因此可簡便且大量地製 造能夠較好地利用於光學元件等之凹凸圖案形成片。 本發明之防反射體係反射率低、性能優異者。 本發明之相位差板係可遍及較廣之波長區域而產生相同 之相位差且性能優異者。 藉由使用本發明之光學元件製造用工程片,可簡便且大 量地製造具有與凹凸圖案形成片之最頻間距及平均深度相 同之凹凸圖案的光學元件。 【實施方式】 1·凹凸圖案形成片 (凹凸圖案形成片-1) 以下對本發明之凹凸圖案形成片之一實施形態進行說 明。 126510.doc 18- 200912388 圖1及圖2表示本實施形態之凹凸圖案形成片。本實施形 態之凹凸圖案形成片10具備基材11、及設置於基材11之一 面上之硬質層12,硬質層12係具有凹凸圖案12a者。 凹凸圖案形成片10上之凹凸圖案12a具有沿著大致一方 向之波狀凹凸,該波狀凹凸呈蛇行。又,本實施形態之凹 凸圖案12a之凸部之頂端帶有弧度。 構成硬質層12之樹脂(以下,稱為第2樹脂)的玻璃轉移 溫度Tg2與構成基材U之樹脂(以下,稱為第1樹脂)的玻璃 轉移溫度Tg!之差(TgyTg丨)為10°C以上,較好的是2(TC以 上’更好的是30。(:以上。因(Tg2-Tgl)之差為1〇。〇以上,故 可在Tg2與Tgt之間的溫度情況下容易加工。若將Tg2與Tgl 之間的溫度作為加工溫度’則可在基材丨丨之揚氏模量高於 硬質層12之楊氏模量之條件下進行加工,其結果可於硬質 層12上容易形成凹凸圖案12a。 又,從經濟性方面而言,缺乏使用Tg2超過4〇(rc之樹脂 之必要性,且不存在Tgl低於_15(rc之樹脂,因此(Tg2_T引) 較好的是550C以下,更好的是2〇〇。〇以下。 從可谷易形成凹凸圖案12a之角度而言,製造凹凸圖案 形成片ίο時之加工溫度中的基材“與硬質層12之揚氏模量 之差較好的疋O.OUOO GPa,更好的是〇卜i〇 Gpa。 此處所β之加工溫度,例如係指下述之凹凸圖案形成片 之製造方法中的执收給歧+ …收縮時之加熱溫度。又,揚氏模量係根 據JIS Κ 7113-1995所測定出之值。 第1樹月曰之玻壤轉移溫度Tgi較好的是〜则。c,更好 126510.doc -19- 200912388 的疋-120〜200 C。其原因在於,不存在玻璃轉移溫度Tgi低 於-150°C之樹脂,若第1樹脂之玻璃轉移溫度Tgi為3〇(rc以 下,則可將其容易加熱至製造凹凸圖案形成片10時之加工 溫度(Tg2與Tgl之間的溫度)。 製造凹凸圖案形成片1〇時之加工溫度中的第丨樹脂之揚 氏模量較好的是0.0l〜l00 MPa,更好的是〇卜⑺MPa。若 第1樹脂之揚氏模量為0.01 MPa以上,則其具有可用作基 材11之硬度,若第1樹脂之揚氏模量為1〇〇 MPa以下,則其 具有於硬質層12變形時可同時隨從而變形之柔軟度。 作為第1樹脂,可列舉例如:聚對苯二甲酸乙二酯等聚 醋;聚乙烯4¾丙稀冑聚烯烴乙烯_丁二稀彼段共聚 物等聚苯乙烯系樹脂;|氯乙烯、聚偏二氯乙烯、聚二曱 基矽氧烷等聚矽氧樹脂;氟樹脂、ABS樹脂、聚醯胺、丙 烯酸系樹脂、聚碳酸酯、聚環烯烴等樹脂。 第2樹脂之玻璃轉移溫度Tgz較好的是4〇〜4〇〇。〇,更好的 是8〇〜25〇。。。其原、因在於’若第2樹脂之玻璃轉移溫度Tg2 為40°C以上,則可使製造凹凸圖案形成片1〇時之加工溫度 為室溫或室溫以上而有用,且從經濟性方面而言,缺乏使 用玻璃轉移溫度Tgz超過40(rc之樹脂作為第2樹脂之必要 性。 製造凹凸圖案形成片10時之加工溫度中的第2樹脂之楊 氏模量較好的是0.01〜300 GPa,更好的是〇卜1〇 GPa。其 原因在於,右第2樹脂之揚氏模量為〇 〇1 Gpa以上,則可 獲得較第1樹脂之加工溫度中的#氏模4更為充分之硬 126510.doc -20- 200912388 度’該硬度係在形成有凹凸圖案12a之後可用以維持凹凸 圖案的充分硬度’且從經濟性方面而言,缺乏使用揚氏模 量超過300 GPa之樹脂作為第2樹脂之必要性。 以上為第1樹脂之種類,作為第2樹脂,可使用例如聚乙 烯醇、聚苯乙烯、丙烯酸系樹脂、苯乙烯-丙烯酸共聚 物、苯乙烯-丙烯腈共聚物、聚對苯二甲酸乙二酯、聚對 苯二曱酸丁二醇酯、聚奈二甲酸乙二醇酯、聚碳酸酯、聚 f 醚砜、氟樹脂等。該等之中,在兼具防汙功能之方面,尤 其好的是氟樹脂。 基材11之厚度較好的是〇·3〜500 μιη»若基材丨丨之厚度為 〇.3 μπι以上,則凹凸圖案形成片1〇難以破裂,若基材^之 厚度為500 μηι以下,則可使凹凸圖案形成片⑺容易薄型 化。 】又,為了支持基材11,亦可設置厚度為5〜5〇〇 μιη之樹脂 支持體又’當將該基板“用作光擴散體時,為了進一 ,θ门光擴散性’ ’亦可使含有微細氣泡之薄膜貼附於基材 /將凹凸圖案形成片则作光擴散體時,為了進一步提 :光擴散效果’可在不會對透光率等光學特性造成較大損 :之範圍内,使基材11中含有由無機化合物構成之光擴散 劑、由有機化合物構成之有機光擴散劑。 作為無機光擴散劑,可列舉二氧切 化鎂、氧化鋅、氧化欽、石山㈣&amp; 反/月石氧 璃、雲母等。氧化欽仏釣、氣氧化銘、硫酸鋇、玻 126510.doc •21 - 200912388 作為有機光擴散劑,可列舉苯乙料、聚合物粒子 ^聚:物粒子、石夕氧院系聚合物粒子等。該等光擴散劑 °刀別早獨使用,或者亦可將兩種以上組合使用。 s從難以知害透光性之角度而言,光擴散劑之含量較好的 疋相對於第1樹脂100質量份為1 〇質量份以下。 當將凹凸圖案形成片1G用作光擴散體時,為了進一 步提高擴散效果,可在不會對透光率等光學特性造成較大 損害之範圍内,使基材u中含有微細氣泡。微細氣泡對光 之吸收較少,難以使透光率降低。 作為微細氣泡之形成方法,可應用向基㈣中混入發泡 劑之方法(例如’日本專利特開平5_212811號公報、日本專 利特開平6-1〇7842號公報中所揭示之方法)、對丙烯酸系發 泡樹脂進行發泡處理以使其含有微細氣泡之方法(例如, 日本專利特開2〇〇4_2812號公報中所揭示之方法)等。進 而,就可實現更加均勻之面照射而言,微細氣泡之形成方 法較好的是使特定位置不均勾地發泡之方法(例如,曰本 專利特開2__124499號公報中所揭示之方法)。 再者,亦可併用上述光擴散劑與微細發泡。 硬質層12之厚度較好的是超過〇.〇5 μιη且為5㈣以下, 更好的是Μ〜2 μΐΠ。若硬質層之厚度超過G.G5 μΐη且為5 μιη以下則如下所述可容易製造凹凸圖案形成片。 又,為了提高密著性及形成更微細之構造,亦可在基材 11與硬質層12之間形成底塗層。 凹凸圖案^成片10之凹凸圖案12a之最頻間距Α超過1 μιη I26510.doc -22- 200912388 且為20 μηα以下,較好的是超過! μιη且為i〇 以下。若最 頻間距Α小於1 則光會透過,若最頻間距a超過 pm ’則光擴散性會變低。 凹凸圖案〗2a之底部12b之平均深度Β為將最頻間距Α設 為⑽科之隐X上(即,縱橫狀UxJi),較好的是规 以上(亦即,縱橫比0.3以上)。^平均深度料^將最頻間 距A設為100%時之1〇%,則即便將凹凸圖案形成片ι〇用作 光擴散體製造用王程片原版’亦難以獲得錢散性較高之 光擴散體。 ° 又,從可容易形成凹凸圖案12a之角度而 較 橫The average depth of &amp; ° is 10% or more when 100% of the above-mentioned maximum frequency spacing is set. [6] The concave-convex pattern of [5] is Φ into a sheet, wherein the hard layer is made of metal. [7] The concave-convex pattern forming sheet of [5] wherein the metal is selected from the group consisting of gold, aluminum, silver, carbon, copper, bismuth, indium, magnesium 'rhenium, palladium, lead, platinum, rhodium, tin, titanium, vanadium, At least one metal in the group consisting of words and defamation. The m-type concave-convex pattern-forming sheet is characterized in that it comprises a step of providing a metal or metal compound having a smooth surface and a thickness exceeding 0.01 μm and being 〇.2 _ or less on the surface of the resin substrate. The hard layer is formed by Φ into a laminate sheet, and at least the hard layer of the laminate sheet is deformed in a folded manner; and the hard layer is composed of a metal or a metal compound. [9] A method for producing a concave-convex pattern forming sheet according to m, wherein a uniaxial direction heat shrinkable film is used as a resin substrate, and in the step of deforming the hard layer in a folded manner, the laminated sheet is heated The uniaxially oriented heat shrinkable film is shrunk.工程 — — — — — — — — 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 工程 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸It is used as a mold of a light diffuser having the same pitch and the same depth and the same average depth. [11] A method for producing a light-diffusing body, comprising the steps of: applying an uncured curable resin to a surface on which a concave-convex pattern is formed on an original sheet for producing a light-diffusing body of [1〇]; The curable resin is cured, and then the cured coating film is peeled off from the engineering moon original. 126510.doc • 14-200912388 U2] A method for producing a light diffusing body, comprising the steps of: contacting a sheet-like thermoplastic resin with a concave-convex pattern formed by contacting an original sheet of a light-diffusing body for manufacturing [10] The sheet-shaped thermoplastic resin is pressed against the original sheet of the engineering sheet and heated in this state to soften it, and then cooled; and the cooled sheet-shaped thermoplastic resin is peeled off from the original sheet of the engineering sheet. . [13] A method for producing a light diffusing body, comprising the steps of: laminating a concave-convex pattern transfer material on a surface on which a concave-convex pattern is formed on an original sheet for producing a light-diffusing body of [1〇]; The concave-convex pattern transfer material laminated on the concave-convex pattern is peeled off from the original sheet to produce a secondary engineering molded product; and the secondary engineering molded article is in contact with the concave-convex pattern of the original sheet of the engineering sheet On the surface, the uncured curable resin is applied; and after the curable resin is cured, the cured coating film is peeled off from the secondary engineering molded article. [14] The method for producing a light diffusing body, comprising the step of: laminating a concave-convex pattern transfer material on a surface on which a concave-convex pattern is formed on a one-pass original or a plate for producing a light diffuser according to [10]; The concave-convex pattern transfer material laminated on the concave-convex pattern is peeled off from the above-mentioned sheet to prepare a molded article for two-time engineering, and the sheet-shaped thermoplastic resin is brought into contact with a molded article for one time. The surface of the original sheet of the above-mentioned engineering sheet is contacted with one side of the surface of the original sheet; the sheet-shaped thermoplastic resin is pressed against the -4, one-man engineering molded article, and heated in this state. It is softened and cooled in total; and the cooled & sheet-like thermoplastic resin is peeled off from the secondary engineering molded article. 126510.doc -15. 200912388 [15] An optical sheet </ RTI> characterized in that a concave-convex region having irregularities is dispersedly disposed on one side or both sides of the flat surface. [16] The optical sheet of [15], wherein the uneven regions are unevenly arranged. Π 7] A light diffusing sheet comprising the optical sheet of [15]. [18] The light-diffusing sheet of [17] wherein the most frequent pitch A of the unevenness in the concave-convex region exceeds 1 and is 20 μm or less, and the ratio of the average depth B of the unevenness to the most frequent spacing Α (Β/Α) is 0.1~3_0. [19] The light diffusing sheet of [18], wherein the concave and convex regions are dotted in a dotted manner. [20] A diffusing light guide body comprising: a transparent resin layer having a meandering wave-like concave-convex pattern formed on one surface thereof, wherein the most frequent pitch of the concave-convex pattern exceeds 1·〇μηι and is 20 μm Hereinafter, the ratio (Β/Α) of the average depth 3 of the unevenness to the most frequent spacing Α is 0.1 to 3.0. [21] A backlight unit comprising: [2〇] a diffused light guide; and a reflector that faces a surface of the diffused light guide opposite to a surface on which the uneven pattern is formed; And a light source disposed between the diffusion light guide and the reflector. [22] A backlight unit comprising: a diffusion light guide of [2〇]; and a reflector that faces a surface of the diffusion light guide opposite to a surface on which the uneven pattern is formed; And a light source adjacent to any one of the sides of the diffusion light guide. [23] A concave-convex pattern forming sheet comprising: a resin base material; and a resin hard layer provided on at least a part of an outer surface of the base material; and the hard layer has a corrugated concave-convex pattern constituting The difference between the glass transition temperature Tgz of the resin of the hard layer and the glass transition temperature Tgi 126510.doc -16-200912388 of the resin constituting the substrate (Tg2-Tgl)^0. . As described above, the most frequent pitch of the concave-convex pattern is ..., and the average depth of the bottom of the concave-convex pattern is such that the above-described maximum frequency spacing is set to 100 °/. More than 10% of the time. [24] A method for forming a embossed pattern forming sheet, which comprises the following steps, comprising: arranging a resin having a smooth surface on at least a part of an outer surface of a resin substrate; &amp;, to form a laminated sheet; and to make the hard layer of the laminated sheet to be serpentinely deformed; and the hard layer is higher in temperature than the resin constituting the substrate by the glass transition temperature. It is composed of the above resins. [25] An antireflection body comprising the concavo-convex pattern forming sheet of [23]. [26] A phase difference plate comprising the concavo-convex pattern forming sheet of [23]. [27] An engineering sheet for producing an optical element, comprising the feature of the concavo-convex pattern forming sheet of [23], which is used for manufacturing a concavo-convex pattern having the same frequency-to-frequency spacing and average depth as that of the concavo-convex pattern forming sheet. It is used as a mold for optical components. [Effects of the Invention] The uneven pattern forming sheet of the present invention can be used as a light diffuser and can be easily produced. According to the manufacturing method of the uneven pattern of the present invention, the concave-convex pattern forming sheet used as the light diffusing body can be easily produced. The light diffuser of the present invention is excellent in the anisotropy of diffusion. According to the method for producing a light-diffusing material for producing a light-emitting material of the present invention and the method for producing a light-diffusing body, a light-diffusing body in which a concave-convex pattern having the same frequency pitch and average depth as that of the uneven pattern-forming sheet is formed can be easily and widely produced. The optical sheet of the present invention has excellent target optical characteristics, and can make the optical characteristics 126510.doc • 17- 200912388 easy to be uneven. The light-diffusing sheet of the present invention is excellent in target light diffusibility and can be made to be uneven in light diffusibility. According to the diffusing light guide and the backlight unit of the present invention, light from the light source can be sufficiently anisotropically diffused. The uneven pattern forming sheet of the present invention can be preferably used as an optical element such as an antireflection body or a phase difference plate. Further, the uneven pattern forming sheet of the present invention can be preferably used as an engineering sheet for producing an optical element, and the engineering sheet for producing an optical element is used as a mold for producing an optical element having a corrugated pattern. In the method for producing a concave-convex pattern-forming sheet of the present invention, the fine uneven pattern can be formed on the surface in a large area. Therefore, the uneven pattern-forming sheet which can be preferably used for an optical element or the like can be easily and widely produced. The antireflection system of the present invention has low reflectance and excellent performance. The phase difference plate of the present invention can produce the same phase difference over a wide wavelength region and has excellent performance. By using the engineering sheet for optical element manufacturing of the present invention, an optical element having the same uneven pattern and the same average depth as the groove pattern forming sheet can be easily and largely produced. [Embodiment] 1. Concavo-convex pattern forming sheet (concavo-convex pattern forming sheet-1) Hereinafter, an embodiment of the concavo-convex pattern forming sheet of the present invention will be described. 126510.doc 18- 200912388 Figs. 1 and 2 show a concave-convex pattern forming sheet of this embodiment. The uneven pattern forming sheet 10 of the present embodiment includes a base material 11 and a hard layer 12 provided on one surface of the base material 11, and the hard layer 12 has a concave-convex pattern 12a. The uneven pattern 12a on the uneven pattern forming sheet 10 has corrugated irregularities along substantially one direction, and the corrugated irregularities are meandering. Further, the tip end of the convex portion of the concave-convex pattern 12a of the present embodiment has a curvature. The difference (TgyTg丨) between the glass transition temperature Tg2 of the resin constituting the hard layer 12 (hereinafter referred to as the second resin) and the glass transition temperature Tg! of the resin constituting the substrate U (hereinafter referred to as the first resin) is 10 Above °C, it is preferably 2 (TC or more 'more preferably 30. (: above. Since the difference of (Tg2-Tgl) is 1 〇. 〇 or more, it can be at a temperature between Tg2 and Tgt It is easy to process. If the temperature between Tg2 and Tgl is used as the processing temperature, it can be processed under the condition that the Young's modulus of the substrate is higher than the Young's modulus of the hard layer 12, and the result can be in the hard layer. It is easy to form the concavo-convex pattern 12a on the 12th. Further, from the viewpoint of economy, there is a lack of necessity to use a resin having a Tg2 of more than 4 〇 (rc, and there is no Tgl lower than _15 (rc resin), so (Tg2_T cited) Preferably, it is 550 C or less, and more preferably 2 〇〇. 〇 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The difference in Young's modulus is better than 疋O.OUOO GPa, and the better is 〇i〇Gpa. The degree is, for example, the heating temperature at the time of the contraction of the concave-convex pattern forming sheet in the following method, and the Young's modulus is a value measured according to JIS Κ 7113-1995. The glass transition temperature Tgi of the tree sorghum is preferably ~.c, better 126510.doc -19-200912388 疋-120~200 C. The reason is that there is no glass transition temperature Tgi lower than -150° When the glass transition temperature Tgi of the first resin is 3 Torr or less, it can be easily heated to a processing temperature (temperature between Tg2 and Tgl) when the uneven pattern forming sheet 10 is produced. The Young's modulus of the second resin in the processing temperature at the time of forming the sheet is preferably from 0.01 to 100 MPa, more preferably from 7 to MPa. If the Young's modulus of the first resin is 0.01 MPa or more, Then, it has a hardness which can be used as the base material 11, and when the Young's modulus of the first resin is 1 〇〇 MPa or less, the softness of the hard layer 12 can be deformed at the same time as the first resin. For example, polyethylene phthalate such as polyethylene terephthalate; polyethylene 43⁄4 acrylonitrile polyene Polystyrene resin such as ethylene-butyl diene copolymer; | polyoxyl resin such as vinyl chloride, polyvinylidene chloride, polydidecyl fluorene oxide; fluororesin, ABS resin, polyamine, acrylic acid Resin, polycarbonate, polycycloolefin, etc. The glass transition temperature Tgz of the second resin is preferably 4 〇 to 4 〇〇. 〇, more preferably 8 〇 to 25 〇. In the case where the glass transition temperature Tg2 of the second resin is 40° C. or higher, the processing temperature at the time of producing the uneven pattern forming sheet 1 is useful at room temperature or above, and is economically disadvantageous. It is necessary to use a glass transition temperature Tgz of more than 40 (the resin of rc as the second resin). The Young's modulus of the second resin in the processing temperature at the time of producing the uneven pattern forming sheet 10 is preferably 0.01 to 300 GPa, more preferably 1 〇 GPa. The reason is that when the Young's modulus of the right second resin is 〇〇1 Gpa or more, it is possible to obtain a harder 126510.doc -20-200912388 degree than the #模模4 in the processing temperature of the first resin. This hardness can be used to maintain the sufficient hardness of the uneven pattern after the uneven pattern 12a is formed, and it is economically disadvantageous to use a resin having a Young's modulus of more than 300 GPa as the second resin. The above is the type of the first resin, and as the second resin, for example, polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer, styrene-acrylonitrile copolymer, polyethylene terephthalate can be used. Ester, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, poly-f-ether sulfone, fluororesin, and the like. Among these, a fluorine resin is particularly preferable in terms of having an antifouling function. The thickness of the substrate 11 is preferably 〇3 to 500 μm. If the thickness of the substrate 〇 is 〇.3 μπι or more, the uneven pattern forming sheet 1 is difficult to be broken, and if the thickness of the substrate is 500 μηι or less. Further, the uneven pattern forming sheet (7) can be easily made thinner. Further, in order to support the substrate 11, a resin support having a thickness of 5 to 5 μm may be provided, and when the substrate is used as a light diffuser, the light diffusion property of the θ gate may be ' When the film containing the fine bubbles is attached to the substrate or the uneven pattern is formed into a light diffuser, in order to further improve the light diffusion effect, it is possible to prevent the optical characteristics such as light transmittance from being greatly impaired. The substrate 11 contains a light diffusing agent composed of an inorganic compound and an organic light diffusing agent composed of an organic compound. Examples of the inorganic light diffusing agent include magnesium dioxygenate, zinc oxide, oxidized chin, and rock (four) &amp; anti / month stone oxide glass, mica, etc. Oxidation of scorpionfish, gas oxidation, barium sulfate, glass 126510.doc • 21 - 200912388 As an organic light diffusing agent, exemplified by benzene, polymer particles, polymer particles, Shiyan Oxygen is a polymer particle, etc. These light diffusing agents can be used alone or in combination of two or more. s From the viewpoint of incomprehensible light transmittance, the content of the light diffusing agent Better 疋 relative to the first tree When the uneven pattern forming sheet 1G is used as a light diffusing body, in order to further improve the diffusion effect, it is possible to prevent the optical characteristics such as light transmittance from being greatly impaired. The fine particles are contained in the substrate u. The fine bubbles absorb less light and are less likely to lower the light transmittance. As a method of forming the fine bubbles, a method of mixing a blowing agent into the base (4) can be applied (for example, 'Japanese Patent Special Opening A method of foaming an acrylic foamed resin to contain fine bubbles (for example, Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Further, in order to achieve more uniform surface irradiation, the method of forming fine bubbles is preferably a method of foaming a specific position unevenly (for example, the patent of the present invention) Further, the light diffusing agent and the fine foaming may be used in combination. The thickness of the hard layer 12 is preferably more than 〇.〇5 μιη and is 5 (4) or less, more preferably Μ~2 μΐΠ. When the thickness of the hard layer exceeds G.G5 μΐη and is 5 μm or less, the uneven pattern forming sheet can be easily produced as follows. Further, in order to improve adhesion and form finer The structure may also be such that an undercoat layer is formed between the substrate 11 and the hard layer 12. The concave-convex pattern 最 the pitch ratio Α of the concave-convex pattern 12a of the sheet 10 exceeds 1 μηη I26510.doc -22- 200912388 and is 20 μηα or less Preferably, it is more than ! μιη and is below i〇. If the most frequent spacing Α is less than 1, the light will pass through, and if the most frequent spacing a exceeds pm ', the light diffusibility will be low. The bottom of the concave pattern 2a is 12b The average depth Β is set to the minimum frequency spacing ( (10) on the hidden X (ie, the vertical and horizontal UxJi), preferably above the gauge (that is, the aspect ratio is 0.3 or more). ^When the average depth of the material A is set to 100% at 100%, even if the concave-convex pattern forming sheet is used as the original film for the production of the light diffuser, it is difficult to obtain light diffusion with high dispersibility. body. °, also from the angle at which the concavo-convex pattern 12a can be easily formed

言’平均深度B 好的是將最頻間 比3.0以下),更 下)。 距A設為100%時之3〇〇%以下(亦即,縱 好的是2〇〇°/°以下(亦即,縱橫比2.0以 此處’底部12b係指凹凸圖案12a之凹部之極小值,平均 深度B係指對將凹凸圖案形成片1〇沿長度方向截斷所得之 剖面(參照圖2)進行觀察時,自與整個凹凸圖案形成片⑺之 面方向平行的基準線Ll至各凸部之頂部為止的長度I 之平均值(Bav)、與自基準線L丨至各凹部之底部為 止的長度 上述凸部之頂部及上述凹部之底部係與硬質層12之與基 材11側相反側之面鄰接者。 可採用下述方法等:測定 圖案之剖面之圖像中的各 值。 作為測定平均深度B之方法, 由原子間力顯微鏡所拍攝之凹凸 底部之深度’並求出該等之平均 126510.doc -23- 200912388 為了獲得光擴散之異向性較高之光擴散體,較好的是凹 凸圖案12a以某程度蛇行,相鄰之凸部彼此之間距沿著凹 凸圖案12a之方向而不均勻。此處,將凹凸圖案12a之配向 之不均勻稱為配向度。配向度越大,配向越不均勻。該配 向度係以下述方法而求出。 首先’藉由表面光學顯微鏡來拍攝凹凸圖案之上表面, 並將該圖像轉換成灰度文檔(例如,tiff格式等)^於灰度文 檔之圖像(參照圖3)中,白度越低之處,則表示凹部之底部 越深(白度越高之處,則凸部之頂部越高)。繼而,對灰度 文檔之圖像進行傅立葉轉換。圖4中顯示傅立葉轉換後之 圖像。自圖4之圖像之中心向兩側擴展之白色部分中包含 凹凸圖案12a之間距及朝向之資訊。 其次,自圖4之圖像之中心沿水平方向引輔助線L2,並 對該輔助線上之亮度進行描繪(參照圖5)。圖5之描繪中橫 軸表不間距之倒數,縱軸表示頻率,頻率為最大之值X的 倒數1/X表示凹凸圖案12a之最頻間距。 繼而’於圖4中’ ?丨輔助叫,纟在值χ之部分與輔助線The words 'average depth B is better than the most frequent ratio of 3.0 or less), and more. 3距% or less when the distance A is set to 100% (that is, the length is 2〇〇°/° or less (that is, the aspect ratio is 2.0 here) the bottom portion 12b refers to the minimum of the concave portion of the concave-convex pattern 12a. When the cross-sectional shape (see FIG. 2) obtained by cutting the concave-convex pattern forming sheet 1〇 in the longitudinal direction is observed, the reference line L1 to each convex parallel to the surface direction of the entire uneven pattern forming sheet (7) is used. The average value (Bav) of the length I from the top of the portion, and the length from the reference line L丨 to the bottom of each concave portion, the top of the convex portion and the bottom portion of the concave portion are opposite to the substrate 11 side of the hard layer 12 The side surface is adjacent to each other. The following method can be used: each value in the image of the cross section of the pattern is measured. As a method of measuring the average depth B, the depth of the bottom of the concave and convex portions taken by the atomic force microscope is determined. The average of 126510.doc -23- 200912388 In order to obtain a light diffuser having a high anisotropy of light diffusion, it is preferable that the concave-convex pattern 12a is meandered to some extent, and the adjacent convex portions are spaced apart from each other along the concave-convex pattern 12a. Not uniform. Here, The unevenness of the alignment of the concavo-convex pattern 12a is called the alignment degree. The larger the alignment degree, the more uneven the alignment. The alignment degree is obtained by the following method. First, the surface of the concave-convex pattern is photographed by a surface optical microscope, and Converting the image into a grayscale document (for example, tiff format, etc.) in the image of the grayscale document (refer to FIG. 3), the lower the whiteness, the deeper the bottom of the concave portion (the higher the whiteness) Wherever, the top of the convex portion is higher.) Then, the image of the grayscale document is Fourier transformed. The image after Fourier transform is shown in Fig. 4. The white color extending from the center of the image of Fig. 4 to both sides The portion includes information on the distance between the concave and convex patterns 12a and the orientation. Next, the auxiliary line L2 is drawn in the horizontal direction from the center of the image of Fig. 4, and the brightness on the auxiliary line is drawn (refer to Fig. 5). The horizontal axis represents the reciprocal of the pitch, the vertical axis represents the frequency, and the frequency is the maximum value. The reciprocal 1/X of the X indicates the most frequent spacing of the concave-convex pattern 12a. Then, in Figure 4, the auxiliary is called, and the value is χ Part and auxiliary line

度。半值寬度W!越大 率。圖6之財中的波峰之半值寬度%(頻率為最 半的高度上的波峰之寬度)表示凹凸圖案之配向 完度W]越大’則表示蛇行使得間距越不均勻。 126510.doc •24· 200912388 上述配向度較好的是〇·3〜1〇。若配向度為〇.3〜丨〇,則 凹凸圖案12a之間距之不均勻較大,0此該凹凸圖案形成 片及將該凹凸圖案形成片用作工程片原版而獲得之光擴散 體之光擴散性更高。若配向度超過1〇,貝凹凸圖案之方 向會於某程度變得隨機,因此光擴散性變高,但里向性 低。 / 為了使配向度為0.3〜l.o,可適當選擇凹凸圖案形成片製 造時所必要的壓縮應力之作用對象。 構成硬質層12之第2樹脂的玻璃轉移溫度丁^與構成基材 11之第1樹脂的玻璃轉移溫度Tgi之差(Tg2_Tgi)為i〇。〇以上 的本發明之凹凸圖案形成片1〇,可藉由下述之凹凸圖案形 成片之製造方法而獲得,因此可簡便地製造。 又,本發明者調查後之結果判明,當基#11及硬質㈣ 均為透明時,凹凸圖案12a之最頻間距A超過i _且為2〇 μηι以下’凹&amp;圖案12a之底部⑶之平均深度β為將上述最 頻間距A設為麵時之10%以上,亦即本發明之凹凸圖案 形成片10具有充分之光擴散性,因此可用作光擴散體。 △再者’本發明之凹凸圖案形成片並非限定於上述實施形 態。例如,本發明之凹凸圖案形成片的凹凸圖案之凸部之 頂端亦可為尖頂 '然而,就進—步提高擴散之異向性而 …凸圖案之凸部較好的是頂端帶有弧度之形狀。 (凹凸圖案形成片-2) 4 I毛明者調查後之結果判明’使凹凸圖案12a之 距A為1 μιη以下,尤其為請μ喊下,且凹凸圖案 126510.doc -25- 200912388 12a之底部12b之平均深度B為將最頻間距A設為ι〇〇%時之 10%以上’尤其為1〇0%以上,藉此可發揮作為光學元件之 優異之性能。具體而言’在將凹凸圖案形成片则作防反 射體時,1降低反射率’又’在將凹凸圖案形成片1〇用作 相位差板時’可遍及較廣之波長區域而產生相同之相位 差。 其原因在於’當凹凸圖案12a之最頻間距A較短,為i叫 以下時’平均深度B較;罙,為將最頻間距A設為100%時之 10%以上。亦即’最頻間距A較短,肖可見光之波長相同 或者在可見光之波長以下,目而可見光難以因凹凸而產生 繞射或散射。而且,因平均深度_深,&amp;中間折射率連 續地變化之部分在厚度方向上變長,因此可顯著發揮抑制 光反射之效果。又,因最頻間距A較短、平均深度B較 深,故折射率彼此不同之空氣與凹凸圖案形成片交替地配 置之部分在厚度方向上變長,呈現出光學異向性之部分變 長,因此可產生相位差。進而,由上述凹凸圖案所產 生之相位差遍及較廣之波長區域而大致相同。 此時之硬質層12相對於基材〗丨而言折射率較低,但可獲 得較高之防反射特性,因此較好。 進而,硬質層12之厚度較好的是nm。若硬質層12 之厚度為1 nm以上,則硬質層12難以產生缺陷,若硬質層 12之厚度為1〇〇 nm以下,則硬質層12可充分確保透光性。 又,硬質層12之厚度更好的是5〇 nm以下,尤其好的是 20 nm以下。若硬質層12之厚度為5〇 nm以下,則如下所述 126510.doc -26- 200912388 可容易製造凹凸圖案形成片。 又’為了提高密著性及形成更微細之構造,亦 1 1也 々J在基材 11與硬質層12之間形成底塗層。 進而’亦可於硬質層12上設置樹脂層。 凹凸圖案形成片10之凹凸圖案12a之最頻間距八為丨以 下’較好的是0_4,以下。又,從可容易形成凹凸圖案 i2a之角度而言,最頻間距八較好的是0 05 μιη以上。 較好的是,凹凸圖案12a之各間距八丨、A。、.·.均為最 頻間距A之±6〇〇/0之範圍内,更好的是士3〇%之範圍内。若 各間距為最頻間距八之±60%之範圍内,則間距均勻,可發 揮作為光學元件之更優異之性能。 又,在滿足最頻間距A為i μηι以下之後,各間距A〗、 A2、Ay··均亦可連續地變化。 、,較好的是,凹凸圖案12a之各深度Bi、B2、b3〜均均為 平均冰度B之±60〇/〇之範圍内,更好的是士3〇%之範圍内。 若各深度為平均深度3之±6〇%之範圍内,則深度均勻,可 發揮作為光學元件之更優異之性能。 又在滿足平均深度B為將最頻間距a設為1 〇〇%時的 〇/〇以上之後,各深度比、El、Br .均亦可連續地變化。 如下所述’凹凸圖案形成片1G除了可應用於防反射體、 相位差板等光學兀件及光學元件製造用工程片以外,亦可 利用於超潑水片或超親水片等。 再者凹凸圖案形成片並非限定於上述實施形態。例 如’於上述實施形態中,硬質層具有沿著該凹凸圖案形成 126510.doc 200912388 片之寬度方向的週期性之波狀凹凸圖案,但除了該凹凸圖 案以外,亦可具有沿著凹凸圖案形成片之長度方向的週期 性之波狀凹凸圖案。進而,硬質層亦可具有大量沿著特定 方向之波狀凹凸圖案。於該等情形時,使凹凸圖案之最頻 間距為1 μηι以下,且凹凸圖案之底部之平均深度為將上述 最頻間距設為100%時之1〇%以上,藉此呈現出作為光學元 件之優異之性能。 從折射率角度而言’凸部之形狀較好的是頂端為尖頂, 但頂端亦可帶有弧度。 當凹凸圖案並未非著特定方向時,可以下述方式求出最 頻間距。首先,藉由原子間力顯微鏡來拍攝凹凸圖案之上 表面,將該圖像轉換成灰度文檔(例如,tiff格式等)。於灰 度文杈之圖像(參照圖24)中,白度越低之處,則表示凹部 之底部越深(白度越高之處,則凸部之頂部越高)。繼而, 對灰度文檔之圖像進行傅立葉轉換。圖25中顯示傅立葉轉 換後之圖像。傅立葉轉換後之圖像中,自白色部分之中心 而觀察之方向表示灰度之方向性,又,自中心至白色部分 為止之距離之倒數表示灰度圖像之週期。當凹凸圖案並非 著特疋方向時,成為如圖26所示之顯示有圓環之圖像。 八人’自傅立葉轉換後之圖像中的圓環中心引朝向外側的 直線狀之輔助線L2,並對與中心之距離(X轴)上之亮度(Y 轴)進行描緣(參照圖24)。繼而,讀取表示該描繪中之極大 值的X軸之值r。該1&gt;值之倒數(i/r)為最頻間距。 (凹凸圖案形成片-3) 126510.doc -28- 200912388 當硬質層12係由金屬或金屬化合物構成時,容易押得凹 凸圖案形成片1〇,因此金屬較好。 作為金屬,揚氏模量不會過高,可更容易形成凹凸圖案 12a,因此較好的是選自由金、鋁、銀、碳、銅、鍺、 銦、鎖、鈮、鈀、鉛、鉑、矽、錫、鈦、釩、鋅、鉍所組 成之群中之至少一種金屬。此處所言之金屬亦包含丰金 屬。 ' 作為金屬化合物,因同樣之理由,故較好的是選自由氧 化鈦、氧化鋁、氧化鋅、氧化鎂、氧化錫、氧化銅、氧化 銦、氧化鎘、氧化鉛、氧化矽、氟化鋇、氟化鉀、氟化 錤、硫化鋅、砷化鎵所組成之群中之至少一種金屬化合 物。 再者,當硬質層12由金屬構成時,有時層表面會受到空 氣氧化而形成空氣氧化膜,但本發明中,如此之金屬層之 表面被空氣氧化後的層亦看作由金屬所構成之層。 硬質層12之厚度較好的是超過〇.〇1 且為0.2 以下, 更好的是0.02〜0·1 μηι。若硬質層之厚度超過〇〇1 且為 0.2 μιη以下,則如下所述可容易製造凹凸圖案形成片。 又’為了提1¾禮著性及形成更微細之構造,亦可在基材 11與硬質層12之間形成底塗層。 凹凸圖案形成片10之凹凸圖案12a之最頻間距A超過1 μπι 且為20 μπι以下,較好的是超過1 μιη且為1〇 μιη以下。當最 頻間距Α不足1 μπι時以及超過20 0瓜時,即便將凹凸圖案 形成片10用作光擴散體製造用工程片原版,亦難以獲得光 126510.doc •29- 200912388 擴散性較高之光擴散體。 2.凹凸圖案形成片之製造方法 以下對本發明之凹凸圖案形成片之製造方法之一實施形 態進行說明。 如圖7所示’本實施形態之凹凸圖案形成片之製造方法 包括以下步驟··於作為樹脂製基材之加熱收縮性薄膜Ua 之一面上’設置表面平滑之硬質層13(以下,稱為表面平 〆 滑硬質層13),以形成積層片10a(以下,稱為第1步驟);以 及使加熱收縮性薄膜i丨a加熱收縮,並使積層片i 之至少 表面平滑硬質層13以摺疊之方式而變形(以下,稱為第2步 驟)。 此處’表面平滑硬質層13係指JIS B0601中記載之中心 線平均粗糙度為〇·1 μπι以下之層。 •第1步驟-1 於第1步驟中,作為於加熱收縮性薄膜11 a之一面上設置 I 樹脂製表面平滑硬質層13以形成積層片10a之方法,可列 舉例如:於加熱收縮性薄膜Ua之一面上,利用旋轉塗佈 機或刮棒塗佈機等來塗佈第2樹脂之溶液或分散液,並使 /奋劑乾燥之方法;於加熱收縮性薄膜11 a之一面上,積層 預先製作之表面平滑硬質層13之方法等。 作為加熱收縮性薄膜丨丨a,可使用例如聚對苯二甲酸乙 二酯系收縮薄膜、聚苯乙烯系收縮薄膜、聚烯烴系收縮薄 膜、聚氯乙烯系收縮薄膜等。 於收縮薄臈之中,尤其好的是收縮5〇〜7〇%之收縮薄 126510.doc •30- 200912388 膜。若使用收縮50〜70%之收縮薄膜,則可使變形率為5〇% 以上’從而可容易製造凹凸圖案12a之最頻間距A超過! μπι 且為20 μιη以下、凹凸圖案i2a之底部之平均深度β為將 最頻間距Α設為1〇〇%時之1〇%以上的凹凸圖案形成片1〇。degree. The half value width W! is larger. The half value width % of the peak in Fig. 6 (the frequency is the width of the peak at the half of the height) indicates that the alignment of the concave-convex pattern W] is larger, which means that the meandering is made uneven. 126510.doc •24· 200912388 The above-mentioned better alignment is 〇·3~1〇. When the alignment degree is 〇.3 to 丨〇, the unevenness between the concave-convex patterns 12a is large, and the concave-convex pattern-forming sheet and the light-diffusing body light obtained by using the concave-convex pattern-forming sheet as the original sheet of the engineering sheet are used. More diffusive. If the degree of alignment exceeds 1 〇, the direction of the bevel pattern becomes random to some extent, so the light diffusibility becomes high, but the directionality is low. / In order to make the degree of alignment 0.3 to 1.o, it is possible to appropriately select the target of the compressive stress necessary for the production of the sheet by the uneven pattern. The difference (Tg2_Tgi) between the glass transition temperature of the second resin constituting the hard layer 12 and the glass transition temperature Tgi of the first resin constituting the substrate 11 is i〇. The above-described concave-convex pattern forming sheet 1 of the present invention can be obtained by the following method for producing a concave-convex pattern forming sheet, and thus can be easily produced. Moreover, as a result of the investigation by the inventors, it was found that when both the base #11 and the hard (four) are transparent, the most frequent pitch A of the concave-convex pattern 12a exceeds i_ and is less than 2〇ηη below the 'concave&amp; bottom of the pattern 12a (3) The average depth β is 10% or more when the above-mentioned worst-frequency pitch A is a surface, that is, the concave-convex pattern forming sheet 10 of the present invention has sufficient light diffusibility, and thus can be used as a light diffuser. △ Further, the uneven pattern forming sheet of the present invention is not limited to the above embodiment. For example, the top end of the convex portion of the concave-convex pattern of the concave-convex pattern forming sheet of the present invention may also be a pointed top. However, the diffusion anisotropy is further improved. The convex portion of the convex pattern preferably has a curvature at the top end. shape. (Concave-convex pattern forming sheet-2) 4 I I have found that the distance A of the concave-convex pattern 12a is 1 μm or less, especially for shouting, and the concave-convex pattern 126510.doc -25- 200912388 12a The average depth B of the bottom portion 12b is 10% or more in the case where the most frequent pitch A is ι〇〇%, and is particularly preferably 1% or more, whereby excellent performance as an optical element can be exhibited. Specifically, when the uneven pattern is formed into a sheet as an antireflection body, 1 reduces the reflectance 'and' when the concave-convex pattern forming sheet 1 is used as a phase difference plate, the same can be achieved over a wide wavelength region. Phase difference. The reason for this is that 'the average frequency P of the concave-convex pattern 12a is short, and when i is hereinafter, the average depth B is smaller than 罙, which is 10% or more when the most frequent pitch A is 100%. That is, the 'frequency band spacing A is short, the wavelength of the visible light is the same, or the wavelength of the visible light is below, and it is difficult for the visible light to be diffracted or scattered by the unevenness. Further, since the average depth_depth and the portion in which the intermediate refractive index changes continuously become longer in the thickness direction, the effect of suppressing light reflection can be remarkably exhibited. Further, since the most frequent pitch A is short and the average depth B is deep, the portion in which the air having different refractive indices and the concave-convex pattern forming sheet are alternately arranged becomes longer in the thickness direction, and the portion exhibiting optical anisotropy becomes longer. Therefore, a phase difference can be generated. Further, the phase difference generated by the uneven pattern is substantially the same over a wide wavelength region. At this time, the hard layer 12 has a lower refractive index with respect to the substrate, but a higher antireflection property can be obtained, which is preferable. Further, the thickness of the hard layer 12 is preferably nm. When the thickness of the hard layer 12 is 1 nm or more, the hard layer 12 is less likely to cause defects, and when the thickness of the hard layer 12 is 1 〇〇 nm or less, the hard layer 12 can sufficiently ensure light transmittance. Further, the thickness of the hard layer 12 is more preferably 5 〇 nm or less, and particularly preferably 20 nm or less. If the thickness of the hard layer 12 is 5 〇 nm or less, the embossed pattern forming sheet can be easily manufactured as described below. 126510.doc -26- 200912388. Further, in order to improve the adhesion and form a finer structure, it is also possible to form an undercoat layer between the substrate 11 and the hard layer 12. Further, a resin layer may be provided on the hard layer 12. The most frequent pitch of the concave-convex pattern 12a of the concave-convex pattern forming sheet 10 is 8% or less, preferably 0_4 or less. Further, from the viewpoint that the uneven pattern i2a can be easily formed, the most frequent pitch 8 is preferably 0 05 μm or more. Preferably, the pitch of the concavo-convex pattern 12a is eight 丨, A. , . . . are within the range of ±6〇〇/0 of the most frequent spacing A, and more preferably within the range of ±3〇%. If the pitch is within ±60% of the most frequent pitch, the pitch is uniform and the performance as an optical component can be improved. Further, after the median pitch A is satisfied to be i μηι or less, each of the pitches A, A2, and Ay·· may be continuously changed. Preferably, each of the depths Bi, B2, and b3 of the concavo-convex pattern 12a is within ±60〇/〇 of the average ice B, and more preferably within ±3〇%. If each depth is within ±6〇% of the average depth of 3, the depth is uniform and the performance as an optical element can be exhibited. Further, when the average depth B is equal to or greater than 〇/〇 when the most frequent pitch a is 1%, the depth ratios, El, and Br can be continuously changed. The concave-convex pattern forming sheet 1G can be applied to an optical element such as an antireflection body or a phase difference plate, and an optical element for producing an optical element, as described below, and can also be used for an ultra-water-repellent sheet or a super-hydrophilic sheet. Further, the uneven pattern forming sheet is not limited to the above embodiment. For example, in the above embodiment, the hard layer has a periodic corrugated concavo-convex pattern in the width direction of the 126510.doc 200912388 sheet along the concave-convex pattern, but may have a sheet along the concavo-convex pattern in addition to the concavo-convex pattern. A periodic wave-shaped concave-convex pattern in the longitudinal direction. Further, the hard layer may have a large number of undulating concave and convex patterns along a specific direction. In such a case, the most frequent pitch of the concave-convex pattern is 1 μm or less, and the average depth of the bottom of the concave-convex pattern is 1% or more when the above-mentioned worst-frequency pitch is 100%, thereby exhibiting as an optical element. Excellent performance. From the viewpoint of the refractive index, the shape of the convex portion is preferably that the tip is a apex, but the tip may also have a curvature. When the concave-convex pattern is not in a specific direction, the maximum frequency spacing can be obtained in the following manner. First, the surface above the concave-convex pattern is photographed by an atomic force microscope, and the image is converted into a grayscale document (for example, a tiff format or the like). In the image of the gray text (refer to Fig. 24), the lower the whiteness, the deeper the bottom of the concave portion (the higher the whiteness, the higher the top of the convex portion). Then, Fourier transform is performed on the image of the grayscale document. The image after Fourier transform is shown in FIG. In the Fourier-transformed image, the direction observed from the center of the white portion indicates the directionality of the gradation, and the reciprocal of the distance from the center to the white portion indicates the period of the gradation image. When the concave-convex pattern is not in the characteristic direction, it becomes an image in which a ring is displayed as shown in Fig. 26. Eight people's circle center in the image after Fourier transform is directed to the outer linear auxiliary line L2, and the brightness (Y axis) on the distance from the center (X axis) is drawn (refer to Figure 24). ). Then, the value r of the X-axis indicating the maximum value in the drawing is read. The reciprocal (i/r) of the 1&gt; value is the most frequent spacing. (Concave-convex pattern forming sheet-3) 126510.doc -28- 200912388 When the hard layer 12 is composed of a metal or a metal compound, it is easy to form the concave-convex pattern forming sheet 1〇, and therefore the metal is preferable. As the metal, the Young's modulus is not too high, and the concave-convex pattern 12a can be formed more easily, so it is preferably selected from the group consisting of gold, aluminum, silver, carbon, copper, bismuth, indium, lock, bismuth, palladium, lead, and platinum. At least one metal selected from the group consisting of bismuth, tin, titanium, vanadium, zinc, and antimony. The metal mentioned here also contains abundance. As a metal compound, for the same reason, it is preferably selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide, magnesium oxide, tin oxide, copper oxide, indium oxide, cadmium oxide, lead oxide, antimony oxide, and antimony fluoride. And at least one metal compound of the group consisting of potassium fluoride, cesium fluoride, zinc sulfide, and gallium arsenide. Further, when the hard layer 12 is made of a metal, the surface of the layer may be oxidized by air to form an air oxide film. However, in the present invention, the layer of such a metal layer which is oxidized by air is also regarded as composed of metal. Layer. The thickness of the hard layer 12 is preferably more than 〇.〇1 and is 0.2 or less, more preferably 0.02 to 0·1 μη. When the thickness of the hard layer exceeds 〇〇1 and is 0.2 μm or less, the uneven pattern forming sheet can be easily produced as follows. Further, an undercoat layer may be formed between the substrate 11 and the hard layer 12 in order to improve the rituality and form a finer structure. The most frequent pitch A of the concavo-convex pattern 12a of the concavo-convex pattern forming sheet 10 is more than 1 μm and is 20 μm or less, preferably more than 1 μm and not more than 1 μmη. When the most frequent pitch Α is less than 1 μm and exceeds 20 gua, even if the concave-convex pattern forming sheet 10 is used as an original for manufacturing a light diffuser, it is difficult to obtain light 126510.doc • 29- 200912388 Light diffusion with high diffusivity body. 2. Method of Producing Concavo-Contour Pattern Forming Sheet Hereinafter, an embodiment of a method for producing a concavo-convex pattern forming sheet of the present invention will be described. As shown in Fig. 7, the method for producing a concave-convex pattern forming sheet according to the present embodiment includes the following steps: "Setting a hard surface 13 having a smooth surface on one surface of the heat shrinkable film Ua as a resin substrate (hereinafter referred to as The surface is smoothed to the hard layer 13) to form the laminated sheet 10a (hereinafter referred to as the first step); and the heat shrinkable film i丨a is heated and shrunk, and at least the surface of the laminated sheet i is smoothed to the hard layer 13 to be folded. The method is modified (hereinafter referred to as the second step). Here, the surface smoothing hard layer 13 is a layer having a center line average roughness of 〇·1 μπι or less as described in JIS B0601. In the first step, in the first step, the surface of the heat-shrinkable film 11 a is provided with a surface smoothing hard layer 13 made of a resin to form the laminated sheet 10a, and for example, a heat shrinkable film Ua is exemplified. On one of the surfaces, a solution or a dispersion of the second resin is applied by a spin coater or a bar coater, and the solution is dried; the layer is preliminarily laminated on one side of the heat shrinkable film 11 a. The method of making the surface smoothing the hard layer 13 and the like. As the heat-shrinkable film 丨丨a, for example, a polyethylene terephthalate-based shrink film, a polystyrene-based shrink film, a polyolefin-based shrink film, a polyvinyl chloride-based shrink film, or the like can be used. Among the shrink thinner, it is especially good to shrink the shrinkage of 5〇~7〇% 126510.doc •30- 200912388 Membrane. When a shrink film having a shrinkage of 50 to 70% is used, the deformation ratio can be made 5% or more, and the optimum pitch A of the uneven pattern 12a can be easily produced. The average depth β of the bottom of the concave-convex pattern i2a is not less than 20 μm, and the unevenness pattern forming sheet 1 of 1% or more when the most frequent pitch Α is 1%.

進而’亦可容易製造凹凸圖案Ua之底部l2b之平均深度B 為將最頻間距A設為loo%時之ι〇〇〇/〇以上的凹凸圖案形成片 10 〇 此處,變形率係指(變形前之長度-變形後之長度)/(變形 前之長度)xl00(。/。),或者係指(變形後之長度)/(變形前之 長度)xl00(%;)。 又’利用以下步驟可使凹凸圖案l2a之平均深度Β為將最 頻間距A設為1 〇 〇 %時之3 〇 〇 %。 於加熱收縮性薄膜lla上,塗佈玻璃轉移溫度低於加熱 收縮性薄膜11 a之底塗樹脂層,並於該底塗樹脂層上形成 設置有表面硬質平滑層13之積層片。使該積層片加熱收 縮,藉此形成凹凸圖案形成片。 自積層片上剝離加熱收縮後之加熱收縮性薄膜lla,並 貼合其他之加熱收縮性薄膜,形成積層片。使該積層片加 熱收縮’藉此可使平均深度B大於使1片加熱收縮性薄膜加 熱收縮後之情形。反覆進行複數次該步驟後,可使凹凸圖 案12a之平均深度B為將最頻間距a設為1 〇〇%時之3〇〇〇/〇。 本發明中’使表面平滑硬質層13之厚度超過0.05 μιη且 為5.0 μηι以下’較好的是〇丨〜丨〇 。將表面平滑硬質層 13之厚度設為上述範圍,藉此可使凹凸圖案12a之最頻間 126510.doc -31 - 200912388 距A可靠地超過1 μηι且為20 μπι以下。 然而’若表面平滑硬質層13之厚度為〇〇5 μιη以下,則 最頻間距Α有時會在1 以下,若表面平滑硬質層η之厚 度超過5.0 μηι,則最頻間距a有時會超過2〇 μιη。 又,本發明中’將表面平滑硬質層13藉由玻璃轉移溫度 相較於構成加熱收縮性薄膜之樹脂(第丨樹脂)高出1(rc以上 之樹知(第2樹脂)所構成。由於第丨樹脂之玻璃轉移溫度與 第2樹脂之玻璃轉移溫度滿足上述關係,故可使凹凸圖案 12a之最頻間距A可靠地超過1 且為20 μηι以下。 表面平α硬質層13之厚度亦可連續地變化。當表面平滑 硬質層13之厚度連續地變化時,壓縮後所形成之凹凸圖案 12a之間距及深度會連續地變化。 該製造方法中’從可更容易形成凹凸圖案1仏之角度而 5 ’較好的是將表面平滑硬質層13之楊氏模量設為 〇·〇1~300 GPa ’更好的是將其設為0.1〜10 GPa。 在使積層片10a變形時,較好的是使表面平滑硬質層j 3 以5 /。以上之變形率而變形。若使表面平滑硬質層13以 以上之變形率而變形,則可容易使凹凸圖案12a之底部12b 之平均深度B為將最頻間距a設為! 〇〇%時之丨〇%以上。 進而,更好的是使表面平滑硬質層13以5〇%以上之變形 率而變形。若使表面平滑硬質層丨3以5〇%以上之變形率而 變形,則可容易使凹凸圖案12a之底部12b之平均深度B為 將最頻間距A設為ι00%時之1〇〇%以上。 •第1步驟-2 126510.doc -32- 200912388 又,當硬質層12係由金屬咬合 ^ s μ 1Λ 蜀$金屬化合物構成時,作a报 成積層片10a之方法,可列與 7马形 了列舉例如:於加熱收縮性薄腹n 之-面上蒸鍍金㉟或金^合 膜Ua 膜Ua之一面上,積層制 方去,於加熱收縮性薄 法等。 尤展作之表面平滑硬質層13之方 於該製造方法中,從可更 文谷易形成凹凸圖案12a之角声 而$ ,較好的是將表面平滑硬 又 〇 1 cnn rp _ 嘴3之杨氏模Ϊ設為 0.1〜5〇GGPa,更好的是設為1〜l50GPa。 為了將表面平滑硬皙岸η 月硬買廣13之%氏模量設為 好的是將表面平滑躇暂展丨,Ρ丄 固較 十'月硬質層13藉由選自由金、鋁、銀、碳、 銅、鍺、銦、鎂、銳、纪、杳 发口鉑、矽、錫、鈦、釩、 鋅、鉍所組成之群中之至少一 裡金屬所構成。或者,較好 的疋將表面平滑硬質層13藉由選自由氧化欽、氧化紹、氧 化鋅:氧化鎂、氧化錫、氧化銅、氧化銦、氧化鎘、氧化 氧化矽氟化鋇、氟化妈、氟化鎂、硫化辞、砂化鎵 所組成之群巾之至少—種金屬化合物所構成。 一此處,揚氏模量係根㈣s z 228()_1993之「金屬材料之 南溫楊氏模量測試方法」’將溫度變更為23〇c而測定出之 值。當硬質層由金屬化合物構成時亦相同。 表面平α硬質層13之厚度超過Gqi㈣且為q 2㈣以下, 較好的是0.02〜0.1 _。將表面平滑硬質層13之厚度設為上 述範圍,藉此可使凹凸圖案Ua之最頻間距A可靠地超過i μηι且為2G μηι以下、然而’若表面平滑硬質層。之厚度不 足〇‘〇 1 μηι,則最頻間距Α有時會成為】以下,若表面平 126510.doc -33- 200912388 π硬貝層13之厚度超過〇·2 μιη,則最頻間距a有時會超過 20 μιη。 又’表面平滑硬質層13之厚度亦可連續地變化。當表面 平滑硬質層1 3之厚度連續地變化時,壓縮後所形成之凹凸 圖案12a之間距及深度會連續地變化。 當使積層片10a變形時,較好的是使表面平滑硬質層13 以5 /°以上之變形率而變形。若使表面平滑硬質層13以5 % 以上之變形率而變形,則可容易使凹凸圖案na之底部 之平均深度B為將最頻間距a設為100%時之10%以上。 進而’更好的是使表面平滑硬質層13以5〇%以上之變形 率而變形。若使表面平滑硬質層13以5〇%以上之變形率而 變形’則可容易使凹凸圖案12a之底部12b之平均深度b為 將最頻間距A設為1 〇〇%時之1 〇〇%以上。 •第2步驟-1 於第2步驟中,使加熱收縮性薄膜11 a熱收縮,藉此於表 面平m硬質層13上’在相對於收縮方向之垂直方向上形成 波狀之凹凸圖案12a,由此獲得硬質層12。 作為使加熱收縮性薄膜11&amp;加熱收縮時之加熱方法,可 列舉於熱風、蒸氣或熱水中通過之方法等,其中,從可使 加熱收縮性薄膜lla均勻地收縮之角度而言,尤其好的是 於熱水中通過之方法。 使加熱收縮性薄膜lla熱收縮時之加熱溫度較好的是, 根據所使用之加熱收縮性薄膜之種類、及目標凹凸圖案 12a之間距與底部12b之深度而適當選擇。 126510.doc • 34- 200912388 於該製造方法中’若表面平滑硬質層13之厚度越薄、表 面平滑硬質層13之揚氏模量越低,則凹凸圖案12a之最頻 間距A越小,若基材之變形率越高,則平均深度b越深。 因此,為了將凹凸圖案12a設為特定之最頻間距a及平均深 度B,必須適當選擇上述條件。 於以上所說明之凹凸圖案形成片之製造方法中,由於構 成表面平滑硬質層13之第2樹脂相較於構成加熱收縮性薄 r 膜Ua之第1樹脂而言,玻璃轉移溫度高出lot:以上,因此 在第1樹脂之玻璃轉移溫度與第2樹脂之玻璃轉移溫度之間 的溫度時,表面平滑硬質層13之揚氏模量高於加熱收縮性 薄膜11a。而且,由於將表面平滑硬質層13之厚度設為超 過0.05 μηι且為5.0 μΐη以下,因此在第j樹脂之玻璃轉移溫 度與第2樹脂之玻璃轉移溫度之間的溫度進行加工時表 面平滑硬質層13於其說厚度增加,不如說被摺疊。進而, 因表面平滑硬質層13積層於加熱收縮性薄膜Ua上,故加 《 熱收縮性薄臈11a之收縮所產生的應力整體上均勻。因 此,根據本發明’使表面平滑硬質層13以摺疊之方式而變 形可簡便且大面積地製造光擴散體之性能優異之凹凸圖 案形成片1 0。 並且’根據該製造方法,可容易使凹凸圖案12a之最頻 間距=超過i _且為2〇 μιη以下,並可容易使凹凸圖案心 之底°卩12b之平均深度B為將最頻間距A設為1〇〇%時之1〇% 以上。 又作為凹凸圖案形成片之製造方法,亦可應用下述方 1265l0.doc •35- 200912388 法(1)〜(4): 方法(1) 於基材11之整個一面上,設置表面平滑硬質層13以形成 積層片10a ’並在沿著表面之一方向上對整個積層片i〇a進 行壓縮。 當基材11之玻璃轉移溫度低於室溫時,積層片1〇a之壓 縮係於室溫中進行,當基材丨丨之玻璃轉移溫度為室溫以上 時’積層片10a之壓縮係於基材丨丨之玻璃轉移溫度以上且 低於表面平滑硬質層13之玻璃轉移溫度的溫度中進行。 方法(2) 於基材11之整個一面上,設置表面平滑硬質層13以形成 積層片10a,使積層片i〇a向一方向延伸,並使與延伸方向 正交之方向收縮’且在沿著表面之一方向上對表面平滑硬 質層13進行壓縮。 當基材11之玻璃轉移溫度低於室溫時,積層片l〇a之延 伸係於室溫中進行,當基材i i之玻璃轉移溫度為室溫以上 時’積層片10a之延伸係於基材11之玻璃轉移溫度以上且 低於表面平滑硬質層13之玻璃轉移溫度的溫度中進行。 方法(3) 於由未硬化之電離放射線硬化性樹脂所形成之基材j i 上’積層表面平滑硬質層13以形成積層片1 〇a,並照射電 離放射線而使基材11硬化,藉此使其收縮,並在沿著表面 之至少一方向對積層於基材11上之表面平滑硬質層13進行 壓縮。 126510.doc -36- 200912388 方法(4) 於使溶劑膨潤而膨脹之基材丨丨 刊上積層表面平滑硬質層 13以形成積層片1 〇a,將基材^ 娄何11中之溶劑乾燥、去除,藉 此使其收縮,並在沿著表面之至少— 不向對積層於基材11 上之表面平滑硬質層i 3進行壓縮。 於方法⑴中,作為形成積層片1〇a之方法,可列舉例 ;土材11之φ上’藉由旋轉塗佈機或刮棒塗佈機等 來塗佈樹脂之溶液❹散液,並使溶劑乾燥之方法;於基 材^面上’積層預先製作之表面平滑硬質㈣之方法 等。 作為在沿著表面之_方向上對整個積層片心進行塵縮 之方法,T列舉例如··以老虎鉗等夾住積層片心之一端 部及其相反侧之端部而進行壓縮之方法等。 於方法(2)中,作為使積層片⑽向—方向延伸之方法, 可列舉例如:拉伸積層片1Ga之—端部及其相反側之端部 而使其延伸之方法等。 於方法(3)中,作為電離放射線硬化性樹脂可列舉紫 外線硬化型樹脂或電子射線硬化型樹脂等。 於方法(4)中,溶劑可根據第丨樹脂之種類而適當選擇。 溶劑之乾燥溫度可根據溶劑之種類而適當選擇。 對於方法(2)〜(4)中之表面平滑硬質層13,均可使用與方 法⑴中相同之成分,且可使用相同之厚度。χ,積層片 —之形成方法與方法⑴同樣地可應用以下方法:於基材 11之-面上塗佈樹脂之溶液或分散液,並使溶劑乾燥之方 126510.doc -37· 200912388 法’於基材11之一面上積層預先製作之表面平滑硬質層 之方法。 •第2步驟-2 *將凹凸圖案12a之最頻間距a設為1 以下時,於方法 (1)中,表面平滑硬質層13之厚度較好的是5〇 nm以下,更 好的是20 nm以下。若表面平滑硬質層13之厚度為5〇 nm&amp; 下,則能夠可靠地使凹凸圖案12a之最頻間距A為i μηι以 下。 又’從壓縮後之硬質層12難以產生缺陷之角度而言,表 面平滑硬質層13較好的是1 nm以上。 於此情形時’使表面平滑硬質層13藉由玻璃轉移溫度相 較於第1樹脂高出10。(:以上之第2樹脂而構成。使表面平滑 硬質層13藉由玻璃轉移溫度相較於第1樹脂高出1〇°c以上 之第2樹脂所構成時,可於壓縮時使基材丨丨變形之狀態下 使表面平滑硬質層13呈波狀彎曲而蛇行變形,由此可容易 形成凹凸圖案12a。 於以上所說明之凹凸圖案形成片之製造方法中,由於構 成表面平滑硬質層13之第2樹脂相較於構成基材11之第1樹 脂而言,玻璃轉移溫度高出10 °C以上,因此在第1樹脂之 玻璃轉移溫度與第2樹脂之玻璃轉移溫度之間的溫度時, 表面平滑硬質層13之楊氏模量高於基材11。因而,當在第 1樹脂之玻璃轉移溫度與第2樹脂之玻璃轉移溫度之間的溫 度進行加工時,表面平滑硬質層13與其說厚度增加,不如 說被摺疊。進而,因表面平滑硬質層13積層於基材11上, 126510.doc • 38- 200912388 故壓縮或收縮所產生的應力整體上均勻。因此,根據本發 明,可容易使表面平滑硬質層丨3蛇行變形而製造凹凸圖案 形成片10,從而可簡便且大面積地製造性能優異之凹凸圖 案形成片10作為光學元件。 並且,根據該製造方法,可容易縮短凹凸圖案12a之最 頻間距A,因此可使平均深度B變深。具體而言,可容易 使凹凸圖案12a之最頻間距A為1 以下,且可容易使凹凸 圖案12a之底部12b之平均深度β為將最頻間距a設為t 〇〇% 時之10%以上。 進而,根據該製造方法,可容易使凹凸圖案12a中的各 間距A!、A2、A3…及各深度Bl、b2、匕…均勻。 第2步驟-3 當使用金屬或金屬化合物作為表面平滑硬質層而進行製 造時,於第2步驟中’加熱收縮性薄膜m產生熱收縮,藉 此於表面平滑硬質層13上,在與收縮方向垂直之方向上形 成波狀之凹凸圖案12a,從而成為硬質層12。 作為使加熱收縮性薄膜lla加熱收縮時之加熱方法,可 列舉於熱風、蒸氣或熱水中通過之方法等,其中,從可使 加熱收縮性薄膜lla均勻地收縮之角度而[尤其好的是 於熱水中通過之方法。 使加熱收縮性薄膜1 la埶收縮拄 …叹細晖之加熱溫度較好的是, 根據所使用之加熱收縮性薄膜 寻联之種類、及目標凹凸圖案 12a之間距與底部12b之深度而適當選擇。 於該製造方法中,若表面平滑 卞^硬質層13之厚度越薄、表 126510.doc -39· 200912388 面平滑硬質層13之揚氏模量越低,則凹凸圖案⑴之最 間距A越小,若基材之變形率越高,料均深度B越果’ 因此,為了將凹凸圖案12a設為特定之最頻間距八及平均深 度B ’必須適當選擇上述條件。 於以上所說明之凹凸圖案形成片之製造方法中,由金屬 或金屬化合物構成之表面平滑硬質層13之揚氏模量遠大於 加熱收縮性薄膜Ha之楊氏模量,因此在對相較於加熱收 縮性薄膜11a更硬之表面平滑硬質層13進行熱壓縮時,表 面平滑硬質層13與其說厚度增加,不如說被摺疊。進而, 由於表面平滑硬質層13積層於加熱收縮性薄膜Ua上故 加熱收縮性薄膜lla之收縮所產生的應力整體上均勻。因 此,根據本發明Μ吏表面平滑硬質層13以冑叠之方式而變 形,可簡便且大面積地製造性能優異之凹凸圖案形成片 作為光擴散體。 並且,根據該製造方法,可容易使凹凸圖案12a之最頻 間距A超過1 μηι且為2〇 μηι以下,並且可容易使凹凸圖案 12a之底部l2b之平均深度Β為將最頻間距a設為1〇〇〇/。時之 10%以上。 然而’先刖’作為製造凹凸圖案形成用片之方法,已知 有.熱奈米壓印法’將奈米壓印用模具之凹凸圖案按壓於 經加熱而軟化之片狀熱可塑性樹脂後進行冷卻;以及光奈 米壓印法,使未硬化之電離放射線硬化性樹脂組成物包覆 於不米壓印用模具之凹凸圖案上,之後照射電離放射線而 使其硬化。 126510.doc 200912388 於熱奈米壓印法中,必須對模具整體施加均勻之壓力, 以將具有凹凸圖案之模具按壓於熱可塑性樹脂上,但該方 法中’若模具之面積較大,則施加於模具上之壓力容易不 句勻其結果會導致凹凸圖案之轉印變得不均勻。因此, 不能說其適合於液晶t視之顯示料巾所使用之大面積的 凹凸圖案形成片之生產。 ^ 於光奈米I印法中,由於模具與已硬化之樹脂之脫 模性不充分,因此有時凹凸圖案之轉印會變得不完全。並 且,模具之反覆使用次數越多,該傾向越顯著。 相對於該等奈米壓印法,上述凹凸圖案形成片之製造方 法可省略凹凸㈣之轉印’因此可消除奈米壓印法中之上 述問題點。Further, the average depth B of the bottom portion l2b of the uneven pattern Ua can be easily produced. The uneven pattern forming sheet 10 of ι〇〇〇/〇 or more when the most frequent pitch A is set to loo%, where the deformation ratio means Length before deformation - length after deformation) / (length before deformation) xl00 (. /.), or means (length after deformation) / (length before deformation) xl00 (%;). Further, the average depth 凹凸 of the concave-convex pattern l2a can be set to 3 〇 〇 % when the maximum frequency spacing A is set to 1 〇 〇 %. On the heat-shrinkable film 11a, the undercoat resin layer having a glass transition temperature lower than that of the heat-shrinkable film 11a is applied, and a layered sheet provided with the surface hard smooth layer 13 is formed on the undercoat resin layer. The laminated sheet is heated and contracted, whereby a concave-convex pattern forming sheet is formed. The heat shrinkable film 11a after heat shrinkage is peeled off from the laminated sheet, and another heat shrinkable film is bonded to form a laminated sheet. The laminated sheet is heat-shrinked, whereby the average depth B can be made larger than the case where one sheet of the heat-shrinkable film is heated and shrunk. After repeating this step a plurality of times, the average depth B of the uneven pattern 12a can be 3 〇〇〇/〇 when the most frequent pitch a is set to 1 〇〇%. In the present invention, it is preferable that the thickness of the surface smooth hard layer 13 exceeds 0.05 μm and is 5.0 μη or less. The thickness of the surface smooth hard layer 13 is set to the above range, whereby the inter-frequency 126510.doc -31 - 200912388 of the concave-convex pattern 12a can reliably exceed 1 μm and be 20 μm or less. However, if the thickness of the surface smooth hard layer 13 is 〇〇5 μm or less, the most frequent spacing Α may be 1 or less. If the thickness of the surface smooth hard layer η exceeds 5.0 μm, the maximum frequency spacing a may sometimes exceed 2〇μηη. Further, in the present invention, the surface smoothing hard layer 13 is composed of a resin (the second resin) having a glass transition temperature higher than that of the resin (the second resin) constituting the heat shrinkable film. Since the glass transition temperature of the second resin and the glass transition temperature of the second resin satisfy the above relationship, the most frequent pitch A of the uneven pattern 12a can be reliably more than 1 and 20 μm or less. The thickness of the surface flat α hard layer 13 can also be When the thickness of the surface smooth hard layer 13 is continuously changed, the distance and depth between the concavo-convex patterns 12a formed after compression are continuously changed. In the manufacturing method, 'from the viewpoint that the concavo-convex pattern can be more easily formed 5' is preferable to set the Young's modulus of the surface smooth hard layer 13 to 〇·〇1 to 300 GPa. More preferably, it is set to 0.1 to 10 GPa. When the laminated sheet 10a is deformed, Preferably, the surface smoothing hard layer j 3 is deformed by a deformation ratio of 5 / or more. If the surface smoothing hard layer 13 is deformed by the above deformation ratio, the average depth B of the bottom portion 12b of the concave-convex pattern 12a can be easily made. For the most frequent a is set to 〇〇% or more 丨〇% or more. Further, it is more preferable to deform the surface smooth hard layer 13 by a deformation ratio of 5% or more. If the surface is smooth, the hard layer 丨3 is 5% or more. When the deformation rate is deformed, the average depth B of the bottom portion 12b of the uneven pattern 12a can be easily set to 1% or more when the most frequent pitch A is set to 0%%. • Step 1-2 126510.doc -32- 200912388 Further, when the hard layer 12 is composed of a metal bite s μ 1 Λ 金属 $ metal compound, the method of reporting the laminated sheet 10a can be listed as a 7-horse shape, for example, in the case of heat shrinkable thin abdomen n - Surface vapor deposition of gold 35 or gold film Ua film Ua on one side, laminated layer, heat shrinkage thin method, etc. The surface smoothing hard layer 13 is particularly developed in this manufacturing method, More Wengu easily forms the corner sound of the concave-convex pattern 12a and $, it is better to make the surface smooth and hard 〇1 cnn rp _ The Young's module of the mouth 3 is set to 0.1~5〇GGPa, and more preferably set to 1 ~l50GPa. In order to smooth the surface of the hard shore η month hard buy wide 13% of the modulus is set to be good to smooth the surface, Ρ The solid layer 13 consists of gold, aluminum, silver, carbon, copper, bismuth, indium, magnesium, sharp, kiln, lanthanum, platinum, lanthanum, tin, titanium, vanadium, zinc, and antimony. At least one of the group consists of a metal. Or, preferably, the surface smoothes the hard layer 13 by being selected from the group consisting of oxidized osmium, oxidized zinc, zinc oxide: magnesium oxide, tin oxide, copper oxide, indium oxide, and cadmium oxide. , oxidized ytterbium oxide ytterbium fluoride, fluorinated mother, magnesium fluoride, sulphide, gallium arsenide consists of at least one kind of metal compound. Here, Young's modulus is root (four) s z 228 ( )_1993 "Southern Temperature Young's Modulus Test Method for Metallic Materials"' The value measured by changing the temperature to 23〇c. The same is true when the hard layer is composed of a metal compound. The thickness of the surface flat α hard layer 13 exceeds Gqi (4) and is q 2 (four) or less, preferably 0.02 to 0.1 _. When the thickness of the surface smooth hard layer 13 is set to the above range, the most frequent pitch A of the uneven pattern Ua can be reliably exceeded by i μη and is 2 G μη or less, whereas the surface is smooth. If the thickness is less than 〇'〇1 μηι, then the most frequent spacing Α will sometimes become the following. If the surface is flat 126510.doc -33- 200912388 π hard shell layer 13 has a thickness exceeding 〇·2 μιη, then the most frequent spacing a has It will exceed 20 μm. Further, the thickness of the surface smooth hard layer 13 may be continuously changed. When the thickness of the surface smooth hard layer 13 is continuously changed, the distance and depth between the concavo-convex patterns 12a formed after compression are continuously changed. When the laminated sheet 10a is deformed, it is preferred that the surface smoothing hard layer 13 is deformed at a deformation ratio of 5 / or more. When the surface smoothing hard layer 13 is deformed by a deformation ratio of 5% or more, the average depth B of the bottom portion of the uneven pattern na can be easily made 10% or more when the maximum frequency spacing a is 100%. Further, it is preferable that the surface smooth hard layer 13 is deformed at a deformation ratio of 5% or more. When the surface smoothing hard layer 13 is deformed by a deformation ratio of 5% or more, the average depth b of the bottom portion 12b of the concave-convex pattern 12a can be easily made 1%% when the maximum frequency spacing A is set to 1%%. the above. • In the second step, in the second step, the heat shrinkable film 11 a is heat-shrinked, thereby forming a wavy concave-convex pattern 12a on the surface of the hard layer 13 in a direction perpendicular to the contraction direction. The hard layer 12 is thus obtained. The method of heating the heat-shrinkable film 11 &amp; when it is heated and contracted is, for example, a method of passing through hot air, steam or hot water, and the like, which is particularly preferable from the viewpoint of uniformly shrinking the heat-shrinkable film 11a. It is the method of passing in hot water. The heating temperature at the time of heat shrinkage of the heat shrinkable film 11a is preferably selected depending on the type of the heat shrinkable film to be used and the distance between the target uneven pattern 12a and the depth of the bottom portion 12b. 126510.doc • 34- 200912388 In the manufacturing method, if the thickness of the surface smooth hard layer 13 is thinner and the Young's modulus of the surface smooth hard layer 13 is lower, the pitch A of the concave-convex pattern 12a is smaller. The higher the deformation rate of the substrate, the deeper the average depth b. Therefore, in order to set the concave-convex pattern 12a to the specific frequency spacing a and the average depth B, it is necessary to appropriately select the above conditions. In the method for producing a concave-convex pattern forming sheet described above, the glass transition temperature is higher than the first resin constituting the surface smooth hard layer 13 than the first resin constituting the heat-shrinkable thin film Ua. As described above, when the temperature between the glass transition temperature of the first resin and the glass transition temperature of the second resin is higher, the Young's modulus of the surface smoothing hard layer 13 is higher than that of the heat shrinkable film 11a. Further, since the thickness of the surface smoothing hard layer 13 is set to be more than 0.05 μm and not more than 5.0 μΐη, the surface is smooth and hard at the temperature between the glass transition temperature of the j-th resin and the glass transition temperature of the second resin. 13 said that the thickness is increased, it is better to say that it is folded. Further, since the surface smooth hard layer 13 is laminated on the heat shrinkable film Ua, the stress generated by the shrinkage of the heat shrinkable film 11a is uniform as a whole. Therefore, according to the present invention, the surface smoothing hard layer 13 is deformed in a folded manner, and the uneven pattern forming sheet 10 excellent in the performance of the light diffusing body can be easily and widely produced. Further, according to the manufacturing method, the most frequent pitch of the concave-convex pattern 12a can be easily made to exceed i _ and be less than 2 μm, and the average depth B of the bottom of the concave-convex pattern core can be easily made to be the maximum frequency spacing A. Set to 1〇% or more at 1〇〇%. Further, as a method of producing the uneven pattern forming sheet, the following method 1265l.doc.35-200912388 (1) to (4) may be applied: Method (1) A smooth hard layer is provided on the entire surface of the substrate 11. 13 to form the laminated sheet 10a' and compress the entire laminated sheet i〇a in one direction along the surface. When the glass transition temperature of the substrate 11 is lower than room temperature, the compression of the laminated sheet 1a is performed at room temperature, and when the glass transition temperature of the substrate is above room temperature, the compression of the laminated sheet 10a is It is carried out at a temperature above the glass transition temperature of the substrate crucible and below the glass transition temperature of the surface smooth hard layer 13. Method (2) On the entire surface of the substrate 11, a smooth hard layer 13 is provided to form the laminated sheet 10a, so that the laminated sheet i〇a extends in one direction and shrinks in the direction orthogonal to the extending direction. The surface smooth hard layer 13 is compressed in one of the directions. When the glass transition temperature of the substrate 11 is lower than room temperature, the extension of the laminated sheet 10a is performed at room temperature, and when the glass transition temperature of the substrate ii is above room temperature, the extension of the laminated sheet 10a is based on The temperature of the material 11 is higher than the glass transition temperature and lower than the glass transition temperature of the surface smooth hard layer 13. (3) On the substrate ji formed of the uncured ionizing radiation-curable resin, the surface of the hardened layer 13 is laminated to form a laminated sheet 1 〇a, and the ionizing radiation is irradiated to harden the substrate 11, thereby making the substrate 11 hardened. It shrinks and compresses the surface smooth hard layer 13 laminated on the substrate 11 in at least one direction along the surface. 126510.doc -36- 200912388 Method (4) The substrate which is swollen and expanded by the solvent is coated with a smooth surface of the hard surface layer 13 to form a laminated sheet 1 〇a, and the solvent in the substrate 11 is dried, It is removed, thereby causing it to shrink, and compresses at least along the surface - without smoothing the hard layer i 3 which is laminated on the substrate 11. In the method (1), as a method of forming the laminated sheet 1a, an example may be mentioned; the φ on the soil material 11 is coated with a resin solution by a spin coater or a bar coater, and A method of drying a solvent; a method of stacking a pre-made surface smooth and hard (4) on a substrate surface. As a method of dusting the entire laminated core in the direction along the surface, for example, a method of compressing the end portion of one end of the laminated core and the opposite side thereof by a vise or the like is performed. In the method (2), the method of extending the laminated sheet (10) in the − direction may, for example, be a method of stretching the end portion of the laminated sheet 1Ga and the end portion on the opposite side to extend the same. In the method (3), examples of the ionizing radiation curable resin include an ultraviolet curable resin or an electron beam curable resin. In the method (4), the solvent can be appropriately selected depending on the kind of the second resin. The drying temperature of the solvent can be appropriately selected depending on the kind of the solvent. For the surface smooth hard layer 13 in the methods (2) to (4), the same components as in the method (1) can be used, and the same thickness can be used. χ, laminated sheet-formation method and method (1) The same method can be applied: coating a resin solution or dispersion on the surface of the substrate 11 and drying the solvent 126510.doc -37· 200912388 method A method of laminating a previously prepared surface smooth hard layer on one side of the substrate 11. • 2nd step-2 * When the mode spacing a of the concavo-convex pattern 12a is 1 or less, in the method (1), the thickness of the surface smoothing hard layer 13 is preferably 5 〇 nm or less, more preferably 20 Below nm. When the thickness of the surface smooth hard layer 13 is 5 〇 nm &amp; amp, the maximum pitch A of the concave-convex pattern 12a can be reliably made i μηι or less. Further, the surface smooth hard layer 13 is preferably 1 nm or more from the viewpoint that the hard layer 12 after compression is less likely to cause defects. In this case, the surface smoothing hard layer 13 is made 10 higher by the glass transition temperature than the first resin. (The above-mentioned second resin is used. When the surface smoothing hard layer 13 is composed of a second resin having a glass transition temperature higher than the first resin by 1 〇 ° C or more, the substrate can be made to be compressed at the time of compression. In the state in which the surface smoothing hard layer 13 is wavy and deformed by meandering, the uneven pattern 12a can be easily formed. In the manufacturing method of the uneven pattern forming sheet described above, the smooth hard layer 13 is formed by the surface. When the second resin phase has a glass transition temperature higher than 10 ° C or higher than the first resin constituting the substrate 11 , when the temperature between the glass transition temperature of the first resin and the glass transition temperature of the second resin is between The Young's modulus of the surface smooth hard layer 13 is higher than that of the substrate 11. Therefore, when the temperature between the glass transition temperature of the first resin and the glass transition temperature of the second resin is processed, the surface smoothing the hard layer 13 is not so much. The thickness is increased as it is folded. Further, since the surface smooth hard layer 13 is laminated on the substrate 11, the stress generated by compression or contraction is uniform as a whole. Therefore, according to the present invention In addition, the uneven pattern forming sheet 10 can be easily produced by deforming the surface smooth hard layer 蛇3, and the uneven pattern forming sheet 10 having excellent performance can be easily produced in a large area as an optical element. Further, according to the manufacturing method, the concave-convex pattern forming sheet 10 can be easily shortened. Since the most frequent pitch A of the concave-convex pattern 12a is, the average depth B can be made deeper. Specifically, the most frequent pitch A of the concave-convex pattern 12a can be easily made 1 or less, and the average depth of the bottom portion 12b of the concave-convex pattern 12a can be easily made. β is 10% or more when the most frequent pitch a is t 〇〇%. Further, according to the manufacturing method, the pitches A!, A2, A3, ... and the respective depths B1 and b2 in the uneven pattern 12a can be easily made. In the second step, when a metal or a metal compound is used as the surface smooth hard layer, the heat shrinkable film m is thermally contracted in the second step, whereby the surface is smoothed on the hard layer 13. The corrugated concave-convex pattern 12a is formed in a direction perpendicular to the contraction direction to form the hard layer 12. The heating method for heating and contracting the heat-shrinkable film 11a is exemplified by hot air, A method of passing gas or hot water, etc., from the viewpoint of uniformly shrinking the heat shrinkable film 11a [particularly, a method of passing through hot water. The heat shrinkable film 1 la埶 shrinks... The heating temperature of the smear is preferably selected according to the type of the heat shrinkable film to be used and the distance between the target concave-convex pattern 12a and the depth of the bottom portion 12b. In the manufacturing method, if the surface is smooth, The thinner the thickness of the hard layer 13 is, the lower the Young's modulus of the smooth hard layer 13 is, the smaller the pitch A of the concave-convex pattern (1) is, and the higher the deformation rate of the substrate is. The average depth B of the material is more fruitful. Therefore, in order to set the concave-convex pattern 12a to the specific minimum spacing 8 and the average depth B', the above conditions must be appropriately selected. In the method for producing a concave-convex pattern forming sheet described above, the Young's modulus of the surface smooth hard layer 13 composed of a metal or a metal compound is much larger than the Young's modulus of the heat shrinkable film Ha, and therefore When the surface of the heat-shrinkable film 11a is harder and the hard layer 13 is thermally compressed, the surface smoothing hard layer 13 is not so thick as it is folded. Further, since the surface smooth hard layer 13 is laminated on the heat shrinkable film Ua, the stress generated by the shrinkage of the heat shrinkable film 11a is uniform as a whole. Therefore, according to the present invention, the surface smoothing hard layer 13 is deformed in a folded manner, and the uneven pattern forming sheet excellent in performance can be easily produced in a large area as a light diffusing body. Further, according to this manufacturing method, the most frequent pitch A of the uneven pattern 12a can be easily made larger than 1 μm and equal to or less than 2 μm, and the average depth 底部 of the bottom portion l2b of the concave-convex pattern 12a can be easily set to the most frequent pitch a. 1〇〇〇/. More than 10% of the time. However, as a method of producing a sheet for forming a concave-convex pattern, it is known that a hot nano-imprint method is performed by pressing a concave-convex pattern of a mold for nanoimprinting onto a sheet-shaped thermoplastic resin which is softened by heating. In the light nano-imprint method, the uncured ionizing radiation curable resin composition is coated on the concave-convex pattern of the mold for imprinting, and then irradiated with ionizing radiation to be hardened. 126510.doc 200912388 In the thermal embossing method, it is necessary to apply uniform pressure to the entire mold to press the mold having the concave-convex pattern on the thermoplastic resin, but in the method, if the area of the mold is large, the application is performed. The pressure on the mold tends to be uneven, and as a result, the transfer of the concave-convex pattern becomes uneven. Therefore, it cannot be said that it is suitable for the production of a large-area concave-convex pattern forming sheet used for a liquid crystal t-displayed tissue. ^ In the photonic N I method, since the mold release property of the mold and the hardened resin is insufficient, the transfer of the uneven pattern may become incomplete. Moreover, the more the number of times the mold is repeatedly used, the more significant the tendency. With respect to these nanoimprint methods, the above-described method for producing a concavo-convex pattern forming sheet can omit the transfer of the concavities and convexities (4), thereby eliminating the above-mentioned problems in the nanoimprint method.

再者’於上述實施形態中 硬質層’但亦可於基材之一 於基材之兩面上全部設置硬 之一部分上設置硬質層。 3.光擴散體 ’係於基材之整個一面上設置 面之一部分上設置硬質層,或 質層’或者亦可於基材之兩面 …之光擴散體具備最頻間距A超過i叫且為2〇_ 以下之上述凹凸圖案形成片1〇。 於本發明之光擴散體中, J J於凹凸圖案形成片10之一 面或兩面上具備其他層。例如, y、凹凸圖案形成片10之形 成有凹凸圖案12a之一侧之面上, 馬了防止污染該面,亦 可具備含有氟樹脂或聚矽氧樹脂 W馬主成分之厚度為1〜ί nm左右之防汙層。 126510.doc •41· 200912388 又’於光擴散體之基材11側之面上,亦可且供、* α a 々j丹備透明樹脂 製或玻璃製的支持體。 進而’可於基材11側之面上形成黏著劑層,亦可含有色 素以便適當具有功能性。 具備上述於表面上形成有凹凸圖案之凹凸圖案形成片 的本發明之光擴散體具有充分之光擴散性。 4·光擴散體製造用工程片原版及光擴散體之製造方法 本發明之光擴散體製造用工程片原版(以下,稱為工程 片原版)係具備上述凹凸圖案形成片10者,且係用於以如 下所示之方法將凹凸圖案12a轉印至其他素材來大面積且 大量地製造凹凸圖案形成片之模具者,上述凹凸圖案形成 片可用作在表面上形成有與該工程片原版具有相同之最頻 間距及平均深度之凹凸圖案的光擴散體。 於工程片原版上,亦可更具備用以支持凹凸圖案形成片 10之樹脂製或金屬製的支持體。 作為使用工程片原版來製造光擴散體之具體方法,可列 舉例如下述方法(a)〜(C): 方法(a) 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上’塗佈未硬化之電離放射線硬化性樹脂;以及照射 電離放射線而使上述硬化性樹脂硬化,之後自工程片原版 上剝離已硬化之塗膜。此處,所謂電離放射線,通常係指 紫外線或電子射線,本發明中亦包含可見光線、χ射線、 離子射線等。 126510.doc •42· 200912388 方法(b) 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上,塗佈未硬化之液狀熱硬化性樹脂;以及加熱而使 上述液狀熱硬化性樹脂硬化,之後自工程片原版上剝離已 硬化之塗膜。 方法(c) 本方法包括以下步驟:使片狀之熱可塑性樹脂接觸到工 程片原版之形成有凹凸圖案之面;將該片狀之熱可塑性樹 脂按壓於工程片原版上,且於此狀態下進行加熱而使其軟 化’其後進行冷卻;以及自卫程片原版上剝離上述已冷卻 之片狀熱可塑性樹脂。 又,亦可使用卫程片原版來製作二次工程用成形物,並 使用該二次工程用成形物來製造光擴散體。力冑二次工程 用成形物’可列舉例如二次工程片…作為二次工程用 成形物’可列舉如下電輯:將工程片原版弄圓並貼附於 圓筒之内㈣’並在將親插入至該圓筒内側之狀態下進行電 鍍,再自圓筒中取出輥,由此而獲得之電鍍輥。 作為使用二次工程用成形物 法⑷〜(f): &amp;之具體方法’可列舉下述方 方法(d) 之=法包括以下步驟:於工程片原版之形成有…孝 之面上,進行鎳等之金屬電 ,、 轉印用材料以積層電鍍層(凹凸圖案 屬製之二次工Ρ工程片原版上剝離該電鍍層’以製作金 王用成形物’繼而’於二次工程用成形物之 126510.doc -43 - 200912388 與凹凸圖案相接觸之一側之 線硬化性樹脂;以及在照射 脂硬化,之後自二次工程用 方法(e) 面上,塗佈未硬化之電離放射 電離放射線而使上述硬化性樹 成形物上剝離已硬化之塗膜。 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上,積層電鍍層(凹凸圖案轉印用材料);自工程片原 版上剝離該電鍍層,以製作金屬製之二次工程用成形物; 於該二次工程用成形物之與凹凸圖案相接觸之一側之面 上,塗佈未硬化之液狀熱硬化性樹脂;以及加熱而使該樹 脂硬化,之後自二次工程用成形物上剝離已硬化之塗膜。 方法(f) 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上,積層電鍍層(凹凸圖案轉印用材料);自工程片原 版上剝離該電鍍層,以製作金屬製之二次工程用成形物; 使片狀之熱可塑性樹脂接觸到該二次工程用成形物之與凹 凸圖案相接觸之一側之面;將該片狀之熱可塑性樹脂按壓 於二次工程用成形物上,且於此狀態下進行加熱而使其軟 化,其後進行冷卻;以及自二次工程用成形物剝離上述已 冷卻之片狀之熱可塑性樹脂。 以下對方法(a)之具體例進行說明。如圖8所示,首先, 於網狀之工程片原版UO之形成有凹凸圖案112a之面上, 藉由塗佈機120來塗佈未硬化之液狀電離放射線硬化性樹 月曰112c。繼而,將塗佈有該硬化性樹脂之工程片原版110 通過輥130而進行按壓,使上述硬化性樹脂填充於工程片 126510.doc -44- 200912388 原版11 0之凹凸圖案112a内部。其後’藉由電離放射線照 射裝置140而照射電離放射線,使硬化性樹脂交聯.硬化。 繼而’自工程片原版110上剝離硬化後之電離放射線硬化 性樹脂,藉此可製造網狀之光擴散體1 5 〇。 於方法(a)中’為了賦予脫模性,在塗佈未硬化之電離放 射線硬化性樹脂之前’亦可於工程片原版之形成有凹凸圖 案之面上設置厚度為1〜1〇 nm左右之由聚矽氧樹脂、氟樹 脂等構成之層。 作為於工程片原版之形成有凹凸圖案之面上塗佈未硬化 之電離放射線硬化性樹脂的塗佈機,可列舉T模塗佈機、 輥塗佈機、刮棒塗佈機等。 作為未硬化之電離放射線硬化性樹脂,可列舉含有選自 以下物質中之一種以上之成分者:環氧丙稀酸醋、環氧化 油丙烯酸酯、丙烯酸胺基曱酸酯、不飽和聚酯、聚酯丙稀 酸醋、聚醚丙烯酸酯、乙烯/丙烯酸酯、多烯/丙烯酸酯、 矽_丙烯酸酯、聚丁二烯、聚苯乙烯曱基丙烯酸曱酯等之 預聚物、脂肪族丙烯酸酯、脂環式丙烯酸酯、芳香族丙稀 酸錯、含氫氧基之丙烯酸酯、含烯丙基之丙烯酸酯 '含縮 水甘油基之丙烯酸酯、含羧基之丙烯酸酯、含_基之丙婦 酸酿等單體。未硬化之電離放射線硬化性樹脂較好的是以 溶劑等進行稀釋。 又’亦可於未硬化之電離放射線硬化性樹脂中添加氟樹 脂、聚矽氧樹脂等。 當使未硬化之電離放射線硬化性樹脂藉由紫外線而硬化 126510.doc -45- 200912388 時’較好的是,於未硬化之電離放射線硬化性樹脂中添加 笨乙綱類、二苯甲酮類等之光聚合起始劑。 於塗佈未硬化之液狀電離放射線硬化性樹脂之後,亦可 將由樹脂、玻璃等構成之基材貼合後照射電離放射線。電 離放射線之照射由基材、工程片原版之具有電離放射線透 過性之任一者進行即可。 硬化後之電離放射線硬化性樹脂片之厚度較好的是 0·1〜100 μηι左右。若硬化後之電離放射線硬化性樹脂片之 厚度為〇.1 μιη以上,則可確保充分之強度,若為1〇() μιη以 上’則可確保充分之可撓性。 於上述圖8所示之方法中,工程片原版為網狀,但亦可 為單葉片。當使用單葉片之工程片時,可應用將單葉片之 工程片用作平板狀之模具之標記法、將單葉片之工程片捲 繞於輥上以用作圓筒狀模具之輥壓印法等。又,亦可將單 葉片之工程片原版配置於射出成形機之模具之内側。Further, in the above-described embodiment, the hard layer may be provided with a hard layer on one of the base materials on both sides of the substrate. 3. The light diffuser ' is provided on one side of the substrate on a part of the surface, and the hard layer is provided, or the layer of light or the two sides of the substrate, the light diffuser having the most frequent spacing A exceeds i and is 2〇_ The following concavo-convex pattern forming sheet 1〇. In the light diffuser of the present invention, J J has other layers on one or both sides of the uneven pattern forming sheet 10. For example, y, the surface of the concave-convex pattern forming sheet 10 on which one side of the uneven pattern 12a is formed may be prevented from contaminating the surface, and may have a thickness of 1 to ί nm containing a fluororesin or a polyoxyl resin. Anti-fouling layer on the left and right. 126510.doc •41· 200912388 Further, on the surface of the substrate 11 side of the light diffuser, a support made of a transparent resin or a glass may be supplied as a *α a 々j. Further, an adhesive layer may be formed on the surface of the substrate 11 side, or may contain a coloring matter so as to have appropriate functionality. The light diffusing body of the present invention having the above-described uneven pattern forming sheet having a concave-convex pattern formed on its surface has sufficient light diffusibility. 4. The method for producing a light-diffusing body original sheet and a method for producing a light-diffusing body The original sheet for producing a light-diffusing body of the present invention (hereinafter referred to as an original sheet) is provided with the above-described uneven pattern forming sheet 10 The embossed pattern forming sheet can be used as a mold having a large area and a large number of embossed pattern forming sheets by transferring the embossed pattern 12a to other materials in a manner as described below, and the embossed pattern forming sheet can be formed on the surface and having the original sheet of the engineering sheet A light diffuser having the same pattern of the most frequent pitch and the average depth. Further, on the original sheet of the engineering sheet, a resin or metal support for supporting the uneven pattern forming sheet 10 may be further provided. As a specific method for producing a light-diffusing body using an original sheet of the engineering sheet, for example, the following methods (a) to (C): Method (a) The method includes the steps of: forming a concave-convex pattern on the original sheet of the engineering sheet The coating of the uncured ionizing radiation-curable resin and the irradiation of the ionizing radiation to cure the curable resin are performed, and then the cured coating film is peeled off from the original sheet of the engineering sheet. Here, the ionizing radiation generally means ultraviolet rays or electron rays, and the present invention also includes visible rays, xenon rays, ion rays, and the like. 126510.doc •42· 200912388 Method (b) The method comprises the steps of: coating an unhardened liquid thermosetting resin on a surface of the original sheet on which the concave-convex pattern is formed; and heating to make the liquid heat The curable resin is hardened, and then the hardened coating film is peeled off from the original sheet of the engineering sheet. Method (c) The method comprises the steps of: contacting a sheet-shaped thermoplastic resin to a surface of the original sheet of the engineering sheet on which the concave-convex pattern is formed; pressing the sheet-shaped thermoplastic resin on the original sheet of the engineering sheet, and in this state Heating is performed to soften it and then cooled; and the cooled sheet-like thermoplastic resin is peeled off from the self-defense sheet original. Further, it is also possible to produce a molded article for secondary engineering using the original film of the virgin sheet, and to manufacture the light diffuser using the molded article for secondary engineering. For example, a secondary engineering sheet can be exemplified as a secondary engineering sheet. The following is an electric series: the original sheet of the engineering sheet is rounded and attached to the cylinder (4) and The plated roller was obtained by electroplating in a state of being inserted into the inside of the cylinder and taking out the roller from the cylinder. As a specific method of using the secondary engineering molding method (4) to (f): &amp;&gt;, the following method (d) includes the following steps: on the surface of the original sheet of the engineering sheet, which is formed on the surface of the filial piety A metal such as nickel or the like, and a material for transfer is formed by a laminated plating layer (the plating layer is peeled off from the original worksheet of the concave-convex pattern) to prepare a molded product for the king and then formed for secondary engineering. 126510.doc -43 - 200912388 A line-curable resin on one side in contact with the concave-convex pattern; and after hardening by irradiation, coating the uncured ionizing radiation ionization from the secondary engineering method (e) The hardened coating film is peeled off by the radiation, and the method includes the steps of: laminating a plating layer (concave-convex pattern transfer material) on the surface of the original sheet on which the concave-convex pattern is formed; The electroplated layer is peeled off from the original sheet to prepare a metal-made secondary engineering molded article; and the unhardened liquid hot hard is applied to the surface of the secondary engineering molded article in contact with the concave-convex pattern. The resin is cured; and the resin is cured by heating, and then the cured coating film is peeled off from the secondary engineering molded article. Method (f) The method includes the steps of: forming a concave-convex pattern on the original sheet of the engineering sheet a laminated plating layer (concave-convex pattern transfer material); the plating layer is peeled off from the original sheet of the engineering sheet to prepare a metal-made secondary engineering molded product; and the sheet-shaped thermoplastic resin is brought into contact with the secondary engineering forming a surface of the object in contact with the concave-convex pattern; the sheet-shaped thermoplastic resin is pressed against the secondary engineering molded article, and heated in this state to be softened, and then cooled; and The molded article for secondary engineering is peeled off from the above-mentioned cooled sheet-shaped thermoplastic resin. Specific examples of the method (a) will be described below. As shown in Fig. 8, first, the mesh-shaped engineering sheet original UO is formed with irregularities. On the surface of the pattern 112a, the uncured liquid ionizing radiation-curable tree stalk 112c is applied by the coater 120. Then, the engineering sheet master 110 coated with the curable resin is passed through the roller 1 30, the hardening resin is filled in the inside of the concave-convex pattern 112a of the original sheet 11055.doc-44-200912388. Then, the ionizing radiation is irradiated by the ionizing radiation irradiation device 140 to make the curable resin And hardening. Then, the ionizing radiation-curable resin after hardening is removed from the original sheet 110, whereby a network-shaped light diffusing body 15 〇 can be produced. In the method (a), in order to impart mold release property, Before the application of the uncured ionizing radiation curable resin, a layer made of a polyoxyxylene resin, a fluororesin or the like may be provided on the surface of the original sheet on which the uneven pattern is formed. A coater for applying an uncured ionizing radiation curable resin to a surface on which a concave-convex pattern is formed on an original sheet of an engineering sheet includes a T-die coater, a roll coater, a bar coater, and the like. Examples of the uncured ionizing radiation-curable resin include one or more selected from the group consisting of epoxy acrylate vinegar, epoxidized oil acrylate, urethane acrylate, and unsaturated polyester. Prepolymer of polyester acrylate vinegar, polyether acrylate, ethylene/acrylate, polyene/acrylate, 矽_acrylate, polybutadiene, polystyrene decyl acrylate, aliphatic acrylic acid Ester, alicyclic acrylate, aromatic acryl acid, hydroxy-containing acrylate, allyl-containing acrylate 'glycidyl-containing acrylate, carboxyl-containing acrylate, ke-containing propyl Monomers such as sour milk. The uncured ionizing radiation curable resin is preferably diluted with a solvent or the like. Further, a fluororesin, a polyoxymethylene resin or the like may be added to the uncured ionizing radiation curable resin. When the uncured ionizing radiation-curable resin is hardened by ultraviolet rays 126510.doc -45- 200912388, it is preferable to add an anthraquinone class or a benzophenone to an uncured ionizing radiation curable resin. A photopolymerization initiator. After the application of the uncured liquid ionizing radiation curable resin, the substrate made of resin, glass or the like may be bonded and irradiated with ionizing radiation. The irradiation of the ionizing radiation may be carried out by any one of the substrate and the original sheet having ionizing radiation. The thickness of the ionized radiation curable resin sheet after hardening is preferably about 0.1 to 100 μηι. When the thickness of the ionizing radiation-curable resin sheet after hardening is 〇.1 μm or more, sufficient strength can be secured, and if it is 1 〇 () μηη or more, sufficient flexibility can be ensured. In the method shown in Fig. 8, the original sheet of the engineering sheet is a mesh, but it may be a single blade. When a single-blade work piece is used, a single-blade work piece can be used as a flat-plate mold marking method, and a single-blade work piece can be wound on a roll to be used as a roll-shaped embossing method for a cylindrical mold. Wait. Further, the original blade of the single blade may be placed inside the mold of the injection molding machine.

K 然而,於該等使用單葉片之工程片之方法中,為了大量 生產光擴散體’必須多次反覆地進行形成凹凸圖案之步 驟。當電離放射線硬化性樹脂與卫程片原版之脫模性較低 時’於多次反覆後凹凸圖案會產生堵塞,目而具有凹凸圖 案之轉印不完全之傾向。 與此相對’於圖8所示之方法由 在中’由於工程片原版為網 狀’故可大面積且連續地形成凹 凸圖案’因此即便凹凸圖 案形成片之反覆使用次數較少,介1 亦可於短時間内製造所需 數量之光擴散體。 126510.doc -46· 200912388 於方法(b)、(e)中’作為液狀熱硬化性樹脂,可列舉例 如未硬化之三聚氰胺樹脂、聚氨酯樹脂、環氧樹脂等。 方法(b)中的硬化溫度較好的是低於工程片原版之 玻璃轉移溫度。^硬化溫度為工程片原版之玻璃轉移溫度 以上,則在硬化時工程片原版之凹凸圖案可能會產生 形。 於方法(c)、(f)中’作為熱可塑性樹脂,可列舉例如丙 烯酸系樹脂、聚烯烴、聚酯等。 將片狀之熱可塑性樹脂按壓於二次工程用成形物上時之 壓力較好的是1〜刚MPa。若按壓時之壓力為! MPa以 上,則可高精度地轉印凹凸圖案,若按壓時之壓力為ι〇〇 MPa以下,則可防止加壓過剩。 又方去(c)中的熱可塑性樹脂之加熱溫度較好的是低於 工程片原版之玻璃轉移溫度。其原因在於,若加熱溫度為 工程片原版之玻璃轉移溫度以上,則在加熱時卫程片原版 之凹凸圖案可能會產生變形。 乍為力…、後之冷卻溫度,從可高精度地轉印凹凸圖案之 角度而言’較好的是小於熱可塑性樹脂之玻璃轉移溫度。 於方法⑷〜⑷中,亦可省略加熱步驟,⑼防止工程片原 版之凹凸圖案之變形的角度而言’較好的是使用電離放射 線硬化性樹脂之方法(a)。 於方法(d)〜(f)中 物之厚度設為50〜 形物之厚度為50 ’較好的是將金屬製之二次工程用成形 5 00 μηι左右。若金屬製之二次工程用成 μπι以上’則二次工程用成形物具有充分 126510.doc -47- 200912388 之強度若上述厚度為500帅以下,則可確保充分之可繞 性。 於方法⑷〜(f)中’由於使用熱導致之變形較小之金屬製 片作為工耘片,因此電離放射線硬化性樹脂、熱硬化性樹 月曰、熱可塑性樹脂之任—者均可用作凹凸圖案形成片用材 料。 當將由方法⑷〜⑴所製造之凹凸圖案形成片用作光擴散 體時’為了進一步提高光擴散效果,可使凹凸圖案形成片 含有由上述無機化合物構成之光擴散劑、由有機化合物構 成之有機光擴散劑或者微細氣泡。 再者,於方法⑷〜⑴中,將工程片原版之凹凸圖案轉印 至金屬上而獲得二次工程用成形物’但亦可轉印至樹脂上 而獲仵二次工程用成形物。作為此時可使用之樹脂,列舉 例如聚碳酸,、聚縮醛、聚砜、方法⑷中使用之電離放^ 線硬化性樹脂等。當使用電離放射線硬化性樹脂時,與方 法⑷同樣地依次進行電離放射線硬化性樹脂之塗佈^'硬 化、剝離,由此獲得二次工程用成形物。 於以上述方式獲得之光擴散體上,亦可在與形成有凹凸 圖案之面相反之面上設置黏著劑層。又,在與形成有凹凸 圖案之面相反側之面上,亦可進而形成凹凸圖案。 又,亦可不剝離用作工程片原版之凹凸 〇園案形成片或二 认工私用成形物’而將其作為保護層來係田 , 个從用’在即將使用 光擴散體之前剥離該保護層。 126510.doc -48 - 200912388 ,形成有與上述 凹凸之配向不均 藉由上述製造方法所製造之光擴散體上 凹凸圖案形成片10相同之凹凸圖案,因此 勻’擴散之異向性優異。 於光擴散體中,亦可於凹凸圖案形成片之一面或兩面上 具備其他層。例如,於凹凸圖案形成片之形成有凹凸圖案 之一側之面上’為了防μ令逃访 防止巧杂該面,亦可具備含有氟樹脂 或聚石夕氧樹脂作為主成分之厚度為^⑽左右之防汗層。 又’於光擴散體之未形成有凹凸圖案之—侧之面上,亦 可具備透明樹脂製或玻璃製的支持體。 5.光學片 5-1•第1實施形態 以下對本發明之光學片之第1實施形態進行說明。 圖13表示本實施形態之光學片。再者,於圖13中,為了 易於說明,將凹凸區域212放大,且將其配置零散顯示。 本實施形態之光學片21〇a係用作於長度方向之一端〇1上 配置有光源330之光擴散片者,且係於平坦之一面u上, 藉由如下圖案以點狀而分散配置有外形為橢圓形狀之凹凸 區域212 ’亦即,隨著自光學片210a之長度方向之一端α朝 向另一端β而逐漸變密之圖案。再者’於本發明中,所謂 平坦,係指JIS Β0601中記載之中心線平均粗糙度為o.i μιη 以下。又’凹凸區域係指jIS Β0601中記載之中心線平均 粗糙度超過0.1 μπι,尤其為0.5 μιη以上》 •凹凸區域 凹凸區域12係具有凹凸圖案之區域。於本實施形態中, 126510.doc •49- 200912388 如圖1所示’於凹凸區域12之表面上,形成有蛇行之波狀 凹凸圖案12a。 在用於光擴散片之本實施形態之光學片2 l〇a中,較好的 疋凹凸圖案12a之最頻間距A超過1 μιη且為20 μηι以下,更 好的是超過1 μπι且為1〇 μπι以下。若最頻間距a不足i μιη ’則該最頻間距a為可見光之波長以下,因而可見光不 會因凹凸圖案12a而折射,而是光會透過,若最頻間距a超 過上述上限值,則擴散之異向性會變低,因而具有亮度易 產生不均之傾向。 凹凸圖案12a之凹凸之平均深度b相對於凹凸圖案12&amp;之 最頻間距A之比(B/A,以下稱為縱橫比)較好的是〇1〜3.〇。 若縱橫比不足0 · 1,則有時會無法獲得目標光學特性。另 一方面,若縱橫比大於3.〇,則會具有在製造光學片21〇&amp; 時難以形成凹凸圖案12a之傾向。 此處,所謂平均深度B,係指凹凸圖案12a之底部Ub之 平均深度。 又,底部12b係指凹凸圖案12a之凹部之極小點,平均深 度B係扎冑將凹凸區域12沿短徑方向截斷所得之剖面(參照 圖2)進行觀察肖,自與整個光學片1〇a之面方向平行的基 準線L!至各凸部之頂部為止的長度I、、比...之平均值 (BAV)、與自基準線Li至各凹部之底部為止的長度^^、 b3·.,之平均值(bAv)之差(bAV-BAV)。 作為測定平均深度B之方法,可採用下述方法等:測定 原子間力顯微鏡所拍攝之凹凸圖案12&amp;之剖面之圖像中 1265l0.doc -50- 200912388 的各底部12b之深度’並求出該等之平均值。 如本實施形態所示,所謂凹凸圖案12a沿著一方向之蛇 行’係指以下述方法求得之凹凸圖案之配向度為〇3以 上。該配向度係凹凸圖案之配向不均句之指才票,該值越 大’則表示配向越不均勻。 若上述配向度不足0.3 ’則凹凸圖案12a之配向之不均勻 較小,因此光之擴散性較小。 又,配向度較好的是1 .〇以下。若配向度超過J 〇,則凹 =圖案12a之方向會於某程度變得隨機,因此光擴散性變 高’但異向性具有變低之傾向。 為了使配向度為0.3以上,例如於下述製造中,可適當 選擇加熱收縮性薄膜與凹凸區域形成用凸部。 又,亦可採用下述方法,亦即,使用在一表面上形成有 配向度為0_3以上之凹凸圖案的金屬模具來使透明樹脂成 形。 凹凸區域212之面積相對於光學片21()3之一面之面積的 面積比例取決於目標光擴散性,但較好的是30〜100。/(^若 凹凸區域212之面積比例為3〇%以上,則可發揮充分之光 擴散性。 •光學片之構成材料 &quot;光學片21〇a係由可見光之透過率較高(具體而言,可見 光之全光線透過率為85%以上)之透明樹脂所構成。 、,又,為了使耐熱性、財光性提高,可在不損害透光率等 光學特性之範圍内,於光學片⑽中含有添加劑。作為添 126510.doc -51 - 200912388 加劑’可列舉光穩定劑、紫外線吸收劑、抗氧化劑、潤滑 劑光擴散劑等。其中尤其好的是添加光穩定劑,其添加 量較好的|,相對於透明樹脂⑽f量份為q ㈣量 伤若光穩疋劑之添加量為0.03質量份以上,則可充分發 揮其添加效果,但若光穩定劑之添加量超過2 〇質量份, 則光穩定劑之量過剩,從而具有不必要之成本上涨之傾 向。 又,為了進一步提高光擴散效果,可在不會較大地損害 透光率等光學特性之範圍内,使光學片鳥中含有由無機 化口物構成之無機光擴散劑、由有機化合物構成之有機光 擴散劑。 作為無機光擴散劑,可列舉二氧化矽、白碳、滑石、氧 化鎂、氧化鋅、氧化鈦、碳酸約、氫氧化銘、硫酸铜、矽 酸約、料鎂、賴IS、發酸紹化鈉、料鋅、玻璃、* 母等。 τ 作為有機光擴散劑,可列舉苯乙烯系聚合粒子、丙烯酸 :系聚合粒子、矽氧烷系聚合粒子、聚醯胺系聚合粒子等。 «玄等光擴散劑可分別單獨使用,或者亦可將兩種以上組合 而使用。 ° 為了獲得優異之光散射特性,該等光擴散劑亦可設 為花瓣狀或球晶狀等多孔質構造。 0從難以損害透光性之角度而言,光擴散劑之含量較好的 疋相對於透明樹脂100質量份為1〇質量份以下。 進而’為了進__步提高光擴散效果,可在不會較大地損 126510.doc -52- 200912388 害透光率等光學特性之範圍内,使光學片中含有微細 氣泡。微細氣泡對光之吸收較少,難以使透光率降低。 作為微細氣泡之形成方法,可應用向光學片21〇&amp;中混入 發泡劑之方法(例如,日本專利特開平5_2ΐ28ΐι號公報、日 本專利特開平6-107842號公報中揭示之方法)、對丙烯酸系 發泡樹脂進行發泡處理以使其含有微細氣泡之方法(例 士日本專利特開2004-2812號公報中揭示之方法)等。進 而,^可實現更加均句之面照射而言,微細氣泡之形成方 法較好的是使特定位置不均勻地發泡之方法(例如,日本 專利特開2006_124499號公報中揭示之方法)。 再者,亦可併用上述光擴散劑與微細發泡。 •光學片之厚度 光學片10a之厚度較好的是〇 〇2〜3 〇 mm,更好的是 2·5 mm,尤其好的是0·1〜2.0 mm。若光學片l〇a之厚 度不足0.02 mm,則因其厚度會小於凹凸圖案12&amp;之深度而 不適田右其厚度厚於3.0 mm,則因光學片10a之質量較 大而可能難以操作。 光學片21〇a亦可由兩層以上之樹脂層所構成。即使當光 學片l〇a係由兩層以上之層所構成時,光學片·之厚度 亦較好的是0.02〜3.0 mm。 •使用方法 光擴散片。具體而言,光學片 學片210a之一端α而使用的。於 上述光學片210a被用作 2 1 0a係使光源3 3 〇鄰接於光 光學片21〇a之一端α配置光源33〇,藉此可使光於光學片 126510.doc •53· 200912388 21〇a内傳播。又,使傳播於光學片21〇a内之光在凹凸區域 212擴散,由此可使光自形成有凹凸區域212之一側之面出 射。進而,由於凹凸區域212係藉由隨著自一端&amp;朝向另一 端β而逐漸變密之圖案而配置的,因此可使光之出射量隨 著朝向另一端β而變多。一般而言,於光學片21〇a内傳播 之光之強度隨著遠離光源3 3 0而變弱,但由於光之出射量 隨著朝向另一端β而變多,故可使自光學片21〇a出射之光 之強度均勻。 當使用光學片210a時,為了提高光源33〇之光之利用效 率’較好的是於不具有凹凸區域212之面上設置反射板。 以上所說明之第1實施形態之光學片21〇a中,藉由形成 於凹凸區域21 2表面之凹凸圖案12a而發揮光擴散性。又, 將凹凸區域212以於光學片210a之長度方向之另一端^則變 密之圖案而配置,使得光擴散性於長度方向之另一端^侧 變高。如上所述,由於可藉由凹凸區域212彼此之間隔來 調整光擴散性’因此光學片210a可於所需之位置容易獲得 所需之光擴散性。 •製造方法 以下對製造光學片21 〇a之方法之例進行說明。 (第1製造方法) 第1製造方法係使用加熱收縮性薄膜來製造光學片2i〇a 之方法。 亦即,第1製造方法係具有以下製造步驟來製造成為光 學片210a之凹凸圖案形成片的方法,上述製造步驟指:於 126510.doc •54· 200912388 加熱收縮性薄膜之一面上,印刷表面平滑之樹脂製凹凸區 域形成用凸部以形成印刷片(以下’稱為第1步驟);以及使 加熱收縮性薄膜加熱收縮,以使印刷片之至少凹凸區域形 成用凸部以摺疊之方式而變形(以下,稱為第2步驟)。 •第1步驟 於第1步驟中’如圖14及圖15所示,作為於加熱收縮性 薄膜13之一面上印刷凹凸區域形成用凸部14之方法,例如 可應用絲網印刷、凹板印刷、平版印刷、及噴墨印刷等。 作為加熱收縮性薄膜13,可使用例如聚對苯二曱酸乙二 醋系收縮薄膜、聚苯乙烯系收縮薄膜、聚烯烴系收縮薄 膜、聚氯乙烯系收縮薄膜等。 於加熱收縮性薄膜213之中,尤其好的是收縮5〇〜7〇%之 收縮薄膜。若使用收縮50〜70%之收縮薄膜,則可使變形 率為5〇%以上,從而可容易製造凹凸圖案12a之最頻間距A 超過1 μηι且為20 μηι以下、縱橫比為〇&gt;1以上之凹凸圖案形 成片。 … 此處,變形率係指(變形前之長度-變形後之長度)/(變形 前之長度)xl〇〇(%),或者係指(變形後之長度)/(變形前之 長度)X100(%)。 從容易形成蛇行之波狀凹凸圖案12a之角度而言,凹凸 區域形成用凸部214係由玻璃轉移溫度相較於構成加熱收 縮性薄膜213之樹脂(第1樹脂)高出1〇它以上之樹脂(第2樹 脂)所構成。 作為第2樹脂,可使用例如聚乙烯醇、聚苯乙烯、丙烯 ^26510.doc -55- 200912388 酸系樹脂、苯乙烯·丙烯酸共聚物、苯乙烯-丙稀腈共聚 物、聚對苯二甲酸乙二酯、聚對苯二甲酸丁二醇酯、聚奈 二甲酸乙二醇酯、聚碳酸酯、聚醚砜、氟樹脂等。 從可容易形成所需之凹凸圖案12a之角度而言,凹凸區 域形成用凸部214之表面係指JIS B0601中記載之中心線平 均粗糙度為0.1 μηι以下。 又’凹凸區域形成用凸部214之厚度較好的是0.05〜5.〇 Km’更好的是〇1〜1〇 μη1。若凹凸區域形成用凸部214之 厚度為上述範圍’則能夠可靠地使凹凸圖案12a之最頻間 距A超過1 μιη且為2〇 μιη以下。然而,若凹凸區域形成用 凸°卩2 14之厚度不足0·〇5 μιη,則最頻間距Α有時會成為1 μηι以下’若凹凸區域形成用凸部214之厚度超過$ 〇 , 則最頻間距A有時會超過2〇 。 進而,凹凸區域形成用凸部214之厚度亦可不固定,例 如,其可沿著一方向而連續地變厚,亦可沿著一方向而連 續地變薄。 又’從可更容易形成蛇行之波狀凹凸圖案12&amp;之角度而 言’凹凸區域形成用凸部214之揚氏模量較好的是 〇·01 〜3〇〇GPa ’更好的是 0.1 〜lOGPa。 •第2步驟 於第2步驟中,使加熱收縮性薄膜213 凸區域形成用凸物上,在與收縮方向垂直之方向上: 成波狀之凹凸圖案12a,以獲得凹凸區域212(參照圖16)。 作為使加熱收縮性薄膜213加熱收縮時之加熱方法,可 126510.doc -56- 200912388 列舉於熱風、蒸氣或熱水中通過之方法等,其中,從可使 加熱收縮性薄膜213均勻地收縮之角度而言,尤其好的是 於熱水中通過之方法。 於該製造方法中,若凹凸區域形成用凸部214之厚度越 薄、凹凸區域形成用凸部2 14之楊氏模量越低,則凹凸圖 案12 a之最頻間距A越小’若加熱收縮性薄膜之變形率越 高,則平均深度B越深。 於上述第1製造方法中,在第1樹脂之玻璃轉移溫度與第 2樹脂之玻璃轉移溫度之間的溫度情況下,凹凸區域形成 用凸部214之揚氏模量高於加熱收縮性薄膜213之楊氏模 量。因此’當在第1樹脂之玻璃轉移溫度與第2樹脂之玻璃 轉移溫度之間的溫度進行加工時,凹凸區域形成用凸部 214與其說厚度增加’不如說被摺疊。進而,由於凹凸區 域形成用凸部214積層於加熱收縮性薄膜213上,故加熱收 縮性薄膜213之收縮所產生的應力整體上均勻。因此,使 加熱收縮性薄膜213收縮,使得凹凸區域形成用凸部214以 摺疊之方式而變形,藉此可形成凹凸區域212。因而,根 據上述製造方法,可獲得成為光學片210a之凹凸圖案形成 片。 以上述方式獲得之凹凸圖案形成片可直接用作光學片 l〇a於此情形時,藉由加熱收縮性薄膜2丨3及凹凸區域 形成用凸部214而形成光學片21〇a。 (第2製造方法) 第2製造方法係將由第1製造方法而獲得之凹凸圖案形成 1265l0.doc •57· 200912388 片作為工程片原版來製造光學片21〇a之方法。 工程片原版可為單葉片狀’亦可為連續之片狀即網狀。 作為第2製造方法之具體方法,可列舉例如下述方法 (a)〜(c): 方法(a) 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上’塗佈未硬化之電離放射線硬化性樹脂;以及照射 電離放射線以使上述硬化性樹脂硬化,之後自工程片原版 上剥離已硬化之塗膜。此處,電離放射線通常係指紫外線 或電子射線’而本發明中亦包含可見光線、X射線、離子 射線等。 方法(b) 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上,塗佈未硬化之液狀熱硬化性樹脂;以及加熱而使 上述液狀熱硬化性樹脂硬化,之後自工程片原版上剥離已 硬化之塗膜。 方法(c) 本方法包括以下步驟:使片狀之熱可塑性樹脂接觸到工 程片原版之形成有凹凸圖案之面;將該片狀之熱可塑性樹 脂按壓於工程片原版上’且於此狀態下進行加熱而使其軟 化,其後進行冷卻;以及自卫程片原版上㈣上述已冷卻 之片狀熱可塑性樹脂。 又,亦可使用工程片原版來製作二次工程用成形物,並 使用該二次工程用成形物來製造光學片1〇^作為使用二 126510.doc -58- 200912388 次工程用成形物之具體方法,可列舉下述方法(d)〜⑴: 方法(d) 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上,進行鎳等之金屬電鍍,以積層電鍍層;自工程片 原版上剝離該電鍍層,以製作金屬製之二次工程用成形 物;繼而’於二次工程用成形物之與凹凸圖案相接觸之一 侧之面上’塗佈未硬化之電離放射線硬化性樹脂;以及照 射電離放射線以使上述硬化性樹脂硬化,之後自二次工程 用成形物上剝離已硬化之塗膜。 方法(e) 本方法包括以下步驟:於工程片原版之形成有凹凸圖案 之面上,積層電鐘層,自工程片原版上剝離該電鑛層,以 製作金屬製之二次工程用成形物;於該二次工程用成形物 之與凹凸圖案相接觸之一側之面上,塗佈未硬化之液狀熱 硬化性樹脂;以及加熱而使該樹脂硬化,之後自二次工程 用成形物上剝離已硬化之塗膜。 方法(f) 本方法包括以下步驟.於工程片原版之形成有凹凸圖案 之面上’積層電鑛層,自工程片原版上剝離該電鑛層,以 製作金屬製之二次工程用成形物;使片狀之熱可塑性樹脂 接觸到該二次工程用成形物之與凹凸圖案相接觸之一側之 面;將該片狀之熱可塑性樹脂按壓於二次工程用成形物 上,且於此狀態下進行加熱而使其軟化,其後進行冷卻; 以及自二次工程用成形物上剝離上述已冷卻之片狀熱可塑 126510.doc -59- 200912388 性樹脂。 以下對方法(a)之具體例進行說明。如圖8所示,首先, 於’’周狀之工程片原版11〇之形成有凹凸圖案ii2a之面上, 藉由塗佈機120來塗佈未硬化之液狀電離放射線硬化性樹 月曰112c。繼而,將塗佈有該硬化性樹脂之工程片原版丨ι〇 通過輥130而進行按壓,使上述硬化性樹脂填充於工程片 原版110之凹凸圖案112a内部。其後,藉由電離放射線照 射裝置140而照射電離放射線,使硬化性樹脂交聯.硬化。 繼而,自工程片原版丨丨〇上剝離硬化後之電離放射線硬化 性樹脂,藉此可製造網狀之光學片210a。 於方法(a)中,為了賦予脫模性,在塗佈未硬化之電離放 射線硬化性樹脂之前,亦可於工程片原版之形成有凹凸圖 案之面上設置厚度為nm左右之由聚矽氧樹脂、氟樹 脂專構成之層。 作為於工程片原版之形成有凹凸圖案之面上塗佈未硬化 之電離放射線硬化性樹脂的塗佈機,可列舉τ模塗佈機、 輥塗佈機、刮棒塗佈機等。 作為未硬化之電離放射線硬化性樹脂,可列舉含有選自 以下物質中之一種以上之成分者:環氧丙烯酸酯、環氧化 油丙烯酸酯、丙烯酸胺基甲酸酯、不飽和聚酯、聚酯丙烯 酸酯、聚醚丙烯酸酯、乙烯/丙烯酸酯、多烯/丙烯酸酯、 矽酮丙烯酸酯、聚丁二烯、聚苯乙烯甲基丙烯酸甲酯等之 預聚物、脂肪族丙烯酸酯、脂環式丙烯酸酯、芳香族丙烯 酸酯、含氫氧基之丙烯酸酯、含烯丙基之丙烯酸酯、含縮 126510.doc -60- 200912388 水甘油基之丙烯酸酯、含羧基之丙烯酸酯、含鹵基之丙缔 @文Sg等單體。未硬化之電離放射線硬化性樹脂較好的是以 溶劑等進行稀釋。 又’亦可於未硬化之電離放射線硬化性樹脂中添加氟樹 脂、聚矽氧樹脂等。 當使未硬化之電離放射線硬化性樹脂藉由紫外線而硬化 時,較好的是,於未硬化之電離放射線硬化性樹脂中添加 苯乙酸I類、二苯甲酮類等之光聚合起始劑。 方法(d)具體而言係將方法中之工程片原版變更為使 用§亥工程片原版而製作之二次工程用成形物,除此之外與 上述方法(a)相同。 於方法(b)、(e)中,作為液狀熱硬化性樹脂,可列舉例 如未硬化之二聚氣胺樹脂、聚氨g旨樹脂、環氧樹脂等。 又’方法(b)中之硬化溫度較好的是低於工程片原版之 玻璃轉移溫度。若硬化溫度為工程片原版之玻璃轉移溫度K However, in the method of using the single-blade engineering sheet, the step of forming the concave-convex pattern must be repeated a plurality of times for mass production of the light-diffusing body. When the release property of the ionizing radiation curable resin and the original sheet of the film is low, the concavo-convex pattern is clogged after repeated times, and the transfer of the uneven pattern tends to be incomplete. On the other hand, the method shown in FIG. 8 can form a concave-convex pattern over a large area and continuously because the original sheet of the engineering sheet is in a mesh shape. Therefore, even if the number of times of use of the concave-convex pattern forming sheet is small, The required number of light diffusers can be produced in a short time. 126510.doc -46· 200912388 In the methods (b) and (e), the liquid thermosetting resin may, for example, be an uncured melamine resin, a urethane resin or an epoxy resin. The hardening temperature in the method (b) is preferably lower than the glass transition temperature of the original sheet of the engineering sheet. ^ The hardening temperature is above the glass transition temperature of the original sheet of the engineering sheet, and the concave and convex pattern of the original sheet of the engineering sheet may be shaped when hardened. In the methods (c) and (f), the thermoplastic resin may, for example, be an acrylic resin, a polyolefin or a polyester. The pressure at which the sheet-like thermoplastic resin is pressed against the secondary engineering molded article is preferably 1 to just MPa. If the pressure is pressed! When the pressure is MPa or more, the uneven pattern can be transferred with high precision, and if the pressure at the time of pressing is ι MPa or less, excessive pressurization can be prevented. Further, the heating temperature of the thermoplastic resin in (c) is preferably lower than the glass transition temperature of the original sheet of the engineering sheet. The reason for this is that if the heating temperature is equal to or higher than the glass transition temperature of the original sheet of the original sheet, the concave and convex pattern of the original sheet of the blade may be deformed during heating. The cooling temperature and the subsequent cooling temperature are preferably smaller than the glass transition temperature of the thermoplastic resin from the viewpoint of accurately transferring the concave-convex pattern. In the methods (4) to (4), the heating step may be omitted, and (9) the angle at which the concave-convex pattern of the original sheet is prevented from being deformed is preferably a method (a) of using an ionizing radiation curable resin. The thickness of the material in the methods (d) to (f) is set to 50. The thickness of the shape is 50 Å. It is preferable to form the secondary work for metal into about 50,000 μm. If the secondary work for metal is used for μπι or more, the molded article for secondary engineering has sufficient strength of 126510.doc -47 - 200912388. If the thickness is 500 or less, sufficient resilience can be ensured. In the methods (4) to (f), a metal sheet having a small deformation due to the use of heat is used as a work piece, and thus any of the ionizing radiation curable resin, the thermosetting tree, and the thermoplastic resin can be used. The concave-convex pattern is used to form a sheet material. When the concave-convex pattern forming sheet produced by the methods (4) to (1) is used as a light diffusing body, in order to further enhance the light diffusing effect, the uneven pattern forming sheet may contain a light diffusing agent composed of the above inorganic compound and an organic compound composed of an organic compound. Light diffusing agent or fine bubbles. Further, in the methods (4) to (1), the concave-convex pattern of the original sheet of the engineering sheet is transferred onto a metal to obtain a molded article for secondary engineering, but it may be transferred onto a resin to obtain a molded article for secondary engineering. Examples of the resin which can be used at this time include polyacetic acid, polyacetal, polysulfone, and ionization-releasing resin which is used in the method (4). When the ionizing radiation curable resin is used, the coating of the ionizing radiation curable resin is hardened and peeled off in the same manner as in the method (4), whereby a molded article for secondary engineering is obtained. In the light diffusing body obtained as described above, an adhesive layer may be provided on the surface opposite to the surface on which the uneven pattern is formed. Further, a concave-convex pattern may be further formed on the surface opposite to the surface on which the uneven pattern is formed. In addition, it is also possible to use a protective layer as a protective layer without peeling off the embossed or embossed molded article used as the original of the engineering sheet, and the detachment is used before the use of the light diffuser. Floor. 126510.doc -48 - 200912388, the unevenness of the above-mentioned unevenness is formed. The uneven pattern of the uneven pattern forming sheet 10 on the light-diffusing body produced by the above-described manufacturing method is formed, and therefore the uniformity of the uniform diffusion is excellent. In the light diffusing body, other layers may be provided on one or both sides of the uneven pattern forming sheet. For example, in the surface of the concave-convex pattern forming sheet on which one side of the concave-convex pattern is formed, in order to prevent the escape from being disturbed, it is also possible to have a thickness containing fluororesin or poly-stone resin as a main component. (10) The anti-sweat layer on the left and right. Further, a support made of a transparent resin or a glass may be provided on the side of the light diffuser on the side where the uneven pattern is not formed. 5. Optical sheet 5-1 • First embodiment Hereinafter, a first embodiment of the optical sheet of the present invention will be described. Fig. 13 shows an optical sheet of this embodiment. Further, in Fig. 13, for the sake of convenience of explanation, the uneven portion 212 is enlarged, and its arrangement is displayed in a scattered manner. The optical sheet 21A of the present embodiment is used as a light diffusing sheet in which the light source 330 is disposed on one end 〇1 in the longitudinal direction, and is attached to the flat surface u, and is dispersed in a dot shape by the following pattern. The concave-convex region 212' having an elliptical shape is a pattern which gradually becomes denser as the one end α from the longitudinal direction of the optical sheet 210a faces the other end β. In the present invention, the term “flat” means that the center line average roughness described in JIS Β0601 is equal to or less than i.i μηη. Further, the uneven portion means that the center line average roughness described in JIS Β0601 exceeds 0.1 μm, especially 0.5 μm or more. • Concave-convex region The concavo-convex region 12 has a concavo-convex pattern. In the present embodiment, 126510.doc •49-200912388 is shown in Fig. 1. On the surface of the uneven portion 12, a meandering corrugated pattern 12a is formed. In the optical sheet 2 l〇a of the present embodiment used for the light-diffusing sheet, the optimum pitch A of the 疋 concave-convex pattern 12a is more than 1 μm and is 20 μη or less, more preferably more than 1 μm and is 1 〇μπι below. If the most frequent spacing a is less than i μιη ', the most frequent spacing a is less than or equal to the wavelength of visible light, so that visible light is not refracted by the concave-convex pattern 12a, but light is transmitted. If the most frequent spacing a exceeds the upper limit, The anisotropy of diffusion becomes low, and thus there is a tendency that brightness tends to be uneven. The ratio (B/A, hereinafter referred to as the aspect ratio) of the average depth b of the unevenness of the uneven pattern 12a to the most frequent pitch A of the concave-convex pattern 12&amp; is preferably 〇1 to 3. If the aspect ratio is less than 0 · 1, the target optical characteristics may not be obtained. On the other hand, when the aspect ratio is more than 3. 〇, there is a tendency that it is difficult to form the uneven pattern 12a at the time of manufacturing the optical sheets 21 〇 &amp; Here, the average depth B refers to the average depth of the bottom Ub of the concave-convex pattern 12a. Further, the bottom portion 12b refers to a very small point of the concave portion of the concave-convex pattern 12a, and the average depth B is a cross section obtained by cutting the uneven portion 12 in the short-diameter direction (see Fig. 2) for observation, from the entire optical sheet 1a The length I of the reference line L! parallel to the surface direction to the top of each convex portion, the average value (BAV) of the ratio, and the length from the reference line Li to the bottom of each concave portion ^^, b3· The difference between the average values (bAv) (bAV-BAV). As a method of measuring the average depth B, a method of measuring the depth of each bottom portion 12b of 1265l0.doc-50-200912388 in the image of the cross-sectional pattern of the concave-convex pattern 12& The average of these. As described in the present embodiment, the meandering pattern of the concavo-convex pattern 12a in one direction means that the degree of alignment of the concavo-convex pattern obtained by the following method is 〇3 or more. The alignment degree is a pointing ticket of the alignment unevenness pattern, and the larger the value is, the more uneven the alignment is. If the degree of alignment is less than 0.3 Å, the unevenness of the alignment of the concavo-convex pattern 12a is small, and therefore the diffusibility of light is small. Further, the degree of alignment is preferably 1. 〇 or less. If the degree of alignment exceeds J 〇, the direction of the concave = pattern 12a becomes random to some extent, so that the light diffusibility becomes high, but the anisotropy tends to be low. In order to achieve an alignment degree of 0.3 or more, for example, in the following production, the heat shrinkable film and the uneven portion forming convex portion can be appropriately selected. Further, a method of forming a transparent resin by using a metal mold having a concave-convex pattern having an orientation of 0 or more on one surface may be employed. The area ratio of the area of the uneven portion 212 to the area of one surface of the optical sheet 21 () 3 depends on the target light diffusibility, but is preferably 30 to 100. /(^) If the area ratio of the uneven region 212 is 3% or more, sufficient light diffusibility can be exhibited. • The optical sheet constituent material &quot; Optical sheet 21〇a has a high transmittance by visible light (specifically A transparent resin having a total light transmittance of 85% or more in visible light. Further, in order to improve heat resistance and richness, the optical sheet (10) can be formed without impairing optical characteristics such as light transmittance. It contains additives. As an additive 126510.doc -51 - 200912388, it can be listed as a light stabilizer, an ultraviolet absorber, an antioxidant, a lubricant light diffusing agent, etc. Among them, it is particularly preferable to add a light stabilizer, and the addition amount thereof is relatively high. In the case of the transparent resin (10), the amount of the light stabilizer is 0.03 parts by mass or more, and the addition effect is sufficient, but if the amount of the light stabilizer exceeds 2 〇, the amount of the light stabilizer is more than 2 〇. In this case, the amount of the light stabilizer is excessive, which tends to increase the unnecessary cost. Further, in order to further improve the light diffusion effect, the optical property can be made not to greatly impair the optical characteristics such as the light transmittance. The bird contains an inorganic light diffusing agent composed of an inorganic material and an organic light diffusing agent composed of an organic compound. Examples of the inorganic light diffusing agent include cerium oxide, white carbon, talc, magnesium oxide, zinc oxide, and titanium oxide. , carbonic acid, hydrogen hydroxide, copper sulfate, tannic acid, magnesium, Lai IS, acid sodium, zinc, glass, * mother, etc. τ as an organic light diffusing agent, exemplified by styrenic polymer particles, Acrylic acid: a polymerized particle, a siloxane polymerized particle, a polyamidated polymer particle, etc. «The light diffusing agent may be used singly or in combination of two or more. ° For excellent light scattering The light diffusing agent may be a porous structure such as a petal shape or a spherical crystal. 0 From the viewpoint of impairing light transmittance, the content of the light diffusing agent is preferably 100 parts by mass relative to the transparent resin. It is 1 part by mass or less. Further, in order to improve the light diffusion effect, the optical sheet may be finely contained within a range of optical properties such as light transmittance of 126510.doc -52-200912388.The fine bubbles absorb less light, and it is difficult to reduce the light transmittance. As a method of forming fine bubbles, a method of mixing a foaming agent into the optical sheet 21 can be applied (for example, Japanese Patent Laid-Open No. 5-2ΐ28ΐι The method disclosed in Japanese Laid-Open Patent Publication No. Hei No. Hei. No. Hei. No. Hei. In addition, in order to achieve a more uniform surface irradiation, the method of forming the fine bubbles is preferably a method of uniformly foaming a specific position (for example, disclosed in Japanese Laid-Open Patent Publication No. 2006-124499) method). Further, the above light diffusing agent may be used in combination with fine foaming. • Thickness of the optical sheet The thickness of the optical sheet 10a is preferably 〇 2 to 3 〇 mm, more preferably 2·5 mm, and particularly preferably 0·1 to 2.0 mm. If the thickness of the optical sheet 10a is less than 0.02 mm, since the thickness thereof is smaller than the depth of the concave-convex pattern 12&amp; and the thickness of the optical sheet 10's is less than 3.0 mm, the optical sheet 10a may be difficult to handle because of its large mass. The optical sheet 21A may also be composed of two or more resin layers. Even when the optical sheet 10a is composed of two or more layers, the thickness of the optical sheet is preferably 0.02 to 3.0 mm. • How to use Light diffuser. Specifically, the optical sheet 210a is used at one end α. The optical sheet 210a is used as the 2 1 0a system so that the light source 3 3 〇 is disposed adjacent to one end 31 of the optical optical sheet 21A, and the light source 33 is disposed, whereby the light can be applied to the optical sheet 126510.doc •53·200912388 21〇 Propagation within a. Further, the light propagating in the optical sheet 21a is diffused in the uneven portion 212, whereby light can be emitted from the surface on which one side of the uneven portion 212 is formed. Further, since the uneven region 212 is disposed by being gradually densified from the one end & toward the other end β, the amount of light emitted can be increased toward the other end β. In general, the intensity of light propagating in the optical sheet 21〇a becomes weaker as it goes away from the light source 310, but since the amount of light emitted increases toward the other end β, it can be made from the optical sheet 21. The intensity of the light emitted by 〇a is uniform. When the optical sheet 210a is used, it is preferable to provide a reflecting plate on the surface having no uneven portion 212 in order to increase the utilization efficiency of the light of the light source 33. In the optical sheet 21a of the first embodiment described above, the light diffusing property is exhibited by the uneven pattern 12a formed on the surface of the uneven portion 21 2 . Further, the uneven region 212 is disposed in a pattern in which the other end of the optical sheet 210a is elongated, so that the light diffusibility becomes higher on the other end side in the longitudinal direction. As described above, since the light diffusibility can be adjusted by the unevenness of the uneven regions 212, the optical sheet 210a can easily obtain the desired light diffusibility at a desired position. • Manufacturing Method An example of a method of manufacturing the optical sheet 21 〇a will be described below. (First Manufacturing Method) The first manufacturing method is a method of producing an optical sheet 2i〇a using a heat shrinkable film. That is, the first manufacturing method has the following manufacturing steps for producing a concave-convex pattern forming sheet of the optical sheet 210a, and the manufacturing step refers to: 126510.doc •54·200912388 one side of the heat shrinkable film, the printing surface is smooth The resin-made uneven portion forming convex portion is formed to form a printed sheet (hereinafter referred to as "first step"), and the heat shrinkable film is heated and shrunk so that at least the concave-convex region forming convex portion of the printed sheet is deformed by folding (Hereinafter, it is called the 2nd step). In the first step, as shown in FIG. 14 and FIG. 15 , as a method of printing the uneven portion 14 on one surface of the heat shrinkable film 13 , for example, screen printing or gravure printing can be applied. , lithography, inkjet printing, etc. As the heat shrinkable film 13, for example, a polyethylene terephthalate-based shrink film, a polystyrene-based shrink film, a polyolefin-based shrink film, a polyvinyl chloride-based shrink film, or the like can be used. Among the heat shrinkable films 213, it is particularly preferable to shrink the shrink film of 5 〇 to 7 〇%. When a shrink film having a shrinkage of 50 to 70% is used, the deformation ratio can be made 5 % by or more, and the optimum pitch A of the uneven pattern 12 a can be easily made to be more than 1 μηι and 20 μηι or less, and the aspect ratio is 〇 > 1 The above concavo-convex pattern forms a sheet. Here, the deformation rate means (length before deformation - length after deformation) / (length before deformation) xl 〇〇 (%), or means (length after deformation) / (length before deformation) X100 (%). The uneven portion forming convex portion 214 has a glass transition temperature higher than that of the resin (first resin) constituting the heat shrinkable film 213 by more than one 角度 from the viewpoint of easily forming the meandering corrugated pattern 12a. The resin (second resin) is composed of. As the second resin, for example, polyvinyl alcohol, polystyrene, propylene ^26510.doc -55-200912388 acid resin, styrene-acrylic acid copolymer, styrene-acrylonitrile copolymer, polyterephthalic acid can be used. Ethylene glycol ester, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyether sulfone, fluororesin, and the like. The surface of the uneven portion forming convex portion 214 refers to a center line average roughness of 0.1 μm or less as described in JIS B0601, from the viewpoint of easily forming the desired uneven pattern 12a. Further, the thickness of the uneven portion forming convex portion 214 is preferably 0.05 to 5. 〇 Km' is more preferably 〇1 to 1 〇 μη1. When the thickness of the uneven portion forming convex portion 214 is in the above range, the most frequent pitch A of the uneven pattern 12a can be reliably more than 1 μm and not more than 2 μm. However, if the thickness of the uneven portion forming convex portion 142 14 is less than 0·〇5 μm, the most frequent pitch Α may be 1 μηι or less. If the thickness of the uneven portion forming convex portion 214 exceeds $ 〇, the most The frequency spacing A sometimes exceeds 2 〇. Further, the thickness of the uneven portion forming convex portion 214 may not be fixed. For example, it may be continuously thickened in one direction or continuously thinned in one direction. Further, from the viewpoint of the corrugated concave-convex pattern 12 &amp; which is more likely to form a serpentine, the Young's modulus of the concave-convex region forming convex portion 214 is preferably 〇·01 〜3〇〇GPa', and more preferably 0.1. ~ lOGPa. In the second step, the heat-shrinkable film 213 is formed on the convex region forming projection, and the wave-shaped concave-convex pattern 12a is formed in a direction perpendicular to the contraction direction to obtain the uneven portion 212 (refer to FIG. 16). ). As a heating method for heating and shrinking the heat shrinkable film 213, 126510.doc-56-200912388 can be exemplified by a method of passing through hot air, steam or hot water, etc., wherein the heat shrinkable film 213 can be uniformly shrunk. In terms of angle, it is especially good to pass the method in hot water. In the manufacturing method, the thinner the thickness of the uneven portion forming convex portion 214 and the lower the Young's modulus of the concave-convex region forming convex portion 214, the smaller the minimum frequency spacing A of the concave-convex pattern 12a is. The higher the deformation rate of the shrinkable film, the deeper the average depth B. In the first manufacturing method, in the case of the temperature between the glass transition temperature of the first resin and the glass transition temperature of the second resin, the Young's modulus of the uneven portion forming convex portion 214 is higher than that of the heat shrinkable film 213. Young's modulus. Therefore, when the temperature between the glass transition temperature of the first resin and the glass transition temperature of the second resin is processed, the uneven portion forming convex portion 214 is folded as compared with the thickness increase ‘. Further, since the uneven portion forming convex portion 214 is laminated on the heat shrinkable film 213, the stress generated by shrinkage of the heat shrinkable film 213 is uniform as a whole. Therefore, the heat shrinkable film 213 is shrunk, so that the uneven portion forming convex portion 214 is deformed in a folded manner, whereby the uneven portion 212 can be formed. Therefore, according to the above manufacturing method, the uneven pattern forming sheet which becomes the optical sheet 210a can be obtained. The uneven pattern forming sheet obtained in the above manner can be directly used as the optical sheet. In this case, the optical sheet 21〇a is formed by heating the shrinkable film 2丨3 and the uneven portion forming convex portion 214. (Second Manufacturing Method) The second manufacturing method is a method in which the concave-convex pattern obtained by the first manufacturing method is used to form the optical sheet 21〇a as the original sheet of the engineering sheet. The original sheet may be in the form of a single blade or may be a continuous sheet or mesh. Specific examples of the second production method include the following methods (a) to (c): Method (a) The method includes the steps of: coating unhardened on the surface of the original sheet on which the concave-convex pattern is formed The ionizing radiation curable resin; and irradiating the ionizing radiation to cure the curable resin, and then peeling off the cured coating film from the original sheet. Here, the ionizing radiation generally means ultraviolet rays or electron rays', and the present invention also includes visible light rays, X-rays, ion rays, and the like. Method (b) The method includes the steps of: applying an unhardened liquid thermosetting resin on a surface on which the concave-convex pattern is formed on the original sheet of the engineering sheet; and heating to cure the liquid thermosetting resin, and then self-curing The hardened coating film is peeled off from the original of the engineering sheet. Method (c) The method comprises the steps of: contacting a sheet-like thermoplastic resin to a surface of the original sheet of the engineering sheet on which the concave-convex pattern is formed; pressing the sheet-shaped thermoplastic resin on the original sheet of the engineering sheet' and in this state Heating is performed to soften it, followed by cooling; and on the self-defense sheet original (4) the above-mentioned cooled sheet-shaped thermoplastic resin. Further, it is also possible to produce a molded article for secondary engineering using the original sheet of the engineering sheet, and to manufacture the optical sheet 1 using the molded article for secondary engineering as a specific use of the molded article of 126510.doc -58-200912388 The method includes the following methods (d) to (1): Method (d) The method includes the steps of: performing metal plating of nickel or the like on the surface on which the concave-convex pattern is formed on the original sheet of the engineering sheet to laminate the plating layer; The electroplated layer is peeled off from the original sheet to prepare a metal-made secondary engineering molded product; and then 'unhardened ionizing radiation hardening is applied on the side of the second engineering molded article in contact with the concave-convex pattern. The resin is irradiated with ionizing radiation to cure the curable resin, and then the cured coating film is peeled off from the secondary engineering molded article. Method (e) The method comprises the steps of: laminating an electric clock layer on a surface on which a concave-convex pattern is formed on an original sheet of an engineering sheet, and peeling off the electric ore layer from the original sheet of the engineering sheet to prepare a metal-made secondary engineering forming product Applying an unhardened liquid thermosetting resin to the surface on the side in contact with the concavo-convex pattern of the secondary engineering molded article; and curing the resin by heating, and then molding the secondary engineering product The hardened coating film is peeled off. Method (f) The method comprises the steps of: forming a layer of electro-mineral layer on the surface of the original sheet on which the concave-convex pattern is formed, and stripping the electro-mineral layer from the original sheet of the engineering sheet to prepare a second-time engineering molded article made of metal The sheet-shaped thermoplastic resin is brought into contact with the surface of the secondary engineering molded article in contact with the concave-convex pattern; and the sheet-shaped thermoplastic resin is pressed against the secondary engineering molded article, and The film was softened by heating in the state, and then cooled; and the cooled sheet-like thermoplastic 126510.doc-59-200912388 resin was peeled off from the secondary engineering molded article. Specific examples of the method (a) will be described below. As shown in Fig. 8, first, the unhardened liquid ionizing radiation curable tree raft is applied to the surface of the ''circular shape of the original sheet 11' on which the uneven pattern ii2a is formed by the coater 120. 112c. Then, the engineering sheet precursor 涂布ι〇 coated with the curable resin is pressed by the roll 130, and the curable resin is filled in the concave-convex pattern 112a of the original sheet 110. Thereafter, the ionizing radiation is irradiated by the ionizing radiation irradiating device 140 to crosslink and harden the curable resin. Then, the hardened ionizing radiation curable resin is peeled off from the original sheet of the engineering sheet, whereby the optical sheet 210a of the mesh shape can be produced. In the method (a), in order to impart releasability, before the application of the uncured ionizing radiation curable resin, a polycrystalline yttrium having a thickness of about nm may be provided on the surface of the original sheet on which the uneven pattern is formed. A layer composed of a resin and a fluororesin. As a coater for applying an uncured ionizing radiation curable resin to the surface on which the concave-convex pattern is formed on the original sheet of the engineering sheet, a τ-die coater, a roll coater, a bar coater, or the like can be given. Examples of the uncured ionizing radiation curable resin include one or more selected from the group consisting of epoxy acrylate, epoxidized oil acrylate, urethane acrylate, unsaturated polyester, and polyester. Prepolymers of acrylate, polyether acrylate, ethylene/acrylate, polyene/acrylate, fluorenone acrylate, polybutadiene, polystyrene methyl methacrylate, etc., aliphatic acrylate, alicyclic Acrylate, aromatic acrylate, hydroxy-containing acrylate, allyl-containing acrylate, condensate 126510.doc -60- 200912388 glyceryl acrylate, carboxyl group-containing acrylate, halogen-containing group C, such as @文Sg and other monomers. The uncured ionizing radiation curable resin is preferably diluted with a solvent or the like. Further, a fluororesin, a polyoxymethylene resin or the like may be added to the uncured ionizing radiation curable resin. When the uncured ionizing radiation curable resin is cured by ultraviolet rays, it is preferred to add a photopolymerization initiator such as phenylacetic acid I or benzophenone to the uncured ionizing radiation curable resin. . The method (d) is specifically the same as the above method (a) except that the original sheet of the method in the method is changed to a molded article for secondary engineering produced by using the original sheet of the sigma sheet. In the methods (b) and (e), examples of the liquid thermosetting resin include, for example, an unhardened dimeric gas amine resin, a polyurethane resin, and an epoxy resin. Further, the hardening temperature in the method (b) is preferably lower than the glass transition temperature of the original sheet of the engineering sheet. If the hardening temperature is the glass transition temperature of the original sheet of the engineering sheet

以上,則在硬化時工程片原版之凹凸圖案可能會產生變 形。 作為方法(c)、(f)中之透明熱可塑性樹脂,可列舉例如 苯乙烯-甲基丙烯酸甲酯共聚物(MS)、聚甲基丙烯酸甲酯 (PMMA)、聚苯乙烯(PS)、環烯聚合物(c〇p)、聚碳酸酯 (PC)、聚丙烯(PP)、聚對苯二甲酸乙二酯(pE丁)、、 聚醚颯(PES)、聚氯乙烯(PVC)、聚對苯二甲酸乙二酯 (PET)等樹脂等。於該等之中,從成形加工之觀點而言, 從吸濕性及成 尤其好的是 MS、PMMA、PS、COP、pc 126510.doc -61 - 200912388 本之觀點而言’更好的是MS中之苯乙烯含有率為30〜90質 量%者。 该等透明熱可塑性樹脂可設為單層或多層構造。例如, 可使用於PS層之兩面上設置有pmma層之三層構造之透明 熱可塑性樹脂等。 進而’亦可使用於上述透明熱可塑性樹脂之表面上設置 有间折射率之樹脂者。作為高折射率之樹脂,可列舉例如 苟系環氧化合物、芴系丙烯酸酯化合物、芴系聚酯 (〇KP)、聚甲基苯基石夕院(PMPS)、聚二苯基石夕烧(PDPS) 等。 於方法(c)中將片狀之熱可塑性樹脂按壓於工程片原版時 之壓力、及於方法⑴中將片狀之熱可塑性樹脂按壓於二次 工程用成形物時之壓力較好的是hiOO MPa。若按壓時之 壓力為1 MPa以上,則可使凹凸圖案高精度地轉印,若按 壓時之壓力為100 MPa以下,則可防止過剩之加壓。 又,方法(c)中之熱可塑性樹脂之加熱溫度較好的是低於 工程片原版之玻璃轉移溫度。其原因在於,若加熱溫度為 工程片原版之玻璃轉移溫度以上,則在加熱時工程片原版 之凹凸圖案可能會產生變形。 從可使凹凸圖案高精度地轉印之角度而言,作為加熱後 之冷卻溫度,較好的是小於熱可塑性樹脂之破螭轉移溫 度。 ’皿 (第3製造方法) 第3製造方法係將於樹脂製的層之表面上設置有金屬製 1265l0.doc -62- 200912388 或金屬化合物製之凹凸區域的凹凸圖案形成片作為工程片 原版來製造光學片21 〇3之方法。 設置有金屬製或金屬化合物製之凹凸區域之凹凸圖案形 成片可藉由以下方法而獲得:將樹脂製之凹凸區域形成用 凸部替換為金屬製或金屬化合物製之凹凸區域形成用凸 部’藉由蒸鍍來取代印刷而形成凹凸區域形成用凸部,除 此之外,以與第1製造方法相同之方法而獲得。 亦即,設置有金屬製或金屬化合物製之凹凸區域的凹凸 圖案形成片之製造方法包括以下步驟:於加熱收縮性薄膜 之一面上真空蒸鍍金屬製或金屬化合物製之凹凸區域形成 用凸部,以形成蒸鍍片;以及使加熱收縮性薄膜加熱收 縮,使得蒸鍍片之至少凹凸區域形成用凸部以摺疊之方式 而變形。 於該凹凸圖案形成片之製造方法中,金屬製或金屬化合 :製之凹凸區域形成用凸部之揚氏模量遠大於加熱收縮性 1膜之揚氏模量’因此熱壓縮時,凹凸區域形成用凸部與 其說厚度增加,不如却姑掏甚 ^ w 說被摺疊。其結果可獲得設置有凹凸 h域之凹凸圖牵 區域與光學片2;成片。再者,該凹凸圖案形成片之凹凸 、尤學片2l0a之凹凸區域相同。 作為第3製造大·、、+ &amp; 屬,從可更容易/之構成凹凸區域形成用凸部之金 更谷易形成凹凸圖案12a之 , 選自由金、鋁 月度而s’較好的疋 始、石夕、:銀、峻、銅、鍺、銦、鎂、銳、纪、錯、 屬。此處所t之全届 、’&lt; 之群中之至少-種金 吓=之金屬亦包含半金屬。 I26510.doc -63 - 200912388 作為金屬化合物,因同樣之理由,故較好的是選自由氧 化鈦、氧化鋁、氧化鋅、氧化鎂、氧化錫、氧化銅、氧化 鋼、氧化錦、氧化錯、#、Μ _ 鎂硫化辞、砷化鎵所組成之群中之至少一種金屬化合 物。 從可容易形成所需之凹凸圖案12a之角度而言,凹凸區 域形成用凸部之表面係指JIS B0601中記載之中心線平均 粗糙度為〇_1 μηι以下。 金屬製或金屬化合物製的凹凸區域形成用凸部之厚度較 好的是〇·01〜〇.2_ ’更好的是。.05〜〇‘1 μπ-若凹凸:域 形成用η凸部之厚度為上述範圍’則能夠可靠地使凹凸圖案 12a之最頻間距a超過丄轉且為2〇 _以下。然而,若凹凸 成用凸部之厚度不足⑽陣,則最頻間距A 成為1 μηι以下,若超過0.2 筲 20_。 料頻間距Α有時會超過 進二凹凸區域形成用凸部之厚度亦可不固定,例如, 八可冶著一方向而連續地變厚, 變薄。 者—方向而連續地 當於加熱收縮性薄膜上蒸鍍金屬或 區域形成用凸部時,於加熱收縮性薄膜口物製之凹凸 由與欲形成之凹凸區域形成用凸部、面上’载置藉 罩。 圖案而開口之遮 作為使加熱收縮性薄膜加熱收縮 ]^加古〇J. 於熱風、蒸氣或熱水中通過之方法 ,、、、万去,可列舉 其中’從可使加熱 126510.doc • 64 - 200912388 收縮性薄膜均勻地收縮之角度而言,尤其好的是於熱水中 通過之方法。 作為第3製造方法,具體而言可列舉下述方法:於第2製 造方法中之方法(a)〜(f)中,使用設置有金屬製或金屬化合 物製之凹凸區域的凹凸圖案形成片作為工程片原版,以取 代6又置有第2樹脂製之凹凸區域的凹凸圖案形成片。 (第4製造方法) 第4製造方法係使用成形裝置,由未成形之透明熱可塑 性樹脂來製造光學片10a之方法,上述成形裝置具備金屬 模具、對該金屬模具進行加熱冷卻之加熱冷卻機構、以及 對該金屬模具進行加壓之加壓機構。作為第4製造方法中 使用之透明熱可塑性樹脂,可列舉與第2製造方法中所使 用之透明熱可塑性樹脂相同者。 具體而言’於第4製造方法中,首先,將透明熱可塑性 樹脂之顆粒或粉體填充於金屬模具内,藉由加熱冷卻機構 對金屬模具進行加熱,並且藉由加壓機構對金屬模具内進 行加壓。其次,藉由加熱冷卻機構對金屬模具内進行冷 卻’並停止加壓,以獲得光學片2 1 〇 a。 於該製造方法中,使用在與光學片210a之出射面相接觸 之面上形成有蛇行之波狀凹凸圖案者作為金屬模具。例 如作為金屬板具’可使用在一面上安裝有第1〜第3製造 方法中之凹凸圖案形成片者、藉由雷射照射等而於一面上 形成有蛇行之波狀凹凸圖案者。 作為第4製造方法中之成形方法,可應用例如壓製成形 126510.doc -65- 200912388 法、射出成形法。 藉由上述第1〜第4製造方法而獲得之光學片21〇a可直接 使用’亦可經由接著劑而貼合於透明樹脂製或玻璃製的增 強用基板上而形成最終之光學片。 於以上所說明之光學片210a之製造方法中,容易於平坦 之面上,以於光學片210a之長度方向之另一端β側變密 之圖案而配置凹凸區域212。因此,可容易獲得於長度方 向之另一端β侧光擴散性較高之光學片21 〇a。 5 - 2 ·第2實施形態 以下對本發明之光學片之第2實施形態進行說明。 圖17表示本實施形態之光學片。再者,於圖丨了中,為了 易於說明’將凹凸區域215放大,且將其配置零散顯示。 本實施形態之光學片210b係用作於長度方向之一端〇1上 配置有光源330之光擴散片者,且係於平坦之一面211上, 藉由以下圖案而分散配置有沿著光學片2丨〇b之寬度方向所 形成的帶狀之凹凸區域215,亦即,隨著自光學片21〇b之 長度方向之一端α朝向另一端β而逐漸變密之圖案。 以上述方式配置凹凸區域21 5後,可與第丨實施形態之光 學片210a同樣地在光學片21〇b之另一端ρ側提高光擴散 性。 第2實施形態之凹凸區域215之凹凸圖案係與第丨實施形 遽之凹凸區域212之凹凸圖案12a相同。凹凸區域215之面 積相對於光學片210b之一面之面積的面積比例亦與第1實 施形態中之面積比例相同。 126510.doc •66· 200912388 第2實施形態之光學片21 〇b可藉由與第!實施形態之光學 片2l〇a之製造方法相同的製造方法而製造。 5-3.第3實施形態 以下對本發明之光學片之第3實施形態進行說明。 圖18表示本實施形態之光學片。再者,於圖丨8中,為了 易於说明,將凹凸區域216放大,且將其配置零散顯示。 本實施形態之光學片210c係用作於長度方向之一端〇1上 配置光源330之光擴散片者,且係於平坦之一面211上,分 散配置有由光學片21〇c的沿著長度方向之帶狀部分2丨6a及 沿著寬度方向之帶狀部分16b所構成之網狀凹凸區域216。 凹凸區域216的沿著光學片210c之寬度方向之部分2161)配 置為’隨著自光學片210c之長度方向之一端α朝向另一端β 而逐漸變密。 第3實施形態之凹凸區域216之凹凸圖案係與第1實施形 態之凹凸區域212之凹凸圖案12a相同。凹凸區域216之面 積相對於光學片210c之一面之面積的面積比例亦與第1實 施形態中之面積比例相同。 第3實施形態之光學片210c可藉由與第1實施形態之光學 片210a之製造方法相同的製造方法而製造。 5-4.第4實施形態 以下對本發明之光學片之第4實施形態進行說明。 圖19表示本實施形態之光學片。再者,於圖19中,為了 易於說明,將凹凸區域21 7放大’且將其配置零散顯示。 本實施形態之光學片210d係用作於未形成有凹凸區域 126510.doc -67- 200912388 217之一側之面C上配置有線狀之光源330的光擴散片者。 又’該光學片210d中,於平坦之一面211上分散配置有橢 圓形狀之凹凸區域217 ’該凹凸區域217越靠近光源330則 越密。 於本實施形態中,來自光源330之光不均勻地入射至光 學片210d,但由於越強的光所到達之部分,凹凸區域217 之配置會越密,故可使光在擴散之狀態下出射。因此,可 使自光學片2 1 0d出射之光之強度均勻化。 第4實施开》悲之凹凸區域2 1 7之凹凸圖案係與第1實施形 態之凹凸區域212之凹凸圖案12a相同。凹凸區域217之面 積相對於光學片210d之一面之面積的面積比例亦與第j實 施形態中之面積比例相同。 第4實施形態之光學片21 〇d可藉由與第1實施形態之光學 片2l〇a之製造方法相同的製造方法而製造。 5-5.其他實施形態 %』 再者’本發明之光學片並未限定於上述實施形態。 例如,於上述第1實施形態、第4實施形態中,凹凸區域 之外形為橢圓形,但亦可為圓形、矩形等。 又,於本發明之朵昼Η 士 子片中,凹凸區域亦可隨機地形成。 又,凹凸區域之凹凸圖案亦可不呈蛇行,而呈直線形。 又,凹凸區域亦可形成於光學片之兩面上。 又’光學片亦可藉由增強用基材而增強。 6.擴散導光體 汽犯市悲進行說 126510.doc -68· 200912388 圖1表示本實施形態之擴散導光體。本實施形態之擴散 導光體10係由在其中之一面上形成有蛇行之波狀凹凸圖案 12a的透明樹脂層11所構成。本實施形態中之透明樹脂層 Π之另一面(背面)係並未形成有凹凸圖案的平滑之面。 凹凸圖案12a之最頻間距A超過1 μιη且為2〇 厂 好的是超過1 μηι且為10 μιη以下。若最頻間距 μηι,則該最頻間距A為可見光之波長以下,因而可見光不 會因凹凸而折射,而是光會透過,若最頻間距A超過Above, the concave-convex pattern of the original sheet of the engineering sheet may be deformed at the time of hardening. Examples of the transparent thermoplastic resin in the methods (c) and (f) include styrene-methyl methacrylate copolymer (MS), polymethyl methacrylate (PMMA), and polystyrene (PS). Cycloolefin polymer (c〇p), polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (pE), polyether oxime (PES), polyvinyl chloride (PVC) , resin such as polyethylene terephthalate (PET). Among these, from the viewpoint of forming processing, from the viewpoint of hygroscopicity and particularly good, MS, PMMA, PS, COP, pc 126510.doc -61 - 200912388, 'better is The styrene content in the MS is from 30 to 90% by mass. These transparent thermoplastic resins can be configured in a single layer or a multilayer structure. For example, a transparent thermoplastic resin or the like having a three-layer structure in which a pmma layer is provided on both sides of the PS layer can be used. Further, it is also possible to use a resin having a refractive index on the surface of the above transparent thermoplastic resin. Examples of the resin having a high refractive index include a fluorene-based epoxy compound, a fluorene-based acrylate compound, a fluorene-based polyester (〇KP), a polymethylphenyl stone hospital (PMPS), and a polydiphenyl stone smelting (PDPS). ) Wait. In the method (c), the pressure at which the sheet-like thermoplastic resin is pressed against the original sheet of the engineering sheet, and the pressure at which the sheet-shaped thermoplastic resin is pressed against the second-process molded article in the method (1) is preferably hiOO. MPa. When the pressure at the time of pressing is 1 MPa or more, the uneven pattern can be transferred with high precision, and if the pressure at the time of pressing is 100 MPa or less, excessive pressurization can be prevented. Further, the heating temperature of the thermoplastic resin in the method (c) is preferably lower than the glass transition temperature of the original sheet of the engineering sheet. The reason for this is that if the heating temperature is equal to or higher than the glass transition temperature of the original sheet of the original sheet, the concave-convex pattern of the original sheet of the engineering sheet may be deformed upon heating. From the viewpoint of allowing the uneven pattern to be transferred with high precision, the cooling temperature after heating is preferably smaller than the breakage temperature of the thermoplastic resin. 'Dish (third manufacturing method) The third manufacturing method is to provide a concave-convex pattern forming sheet made of metal 1265l0.doc-62-200912388 or a metal compound concave-convex region on the surface of the resin layer as the original sheet of the engineering sheet. A method of manufacturing the optical sheet 21 〇3. The uneven pattern forming sheet provided with the uneven portion made of a metal or a metal compound can be obtained by replacing the convex portion for forming a concave-convex region made of a resin with a convex portion for forming a concave-convex region made of a metal or a metal compound. The concave-convex region forming convex portion was formed by vapor deposition instead of printing, and was obtained in the same manner as in the first production method. In other words, the method for producing a concave-convex pattern forming sheet provided with a concave-convex region made of a metal or a metal compound includes the steps of vacuum-depositing a convex portion for forming a concave-convex region made of a metal or a metal compound on one surface of the heat-shrinkable film. To form a vapor-deposited sheet; and to heat-shrink the heat-shrinkable film so that at least the uneven portion forming convex portion of the vapor-deposited sheet is deformed by folding. In the method for producing the concavo-convex pattern forming sheet, the metal or metal compound: the Young's modulus of the convex portion for forming the uneven portion is much larger than the Young's modulus of the heat shrinkable film 1 and thus the uneven portion when thermally compressed The formation of the convex portion is not so much the thickness is increased, but it is better to say that it is folded. As a result, it is possible to obtain the uneven pattern holding region and the optical sheet 2 provided with the unevenness h-domain; Further, the unevenness of the concave-convex pattern forming sheet is the same as the uneven area of the special film 210a. As for the third manufacturing of the genus, the genus of the genus, the embossing of the embossing of the embossing of the embossing of the embossing Shi, Shi Xi,: silver, stern, copper, bismuth, indium, magnesium, sharp, Ji, wrong, genus. The metal at least in the group of '&lt;&gt; is also a semi-metal. I26510.doc -63 - 200912388 As a metal compound, for the same reason, it is preferably selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide, magnesium oxide, tin oxide, copper oxide, oxidized steel, oxidized bromine, oxidized, #,Μ _ At least one metal compound of the group consisting of magnesium sulfide and gallium arsenide. The surface of the uneven portion forming convex portion means that the center line average roughness described in JIS B0601 is 〇_1 μηι or less from the viewpoint of easily forming the desired uneven pattern 12a. The thickness of the convex portion for forming the uneven portion made of a metal or a metal compound is preferably 〇01 to 〇.2_'. .05 〇 〇 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 However, if the thickness of the convex portion for unevenness is less than (10), the maximum frequency spacing A becomes 1 μη or less, and exceeds 0.2 筲 20_. The material pitch Α may sometimes exceed the thickness of the convex portion for forming the uneven portion, and may not be fixed. For example, the thickness may be continuously increased and thinned in one direction. When the metal or the region forming convex portion is vapor-deposited on the heat-shrinkable film in a continuous direction, the unevenness of the heat-shrinkable film material is formed by the convex portion and the surface of the concave-convex region to be formed. Leave the cover. The pattern and the opening of the cover serve as a heating shrinkage film for heat shrinking. ^^加古J. The method of passing through hot air, steam or hot water, etc., can be cited as 'from the heating can be 126510.doc • 64 - 200912388 In terms of uniform shrinkage of the shrinkable film, it is particularly preferable to pass it in hot water. Specifically, in the method (a) to (f) in the second production method, a concave-convex pattern forming sheet provided with a concave-convex region made of a metal or a metal compound is used as the third method. The original sheet of the engineering sheet is formed by forming a concave-convex pattern in which the uneven portion of the second resin is placed in place of six. (Fourth Manufacturing Method) The fourth manufacturing method is a method of manufacturing an optical sheet 10a from an unformed transparent thermoplastic resin using a molding apparatus, and the molding apparatus includes a metal mold, a heating and cooling mechanism for heating and cooling the metal mold, and And a pressurizing mechanism for pressurizing the metal mold. The transparent thermoplastic resin used in the fourth production method may be the same as the transparent thermoplastic resin used in the second production method. Specifically, in the fourth manufacturing method, first, the particles or powder of the transparent thermoplastic resin are filled in a metal mold, the metal mold is heated by a heating and cooling mechanism, and the metal mold is pressed by a pressurizing mechanism. Pressurize. Next, the inside of the mold is cooled by the heating and cooling mechanism and the pressurization is stopped to obtain the optical sheet 2 1 〇 a. In the manufacturing method, a meandering corrugated pattern is formed on the surface in contact with the exit surface of the optical sheet 210a as a metal mold. For example, a corrugated pattern in which the meandering pattern forming sheets in the first to third manufacturing methods are attached to one surface, and a meandering corrugated pattern is formed on one surface by laser irradiation or the like. As the molding method in the fourth production method, for example, press forming 126510.doc-65-200912388 method or injection molding method can be applied. The optical sheet 21A obtained by the above-described first to fourth production methods can be used as it is, and can be bonded to a substrate made of a transparent resin or glass by an adhesive to form a final optical sheet. In the method of manufacturing the optical sheet 210a described above, it is easy to arrange the uneven region 212 in a pattern which is denser on the other end β side in the longitudinal direction of the optical sheet 210a. Therefore, the optical sheet 21 〇 a having a high light diffusibility on the β side of the other end in the longitudinal direction can be easily obtained. 5 - 2 - Second Embodiment Hereinafter, a second embodiment of the optical sheet of the present invention will be described. Fig. 17 shows an optical sheet of this embodiment. Further, in the drawings, in order to facilitate the explanation, the uneven portion 215 is enlarged, and the arrangement thereof is displayed in a scattered manner. The optical sheet 210b of the present embodiment is used as a light diffusing sheet in which the light source 330 is disposed on one end 〇1 in the longitudinal direction, and is attached to the flat one surface 211, and is disposed along the optical sheet 2 by the following pattern. The strip-shaped uneven region 215 formed in the width direction of the 丨〇b, that is, a pattern which gradually becomes denser as one end α from the longitudinal direction of the optical sheet 21〇b faces the other end β. When the uneven portion 21 5 is disposed as described above, the light diffusibility can be improved on the other end ρ side of the optical sheet 21 〇 b in the same manner as the optical sheet 210a of the second embodiment. The uneven pattern of the uneven portion 215 of the second embodiment is the same as the concave-convex pattern 12a of the uneven portion 212 of the second embodiment. The area ratio of the area of the uneven portion 215 to the area of one surface of the optical sheet 210b is also the same as the area ratio in the first embodiment. 126510.doc •66· 200912388 The optical sheet 21 of the second embodiment can be used with the first! The optical sheet 2l〇a of the embodiment is produced by the same manufacturing method. 5-3. Third embodiment Hereinafter, a third embodiment of the optical sheet of the present invention will be described. Fig. 18 shows an optical sheet of this embodiment. Further, in Fig. 8, for the sake of convenience of explanation, the uneven portion 216 is enlarged, and the arrangement thereof is displayed in a scattered manner. The optical sheet 210c of the present embodiment is used as a light diffusing sheet in which the light source 330 is disposed on one end 〇1 in the longitudinal direction, and is attached to the flat one surface 211, and the optical sheet 21〇c is dispersedly arranged along the longitudinal direction. The strip-shaped portion 2丨6a and the strip-shaped uneven portion 216 formed along the strip-shaped portion 16b in the width direction. The portion 2161 of the uneven portion 216 along the width direction of the optical sheet 210c is configured to be gradually densified as the one end α from the longitudinal direction of the optical sheet 210c faces the other end β. The uneven pattern of the uneven portion 216 of the third embodiment is the same as the uneven pattern 12a of the uneven portion 212 of the first embodiment. The area ratio of the area of the uneven portion 216 to the area of one surface of the optical sheet 210c is also the same as the area ratio in the first embodiment. The optical sheet 210c of the third embodiment can be produced by the same manufacturing method as the method of manufacturing the optical sheet 210a of the first embodiment. 5-4. Fourth embodiment Hereinafter, a fourth embodiment of the optical sheet of the present invention will be described. Fig. 19 shows an optical sheet of this embodiment. Further, in Fig. 19, for the sake of easy explanation, the uneven portion 21 7 is enlarged' and its arrangement is displayed in a scattered manner. The optical sheet 210d of the present embodiment is used as a light diffuser in which a linear light source 330 is disposed on a surface C on which one side of the uneven portion 126510.doc-67-200912388217 is not formed. Further, in the optical sheet 210d, an uneven region 217' having an elliptical shape is dispersedly disposed on the flat surface 211, and the uneven portion 217 is denser as it is closer to the light source 330. In the present embodiment, the light from the light source 330 is unevenly incident on the optical sheet 210d. However, since the portion where the stronger the light reaches, the arrangement of the uneven portion 217 becomes denser, so that the light can be emitted in a diffused state. . Therefore, the intensity of light emitted from the optical sheet 2 10 0d can be made uniform. The fourth embodiment is the same as the concave-convex pattern 12a of the uneven portion 212 of the first embodiment. The area ratio of the area of the uneven portion 217 to the area of one surface of the optical sheet 210d is also the same as the area ratio in the first embodiment. The optical sheet 21 〇d of the fourth embodiment can be produced by the same manufacturing method as the method of manufacturing the optical sheet 21a of the first embodiment. 5-5. Other Embodiments % "The optical sheet of the present invention is not limited to the above embodiment. For example, in the first embodiment and the fourth embodiment, the uneven portion is formed in an elliptical shape, but may be a circular shape or a rectangular shape. Further, in the rice cake of the present invention, the uneven regions may be formed at random. Further, the concave-convex pattern of the uneven portion may not be meandering but may be linear. Further, the uneven regions may be formed on both surfaces of the optical sheet. Further, the optical sheet can also be reinforced by the reinforcing substrate. 6. Diffusion Light Guide The sorrow of the automobile is said to be 126510.doc -68· 200912388 Fig. 1 shows the diffused light guide of the present embodiment. The diffused light guide 10 of the present embodiment is composed of a transparent resin layer 11 in which a meandering corrugated pattern 12a is formed on one of the faces. In the other surface (back surface) of the transparent resin layer in the present embodiment, a smooth surface having a concave-convex pattern is not formed. The most frequent pitch A of the concavo-convex pattern 12a exceeds 1 μm and is preferably 2 μηη and 10 μιη or less. If the most frequent spacing is μηι, the most frequent spacing A is below the wavelength of visible light, so the visible light is not refracted by the irregularities, but the light is transmitted, if the most frequent spacing A exceeds

Pm,則擴散之異向性會變低,從而易產生亮度不均。 凹凸圖案12a之凹凸之平均深度軸對於凹凸圖案仏之 最頻間距A之比(B/A,以下稱為縱橫比)較好的是〇1〜3〇。 若縱橫比不足(M,則擴散之異向性變低,易產生亮度不 均。另-方面,若縱橫比大於3.〇,則在製造擴散導光體 10時難以形成凹凸圖案12a。 此處,所謂平均深^声η &amp; 、丁, 、 1衣度B係指凹凸圖案12a之底部12b之 平均深度。又,底都丨儿总此 ' 糸私凹凸圖案12a之凹部之極小 二 =?係指對將擴散導光M1。沿長度方向載斷所 面方Λ / ‘、、、圖2)進讀察時,自與整個擴散導光體10之 面方向平行的基準線Ll至各凸部之頂部 之 T:二、:3.·.之平均值_^^ 作為測疋千均深度B之方 由原子間力顯微鏡所拍攝之凹凸°了下述方法等:測定 的各底㈣之深度,並求出該等4:值之剖面之圖像中 126510.d〇c -69 · 200912388 本發明中之蛇行係指以下述方法求得之凹凸之配向度為 〇_3以上。該配向度係凹凸之配向之不均勻的指標,該值 越大’則表示配向越不均勻。 為了求出配向度,首先’藉由表面光學顯微鏡來拍攝凹 凸圖案之上表面,並將該圖像轉換成灰度文檔(例如,t逬 格式等)。於灰度文檔之圖像(參照圖3)中,白度越低之 處,則表示凹部之底部越深(白度越高之處,則巴部之頂 部越高)。繼而’對灰度文檔之圖像進行傅立葉轉換。圖4 中顯示傅立葉轉換後之圖像。自圖4之圖像之中心向兩側 擴展之白色部分中包含凹凸圖案⑵之間距及朝向之資 訊。 其次,自圖4之圖像之中心沿水平方向引輔助線^,並 對該輔助線上之亮度進行描繪(參照圖5)。圖5之描繪中橫 軸表示間距,縱軸表示頻率,頻率為最大之值χ表示凹凸 圖案12a之最頻間距。 繼而,於圖4中,弓丨輔助線L3,其在值χ之部分與輔助線 h正交,並對該輔助線Ls上之亮度進行描繪(參照圖6)。其 中,為了可與各種凹凸構造進行比較,圖6之橫轴設為除 以X值後所得之數值。圖6之橫軸表示體現相對於凹凸之形 成方向(圖3中的上下方向)的傾斜程度之指標(配向性),縱 軸表示頻率。圖6之描緣中的波峰之半值寬度%(頻率為最 大值之一半的高度上的波峰之寬度)表示凹凸圖案之配向 度。半值寬度W!越大,則表示蛇行使得間距越不均勾。 若上述配向度不足〇·3,則凹凸圖案12a之配向之不均勻 126510.doc 70- 200912388 較小’故光之擴散之異向性變小。 又,配向度較好的是1相下。若配向度超過…則凹 凸圖案之方向會於某程度變得 _ L r 十w機,因此光擴散性變高, 但異向性具有變低之傾向。 為了使配向度為0.3以上,例如於下述製造中,可適當 選擇加熱收縮性薄膜與表面平 卞μ之硬質層。例如,加熱收 縮性薄膜之收縮率越高,或去 ’ θ 次者表面平滑之硬質層之揚氏模 置越小,則配向性越大。藉由該製造方法而獲得之擴散導 光體10係由兩層樹脂層所構成者。 、 又’亦可採用如下方法,亦即,使用在一表面上形成有 =向::0.3以上之凹凸圖案的金屬模具來使透明樹脂成 形。藉由該製造方法而獲得之 層所構成者。 擴散導先體1。係由一層樹脂 再者’以上述方式利用傅立葉轉換而求得之 最頻間距係與平均間距相同。 〃之 v 透明樹脂層U係由可見光之透過率較高(具體而言 見先之全光線透過率為85%)之透明樹脂所構成。 光:特:了使耐熱性、财光性提高’可在不損害透光率等 予]生之乾圍内’於透明樹脂層u中含有添加劑 =劑光:舉光穩定劑、紫外線吸收劑、抗氧化劑、潤 先擴政劑等。其中尤其好的是添加光穩定劑, 口 I較奸的是,相對於透明樹脂1⑽質量份為〇•質二 份。若氺趙—二u買薏 先穩疋劑之添加量為0.03質量份以上,則可充 八添加效果,但若光穩定劑之添加量超過2.0質量份, 126510.doc -71 - 200912388 :光穩定劑之量過剩’從而具有不必要之成本上漲之傾 向。 二為不進一步提高光擴散效果’可在不會較大地損害 機化人I先學特性之範圍内’使透明樹脂層11中含有由無 機化合物構成之無機光擴散劑、 光擴散劑。 政“有機化合物構成之有機 作為無機光擴散劑,可列舉二氧切、白碳、滑石、氛 化鎂、氧化鋅、氧化鈦、碳酸鈣、氫氧化鋁、硫酸鋇、矽 酸約、石夕酸鎮、石夕酸紹、石夕酸銘化鈉、石夕酸辞、玻璃、雲 母等。 作為有機光擴散劑,可列舉苯乙㈣聚合粒子、丙烯酸 系聚合粒子、矽氧烷系聚合粒子、聚醯胺系聚合粒子等。 該等光擴散劑可分別單獨使用,或者亦可將兩種以上组合 而使用。 為了獲得優異之紐射特性,料光擴散劑亦可設 為花瓣狀或球晶狀等多孔質構造。 β從難以損害透光性之角度而言,光擴散劑之含量較好的 是相對於透明樹脂100質量份為1〇質量份以下。 進而’為了進—步提高錢散效果,可在不會較大地損 害透光率等光學特性之範圍内,使透明樹脂層11中含有微 細氣泡。微細氣泡對光之吸收較少,難以使透光率降低。 作為微細氣泡之形成方法,可應用向透明樹脂心中混 入發泡劑之方法(例如,日本專利特開平5-2 12811號公報、 曰本專利特開平6_107842號公報中揭示之方法)、對丙烯酸 126510.doc -72- 200912388 系發泡樹脂進行發泡處理以使其含有微 如’曰本專利特開2004_2812號公報中揭示之方:方法(例 而,就可實現更加均句的面照射而 )荨。進 、+&amp;,·&gt; m、、、田瑕*泡之形成方 法較好的是使特定位置不均勻地發泡之 專利特開2006-124499號公報中揭示之方法)。'曰 再者,亦可併用上述光擴散劑與微細發泡。 透明樹脂層U之厚度較好的是0 02〜3〇 _,更好的是 〇厘0Γ2 5贿’尤其好的是Μ〜Μ·。若透明樹脂層11之 厚度不足0_02 mm,則因其厚度會小於凹凸圖案之深度而 不適當,若其厚度厚於3·〇 _,則因擴散導光體⑺之質量 較大而可能難以操作。 透明樹脂層U亦可由兩層以上之樹脂層所構成。即使當 透明樹脂層11係由兩層以上之層所構成時,透明樹脂層u 之厚度亦較好的是0.02〜3.0 mm。 •製造方法 可利用與上述光學片之製造方法相同之製造方法來製 造。 .功能 上述擴政導光體10具有光之異向擴散性。具體而言,當 在擴散導光體10之未形成有凹凸圖案i 2a之一側之面(背面) 側上没置有光源時,從光源發出之光自背面入射至擴散導 光體10,並通過擴散導光體10内而到達凹凸面。此處,入 射角為0度以上且以不足臨界角之角度到達之光在折射之 狀態下出射至擴散導光體10之外。由於通過擴散導光體1〇 126510.doc -73- 200912388 内之光之方向並非為一方向,因此擴散導光體1〇之凹凸面 與光之角度並非固定,故光以寬泛之角度折射。並且,由 於凹凸呈蛇行且配向不均,因此擴散之異向性較高。 再者’以臨界角以上之角度到達凹&amp;面之光經全反射後 再-人於擴散導光體内行進,但隨後在以不足臨界角之角度 到達凹凸面時出射。又’以入射角為。度之角度到達之光 並不折射,而疋直接出射至擴散導光體之外。 又,當於擴散導光體10之一側面側設置有光源時,亦與 上述情形相同,通過擴散導光體10内後入射角為0度以上 且以不足臨界角之角度到達之光在折射的狀態下出射至擴 散導光體之外。此處,由於凹凸呈蛇行且配向不均,因此 擴散之異向性較高。 再者,本發明之擴散導光體並非限定於上述實施形態。 例如,當於透明樹脂層之背面側配置光源時,為了使光之 入射效率提高,較好的是於透明樹脂層之背㈣成有具有 防反射功能之微細之波狀凹凸。此處,較好的是,微細之 波狀凹凸之最頻間距為ί _以下,且縱橫比為01以上。 其原因在於,若最頻間距超過丨_,或者若縱橫比超過 0.1 ’則無法獲得防反射功能。 上述微細之波狀凹凸可愈井撼枞 尤擴散用凹凸圖案一起形成於 =脂層之背面。例如’當藉由屢製成形或射出成形來 =擴散導光體時,可應用如下方法,亦即,作為金屬模 具=在與透明樹腊層之出射面(表面)側相鄰接之面上 形成有光擴散用凹凸圖案、且在與透明樹脂層之入射面 I26510.doc -74· 200912388 (背面)側相鄰接之面上形成有微細之波狀凹凸圖案者。 又,上述微細之波狀凹凸亦可與光擴散用凹凸圖宰不同 地另外形成於透明樹脂層之背面。例如,亦可將形成有微 細之波狀凹凸圖案之薄膜經由接著劑而貼附於透明樹脂層 之背面側。 赝 广為了進一步提高光擴散之異向性,亦可將含有微細 氣泡之薄膜貼附於入射面側或出射面側。如圖2〇所示當 將含有微細氣泡之薄膜317貼附於人射面側時,為了有效 地利用來自光源330之光,較好的是,使光源咖之光較強 地照射到的部分317a中之微細氣泡之含量較多,且使除此 之外之部分317b中之微細氣泡之含量較少或者不含有。 本發明之擴散導光體亦可為厚度自一端朝向另一端逐漸 變薄之楔形。楔形擴散導光體中係於較厚之側面配置光 源。 本發明之擴散導光體係必須於一面上形成有蛇行之波狀 凹凸圖案者,但並非限定於僅於一面上形成有凹凸圖案 者。即,亦可於透明樹脂層之另一面上亦形成有蛇行之波 狀凹凸圖案。 7.背光單元 7 -1 •第1實施形態 以下對本發明之背光單元之第1實施形態進行說明。 圖21表示本實施形態之背光單元。本實施形態之背光單 元100係所謂之直下型背光單元,其具備:擴散導光體 310;反射板320,其與擴散導光體310之形成有凹凸圖案 126510.doc -75 - 200912388 之面(表面315)的相反側之面(背面316)對向而配設;以及 複數個光源330、330…,其等配設於擴散導光體31〇及反 射板320之間。又,於擴散導光體31〇之表面315侧,依次 積層有擴散薄膜340、稜鏡片35〇、及亮度上升薄膜36〇。 作為光源330,可列舉例如冷陰極管、發光二極體等。 作為反射板320,可列舉例如表面為鏡面狀之金屬板、 或者具備此種金屬板之積層板等。 作為擴散溥膜340,可列舉例如含有透明粒子之樹脂薄 膜等。擴散薄膜340係使自擴散導光體出射之光進一步擴 散者。 作為稜鏡片3 5 0,可列舉例如於一面上規則地具有大量 圓錐狀或角錐狀突起之樹脂片(例如,Sumit〇m〇 3M Limited製商品名Vikuiti BEF III)等。稜鏡片35〇係用以使 自擴散薄膜340出射之光之行進方向與垂直於面之方向一 致者。 作為亮度上升薄膜360,可列舉例如僅使光之主波(p波) 通過而使-人波(S波)反射之片(例如,sumit〇m〇 3M Limited 製商品名 Vikuiti DBEF-D400)等。 7 - 2 ·苐2實施形態 以下對本發明之背光單元之第2實施形態進行說明。 圖22表示本實施形態之背光單元。本實施形態之背光單 元200係所謂端面照光型背光單元,其具備:擴散導光體 310;反射板320,其與擴散導光體31〇之形成有凹凸圖案 之面(表面315)的相反側之面(背面316)對向而配設;以及 126510.doc -76- 200912388 複數個光源330,其等配設於擴散導光體31〇之一側面上。 又,於擴散導光體310之表面315側,依次積層有擴散薄膜 340、稜鏡片350、及亮度上升薄膜360。 本實施形態中所用之擴散導光體310、反射板32〇、光源 330、擴散薄膜340、稜鏡片350以及亮度上升薄膜36〇係與 第1實施形態相同。 具備形成有蛇行之波狀凹凸圖案之擴散導光體31〇的上 述實施形態之背光單元100中,自光源33〇發出之光於擴散 導光體310之凹凸面上以較高之異向性而擴散。因此,具 備背光早元100、200之液晶顯示裝置中,難以產生圖像真 度之不均。 8.防反射體 本發明之防反射體係具備上述凹凸圖案形成片1〇者,上 述凹凸圖案亦即最頻間距A為1 μιη以下之凹凸圖案12已。 於本發明之防反射體中,亦可於凹凸圖案形成片1〇之一 面或兩面上具備其他層。例如,於凹凸圖案形成片1〇之形 成有凹凸圖案12a之一側之面上,為了防止污染該面,亦 可具備含有氟樹脂或聚矽氧樹脂作為主成分之厚度為id nm左右之防汙層。 本發明之防反射體中,於凹凸圖案形成片1〇之波狀凹凸 圖案12a之部分,呈現出空氣之折射率與凹凸圖案形成片 10之折射率(基材11之折射率)之間的中間折射率,該中間 折射率連續地變化。並且,凹凸圖案12a之最頻間距八為1 μιη以下,凹凸圖案12a之底部12b之平均深度B為將最頻間 126510.doc •77- 200912388 距A „又為I 00%時之〗〇%以上。 低,且俨而上 ,可使光之反射率特別 低八體而έ,可使反射率為大 .^ .+. ^ 〇八致0/〇。其原因在於,如 田凹凸圖案形成片10之凹凸圖宰12最 I 系 之蚨頻間距a 独為1 μιη以下時,平均In Pm, the anisotropy of diffusion becomes low, which tends to cause uneven brightness. The ratio of the average depth axis of the concavities and convexities of the concavo-convex pattern 12a to the most frequent pitch A of the concavo-convex pattern ( (B/A, hereinafter referred to as the aspect ratio) is preferably 〇1 to 3〇. When the aspect ratio is insufficient (M, the anisotropy of diffusion becomes low, and luminance unevenness is likely to occur. On the other hand, when the aspect ratio is larger than 3. 〇, it is difficult to form the uneven pattern 12a when the diffusing light guide 10 is manufactured. Where, the average deep sound η &amp; butyl, 1 and the degree B refers to the average depth of the bottom portion 12b of the concave-convex pattern 12a. Further, the bottom of the 丨 总 总 总 ' ' ' 糸 糸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 凹凸 糸 糸?? refers to the reference line L1 to the direction in which the diffused light guide M1 is loaded in the longitudinal direction, and is parallel to the direction of the surface of the entire diffused light guide 10 T at the top of the convex part: 2, the average value of 3... _^^ As the square of the average depth B measured by the atomic force microscope, the following method is used: the bottom of the measurement (4) The depth is obtained and the image of the profile of the 4: value is obtained. 126510.d〇c - 69 · 200912388 The meandering in the present invention means that the degree of alignment of the irregularities obtained by the following method is 〇_3 or more. The alignment degree is an index of the unevenness of the alignment of the concavities and convexities, and the larger the value is, the more uneven the alignment is. To determine the alignment, the surface of the concave and convex pattern is first photographed by a surface optical microscope, and the image is converted into a grayscale document (e.g., t逬 format, etc.). In the image of the grayscale document (refer to Fig. 3), the lower the whiteness, the deeper the bottom of the concave portion (the higher the whiteness, the higher the top portion of the bar). Then, Fourier transform is performed on the image of the grayscale document. The Fourier transformed image is shown in Figure 4. The white portion extending from the center of the image of Fig. 4 to both sides contains information on the distance and orientation of the concave-convex pattern (2). Next, the auxiliary line ^ is drawn in the horizontal direction from the center of the image of Fig. 4, and the brightness on the auxiliary line is drawn (refer to Fig. 5). In the drawing of Fig. 5, the horizontal axis represents the pitch, the vertical axis represents the frequency, and the frequency has the largest value χ represents the most frequent pitch of the uneven pattern 12a. Next, in Fig. 4, the auxiliary line L3 of the bow is orthogonal to the auxiliary line h at a portion of the value ,, and the brightness on the auxiliary line Ls is drawn (refer to Fig. 6). In order to compare with various concavo-convex structures, the horizontal axis of Fig. 6 is a value obtained by dividing the X value. The horizontal axis of Fig. 6 indicates an index (orientation) indicating the degree of inclination with respect to the direction in which the unevenness is formed (the vertical direction in Fig. 3), and the vertical axis indicates the frequency. The half value width % of the peak in the stroke of Fig. 6 (the width of the peak at a height of one half of the maximum value) indicates the alignment degree of the concave-convex pattern. The larger the half-value width W!, the more random the pitch is. If the above-described alignment degree is less than 〇3, the alignment of the concavo-convex pattern 12a is uneven. 126510.doc 70-200912388 is smaller, so the anisotropy of light diffusion becomes smaller. Also, the degree of alignment is preferably one phase. If the degree of alignment exceeds..., the direction of the concave-convex pattern becomes _Lr to a certain extent, so that the light diffusibility becomes high, but the anisotropy tends to be low. In order to achieve an alignment degree of 0.3 or more, for example, in the production described below, a hard layer having a heat shrinkable film and a surface 卞μ can be appropriately selected. For example, the higher the shrinkage ratio of the heat-shrinkable film or the smaller the Young's modulus of the hard layer which is smoother than the surface of θ, the greater the alignment. The diffusion light guide 10 obtained by the production method is composed of two resin layers. Further, a method in which a transparent resin is formed by using a metal mold having a concave-convex pattern of =0.3 or more on one surface is used. The layer formed by the manufacturing method. Diffusion lead precursor 1. The least-frequency spacing obtained by using a layer of resin in the above manner by Fourier transform is the same as the average pitch. v v The transparent resin layer U is composed of a transparent resin having a high transmittance of visible light (specifically, the total light transmittance is 85%). Light: Special: Improves heat resistance and richness. 'In the dry square of the raw material without damaging the light transmittance, etc.' In the transparent resin layer u, it contains additives = agent light: light stabilizer, ultraviolet absorber , antioxidants, Runxian expansion agents, etc. Among them, it is particularly preferable to add a light stabilizer, and it is a mass of 1 (10) parts by mass relative to the transparent resin. If the addition amount of the 氺 — 二 二 二 — 薏 薏 薏 为 为 为 为 为 为 为 为 为 为 则 添加 添加 添加 添加 添加 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 There is an excess of stabilizers' and thus there is a tendency for unnecessary cost increases. In the second embodiment, the inorganic light diffusing agent and the light diffusing agent composed of the inorganic compound are contained in the transparent resin layer 11 in a range in which the light diffusing effect is not further improved. The "organic compound composed of organic compounds as inorganic light diffusing agents, including dioxane, white carbon, talc, magnesium sulfate, zinc oxide, titanium oxide, calcium carbonate, aluminum hydroxide, barium sulfate, tannic acid, Shi Xi Acid town, Shixi acid soda, Shiqi acid sodium, Shixi acid, glass, mica, etc. As the organic light diffusing agent, styrene (tetra) polymer particles, acrylic polymer particles, and siloxane polymer particles can be cited. Polyimide-based polymer particles, etc. These light-diffusing agents may be used singly or in combination of two or more. In order to obtain excellent smear characteristics, the light diffusing agent may be used as a petal or a ball. A porous structure such as a crystal. The content of the light diffusing agent is preferably 1 part by mass or less based on 100 parts by mass of the transparent resin from the viewpoint of being less likely to impair the light transmittance. Further, in order to increase the amount of money The scattering effect is such that the fine resin bubbles are contained in the transparent resin layer 11 within a range that does not greatly impair the optical characteristics such as the light transmittance. The fine bubbles absorb less light and are less likely to lower the light transmittance. For the formation method, a method of mixing a foaming agent into a transparent resin core can be applied (for example, the method disclosed in Japanese Laid-Open Patent Publication No. Hei 5-212811, Japanese Patent Application Laid-Open No. Hei No. Hei 6-107842), and acrylic 126510.doc-72 - 200912388 The foaming resin is subjected to a foaming treatment so as to contain a microscopic method as disclosed in the Japanese Patent Laid-Open No. 2004-2812: a method (for example, a more uniform surface irradiation can be realized). +&amp;,·&gt; m, , and 瑕 瑕 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡 泡The light diffusing agent and the fine foaming may be used in combination. The thickness of the transparent resin layer U is preferably 0 02 〜 3 〇 _, and more preferably 〇 Γ 0 Γ 2 5 bribe 'especially good Μ Μ Μ. When the thickness of the resin layer 11 is less than 0_02 mm, the thickness thereof is less than the depth of the concave-convex pattern, and if the thickness is thicker than 3·〇_, the quality of the diffused light guiding member (7) may be difficult to handle due to the large mass. The resin layer U may also be composed of two or more resin layers. Even when the transparent resin layer 11 is composed of two or more layers, the thickness of the transparent resin layer u is preferably 0.02 to 3.0 mm. The manufacturing method can be the same as the manufacturing method of the above optical sheet. The function of the above-described diffuser light guide body 10 has an anisotropic diffusibility of light. Specifically, it is not disposed on the side (back side) side of the side of the diffused light guide body 10 on which the uneven pattern i 2a is not formed. When there is a light source, light emitted from the light source enters the diffusing light guide 10 from the back surface, and passes through the inside of the diffusing light guide 10 to reach the uneven surface. Here, the incident angle is 0 degrees or more and reaches the angle less than the critical angle. The light is emitted outside the diffusing light guide 10 in a state of being refracted. Since the direction of the light passing through the diffusing light guiding body 1 〇 126510.doc -73- 200912388 is not one direction, the angle between the concave-convex surface of the diffusing light guiding body 1 and the light is not fixed, so the light is refracted at a wide angle. Further, since the irregularities are meandering and the alignment is uneven, the anisotropy of diffusion is high. Further, the light reaching the concave &amp; face at an angle above the critical angle is totally reflected and then traveled in the diffused light guide body, but then exits when reaching the concave-convex surface at an angle less than the critical angle. Again, the angle of incidence is. The light reaching the angle does not refract, and the 疋 directly exits beyond the diffusing light guide. Further, when a light source is provided on one side surface side of the diffused light guide body 10, as in the case described above, the light incident in the light guide body 10 after the incident angle is 0 degrees or more and reaches the angle of the critical angle is refraction. Out of the diffused light guide. Here, since the irregularities are meandering and the alignment is uneven, the anisotropy of diffusion is high. Furthermore, the diffusing light guide of the present invention is not limited to the above embodiment. For example, when a light source is disposed on the back side of the transparent resin layer, in order to improve the light incident efficiency, it is preferable that the back (4) of the transparent resin layer has fine undulations having an antireflection function. Here, it is preferable that the finest pitch of the fine wave-like irregularities is ί _ or less, and the aspect ratio is 01 or more. The reason is that the anti-reflection function cannot be obtained if the most frequent pitch exceeds 丨_, or if the aspect ratio exceeds 0.1 ’. The fine wavy irregularities described above can be formed on the back surface of the = grease layer together with the uneven pattern for diffusion. For example, when the light guide body is formed by repeated molding or injection molding, the following method can be applied, that is, as a metal mold = on the side adjacent to the exit surface (surface) side of the transparent wax layer A light wavy concave-convex pattern is formed, and a fine wavy concave-convex pattern is formed on a surface adjacent to the incident surface I26510.doc -74·200912388 (back surface) side of the transparent resin layer. Further, the fine wavy irregularities may be formed separately on the back surface of the transparent resin layer unlike the uneven pattern for light diffusion. For example, a film on which a fine wavy concave-convex pattern is formed may be attached to the back side of the transparent resin layer via an adhesive.广 In order to further improve the anisotropy of light diffusion, a film containing fine bubbles may be attached to the incident surface side or the exit surface side. As shown in FIG. 2A, when the film 317 containing fine bubbles is attached to the human face side, in order to effectively utilize the light from the light source 330, it is preferable that the light source is irradiated with a strong light. The content of the fine bubbles in 317a is large, and the content of the fine bubbles in the other portion 317b is small or not. The diffusing light guiding body of the present invention may also have a wedge shape in which the thickness is gradually thinned from one end toward the other end. In the wedge-shaped diffused light guide, a light source is disposed on a thick side. In the diffusion light guiding system of the present invention, it is necessary to form a meandering corrugated pattern on one surface, but it is not limited to those in which a concave-convex pattern is formed only on one surface. That is, a meandering wave-like concave-convex pattern may be formed on the other surface of the transparent resin layer. 7. Backlight unit 7 - 1 1. First Embodiment Hereinafter, a first embodiment of a backlight unit of the present invention will be described. Fig. 21 shows a backlight unit of this embodiment. The backlight unit 100 of the present embodiment is a so-called direct type backlight unit including a diffusion light guide 310 and a reflection plate 320 which is formed with a surface of the diffusion light guide 310 having a concave-convex pattern 126510.doc -75 - 200912388 ( The surface on the opposite side of the surface 315) (back surface 316) is disposed opposite to each other; and a plurality of light sources 330, 330, ... are disposed between the diffusion light guide 31 and the reflection plate 320. Further, on the surface 315 side of the diffused light guiding member 31, a diffusion film 340, a ruthenium sheet 35, and a brightness rising film 36 are laminated in this order. Examples of the light source 330 include a cold cathode tube, a light emitting diode, and the like. The reflector 320 may be, for example, a metal plate having a mirror surface or a laminate having such a metal plate. The diffusing film 340 may, for example, be a resin film containing transparent particles. The diffusion film 340 is such that the light emitted from the diffusion light guide is further diffused. For example, a resin sheet having a large number of conical or pyramidal projections on one surface (for example, trade name Vikuiti BEF III manufactured by Sumit〇m〇 3M Limited) or the like can be cited. The cymbal 35 is used to make the direction of travel of the light emitted from the diffusion film 340 consistent with the direction perpendicular to the surface. Examples of the brightness-increasing film 360 include a sheet in which only a main wave (p-wave) of light is passed through and a human-wave (S-wave) is reflected (for example, trade name Vikuiti DBEF-D400 manufactured by sumit〇m〇3M Limited). . 7 - 2 - 2 embodiment The following describes a second embodiment of the backlight unit of the present invention. Fig. 22 shows a backlight unit of this embodiment. The backlight unit 200 of the present embodiment is a so-called end face illumination type backlight unit, and includes a diffusion light guide 310 and a reflection plate 320 opposite to the surface (surface 315) on which the uneven pattern is formed on the diffusion light guide 31? The face (back face 316) is disposed opposite to each other; and 126510.doc -76-200912388 a plurality of light sources 330 are disposed on one side of the diffused light guide 31'. Further, on the surface 315 side of the diffusion light guide 310, a diffusion film 340, a ruthenium sheet 350, and a brightness rising film 360 are laminated in this order. The diffusing light guide 310, the reflecting plate 32, the light source 330, the diffusion film 340, the cymbal 350, and the brightness rising film 36 used in the present embodiment are the same as those in the first embodiment. In the backlight unit 100 of the above-described embodiment including the diffusing light guide 31A having the meandering wave-like concave-convex pattern, the light emitted from the light source 33 has a high anisotropy on the uneven surface of the diffused light guide 310. And spread. Therefore, in a liquid crystal display device having backlights of 100 and 200, it is difficult to produce image unevenness. 8. Antireflection body The antireflection system of the present invention includes the above-described uneven pattern forming sheet 1 which is a concave-convex pattern 12 having a maximum pitch A of 1 μm or less. In the antireflection body of the present invention, other layers may be provided on one or both sides of the uneven pattern forming sheet 1'. For example, in the surface of the concave-convex pattern forming sheet 1 on which one side of the uneven pattern 12a is formed, in order to prevent contamination of the surface, the thickness of the fluororesin or the polyoxynoxy resin as a main component may be id nm or so. Stained layer. In the antireflection body of the present invention, the refractive index of the concave-convex pattern forming sheet 1 is between the refractive index of the concave-convex pattern forming sheet 10 and the refractive index of the concave-convex pattern forming sheet 10 (the refractive index of the substrate 11). The intermediate refractive index, which varies continuously. Further, the most frequent pitch 8 of the concave-convex pattern 12a is 1 μm or less, and the average depth B of the bottom portion 12b of the concave-convex pattern 12a is 126%. Above, low, and squatting, the reflectance of light can be extremely low and the reflectivity is large. ^.+. ^ 〇八致0/〇. The reason is that the pattern of the bump pattern is formed. The unevenness of the slice 10 is the highest I-frequency spacing of the 12th I system. When the ratio is 1 μιη or less, the average

^ % 1ΠΠΟ/0* 马將最頻間距A :為觀時之⑽以上,因此中間折射率連續地變化之部 为於厚度方向上變長,從而可顯著地發揮抑制光反射之效 果。 述防反射體可安裝於例如液晶顯示面板或電漿顯示器 等圖像顯示裝置、發光二極體之發光部頂端、及太陽能電 池面板之表面等。 當上述防反射體安裝於圖像顯示裝置巾時,由於可防止 照明光之映人,故可提高圖像之辨認性。#上述防反射體 安裝於發光二極體之發光部頂端時,可提高光之取出效 率。當上述防反射體安裝於太陽能電池面板之表面時,由 於可使光之擷取量變多,故可提高太陽能電池之發電效 率 〇 9·相位差板 本發明之相位差板係具備上述凹凸圖案形成片1〇者上 述凹ώ圖案亦即最頻間距A為1 μιη以下之凹凸圖案i2a。其 中,凹凸之方向並非隨機,而是沿著一方向。 於本發明之相位差板中’亦與上述防反射體同樣,亦可 於凹凸圖案形成片10之一面或兩面上具備其他層,例如, 亦可於凹凸圖案形成片10之形成有凹凸圖案12a之一側的 面上具備防汗層。 126510.doc -78 · 200912388 本發明之相位差板可顯著地發揮產生相位差之效果。其 原因在於,如上所述,當凹凸圖案形成片1〇之凹凸圖案 12a之最頻間距A較短,為i μιη以下時,平均深度B較深, 為將最頻間距Α設為1〇〇%時之10%以上,因此,折射率互 不相同之空氣與凹凸圖案形成月10交替配置之部分於厚度 方向上變長,從而呈現出光學異向性之部分變長。進而, 當凹凸圖案之間距與可見光之波長為同程度或為可見光之 波長以下時,可遍及較廣之可見光波長區域而產生相同相 位差。 (光學元件製造用工程片) 本發明之光學元件製造用工程片(以下,簡稱為工程片) 係具備上述凹凸圖案形成片10者,上述凹凸圖案亦即最頻 間距A為1 μιη以下之凹凸圖案12a,且本發明之光學元件製 造用工程片係作為用以藉由如下所示之方法將凹凸圖案 12a轉印至其他素材來大面積且大量地製造凹凸圖案形成 片之模具而使用的,該凹凸圖案形成片具有與該工程片之 最頻間距及平均深度相同之凹凸圖案,且可用作防反射體 或相位差板等光學元件。 使用工程片來製造光學元件之具體方法係與上述光學片 之方法相同。 [實施例1 ] 下述例中之楊氏模量係使用拉伸測試機(丁ester!業公司 製τε·7〇οι)並根據jIS K 而測定之值。當未特別 記載溫度時,則為23 °C時之值。 126510.doc -79- 200912388 (實施例1) 於單轴方向熱收縮之厚度為5〇 μιη且揚氏模量為3 GPa之 聚對苯二甲酸乙二酯製加熱收縮性薄膜(三菱樹脂股份有 限公司製HISHIPET LX-60S,玻璃轉移溫度為70。〇)之一面 上,藉由刮棒塗佈機來塗佈於甲苯中稀釋的聚甲基丙烯酸 甲知(POLYMER SOURCE股份有限公司製P4831-MMA,玻 璃轉移溫度為1〇〇。〇 ’使其厚度為200 nm,以形成硬質層 而獲得積層片。 繼而,於80。(:對該積層片加熱丄分鐘,藉此使其熱收縮 為加熱前之長度之40%(亦即,使其以6〇%之變形率而變 形),以獲得硬質層具有波狀凹凸圖案之凹凸圖案形成片 (光擴散體),該波狀凹凸圖案沿著與收縮方向正交之方向 具有週期。 再者,聚對笨二曱酸乙二酯製加熱收縮性薄膜及該聚甲 基丙稀酸甲醋於80。〇時的楊氏模量分別為5〇 Mpa、1 GPa。 (實施例2) 塗佈於甲苯中稀釋的聚苯乙烯(p〇LYMER s〇URCE股份 有限公司製PS,玻璃轉移溫度為10(rc),除此之外,以與 實施例1相同之方式獲得凹凸圖案形成片(光擴散體)。 再者,聚對苯二甲酸乙二酯製加熱收縮性薄膜及該聚苯 乙稀於80°C時的揚氏模量分別 為 50 MPa、1 GPa。 (實施例3 ) 將聚苯乙烯之塗佈厚度設為丨μιη,除此之外,以與實施 126510.doc 200912388 例2相同之方式獲得凹凸圖案形成片(光擴散體)。 (實施例4) 於70 C時對積層片加熱丨分鐘,藉此使其熱收縮為加熱 如之長度之90%(亦即’使其以丨〇%之變形率而變形),除 此之外,以與實施例2相同之方式獲得凹凸圖案形成片(光 擴散體)。 (實施例5) 將藉由實施例1所獲得之凹凸圖案形成片(光擴散體)用 作工程片原版,按如下所述之方式獲得光擴散體。 亦即,於藉由實施例1所獲得之工程片原版之形成有凹 凸圖案之面上,塗佈包含環氧丙烯酸酯系預聚物、丙烯 酸2乙基己g曰及一苯甲酮系光聚合起始劑的未硬化之紫外 線硬化性樹脂組成物。 繼而,於未硬化之紫外線硬化性樹脂組成物之塗膜的與 工程片原版未相接觸之面上,將厚度為5〇 μιη之三乙醯纖 維素薄膜重疊並按壓。 其次,自三乙醯纖維素薄膜上方照射紫外線,使未硬化 之1外線硬化性樹脂組成物硬化,並自工程片原版上剝離 該硬化物’藉此獲得光擴散體。 (實施例6 ) 將藉由實施例1所獲得之凹凸圖案形成片(光擴散體)用 作工輊片原版,按如下所述之方式獲得光學元件。 亦即,於藉由實施例丨所獲得之工程片原版之形成有凹 凸圖案的面上進行鍍鎳處理,其後剝離該鍍鎳,藉此獲得 126510.doc •81 - 200912388 厚度為200 μιη之二次工程片。於該二次工程片之形成有凹 凸圖案之面上,塗佈包含環氧丙烯酸酯系預聚物、丙稀 酸-2-乙基己酯及二苯甲酮系光聚合起始劑的未硬化之紫外 線硬化性樹脂組成物。 繼而’於未硬化之紫外線硬化性樹脂組成物之塗膜的與 二次工程片未相接觸之面上,將厚度為5〇 μπι之三乙酿纖 維素薄膜重疊並按壓。 其後,自二乙醯纖維素薄膜之上方照射紫外線,使未硬 化之紫外線硬化性樹脂組成物硬化,並自二次工程片剥離 該硬化物’藉此獲得光擴散體。 (實施例7) 使用熱硬化性環氧樹脂以取代紫外線硬化性樹脂組成 物,並通過加熱使該熱硬化性樹脂硬化以取代紫外線照 射,除此之外,以與實施例6相同之方式獲得光擴散體。 (實施例8) 以與實施例6相同之方式,獲得厚度2〇〇 μιη之二次工程 片。於該二次工程片之形成有凹凸圖案之面上,將厚度5〇 μιη之1甲基丙烯酸甲S旨薄膜重疊並加熱。自兩侧按壓對 經加熱而軟化之聚甲基丙烯酸甲酯薄膜與二次工程片,之 後使其冷卻·固化’並自二次工程片上剝離,藉此獲得光 擴散體。 (比較例1) 將^^本乙稀之塗佈厚度设為6 μιη ’除此之外,以與實施 例2相同之方式獲得凹凸圖案形成片(光擴散體)。 126510.doc -82- 200912388 (比較例2) 將聚苯乙烯之塗佈厚度設為4〇 nm,除此之外,以與實 施例2相同之方式獲得凹凸圖案形成片(光擴散體)。’、 (比較例3 ) 使用三菱樹脂股份有限公司製HISHIPET LX-10S(楊氏模 ΐ為3 GPa)以取代三菱樹脂股份有限公司製msHipET ^ 60S,以及於70t時對該積層片加熱丨分鐘,使其熱收縮為 加熱前之長度之97%(亦即,使其以3%之變形率而變形), 除此之外,以與實施例丨相同之方式獲得凹凸圖案形成片 (光擴散體)。 (比較例4) 使用專利文獻2中揭示之異向性擴散圖案之製造方法而 獲得凹凸圖案形成片。 亦即,設置如下兩板:嵌入有使雷射光擴散並透過之磨 砂玻璃等擴散板且具有寬度1 mm、長度1〇 cm之狹縫的遮 蔽板、及塗佈有100 μτη厚度之市售之感光性樹脂的感光性 薄膜板’使兩板彼此之間隔為1 m ’且使兩板彼此平行。 繼而’自上述遮蔽板側照射波長為5 14 nm之氬雷射後, 穿過上述狹縫而經磨砂玻璃擴散之氬雷射光使得感光性薄 膜板上之感光性樹脂曝光。 反覆進行如上所述之曝光,使感光性薄膜板整個面上之 感光性樹脂曝光。並且’對經曝光之感光性薄膜進行顯 影’以獲得凹凸圖案形成片(光擴散體)。 再者,將比較例4之灰度文檔轉換圖像顯示於圖9中,將 126510.doc -83 - 200912388 灰度文權圖像之傅筆 之s傻之中 葉轉換圖像顯示於圖1〇。\’自圖10 之圖像之中心沿k 固i υ 亮度描^彳^ 線L4,㈣㈣助線上之 二之圖顯示於圖⑴進而,於圖i。中1輔助 ' 5 /、於值Y之部分與辅助線l4正交, T l·夕古挣松Μ 並將對该辅助線 5上冗度描繪所得之圖顯示於圖12。 (比較例5) 嘗試使用厚度為5〇 楊 針甲舻7 杨氏杈里為5 GPa之二軸延伸 ^一^乙二自旨薄膜(帝人股份有限公司製 熱收縮性薄膜’除此之外,以與實施例1相同之方式= 凹凸圖案形成片(光擴散體) 職)然而並未形成有波狀之凹 凸圖案’故並未獲得凹凸圖案形成片(光擴散體)。 (比較例6) 於單軸方向熱收縮之厚度為50 _、揚氏模量為3⑽之 聚對苯二甲酸乙二酯製加熱收縮性收縮薄膜(三菱樹脂股 份有限公司製HISH贿LX_1〇s,玻璃轉移溫度為7〇以 一面上,藉由到棒塗佈法來塗佈將揚氏模量為2 Μρ&amp;之聚 二甲基矽氧烷(信越化學工業股份有限公司ks847t,玻璃 轉移溫度為-1201)及翻觸媒(信越化學卫業股份有限公司 CAT-PL_5GT)稀釋於甲苯中所得之分散液,使其厚度為鹰 nm,以形成硬質層而獲得積層片。 其次,於lOOt時對該積層片加熱i分鐘,使其熱收縮, 藉此欲獲得凹凸圖案形成片,但無法使硬質層以摺疊之方 式而變形’故波狀之凹凸圖案並未形成。 藉由原子間力顯微鏡(日本veeco公司製Nan〇Sc〇pe出)’ 126510.doc • 84- 200912388 對實施例1〜8及比較例1〜6之 上表面進行拍攝。 凹凸圖案形成片 之光擴散體的 對於實施例1〜8及比較例m&amp; 敉例4之凹凸圖案形成片,於原子 間力顯微鏡之圖像中測定1 〇虎如n ^ 甲利疋1〇處凹凸®案之深度,將該等深 度平均而求出平均深度。 又’以如下所述之方式求出凹凸圖案之配向度。 首先,藉由表面光學顯微鏡來拍攝凹凸圖案之上表面, 將該圖像轉換成灰度文檔(參照圖3)。繼而,對灰度文樓之 圖像進行傅立葉轉換。圖4表示傅立葉轉換後之圖像。其 人自圖4之圖像之中心沿水平方向引輔助線L2,並對該 輔助線上之亮度進行描繪(參照圖5)。其後,於圖5中,引 輔助線L3 ’其在值X(最頻間距之倒數)之部分與辅助線^ 正交並對該輔助線L3上之亮度進行描繪(參照圖6)。並 且,根據圖6之描繪中的波峰之半值寬度w〗而求出凹凸圖 案之配向度。將該等值顯示於表1。 又,根據凹凸圖案之最頻間距及底部之平均深度,按以 下基準來6平價作為光擴散體之適應性。將該評價結果顯示 於表1。 〇:凹凸圖案之最頻間距超過i μη1且為20 μιη以下,平均 深度為將最頻間距設為100%時之10%以上,配向度為 〇·3〜1.0,適宜作為光擴散體。 △.凹凸圖案之最頻間距為以下或超過2〇μιη,或平 均深度小於將最頻間距設為100%時之1〇%,或者配向度不 足0 _ 3,未必適宜作為光擴散體。 126510.doc •85· 200912388 χ:無法形成凹凸圖案。 [表1]^ % 1ΠΠΟ/0* The most frequent spacing A of the horse is (10) or more. Therefore, the portion in which the intermediate refractive index continuously changes becomes longer in the thickness direction, so that the effect of suppressing light reflection can be remarkably exhibited. The antireflection body can be mounted, for example, on an image display device such as a liquid crystal display panel or a plasma display, a light emitting portion tip of a light emitting diode, and a surface of a solar battery panel. When the above-mentioned antireflection body is attached to the image display device, it is possible to prevent the illumination light from being reflected, so that the visibility of the image can be improved. When the above-mentioned anti-reflection body is attached to the top end of the light-emitting portion of the light-emitting diode, the light extraction efficiency can be improved. When the antireflection body is mounted on the surface of the solar cell panel, the amount of light extraction can be increased, so that the power generation efficiency of the solar cell can be improved. 相位9. Phase difference plate The phase difference plate of the present invention has the above-mentioned concave-convex pattern formation. In the case of the sheet, the concave pattern is the concave-convex pattern i2a having the most frequent spacing A of 1 μm or less. Among them, the direction of the unevenness is not random, but is along one direction. In the phase difference plate of the present invention, similarly to the above-described antireflection film, other layers may be provided on one surface or both surfaces of the concave-convex pattern forming sheet 10. For example, a concave-convex pattern 12a may be formed on the concave-convex pattern forming sheet 10. One side of the side has a sweat-proof layer. 126510.doc -78 · 200912388 The phase difference plate of the present invention can significantly exert the effect of generating a phase difference. The reason is that, as described above, when the most frequent pitch A of the concave-convex pattern 12a of the concave-convex pattern forming sheet 1 is short, when the width is i μm or less, the average depth B is deep, and the maximum frequency spacing Α is set to 1〇〇. When the % of the air is 10% or more, the portions of the air having different refractive indices and the concave-convex pattern forming alternately in the month 10 become longer in the thickness direction, and the portion exhibiting optical anisotropy becomes longer. Further, when the distance between the concave-convex patterns is equal to or lower than the wavelength of visible light or the wavelength of visible light, the same phase difference can be generated over a wide range of visible light wavelengths. (Engineering sheet for optical element manufacturing) The optical sheet for manufacturing an optical element of the present invention (hereinafter, simply referred to as an engineering sheet) includes the uneven pattern forming sheet 10, and the uneven pattern, that is, the groove having the most frequent pitch A of 1 μm or less In the pattern 12a, the engineering sheet for optical element manufacturing of the present invention is used as a mold for transferring a concave-convex pattern 12a to another material by a method as described below, and manufacturing a concave-convex pattern forming sheet in a large area and in a large amount. The concave-convex pattern forming sheet has a concave-convex pattern having the same frequency-to-average pitch and average depth as the engineering sheet, and can be used as an optical element such as an antireflection body or a phase difference plate. The specific method of manufacturing an optical component using an engineering sheet is the same as that of the above optical sheet. [Example 1] The Young's modulus in the following examples was measured using a tensile tester (τε·7〇οι) manufactured by Dingester Industries Co., Ltd. and measured according to jIS K. When the temperature is not specifically described, it is a value at 23 °C. 126510.doc -79- 200912388 (Example 1) A heat shrinkable film made of polyethylene terephthalate having a thickness of 5 〇 μιη in a uniaxial direction and a Young's modulus of 3 GPa (Mitsubishi Resin Co., Ltd.) HISHIPET LX-60S, manufactured by the company, has a glass transition temperature of 70. 〇), coated with polymethyl methacrylate diluted in toluene by a bar coater (P4831-made by POLYMER SOURCE Co., Ltd.) MMA, the glass transition temperature is 1 〇〇. 〇 'make it to a thickness of 200 nm to form a hard layer to obtain a laminate. Then, at 80. (: the laminate is heated for 丄 minute, thereby causing its heat shrinkage to 40% of the length before heating (that is, deformed by a deformation rate of 6〇%) to obtain a concave-convex pattern forming sheet (light diffusing body) having a corrugated concave-convex pattern of a hard layer, the corrugated concave-convex pattern along The direction perpendicular to the direction of shrinkage has a period. Further, the heat shrinkable film made of polyethylene terephthalate and the polymethyl methacrylate are 80. The Young's modulus is 5〇Mpa, 1 GPa. (Example 2) Dilution in toluene A embossed pattern-forming sheet (light diffuser) was obtained in the same manner as in Example 1 except that styrene (p. LYMER s〇 URCE Co., Ltd., PS, glass transition temperature: 10 (rc). The heat shrinkable film made of polyethylene terephthalate and the Young's modulus of the polystyrene at 80 ° C were 50 MPa and 1 GPa, respectively. (Example 3) Coating of polystyrene A concave-convex pattern forming sheet (light diffusing body) was obtained in the same manner as in Example 2 of the implementation of 126510.doc 200912388. (Example 4) The laminated sheet was heated at 70 C for 丨, Then, the heat-shrinkage was heated to 90% of the length (i.e., 'deformed by a deformation ratio of 丨〇%), and a concave-convex pattern-forming sheet was obtained in the same manner as in Example 2 ( (Embodiment 5) The concavo-convex pattern forming sheet (light diffusing body) obtained in Example 1 was used as an original sheet of an engineering sheet, and a light diffusing body was obtained in the following manner. The surface of the original sheet obtained in Example 1 on which the concave-convex pattern is formed is coated An uncured ultraviolet curable resin composition comprising an epoxy acrylate prepolymer, a 2-ethylhexyl acrylate and a benzophenone photopolymerization initiator. Further, an uncured ultraviolet curable resin composition On the surface of the coating film which is not in contact with the original sheet of the engineering sheet, the triethylene glycol film having a thickness of 5 μm is overlapped and pressed. Next, ultraviolet rays are irradiated from the top of the triethylene cellulose film to make the film harden. 1 The external curable resin composition is hardened, and the cured product is peeled off from the original sheet of the engineering sheet to thereby obtain a light diffuser. (Example 6) The uneven pattern forming sheet (light diffusing body) obtained in Example 1 was used as a work sheet original, and an optical element was obtained as follows. That is, the surface on which the concave-convex pattern is formed on the original sheet of the original sheet obtained by the embodiment is subjected to nickel plating treatment, and then the nickel plating is peeled off, thereby obtaining 126510.doc •81 - 200912388 having a thickness of 200 μm Secondary engineering film. Applying an epoxy acrylate-based prepolymer, a 2-ethylhexyl acrylate-based, and a benzophenone-based photopolymerization initiator to the surface on which the uneven pattern is formed on the secondary work piece A cured ultraviolet curable resin composition. Then, on the surface of the coating film of the uncured ultraviolet curable resin composition which was not in contact with the secondary work piece, a film of a film of 5 μ μm thick was laminated and pressed. Thereafter, ultraviolet rays are irradiated from the upper surface of the bismuth cellulose film to harden the unhardened ultraviolet curable resin composition, and the cured product is peeled off from the secondary work piece to obtain a light diffuser. (Example 7) The same procedure as in Example 6 was carried out except that the thermosetting epoxy resin was used instead of the ultraviolet curable resin composition, and the thermosetting resin was cured by heating instead of ultraviolet irradiation. Light diffuser. (Example 8) In the same manner as in Example 6, a secondary work piece having a thickness of 2 μm was obtained. On the surface on which the concavo-convex pattern was formed on the secondary work piece, a film of 1 methacrylic acid methyl S having a thickness of 5 μm was superposed and heated. The polymethyl methacrylate film which was softened by heating and the secondary work piece were pressed from both sides, and then cooled and solidified&apos; and peeled off from the secondary work piece, whereby a light diffuser was obtained. (Comparative Example 1) A concavo-convex pattern forming sheet (light diffusing body) was obtained in the same manner as in Example 2 except that the coating thickness of the ethyl acetate was changed to 6 μm. 126510.doc -82-200912388 (Comparative Example 2) A concavo-convex pattern forming sheet (light diffusing body) was obtained in the same manner as in Example 2 except that the coating thickness of the polystyrene was changed to 4 Å. ', (Comparative Example 3) HISHIPET LX-10S (3 mils of Young's mold) manufactured by Mitsubishi Plastics Co., Ltd. was used to replace msHipET ^ 60S manufactured by Mitsubishi Plastics Co., Ltd., and the laminated sheet was heated at 70 Torr for 丨 minutes. The heat-shrinkage was 97% of the length before heating (that is, it was deformed by a deformation ratio of 3%), and a concave-convex pattern-forming sheet (light diffusion) was obtained in the same manner as in Example 除. body). (Comparative Example 4) A concave-convex pattern-forming sheet was obtained by the method for producing an anisotropic diffusion pattern disclosed in Patent Document 2. That is, the following two plates are provided: a shielding plate having a diffusion plate such as frosted glass for diffusing and transmitting laser light and having a slit having a width of 1 mm and a length of 1 〇cm, and a commercially available coating having a thickness of 100 μτη The photosensitive film sheet of the photosensitive resin 'saves the two sheets at a distance of 1 m' and makes the two sheets parallel to each other. Then, after the argon laser having a wavelength of 5 14 nm is irradiated from the side of the shielding plate, the argon laser light diffused through the slit through the frosted glass exposes the photosensitive resin on the photosensitive film. The exposure as described above is repeated to expose the photosensitive resin on the entire surface of the photosensitive film sheet. Further, 'the photosensitive photosensitive film to be exposed is developed' to obtain a concave-convex pattern forming sheet (light diffusing body). Furthermore, the grayscale document conversion image of Comparative Example 4 is displayed in FIG. 9, and the image of the 126510.doc-83 - 200912388 grayscale text image is displayed in FIG. . \'From the center of the image of Fig. 10 along the k solid i 亮度 brightness trace ^ 彳 ^ line L4, (four) (four) on the help line of the second diagram is shown in Figure (1) and then, in Figure i. The middle 1 auxiliary '5 /, the part of the value Y is orthogonal to the auxiliary line l4, and T l···························· (Comparative Example 5) Attempts to use a film having a thickness of 5 〇 针 针 舻 杨 杨 杨 杨 杨 为 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 In the same manner as in the first embodiment, the uneven pattern forming sheet (light diffusing body) was not formed, but the uneven pattern forming sheet (light diffusing body) was not obtained. (Comparative Example 6) A heat shrinkable shrink film made of polyethylene terephthalate having a thickness of 50 _ and a Young's modulus of 3 (10) in a uniaxial direction (HISH bribe LX_1〇s manufactured by Mitsubishi Plastics Co., Ltd.) , glass transfer temperature is 7 〇 on one side, by the bar coating method to coat the polydimethyl methoxy hydride with a Young's modulus of 2 Μρ &amp; (Shin-Etsu Chemical Co., Ltd. ks847t, glass transition temperature The dispersion obtained by diluting in toluene with -1201) and a retort medium (Shin-Etsu Chemical Co., Ltd. CAT-PL_5GT) was made into an eagle nm to form a hard layer to obtain a laminated sheet. Secondly, at 100 t The laminated sheet was heated for 1 minute to be heat-shrinked, whereby a concave-convex pattern forming sheet was obtained, but the hard layer could not be deformed by folding. Therefore, the corrugated concave-convex pattern was not formed. By atomic force microscope (Nan〇Sc〇pe, manufactured by veeco Co., Ltd.) '126510.doc • 84- 200912388 The surfaces of Examples 1 to 8 and Comparative Examples 1 to 6 were imaged. Example of the light-diffusing body of the concave-convex pattern forming sheet 1~8 and comparative examples m&amp; The concave-convex pattern forming sheet of Example 4 was used to measure the depth of the 凹凸 如 如 n n n n n n 如 如 如 如 如 如 如 如 , , 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The degree of alignment of the concavo-convex pattern is obtained as follows. First, the surface of the concavo-convex pattern is photographed by a surface optical microscope, and the image is converted into a grayscale document (see Fig. 3). The image is subjected to Fourier transform. Fig. 4 shows an image after Fourier transform, and the person guides the auxiliary line L2 in the horizontal direction from the center of the image of Fig. 4, and draws the brightness on the auxiliary line (see Fig. 5). Thereafter, in FIG. 5, the auxiliary line L3' is orthogonal to the auxiliary line ^ in the portion of the value X (reciprocal of the most frequent pitch) and the luminance on the auxiliary line L3 is drawn (refer to FIG. 6). The degree of alignment of the concavo-convex pattern is obtained from the half-value width w of the peak in the drawing of Fig. 6. The equivalent value is shown in Table 1. Further, according to the most frequent pitch of the concave-convex pattern and the average depth of the bottom, the following Benchmarking 6 parity as the adaptability of light diffusers The evaluation results are shown in Table 1. 〇: The most frequent pitch of the concave-convex pattern exceeds i μη1 and is 20 μm or less, and the average depth is 10% or more when the maximum frequency spacing is 100%, and the alignment degree is 〇·3. ~1.0, suitable as a light diffuser. △. The most frequent pitch of the concave-convex pattern is below or more than 2〇μιη, or the average depth is less than 1〇% when the most frequent spacing is set to 100%, or the alignment is less than 0 _ 3 It may not be suitable as a light diffuser. 126510.doc •85· 200912388 χ: A concave-convex pattern cannot be formed. [Table 1]

凹凸圖案的 平均間距 (μιη) 凹凸圖案之 平均深度 (μιη) 深度/間距 (%) 配向度 評價 實施例1 2 2 100 0.3 〇 實施例2 2 2 100 0.3 〇 實施例3 10 10 100 0.3 〇 實施例4 2 0.4 20 0.3 〇 實施例5 2 2 100 0.3 〇 實施例6 2 2 100 0.3 〇 實施例7 2 2 100 0.3 〇 實施例8 2 2 100 0.3 〇 比較例1 60 60 100 0.3 Δ — 比較例2 0.4 0.4 100 0.3 Δ 比較例3 Γ 2 0.18 9 0.3 Δ 比較例4 5 6 120 0.16 Δ 比較例5 未形成凹凸圖案 X 比較例6 未形成凹凸圖案 X 於使積層片之表面平滑硬質層以摺疊之方式而變形之實 施例1〜8中,可容易製造凹凸圖案形成片。 進而,實施例1〜8之凹凸圖案形成片係凹凸圖案之最頻 間距超過1 μηι且為20 μπι以下、底部之平均深度為將上述 最頻間距设為1 〇〇%時之i 0%以上,故適宜作為光擴散體。 於實施例1〜4中,之所以有獲得如上所述之最頻間距及平 均深度,係由於表面平滑硬質層之厚度超過〇.〇5 μιη且為5 μιη以下’且變形率為丨〇%以上。 又,根據將實施例】中獲得之凹凸圖案形成片(光擴散 體)用作工私片之實施例5〜8之製造方法,可簡便地製造具 有與凹凸圖案形成片(光擴散體)之最頻間距及平均深度相 同之凹凸圖案的光擴散體。 與此相對,於比較例1A2中,由於表面硬質平滑層之厚 126510.doc -86 - 200912388 度為0·05 μηι以下或超過5 μηι,因此所獲得之凹凸圖案形 成片(光擴散體)之凹凸圖案之最頻間距為1 μπι以下或超過 20 μηι ° 又,比較例3中,由於將變形率設為3%,因此所獲得之 凹凸圖案形成片之凹凸圖案之底部的平均深度不足將最頻 間距η又為100 /。時之丨〇%。又,比較例4中配向度不足0.3。 該等比較例1〜4未必適宜作為作光擴散體。 又,於將二軸延伸聚對苯二甲酸乙二酯薄膜用作樹脂層 之比較例5、以及使用有第2樹脂之玻璃轉移溫度低於第1 樹脂的積層片之比較例6之製造方法中,由於表面平滑硬 質層無法以摺疊之方式而變形,因此凹凸圖案並未形成。 下述例中之揚氏模量係使用拉伸測試機(Orientec股份有 限公司製 TENSILON RTC-1210),並根據 JIS Z 2280-1993 之「金屬材料之高溫揚氏模量測試方法」,將溫度變更為 23°C而測定出之值。硬質層由金屬化合物構成之情形亦同 樣。 (實施例9) 於單軸方向熱收縮之厚度為50 μιη且楊氏模量為3 GPa之 聚對笨二甲酸乙二酯製加熱收縮性薄膜(三菱樹脂股份有 限公司製HISHIPET LX-10S)之一面上,真空蒸鍍揚氏模量 為70 GPa之鋁’使其厚度為〇.〇5 μηι,以形成表面平滑硬 質層而獲得積層片。 其次,於10(TC時對該積層片加熱1分鐘’藉此使其熱收 縮為加熱前之長度之4〇%(亦即’使其以60%之變形率而變 126510.doc • 87- 200912388 形)’從而獲得硬質層具有波狀凹凸圖案的凹凸圖案形成 片,該波狀凹凸圖案沿著與收縮方向正交之方向具有週 期0 按如下所述 繼而,將凹凸圖案形成片用作工程片原版 之方式獲得光擴散體。 亦即,於工程片原版之形成有凹凸圖案之面上,塗佈包 含環氧丙烯酸酯系預聚物、丙烯酸_2_乙基己酯及二苯曱酮 系光聚合起始劑的未硬化之紫外線硬化性樹脂組成物。 其後,於未硬化之紫外線硬化性樹脂組成物之塗膜的與 μηι之三乙醯纖維 工程片原版不相接觸之面上,將厚度5〇 素薄膜重疊並按壓。 繼而,自二乙酿纖維素薄膜之上方照射紫外線,使未硬 化之紫外線硬化性樹脂硬化’並自工程片原版±剝離該硬 化物,藉此獲得光擴散體。 (實施例10) 將藉由實施例9之方法所獲得之凹凸圖案形成片用作工 程片原版,按如下所述之方式獲得光擴散體。 亦即,於藉由實施例9所獲得之工程片原版之形成有凹 凸圖案之面上進行鍍鎳處理,其後剝離該鍍鎳,藉此獲得 厚度為200 μιη之二次工程片。於該二次工程片之形成有凹 凸圖案之面上’塗佈包含環氧丙稀酸醋㈣聚物、丙婦 酸-2-乙基以旨及二苯㈣系光聚合起始劑的未硬化之紫外 線硬化性樹脂組成物。 其次,於未硬化之紫外線硬化性樹脂組成物之塗臈的與 126510.doc 88 - 200912388 二次工程片不相接觸之面上,將厚度50 之三乙醢纖維 素薄膜重疊並按壓® 繼而,自三乙醯纖維素薄膜之上方照射紫外線,使未硬 化之硬化性樹脂硬化’並自二次工程片上剝離該硬化物, 藉此獲得光擴散體。 (實施例11) 使用熱硬化性環氧樹脂以取代紫外線硬化性樹脂組成 物’並通過加熱使該熱硬化性環氧樹脂硬化以取代紫外線 照射,除此之外,以與實施例1 〇相同之方式獲得光擴散 體。 (實施例12) 以與實施例10相同之方式’獲得厚度20〇 μιη之二次工程 片。於該二次工程片之形成有凹凸圖案之面上’將厚度為 50 μιη之聚曱基丙烯酸甲酯薄膜重疊並加熱。對經加熱而 軟化之聚曱基丙烯酸甲酯薄膜與二次工程片自其等之兩側 進行按壓,之後使其冷卻·固化,並自二次工程片上剝離 已固化之聚甲基丙烯酸曱酯薄膜,藉此獲得光擴散體。 (比較例7) 真二蒸鑛銘’使其厚度為,除此之外’以與實施 例9相同之方式獲得光擴散體。 (比較例8) 真空蒸鍍鋁,使其厚度為〇 〇丨μηι,除此之外,以與實 施例9相同之方式獲得光擴散體。 (比較例9) 1265l〇.d〇c -89- 200912388 於單軸方向熱收縮之厚度為5G μηι、揚氏模量為3⑽之 聚對苯二甲酸乙二s旨製加熱收縮性薄膜(三菱樹脂股份有 限么司製HISHIPET LX-10S)之-面上,真空蒸鑛楊氏模量 為 GPa之銘,使其厚度為〇_〇5 μηι,以形成表面平滑硬 質層而獲得積層片。 繼而,於70 C時對該積層片加熱i分鐘,使其收縮為加 熱岫之長度之97%(亦即,使其以3%之變形率而變形),除 此之外,以與實施例9相同之方式獲得光擴散體。 藉由原子間力顯微鏡(曰本Veec〇公司製Nan〇Sc〇pe⑴), 對實施例9〜12及比較例7〜9之凹凸圖案形成片之光擴散體 之上表面進行拍攝。 對於實施例9〜12及比較例7〜9之凹凸圖案形成片,於原 子間力顯微鏡之圖像中測定1〇處凹凸圖案之深度,將該等 深度平均而求出平均深度。 又’以如下所述之方式求出凹凸圖案之配向度。 首先’藉由表面光學顯微鏡來拍攝凹凸圖案之上表面, 將該圖像轉換成灰度文檔(參照圖3)。繼而,對灰度文檔之 圖像進行傅立葉轉換。圖4表示傅立葉轉換後之圖像。其 人,自圖4之圖像之中心沿水平方向引輔助線,並對該 輔助線上之亮度進行描繪(參照圖5)。其後,於圖5中,引 輔助線L3 ’其在值χ(最頻間距之倒數)之部分與輔助線q 正父’並對該輔助線L3上之亮度進行描繪(參照圖6)。並 且’根據圖6之描繪中的波峰之半值寬度Wl而求出凹凸圖 案之配向度。 126510.doc 90· 200912388 將該等值顯示於表2。 又’根據凹凸圖案之最頻間距及底部之平均深度,按以 下基準來評價光擴散體之適應性。將該評價結果顯示於表 2 ° 〇·凹凸圖案之最頻間距超過1 μιη且為20 μπι以下,平均 深度為將最頻間距設為100%時之10%以上,配向度為 〇·3〜1·〇,適宜作為光擴散體。 △•凹凸圖案之最頻間距為Ιμιη以下或超過2〇 ,或平 均深度小於將最頻間距設為1 〇〇%時之丨〇%,或者配向度不 足0.3,未必適宜作為光擴散體。 無法形成凹凸圖案Average pitch of the concavo-convex pattern (μιη) Average depth of the concavo-convex pattern (μιη) Depth/pitch (%) Orientation evaluation Example 1 2 2 100 0.3 〇Example 2 2 2 100 0.3 〇Example 3 10 10 100 0.3 〇Implementation Example 4 2 0.4 20 0.3 〇 Example 5 2 2 100 0.3 〇 Example 6 2 2 100 0.3 〇 Example 7 2 2 100 0.3 〇 Example 8 2 2 100 0.3 〇 Comparative Example 1 60 60 100 0.3 Δ - Comparative Example 2 0.4 0.4 100 0.3 Δ Comparative Example 3 Γ 2 0.18 9 0.3 Δ Comparative Example 4 5 6 120 0.16 Δ Comparative Example 5 No uneven pattern X was formed. Comparative Example 6 The uneven pattern X was not formed to smooth the surface of the laminated sheet to be folded. In Examples 1 to 8 which were modified in the same manner, the uneven pattern forming sheet can be easily produced. Further, in the concave-convex pattern forming sheet-like concave-convex patterns of Examples 1 to 8, the most frequent pitch is more than 1 μm and is 20 μm or less, and the average depth of the bottom is i 0% or more when the above-mentioned worst-frequency pitch is 1%%. Therefore, it is suitable as a light diffuser. In Examples 1 to 4, the above-mentioned maximum frequency spacing and average depth were obtained because the thickness of the surface smooth hard layer exceeded 〇.〇5 μηη and was 5 μηη or less and the deformation ratio was 丨〇%. the above. Moreover, according to the manufacturing method of Examples 5 to 8 in which the uneven pattern forming sheet (light diffusing body) obtained in the Example is used as a work sheet, it is possible to easily produce a sheet (light diffusing body) having a pattern formed with the uneven pattern. A light diffuser having a concave-convex pattern having the same frequency spacing and average depth. On the other hand, in Comparative Example 1A2, since the thickness of the surface hard smooth layer is 126510.doc -86 - 200912388 degrees is 0.05 μηι or less or exceeds 5 μm, the obtained concave-convex pattern forming sheet (light diffuser) The most frequent pitch of the concave-convex pattern is 1 μm or less or more than 20 μm. Further, in Comparative Example 3, since the deformation ratio is 3%, the average depth of the bottom of the concave-convex pattern of the obtained concave-convex pattern forming sheet is insufficient. The frequency spacing η is again 100 /. % of time. Further, in Comparative Example 4, the degree of alignment was less than 0.3. These Comparative Examples 1 to 4 are not necessarily suitable as a light diffuser. Further, in Comparative Example 5 in which a biaxially stretched polyethylene terephthalate film was used as a resin layer, and a production method in Comparative Example 6 in which a laminated sheet having a glass transition temperature lower than that of the first resin using the second resin was used In the case, since the smooth surface of the hard layer cannot be deformed by folding, the concave-convex pattern is not formed. The Young's modulus in the following examples is a tensile tester (TENSILON RTC-1210 manufactured by Orientec Co., Ltd.), and the temperature is measured according to JIS Z 2280-1993 "High Temperature Young's Modulus Test Method for Metallic Materials". Changed to 23 ° C and measured. The same applies to the case where the hard layer is composed of a metal compound. (Example 9) A heat-shrinkable film made of polyethylene terephthalate having a thickness of 50 μm in a uniaxial direction and a Young's modulus of 3 GPa (HISHIPET LX-10S manufactured by Mitsubishi Plastics Co., Ltd.) On one side, aluminum having a Young's modulus of 70 GPa was vacuum-deposited to have a thickness of 〇.〇5 μηι to form a smooth hard surface layer to obtain a laminated sheet. Next, the laminated sheet is heated at 10 °C for 1 minute to heat shrink it to 4% by weight of the length before heating (that is, 'make it change at a deformation rate of 60% 126510.doc • 87- 200912388]) to obtain a concave-convex pattern forming sheet having a corrugated concave-convex pattern having a corrugated concave-convex pattern having a period 0 in a direction orthogonal to the contraction direction, as follows, and using the concave-convex pattern forming sheet as an engineering A light diffuser is obtained in the form of a sheet original, that is, an epoxy acrylate-based prepolymer, 2-ethylhexyl acrylate and dibenzophenone are coated on the surface of the original sheet on which the concave-convex pattern is formed. An uncured ultraviolet curable resin composition of a photopolymerization initiator. Thereafter, the coating film of the uncured ultraviolet curable resin composition is not in contact with the original sheet of the μηι-triethylene fiber engineering sheet. And superimposing and pressing the film of the thickness of the bismuth film. Then, ultraviolet rays are irradiated from the upper surface of the second cellulose film to harden the uncured ultraviolet curable resin, and the cured product is obtained by peeling off the cured product from the original sheet of the engineering sheet. (Embodiment 10) The concave-convex pattern forming sheet obtained by the method of Example 9 was used as an original of an engineering sheet, and a light diffusing body was obtained in the following manner. That is, by the embodiment 9 The surface of the obtained original sheet of the obtained engineering sheet is subjected to nickel plating treatment, and then the nickel plating is peeled off, thereby obtaining a secondary engineering sheet having a thickness of 200 μm. The secondary engineering sheet is formed with a concave-convex pattern. The surface is coated with an uncured ultraviolet curable resin composition comprising a propylene glycol acrylate (tetra) acrylate, a propyl benzoate-2-ethyl group, and a diphenyl (tetra) photopolymerization initiator. The unhardened ultraviolet curable resin composition is coated on the surface which is not in contact with the secondary work piece of 126510.doc 88 - 200912388, and the thickness of the triacetone cellulose film of 50 is superimposed and pressed, and then, from the third The ultraviolet ray is irradiated on the ruthenium cellulose film to harden the uncured curable resin, and the cured product is peeled off from the secondary work piece, thereby obtaining a light diffuser. (Example 11) A thermosetting epoxy resin is used instead. UV hardening The light diffuser was obtained in the same manner as in Example 1 except that the thermosetting epoxy resin was cured by heating to replace the ultraviolet irradiation. (Example 12) In the same manner, a secondary work piece having a thickness of 20 μm was obtained. On the surface of the secondary work piece on which the concave-convex pattern was formed, a polymethyl methacrylate film having a thickness of 50 μm was superposed and heated. The softened polymethyl methacrylate film and the secondary engineering sheet are pressed from both sides thereof, and then cooled and solidified, and the cured polymethyl methacrylate film is peeled off from the secondary engineering sheet. This obtained a light-diffusing body. (Comparative Example 7) A light diffuser was obtained in the same manner as in Example 9 except that the thickness was changed to the same. (Comparative Example 8) A light diffuser was obtained in the same manner as in Example 9 except that aluminum was vacuum-deposited to have a thickness of 〇 〇丨μηι. (Comparative Example 9) 1265l〇.d〇c -89- 200912388 A heat-shrinkable film (Mitsubishi) made of polyethylene terephthalate having a thickness of 5 G μηι in a uniaxial direction and a thickness of 3 (10) in Young's modulus On the surface of HISHIPET LX-10S, the resin is limited, the Young's modulus of vacuum distillation is GPa, and its thickness is 〇_〇5 μηι to form a smooth hard layer to obtain a laminate. Then, the laminated sheet was heated at 70 C for 1 minute to shrink to 97% of the length of the heated crucible (that is, deformed by a deformation ratio of 3%), and in addition, 9 A light diffuser is obtained in the same manner. The upper surface of the light-diffusing body of the concave-convex pattern-forming sheets of Examples 9 to 12 and Comparative Examples 7 to 9 was imaged by an atomic force microscope (Nan〇Sc〇pe (1) manufactured by Philippine Veec Co., Ltd.). With respect to the concavo-convex pattern forming sheets of Examples 9 to 12 and Comparative Examples 7 to 9, the depth of the concavo-convex pattern at 1 〇 was measured in an image of an atomic force microscope, and the depths were averaged to obtain an average depth. Further, the degree of alignment of the concavo-convex pattern was determined in the following manner. First, the surface of the concave-convex pattern is photographed by a surface optical microscope, and the image is converted into a grayscale document (refer to Fig. 3). Then, Fourier transform is performed on the image of the grayscale document. Figure 4 shows the image after Fourier transform. The person guides the auxiliary line in the horizontal direction from the center of the image of Fig. 4, and draws the brightness on the auxiliary line (refer to Fig. 5). Thereafter, in Fig. 5, the auxiliary line L3' is drawn in the portion of the value χ (the reciprocal of the most frequent pitch) and the auxiliary line q is the parent's and the luminance on the auxiliary line L3 is drawn (see Fig. 6). Further, the degree of alignment of the uneven pattern is obtained from the half value width W1 of the peak in the drawing of Fig. 6. 126510.doc 90· 200912388 The equivalent values are shown in Table 2. Further, the adaptability of the light diffuser was evaluated based on the following pitch based on the most frequent pitch of the concave-convex pattern and the average depth of the bottom. The evaluation result is shown in Table 2 ° The 最·bump pattern has a most frequent pitch of more than 1 μηη and is 20 μπι or less, and the average depth is 10% or more when the most frequent pitch is 100%, and the alignment degree is 〇·3~ 1. 〇, suitable as a light diffuser. △• The most frequent spacing of the embossed pattern is Ιμιη or less, or the average depth is less than 丨〇% when the MF spacing is set to 1 〇〇%, or the alignment is less than 0.3, which is not necessarily suitable as a light diffuser. Unable to form a bump pattern

:之凹凸圖案形成片用作工程片原版之實施例Μ中,可 容易製造具有凹凸圖案之光擴散體。尤其對於實施例9〜12 中獲得之光擴散體而言’凹凸圖案的最頻間距超過…且 為2〇 _以下,底部之平均深度為將上述最頻間距設為 100/。時之1G%以上,故適宜作為光擴散體。於實施例卜 中’之所以有獲得如上所述之最_距及平均深度,係由 126510.doc -91 · 200912388 於表面平滑硬質層之厚度超過0.01 pm且為0.2 μιη以下,且 變形率為10%以上。 與此相對,於比較例7及8中,由於表面硬質平滑層之厚 又為0.01 μιη以下或超過〇 2 μιη,因此所獲 凹凸圖案之最頻間距為…以下或超義_。又廣:二 J 9中由於將變形率設為3%,因此所獲得之光擴散體之 凹凸圖案之底部的平均深度不足將最頻間距設為100%時 之10%。又’比較例10中配向度不足〇3。該等比較例未必 適且作為光擴散體。 (實施例13) 於單軸方向熱收縮之厚度為50 μη1、楊氏模量為3 聚對苯二甲酸乙二s旨製加熱收縮性薄膜(三菱樹脂股份 限公司製HISHIPET LX-60S,玻璃轉移溫度為7(rc )之一 ! 上,藉由凹板印刷機(松尾產業股份有限公司製K printh ΡΓ〇&lt;^Γ),將於甲苯中稀釋的聚苯乙烯(POLYME SOURCE股份有限公司製PS,玻璃轉移溫度為⑽。C⑴ 成直徑為50叫、厚度為之點狀,以獲得印刷片。 點之圖案係如下所述之灰度圖案,亦即,於寬5⑽叫 1〇⑽之範圍内’自其長度方向之-端朝向另-端,點a 積比例於0〜1〇〇%之範圍内每1 cm增加10%β再者,點面系 比例0%表示完全未印刷,1〇〇%表示全面印刷。 繼而,於時對該印刷片加熱i分鐘,藉此使盆_ 縮為加熱前之長度之40%(亦即,使其以6〇%之變形率而變 形)。於8rc時,聚苯乙稀之揚氏模量〇叫高於聚㈣ 126510.doc -92- 200912388 '一甲酸乙一醋製加敎收縮科巷摇 膜之揚氏模量(50 MPa)。因 此於’,,、收縮時,點以摺疊之方十而繳# , $ &lt;万式而變形,從而形成沿荖 與收縮方向正交之方向而且亡、a 心成’口者 之方向而具有週期之波狀凹凸圖案。藉 此’獲得於平坦之—面上彡 ^ 面上形成有凹凸區域之凹凸圖案形成 h 0 3亥凹凸圖案形成片之 片凹凸£域之凹凸圖案的最頻間距為 5 μηι,縱橫比為!,配向度為〇.3。 檢查所獲得之凹凸圖案形成片之光擴散性後得知,相較 於與收縮方向垂直之方向,與收縮方向平行之方向上且有 更強的使光擴散之異向擴散性。又,光擴散性沿著凹凸區 域之面積比例變大之方向而逐漸增加。如此之實施例&quot;之 凹凸圖案形成片係可用作光擴散片者。 (實施例14) 使用於二軸方向上加熱收縮之厚度為25 、楊氏模量 為3 GPa之聚對苯二甲酸乙二g旨收縮薄膜(三菱樹脂股份有 限公司製HISHIPET PX_4GS),以取代三菱樹脂股份有限公 司製HISHIPET LX-60S ’除此之外,以與實施例13相同之 方式獲得凹凸圖案形成片。於該凹凸圖案形成片之一面 上’形成有並未沿著特定方向之波狀凹凸圖案。 該凹凸圖案形成片之凹凸區域之凹凸圖案的最頻間距為 5 μιη,縱橫比為1。 檢查實施例14之凹凸圖案形成片之光學特性後得知,其 具有等向光擴散性。因此,實施例14之凹凸圖案形成片係 可用作光擴散片者。 I26510.doc •93- 200912388 (實施例15) 藉由喷墨印表機(FUJI FILM股份有限公司Dimatix Μ_^ΡΓίΐ^Γ〇ΜΡ_2831)來印刷點,除此之外,以與實 施例13相同之方式獲得凹凸圖案形成片。該凹凸圖案形成 片之凹凸區域之凹凸圖案的最頻間距為5 μΐη,縱橫比為 1 ’配向度為0.3。 檢查所獲得之凹凸圖案形成片之光學特性後可知,其具 有與實施例13相同之異向擴散性。因此,實施例15之凹凸 圖案形成片係可用作光擴散片者。 (實施例16 ) 將藉由實施例13之方法所獲得之凹凸圖案形成片用作工 程片原版,按如下所述之方式獲得光擴散片。 亦即,於藉由實施例13所獲得之工程片原版之形成有凹 凸圖案之面上,塗佈包含環氧丙烯酸酯系預聚物、丙烯 乙基己酯及二苯甲酮系光聚合起始劑的未硬化之紫外 線硬化性樹脂組成物。 繼而,於未硬化之紫外線硬化性樹脂組成物之塗膜的與 工程片原版不相接觸之面上,將厚度為5〇 μιη之三乙醯纖 維素薄膜重疊並按壓。 其次,自三乙醯纖維素薄膜之上方照射紫外線,使未硬 化之紫外線硬化性樹脂硬化,並自工程片原版上剝離該硬 化物’藉此獲得光擴散片。 所獲得之光擴散片具有與實施例13之光擴散片相同之凹 凸區域,係具有相同之光擴散性。 126510.doc •94- 200912388 (實施例17) 將藉由實把例13之方法所獲得之凹凸圖案形成片用作工 程片原版,按如下所述之方式獲得㈣散片。 亦即,於藉由實施例13所獲得之工程片原版的形成有凹 凸圖案之面上進行鍍鎳處理,其後剝離該鍍鎳,藉此獲得 厚度為2G0 μπ^_次工程片。於該二次工程片之形成有凹 凸圖案之面上,塗佈包含環氧丙烯酸酯系預聚物、丙烯 酸乙基己酯及二苯甲_系光聚合起始劑的未硬化之紫外 線硬化性樹脂組成物。 繼而於未硬化之紫外線硬化性樹脂組成物之塗膜的與 二次工程片不相接觸之面上,將厚度為5〇 pm之三乙醯纖 維素薄膜重疊並按壓。 繼而,自三乙醯纖維素薄膜之上方照射紫外線,使未硬 化之硬化性樹脂硬化,並自二次工程片上剝離該硬化物, 藉此獲得光擴散片。 所獲得之光擴散片具有與實施例13之光擴散片相同之凹 凸區域,且具有相同之光擴散性。 (實施例18) 使用熱硬化性環氧樹脂以取代紫外線硬化性樹脂組成 物’並通過加熱使該熱硬化性環氧樹脂硬化以取代紫外線 照射’除此之外’以與實施例丨7相同之方式獲得光擴散 片。 所獲得之光擴散片具有與實施例13之光擴散片相同之凹 凸區域,且具有相同之光擴散性。 126510.doc •95- 200912388 (實施例19) 以與實施例17相同之方式,獲得厚度為2〇〇 μηΐ2二次工 程片。於該二次工程片之形成有凹凸圖案之面上,將厚度 為50 μΐηΐ聚甲基丙烯酸甲酯薄膜重疊並加熱。對經加熱 而軟化之聚甲基丙烯酸曱酯薄膜與二次工程片自該等之 兩侧進行按壓,之後使其冷卻·固化,並自二次工程片上 剝離已固化之聚曱基丙烯酸甲酯薄膜,藉此獲得光擴散 片。 所獲得之光擴散片具有與實施例13之光擴散片相同之凹 凸區域’且具有相同之光擴散性。 (實施例20) 又於單軸方向熱收縮之厚度為5G _且揚氏模量為3邮之 聚對本一甲酸乙二酯製加熱收縮性薄膜(三菱樹脂股份有 限公司製刪贿LX_1〇s,玻㈣溫度為听)之一 面’載置形成有大量點狀之開口部(孔徑5。㈣之遮罩。 ,Γ i 遮草之開口部之圖案係如下所述之灰度圖案,即 j5⑽X長度1G⑽之範圍内,自其長度方向之—端朝向另 全面開σ Μ積比例。%表示未開口,表示 下、將t罩載置於加熱收縮性薄膜之-面之狀態 ”二瘵鍍揚氏模量為7〇 GPa之鋁,使盆 ,,以獲得蒸鑛片。 厚度為〇.〇5 、於加熱收縮性薄膜之_面形成銘點。該點之圖案 126510.doc -96- 200912388 cmx長度10 cm之範 一端’開口部面積比例 % °再者,點面積比例 係如下所述之灰度圖案,即:於寬度5 圍内,自其長度方向之一端朝向另一》 於0〜100%之範圍内每1 cm增加1 〇%。 0%表示完全未蒸鍍,100%表示全面蒸鑛。 繼而’於loot時對該蒸鍵片加熱i分鐘,藉此使其熱收 縮為加熱前之長度之40%(即,使其以變形率60%變形)。 於熱收縮時…摺疊之方式變形,從而形成沿著與收縮 方向正交之方向而具有週期之波狀凹凸圖帛。藉此,獲得 於一面形成有凹凸區域之凹凸圖案形成片。 該凹凸圖案形成片之凹凸區域之凹凸圖案之最頻間距為 3 μιη ’縱橫比為1,配向度為〇.3。 繼而’將所獲得之凹凸圖案形成片用作工程片原版,按 如下所述之方式獲得光擴散片。 即,於工程片原版之形成有凹凸圖案之面上 之面上,塗佈包含In the embodiment in which the concave-convex pattern forming sheet is used as the original sheet of the engineering sheet, the light diffusing body having the concave-convex pattern can be easily produced. In particular, in the light diffusing bodies obtained in Examples 9 to 12, the most frequent pitch of the concave-convex pattern exceeds ... and is 2 Å or less, and the average depth of the bottom is set to 100/. When it is 1 G% or more, it is suitable as a light diffuser. In the embodiment, the reason why the maximum _ distance and the average depth as described above is obtained is 126510.doc -91 · 200912388. The thickness of the surface smooth hard layer exceeds 0.01 pm and is less than 0.2 μηη, and the deformation ratio is More than 10%. On the other hand, in Comparative Examples 7 and 8, since the thickness of the surface hard smoothing layer was 0.01 μm or less or more than 〇 2 μm, the maximum pitch of the obtained concavo-convex pattern was ... or less. Further, in the case of J 9 , since the deformation ratio is set to 3%, the average depth of the bottom portion of the concave-convex pattern of the obtained light-diffusing body is less than 10% when the maximum-frequency pitch is 100%. Further, in Comparative Example 10, the degree of alignment was less than 〇3. These comparative examples are not necessarily suitable as light diffusers. (Example 13) The heat shrinkable film in the uniaxial direction was 50 μη1, and the Young's modulus was 3 polyethylene terephthalate. The heat shrinkable film (HISHIPET LX-60S, glass manufactured by Mitsubishi Plastics Co., Ltd., glass) The transfer temperature is one of 7 (rc)! Polystyrene (POLYME SOURCE Co., Ltd.) diluted in toluene by a gravure printing machine (K printh ΡΓ〇&lt;^Γ) manufactured by Matsuo Co., Ltd. For PS, the glass transition temperature is (10). C(1) has a diameter of 50 and a thickness of dots to obtain a printed sheet. The pattern of dots is a gray scale pattern as described below, that is, a width of 5 (10) is called 1 〇 (10). Within the range from the end of the length direction to the other end, the point a product ratio is increased by 10% β per 1 cm in the range of 0 to 1%, and the point ratio of 0% means that it is completely unprinted. 1% indicates full printing. Then, the printed sheet is heated for 1 minute, thereby shrinking the pot to 40% of the length before heating (that is, deforming it by a deformation rate of 6〇%) At 8rc, the Young's modulus of polystyrene is higher than that of poly(four) 126510.doc -92- 200912388 '1 carboxylic acid ethyl vinegar The twisted modulus of the film of the shrinking film is 50 MPa. Therefore, when it is shrinking, the point is folded by the square ten, and the shape is deformed to form the entanglement and shrinkage. The direction in which the directions are orthogonal to each other and the a heart is in the direction of the mouth, and has a periodic wavy concave-convex pattern. Thus, the concave-convex pattern formed on the flat surface of the flat surface is formed with a concave-convex pattern to form h 0 3 The maximum pitch of the concave-convex pattern of the concave-convex pattern forming sheet is 5 μηι, the aspect ratio is !, and the alignment degree is 〇.3. After checking the obtained light-diffusing property of the concave-convex pattern forming sheet, the phase is known. In the direction perpendicular to the contraction direction, the direction of the direction parallel to the contraction direction is stronger and the diffuse diffusion of the light is more strongly diffused. Further, the light diffusibility gradually increases along the direction in which the area ratio of the uneven region becomes larger. The concave-convex pattern forming sheet of such an embodiment can be used as a light diffusing sheet. (Example 14) Polyphenylene terephthalate having a thickness of 25 in a biaxial direction and a Young's modulus of 3 GPa Formic acid ethyl ethane g-shrink film (Mitsubishi resin shares A embossed pattern-forming sheet was obtained in the same manner as in Example 13 except that HISHIPET PX_4GS was manufactured by the company, and HISHIPET LX-60S was manufactured in the same manner as in Example 13. There is a corrugated concavo-convex pattern that does not follow a specific direction. The concavo-convex pattern of the concavo-convex pattern forming sheet has a most frequent pitch of 5 μm and an aspect ratio of 1. After examining the optical characteristics of the concavo-convex pattern forming sheet of Example 14 It is known that it has an isotropic light diffusibility. Therefore, the uneven pattern forming sheet of Example 14 can be used as a light diffusing sheet. I26510.doc •93- 200912388 (Embodiment 15) The printing point is printed by an inkjet printer (FUJI FILM Co., Ltd. Dimatix Μ ΡΓ ΡΓ ΐ Γ〇ΜΡ 831 831 831 831), except for the same as in the thirteenth embodiment. The obtained concave-convex pattern forming sheet was obtained. The concave-convex pattern of the uneven pattern of the concave-convex pattern forming sheet has a most frequent pitch of 5 μΐη and an aspect ratio of 1 ′ of an orientation of 0.3. The optical characteristics of the obtained concavo-convex pattern forming sheet were examined, and it was found to have the same anisotropic diffusing property as in Example 13. Therefore, the uneven pattern forming sheet of Example 15 can be used as a light diffusing sheet. (Example 16) A concavo-convex pattern-forming sheet obtained by the method of Example 13 was used as a sheet original, and a light-diffusing sheet was obtained in the following manner. That is, the surface on which the uneven pattern was formed on the original sheet of the engineering sheet obtained in Example 13 was coated with an epoxy acrylate-based prepolymer, propylene ethylhexyl ester, and benzophenone-based photopolymerization. An uncured ultraviolet curable resin composition of a starting agent. Then, on the surface of the coating film of the uncured ultraviolet curable resin composition which is not in contact with the original sheet of the engineering sheet, a film of a thickness of 5 Å μηη is laminated and pressed. Next, ultraviolet rays are irradiated from the top of the triacetone cellulose film to harden the unhardened ultraviolet curable resin, and the hardened article is peeled off from the original sheet of the engineering sheet to thereby obtain a light-diffusing sheet. The obtained light-diffusing sheet had the same concave-convex regions as those of the light-diffusing sheet of Example 13, and had the same light diffusibility. 126510.doc • 94- 200912388 (Embodiment 17) A concavo-convex pattern forming sheet obtained by the method of Example 13 was used as the original sheet of the work piece, and (4) pieces were obtained in the following manner. Namely, a nickel plating treatment was performed on the surface on which the concave-convex pattern of the original sheet obtained in Example 13 was formed, and then the nickel plating was peeled off, whereby a thickness of 2 G0 μπ^_ engineering sheets was obtained. Applying an uncured ultraviolet curable property containing an epoxy acrylate prepolymer, ethyl hexyl acrylate, and a diphenyl-based photopolymerization initiator to the surface on which the uneven pattern is formed on the secondary work piece Resin composition. Then, on the surface of the coating film of the uncured ultraviolet curable resin composition which was not in contact with the secondary engineering sheet, a film of triethylene fluorene cellulose having a thickness of 5 pm was superposed and pressed. Then, ultraviolet rays were irradiated from the upper surface of the triacetone cellulose film to harden the hardened curable resin, and the cured product was peeled off from the secondary work piece, whereby a light-diffusing sheet was obtained. The obtained light-diffusing sheet had the same concave-convex regions as those of the light-diffusing sheet of Example 13, and had the same light diffusibility. (Example 18) The thermosetting epoxy resin was used in place of the ultraviolet curable resin composition ', and the thermosetting epoxy resin was cured by heating to replace the ultraviolet irradiation 'other than' in the same manner as in Example 丨7. The light diffusing sheet is obtained in the same manner. The obtained light-diffusing sheet had the same concave-convex regions as those of the light-diffusing sheet of Example 13, and had the same light diffusibility. 126510.doc • 95-200912388 (Embodiment 19) In the same manner as in Example 17, a secondary work piece having a thickness of 2 〇〇 μηΐ2 was obtained. On the surface of the secondary work piece on which the uneven pattern was formed, a 50 μm thick polymethyl methacrylate film was superposed and heated. The heated and softened polymethyl methacrylate film and the secondary engineering sheet are pressed from both sides, and then cooled and solidified, and the cured polymethyl methacrylate is peeled off from the secondary engineering sheet. A film is thereby obtained as a light diffusion sheet. The obtained light-diffusing sheet had the same concave-convex region as that of the light-diffusing sheet of Example 13, and had the same light diffusibility. (Example 20) The thickness of the heat shrinkage in the uniaxial direction was 5 G _ and the Young's modulus was a heat-shrinkable film made of polyethylene terephthalate (Mitsubishi Resin Co., Ltd.) , glass (4) temperature is one of the faces of the listener. A large number of dot-shaped openings (apertures of aperture 5. (4) are placed. Γ i The pattern of the opening of the grass is the gray pattern as described below, ie j5(10)X In the range of length 1G (10), the σ accumulation ratio is opened from the end of the length direction toward the other end. % means that the opening is not open, indicating that the t cover is placed on the surface of the heat shrinkable film. The modulus of the aluminum is 7〇GPa, and the pot is made to obtain the steamed ore. The thickness is 〇.〇5, which forms the inscription on the surface of the heat-shrinkable film. The pattern of the point is 126510.doc -96- 200912388 Cmx length 10 cm of the end of the end of the opening area ratio % ° Again, the point area ratio is the gray pattern as described below, that is: within the width of 5, from one end of its length to the other" 0~ 1% increase per 1 cm in the range of 100%. 0% means no evaporation at all, 100% means full steaming Then, the steamed sheet is heated for 1 minute at the time of loot, whereby it is heat-shrinked to 40% of the length before heating (that is, it is deformed by a deformation rate of 60%). During heat shrinking, the manner of folding The deformation forms a corrugated pattern having a period along a direction orthogonal to the contraction direction. Thereby, a concave-convex pattern forming sheet having irregularities formed on one surface is obtained. The concave-convex pattern forms a concave-convex pattern of the uneven portion of the sheet. The most frequent spacing is 3 μιη 'the aspect ratio is 1, and the alignment degree is 〇.3. Then, the obtained concave-convex pattern forming sheet is used as the original of the engineering sheet, and the light-diffusing sheet is obtained as follows. The surface of the original sheet on which the concave-convex pattern is formed on the surface of the original sheet, and the coating includes

維素薄膜,並進行按壓。The vitamin film is pressed and pressed.

化物,藉此獲得光擴散片。Thereby, a light diffusing sheet is obtained.

例13相同之異向擴散性。 126510.doc -97- 200912388 (實施例21) 使用於二轴方向上加熱收縮之厚度為25 μηι且楊氏模量 為3 GPa之聚對苯二甲酸乙二酯收縮薄膜(三菱樹脂股份有 限公司製HISHIPET PX_4〇S),以取代三菱樹脂股份有限公 司製HISHIPET LX-60S,除此之外,以與實施例2〇相同之 方式獲得凹凸圖案形成片。該凹凸圖案形成片之凹凸區域 之凹凸圖案之最頻間距為3 μπι,縱橫比為1。 繼而,使用該凹凸圖案形成片,以與實施例2〇相同之方 式獲得光擴散片。檢驗實施例2 1之光擴散片之光學特性得 知’其具有等向之光擴散性。 (實施例22) 將藉由實施例20之方法所獲得之凹凸圖案形成片用作工 程片原版’按如下所述之方式獲得光擴散片。 即,於藉由實施例20所獲得之工程片原版之形成有凹凸 圖案之面上進行錢鎳處理,其後剝離該鍵鎳,藉此獲得厚 度200 μπι之二次工程片。於該二次工程片之形成有凹凸圖 案之面上,塗佈包含環氧丙烯酸酯系預聚物、丙烯酸_2_乙 基己酯及二苯甲酮系光聚合起始劑的未硬化之紫外線硬化 性樹脂組成物。 繼而,於未硬化之紫外線硬化性樹脂組成物之塗膜之與 二次工程片不相接觸之面上,重疊厚度5〇 之三乙醯纖 維素薄膜,並進行按壓。 繼而,自三乙醯纖維素薄膜之上方照射紫外線,使未硬 化之硬化性樹脂硬化’ ϋ自二次工程片剝離該硬化物,藉 126510.doc •98- 200912388 此獲得光擴散片。 所獲得之光擴散片具有與實施例20之光擴散片相同之凹 凸區域’且具有相同之光擴散性。 (實施例23) 使用熱硬化性環氧樹脂以取代紫外線硬化性樹脂組成 物,並通過加熱使該熱硬化性環氧樹脂硬化以取代紫外線 照射,除此之外,以與實施例22相同之方式獲得光擴散 片。 “ 所獲知·之光擴散片具有與實施例2〇之光擴散片相同之凹 凸區域’且具有相同之光擴散性。 (實施例24) 以與實施例22相同之方式,獲得厚度2〇〇 μηι之二次工程 片。於該二次工程片之形成有凹凸圖案之面上,重疊厚度 5〇 μηι之聚甲基丙烯酸甲酯薄膜,並進行加熱。自該等之 兩側按壓經加熱而軟化之聚甲基丙烯酸甲酯薄膜與二次工 紅片之後’使其冷卻’化’自二次工程片剝離已固化之 聚曱基丙烯酸曱酯薄膜,藉此獲得光擴散片。 所獲得之光擴散片具有與實施例2〇之光擴散片相同之凹 凸區域’且具有相同之光擴散性。 於一面上混合存在有凹凸區域之實施例13〜24之光學片 中,藉由凹&amp;區域之凹凸圖案而使光擴散,因此光擴散性 優異。又,上述光學片中,凹凸區域於長度方向之另一端側 配置得較密’因此於長度方向之另—端側光擴散性較高。 下述例中之楊氏模量係使用拉伸測試機(丁^“『產業公司 126510.doc -99- 200912388 製ΤΕ-7〇01),並根據JIS κ 7113_1995而測定出之值。當未 特別記載溫度時,則為23〇c時之值。 * (實施例25) 只於單軸方向熱收縮之厚度為5〇叫、揚氏模4為3⑽之 聚對苯二甲酸乙二醋收縮薄膜(三菱樹脂股份有限公司製 HISHIPET LX-60S,玻璃轉移溫度為^。㈠之一面上,藉由 旋轉塗佈法而塗佈於甲苯中稀釋的聚甲基丙歸酸甲3酉旨 (POLYMER SOURCE股份有限公司製p4831-MMA,玻璃轉 移溫度為100。〇’使其厚度為12 nm,以形成硬質層而獲 得積層片。 繼而’於峨時對該積層片加^分鐘,藉此使其熱收 縮為加熱前之長度之40%(亦即,使其以6〇%之變形率而變 形),從而獲得硬質層具有波狀凹凸圖案的凹凸圖案形成 片,上述波狀凹凸圖案沿著與收縮方向正交之方向具有週 期。 再者’聚對苯二甲酸乙二g旨收縮薄膜及該聚甲基丙稀酸 曱酯於80°C時的揚氏模量分別為5〇 MPa、1 GPa。 (實施例26) 於單軸方向熱收縮之厚度為50降、楊氏模量為3肌之 聚對苯二曱酸乙二酿收縮薄膜(三菱樹脂股份有限公司製 HISHIPET LX-61S,玻璃轉移溫度為7(rc)之—面上,塗佈 於水中稀釋的聚乙烯醇(KURARay股份有限公司製 12 nm,以形成 PVA105 ’玻璃轉移溫度85°C),使其厚度為 硬質層而獲得積層片。 126510.doc •100- 200912388 繼而於75 c時對該積層片加熱1分鐘,藉此使其熱收 '、:、、、…月b之長度之50%(亦即,使其以5〇%之變形率而變 形)’從而獲得硬質層具有波狀凹凸圖案之凹凸圖案形成 片’上述波狀凹凸圖案沿著與收縮方向正交之方向具有週 期。 再者聚對苯一甲酸乙二酉旨收縮薄膜及該聚乙稀醇於 75 C時的揚氏模量分別為5〇 Μρ&amp;、1 。 (實施例27) 又於^軸方向熱收縮之厚度為5〇 μηι、揚氏模量為3奶之 聚對本—甲酸乙二酯收縮薄膜(三菱樹脂股份有限公司製 HISHIPET LX-61S,玻璃轉移溫度為7〇。〇之一面上蒸鑛 並固化氟樹脂(Tandk股份有限公司製NAN〇s Β),使其厚 度為12 μΐη,以形成硬質層而獲得積層片。 ‘而於7 5 C時對該積層片加熱j分鐘,藉此使其熱收 縮為加熱前之長度之50%(亦即,使其以5〇%之變形率而變 形)k而獲得硬質層具有波狀凹凸圖案的凹凸圖案形成 片,上述波狀凹凸圖案沿著與收縮方向正交之方向而具有 週期。 (實施例28) 將由揚氏模量為2 MPa之由聚二甲基矽氧烷構成的厚度5 職之片,藉由拉伸裝置而拉伸至兩倍長度,於該狀態下 將其固疋。其次’於該狀態下,於該片之一面上,塗佈於 甲苯_稀釋之聚曱基丙烯酸甲酯(POLYMER SOURCE股份 有限公司製P483 1-MMA,玻璃轉移溫度為100〇,使其厚 126510.doc -101 · 200912388 度為12 nm,以形成硬質層而獲得積層片。 繼而’停止拉伸,使該積層片恢復至拉伸前之長度,藉 此使硬質層以50%之變形率而壓縮,以獲得硬質層具有波 狀凹凸圖案之凹凸圖案形成片,上述波狀凹凸圖案沿著與 收縮方向正交之方向而具有週期。 (實施例29) 於由揚氏模量為2 MPa之由聚二甲基矽氧烷構成的厚度5 mm之片之一面上,塗佈於甲苯中稀釋之聚甲基丙烯酸甲 酯(POLYMER SOURCE股份有限公司製P4831-MMA,玻璃 轉移溫度為1 〇(TC),使其厚度為丨2 nm,以形成硬質層而 獲得積層片。 繼而’藉由拉伸裝置將積層片拉伸至五倍長度,藉此使 拉伸方向之法線方向之長度收縮5〇%(亦即,使其以5〇%之 變形率而變形),從而獲得硬質層具有波狀凹凸圖案之凹 凸圖案形成片,上述波狀凹凸圖案沿著拉伸方向而具有週 期。 (比較例10) 以使厚度為60 nm之方式塗佈聚甲基丙烯酸曱酯,除此 之外以與實施例25相同之方式獲得凹凸圖案形成片。 (比較例11) 嘗試使用厚度為5G μιη、楊氏模量為5抓之二轴延伸聚 對苯二甲酸乙二醋薄臈(帝人股份有限公司製G2)以取代收 縮薄膜&amp;此之外’以與實施例25相同之方式獲得凹凸圖 案工程用片。然而,並未形成有波狀之凹凸圖帛,故並未 126510.doc •102- 200912388 獲得凹凸圖案工程用片。 (比較例12) 於單軸方向熱收縮之厚度為5〇 μιη、楊氏模量為3 ^卜之 聚對苯二甲酸乙二酯收縮薄膜(三菱樹脂股份有限公司製 HISHIPET LX-10S)之一面±,塗佈於甲苯中稀釋之聚甲基 丙烯酸甲酯(POLYMER S0URCE股份有限公司製p483i_ ΜΜΑ,玻璃轉移溫度為1〇〇。〇,使其厚度為i2 以形 成表面平滑硬質層而獲得積層片。 繼而,於7(TC時對該積層片加熱!分鐘,使其收縮為加 熱前之長度之97〇/。(亦即,使其以3%之變形率而變形),從 而獲得凹凸圖案工程用片,除此之外,以與實施例^相同 之方式獲得凹凸圖案形成片。 (比較例13) 於料方向熱收縮之厚度為5〇_、楊氏模量為3咖之 聚對苯二甲酸乙二酿收縮薄膜(三菱樹脂股份有限公司製 m_ET LX_10S,破璃轉移溫度為7〇。㈠之一面上,藉由 旋轉塗佈法塗佈將楊氏模量為2肌之聚二甲基石夕氧院曰 越化于工業股份有限公司KS847T,玻壤轉移溫度為_1抓) 及翻觸媒(信越化學1業股份有限公司⑴)稀釋於甲苯中 :::分散液’使其厚度為12 nm,以形成硬質層而獲得 槓層片。 拉繼而,於戰時對該積層片加熱1分鐘,使其熱收縮, 藉此欲獲得凹凸圖案形成片,但因無法使硬質層蛇行變 形,故波狀之凹凸圖案並未形成。 I26510.doc -103- 200912388 (實施例30) 將藉由實施例25所獲得之凹凸圖案形成片用作工程片, 按如下所述之方式獲得光學元件。 亦即,於藉由實施例25所獲得之工程片的形成有凹凸圖 案之面上,塗佈包含環氧丙烯酸酯系預聚物、丙烯酸·2_乙 基己酯及二苯甲酮系光聚合起始劑的未硬化之紫外線硬化 性樹脂組成物。 繼而,於未硬化之紫外線硬化性樹脂組成物之塗膜的與 工程片不相接觸之面上,將厚度50 μηι之三乙醯纖維素薄 膜重疊並按壓。 其次,自三乙醯纖維素薄膜之上方照射紫外線,使未硬 化之紫外線硬化性樹脂組成物硬化,並自工程片上剝離該 硬化物,藉此獲得光學元件。 (實施例31) 將藉由實施例25所獲得之凹凸圖案形成片用作工程片, 按如下所述之方式獲得光學元件。 亦即,於藉由實施例25所獲得之工程片的形成有凹凸圖 案之面上進行鍍鎳處理,其後剝離該鍍鎳,藉此獲得厚度 2〇〇 μηι之鍍鎳片。於該鍍鎳片之形成有凹凸圖案之面上, 塗佈包含環氧丙烯酸酯系預聚物、丙烯酸_2_乙基己酯及二 笨甲_系光聚合起始劑的未硬化之紫外線硬化性樹脂組成 物。 繼而,於未硬化之紫外線硬化性樹脂組成物之塗膜的與 鍍鎳片不相接觸之面上,將厚度為5〇 ^⑴之三乙醯纖維素 1265 l〇,d〇c •104· 200912388 薄膜重疊並按壓。 其次’自三乙醯纖維素薄膜之上方照射紫外線,使未硬 化之紫外線硬化性樹脂組成物硬化,並自鍍鎳片上剝離該 硬化物,藉此獲得光學元件。 (實施例32) 使用熱硬化性環氧樹脂以取代紫外線硬化性樹脂組成 物’並通過加熱使該熱硬化性樹脂硬化以取代紫外線照 射’除此之外,以與實施例31相同之方式獲得光學元件。 (實施例33) 以與實施例11相同之方式,獲得厚度200 μιη之鍍鎳片。 於該鍍鎳片之形成有凹凸圖案之面上,將厚度為5〇 μηΐ2 聚甲基丙烯酸甲酯薄膜重疊並加熱。對經加熱而軟化之聚 甲基丙烯酸曱酯薄膜與鍍鎳片自該等兩側進行按壓,之後 使其冷卻·固化,並自鍍鎳片上剝離,由此獲得凹凸圖案 形成片。 藉由原子間力顯微鏡(日本Veee〇&amp;司製Nan〇Sc〇pe ηι), 對實施例25〜33及比較例1G〜13之凹凸圖案形成片之光學元 件之上表面進行拍攝。 與對於實施例25〜33、比較例1〇〜13之凹凸圖案形成片之光 子_件於原子間力顯微鏡之圖像中測定丨〇處凹凸圖案之 深度,將該等深度平均而求出平均深度。 將該等之值顯示於表3。 又’根據凹凸圖宰夕&gt; 閾茱之最頻間距及底部之平均深度,按以 下基準來評價井座 件之適用性。將該評價結果顯示於表 126510.doc 200912388 〇:凹凸圖案之最頻間距為1 μιη以下,平均深度為將最 頻間距設為100%時之10%以上,適宜作為光學元件。 X :凹凸圖案之最頻間距超過1 μιη,或者平均深度不足 將最頻間距設為1 〇〇%時之1 0°/。,不適宜作為光學元件。 [表3] 凹凸圖案之平均間距 (nm) 凹凸圖案的最深部之深度 (nm) 深度/間距 (%) 評價 實施例25 280 250 89 〇 實施例26 280 230 82 〇 實施例27 300 250 82 〇 實施例28 280 230 82 〇 實施例29 280 230 82 〇 比較例10 1100 700 64 X 比較例11 未形成凹凸圖案 X 比較例12 300 28 9 X 比較例13 未形成凹凸圖案 X 實施例30 280 250 89 〇 實施例31 280 250 89 〇 實施例32 280 250 89 〇 實施例3 3 280 250 89 〇 實施例25〜29、比較例10、12中,使於第1樹脂製基材之Example 13 has the same anisotropic diffusivity. 126510.doc -97- 200912388 (Example 21) Polyethylene terephthalate shrink film using a heat shrinkage in the biaxial direction of 25 μηι and a Young's modulus of 3 GPa (Mitsubishi Resin Co., Ltd.) A embossed pattern-forming sheet was obtained in the same manner as in Example 2 except that HISHIPET PX_4 〇S) was used instead of HISHIPET LX-60S manufactured by Mitsubishi Plastics Co., Ltd. The concave-convex pattern of the uneven pattern of the concave-convex pattern forming sheet has a mode gap of 3 μm and an aspect ratio of 1. Then, using this concave-convex pattern to form a sheet, a light-diffusing sheet was obtained in the same manner as in Example 2A. The optical characteristics of the light-diffusing sheet of Example 2 were examined to have an isotropic light diffusibility. (Example 22) A concavo-convex pattern-forming sheet obtained by the method of Example 20 was used as a work piece original plate. A light-diffusing sheet was obtained in the following manner. Namely, the surface of the original sheet of the engineering sheet obtained in Example 20 on which the uneven pattern was formed was subjected to a nickel-nickel treatment, and thereafter the nickel was peeled off, whereby a secondary work piece having a thickness of 200 μm was obtained. Applying an uncured pattern comprising an epoxy acrylate prepolymer, an acrylic acid 2-ethylhexyl acrylate, and a benzophenone photopolymerization initiator to the surface on which the concave-convex pattern is formed on the secondary work piece An ultraviolet curable resin composition. Then, on the surface of the coating film of the uncured ultraviolet curable resin composition which is not in contact with the secondary work piece, a film of a thickness of 5 Å of triethylene fluorene is superposed and pressed. Then, ultraviolet rays are irradiated from the upper surface of the triacetone cellulose film to harden the hardened hardenable resin. The cured product is peeled off from the secondary work piece, and the light-diffusing sheet is obtained by 126510.doc • 98-200912388. The obtained light-diffusing sheet had the same concave-convex region as that of the light-diffusing sheet of Example 20 and had the same light diffusibility. (Example 23) The same procedure as in Example 22 was carried out except that the thermosetting epoxy resin was used instead of the ultraviolet curable resin composition, and the thermosetting epoxy resin was cured by heating instead of ultraviolet irradiation. Ways to obtain a light diffusing sheet. "The obtained light-diffusing sheet has the same unevenness as the light-diffusing sheet of Example 2 and has the same light diffusibility. (Example 24) In the same manner as in Example 22, a thickness of 2 获得 was obtained. a second engineering piece of μηι. The polymethyl methacrylate film having a thickness of 5 μm is superposed on the surface of the secondary engineering sheet having the concave-convex pattern, and is heated by pressing on both sides. After the softened polymethyl methacrylate film and the secondary red sheet are 'cooled', the cured polydecyl acrylate film is peeled off from the secondary work piece, thereby obtaining a light diffusing sheet. The light-diffusing sheet has the same unevenness region as the light-diffusing sheet of Example 2 and has the same light diffusibility. In the optical sheets of Examples 13 to 24 in which the uneven portions are mixed on one surface, by the concave &amp; Since the light-diffusing property is excellent in the unevenness of the area, the light diffusing property is excellent. Further, in the optical sheet, the uneven portion is disposed closer to the other end side in the longitudinal direction, so that the light diffusibility on the other end side in the longitudinal direction is higher. Young's modulus in the following examples of system using a tensile tester (D ^ "" Industrial Co., Ltd. ΤΕ-126510.doc -99- 200912388 7〇01), and the value of κ and 7113_1995 measured pursuant to JIS. When the temperature is not specifically described, it is a value at 23 〇c. * (Example 25) A polyethylene terephthalate shrink film having a thickness of 5 yoke and a Young's die 4 of 3 (10) in a uniaxial direction (HISHIPET LX-60S, manufactured by Mitsubishi Plastics Co., Ltd., glass) The transfer temperature is (1) on one side of the surface, and the polymethyl propylated acid is added to the toluene by a spin coating method (p4831-MMA manufactured by POLYMER SOURCE Co., Ltd., glass transition temperature is 100). 〇 'make it to a thickness of 12 nm to form a hard layer to obtain a laminate. Then add the layer to the laminate for a minute, thereby allowing the heat to shrink to 40% of the length before heating (ie, The deformation pattern is deformed by a deformation ratio of 6% to obtain a concave-convex pattern forming sheet having a corrugated concave-convex pattern in the hard layer, and the corrugated concave-convex pattern has a period in a direction orthogonal to the contraction direction. The Young's modulus of the shrink film of the phthalic acid and the polymethyl methacrylate at 5 ° C is 5 MPa and 1 GPa, respectively. (Example 26) Heat shrinkage in a uniaxial direction Polyethylene terephthalate with a thickness of 50 drops and a Young's modulus of 3 muscles (Mitsubishi Resin Co., Ltd. HISHIPET LX-61S, glass transition temperature of 7 (rc) - surface, coated with polyvinyl alcohol diluted in water (12 nm made by KURARay Co., Ltd. to form PVA105 'glass transition temperature 85 ° C), the thickness of the hard layer to obtain a laminated sheet. 126510.doc •100- 200912388 and then at 75 c, the laminated sheet is heated for 1 minute, thereby allowing it to heat ', :,,, ... month 50% of the length of b (that is, deformed by a deformation rate of 5%)" to obtain a concave-convex pattern forming sheet having a corrugated concave-convex pattern of the hard layer. The above-mentioned corrugated concave-convex pattern is orthogonal to the contraction direction The direction has a period. Further, the shrink film of polyethylene terephthalate and the Young's modulus of the polyethylene at 75 C are 5 〇Μρ &amp; 1, respectively. (Example 27) The thickness of the heat shrinkage in the axial direction is 5〇μηι, and the Young's modulus is 3 pairs of the polyethylene-ethylene formate shrink film (HISHIPET LX-61S manufactured by Mitsubishi Plastics Co., Ltd., the glass transition temperature is 7〇. Steaming and solidifying fluororesin (Tandk Co., Ltd. NAN〇s Β) was made to have a thickness of 12 μΐη to form a hard layer to obtain a laminated sheet. 'When the temperature was 7 5 C, the laminated sheet was heated for j minutes, thereby causing heat shrinkage to the length before heating. 50% (that is, deformed by a deformation rate of 5%) k to obtain a concave-convex pattern forming sheet having a corrugated concave-convex pattern in a hard layer, the corrugated concave-convex pattern having a direction orthogonal to the contraction direction (Example 28) A sheet having a thickness of 5 parts composed of polydimethyl siloxane having a Young's modulus of 2 MPa was stretched to twice the length by a stretching device, and in this state, It is solid. Next, in this state, on one side of the sheet, it was coated on toluene-diluted polymethyl methacrylate (P483 1-MMA manufactured by POLYMER SOURCE Co., Ltd., glass transition temperature was 100 〇, making it 126510 thick) .doc -101 · 200912388 is 12 nm to form a hard layer to obtain a laminate. Then 'stop stretching, return the laminate to the length before stretching, thereby making the hard layer 50% deformation rate The concave-convex pattern forming sheet having a corrugated concave-convex pattern having a hard layer is obtained by compression, and the corrugated concave-convex pattern has a period along a direction orthogonal to the contraction direction. (Example 29) The Young's modulus is 2 MPa. One side of a sheet of 5 mm thick consisting of polydimethyl siloxane, coated with polymethyl methacrylate diluted in toluene (P4831-MMA, manufactured by POLYMER SOURCE Co., Ltd., glass transition temperature of 1 〇 ( TC), having a thickness of 丨2 nm, to form a hard layer to obtain a laminated sheet. Then 'stretching the laminated sheet to a length of five times by a stretching device, thereby shrinking the length of the normal direction of the stretching direction 5〇% (that is, make it 5%) The deformation rate was deformed to obtain a concave-convex pattern forming sheet having a corrugated concave-convex pattern in the hard layer, and the corrugated concave-convex pattern had a period along the stretching direction. (Comparative Example 10) Coating was performed so as to have a thickness of 60 nm. A concave-convex pattern-forming sheet was obtained in the same manner as in Example 25 except that polymethyl methacrylate was used. (Comparative Example 11) An attempt was made to use a two-axis extended poly pair having a thickness of 5 G μm and a Young's modulus of 5 Ethylene phthalate bismuth phthalate (G2 manufactured by Teijin Co., Ltd.) was used to replace the shrink film &amp; otherwise, the embossed pattern engineering sheet was obtained in the same manner as in Example 25. However, no wavy shape was formed. The concave-convex pattern is not 126510.doc •102- 200912388 The sheet for concave-convex pattern engineering is obtained. (Comparative Example 12) The thickness of the heat-shrinkage in the uniaxial direction is 5〇μιη, and the Young's modulus is 3^b. Ethylene phthalate shrink film (HISHIPET LX-10S, manufactured by Mitsubishi Plastics Co., Ltd.), coated with polymethyl methacrylate diluted in toluene (p483i_ΜΜΑ, manufactured by POLYMER S0URCE Co., Ltd., glass transfer) The degree is 1 〇〇. 〇, the thickness is i2 to form a smooth hard layer on the surface to obtain a laminated sheet. Then, at 7 (TC), the laminated sheet is heated for a minute to shrink to 97 长度 before heating. The concave-convex pattern forming sheet was obtained in the same manner as in Example ^ except that the sheet for uneven patterning was obtained by deforming at a deformation ratio of 3%. (Comparative Example 13) The thickness of the heat shrinkage in the direction of the material is 5 〇 _, and the Young's modulus is 3 Å polyethylene terephthalate shrink film (m-ET LX_10S manufactured by Mitsubishi Plastics Co., Ltd.), and the glass transition temperature is 7 〇. (1) On one side, a polydimethyl sulphate of 2 muscles was applied by spin coating to the KS847T of Industrial Co., Ltd., and the transition temperature of the glass was _1) The retort medium (Shin-Etsu Chemical Co., Ltd. (1)) was diluted in toluene:::dispersion' to a thickness of 12 nm to form a hard layer to obtain a bar layer. Then, in the wartime, the laminated sheet was heated for 1 minute to be heat-shrinked, whereby the uneven pattern forming sheet was obtained. However, since the hard layer was not deformed by the meandering, the wavy concave-convex pattern was not formed. I26510.doc -103- 200912388 (Example 30) The concave-convex pattern forming sheet obtained by Example 25 was used as an engineering sheet, and an optical element was obtained in the following manner. That is, on the surface of the engineering sheet obtained in Example 25 on which the uneven pattern was formed, the epoxy acrylate-based prepolymer, the 2-ethylhexyl acrylate and the benzophenone-based light were applied. An uncured ultraviolet curable resin composition of a polymerization initiator. Then, on the surface of the coating film of the uncured ultraviolet curable resin composition which is not in contact with the engineering sheet, a film of a thickness of 50 μm of trimethine cellulose is superposed and pressed. Next, ultraviolet rays are irradiated from the upper surface of the triacetone cellulose film to harden the unhardened ultraviolet curable resin composition, and the cured product is peeled off from the engineering sheet, whereby an optical element is obtained. (Example 31) The uneven pattern forming sheet obtained in Example 25 was used as an engineering sheet, and an optical member was obtained in the following manner. Namely, a nickel plating treatment was performed on the surface on which the uneven pattern was formed on the engineering sheet obtained in Example 25, and thereafter the nickel plating was peeled off, whereby a nickel-plated sheet having a thickness of 2 μm was obtained. Applying an uncured ultraviolet light containing an epoxy acrylate-based prepolymer, an acrylic acid 2-ethylhexyl ester, and a dimerization-based photopolymerization initiator to the surface on which the uneven pattern is formed on the nickel-plated sheet A curable resin composition. Then, on the surface of the coating film of the uncured ultraviolet curable resin composition which is not in contact with the nickel-plated sheet, a thickness of 5 〇^(1) of triacetyl cellulose 1265 l〇, d〇c • 104· 200912388 The film overlaps and is pressed. Next, ultraviolet rays were irradiated from above the triacetyl cellulose film to harden the unhardened ultraviolet curable resin composition, and the cured product was peeled off from the nickel-plated sheet, whereby an optical element was obtained. (Example 32) The same procedure as in Example 31 was carried out except that the thermosetting epoxy resin was used instead of the ultraviolet curable resin composition ', and the thermosetting resin was cured by heating instead of ultraviolet irradiation'. Optical element. (Example 33) In the same manner as in Example 11, a nickel-plated sheet having a thickness of 200 μm was obtained. On the surface of the nickel-plated sheet on which the uneven pattern was formed, a film of a thickness of 5 μ μΐ 2 polymethyl methacrylate was superposed and heated. The polymethyl methacrylate film and the nickel-plated sheet which were softened by heating were pressed from the two sides, and then cooled and solidified, and peeled off from the nickel-plated sheet, whereby a concave-convex pattern-forming sheet was obtained. The upper surfaces of the optical elements of the concave-convex pattern forming sheets of Examples 25 to 33 and Comparative Examples 1G to 13 were imaged by an atomic force microscope (Nan〇Sc〇pe ηι manufactured by Veee Co., Ltd., Japan). The photons of the concave-convex pattern forming sheets of Examples 25 to 33 and Comparative Examples 1 to 13 were measured for the depth of the concavo-convex pattern in the image of the atomic force microscope, and the depths were averaged to obtain an average value. depth. The values of these are shown in Table 3. Further, the applicability of the well member was evaluated based on the following criteria based on the most frequent spacing of the threshold and the average depth of the bottom. The evaluation results are shown in Table 126510.doc 200912388. The most frequent pitch of the concave-convex pattern is 1 μm or less, and the average depth is 10% or more when the maximum-frequency pitch is 100%, which is suitable as an optical element. X : The most frequent spacing of the embossed pattern exceeds 1 μηη, or the average depth is insufficient. Set the MF spacing to 1 °% at 1 °%. Not suitable as an optical component. [Table 3] Average pitch of the concave-convex pattern (nm) Depth of the deepest portion of the concave-convex pattern (nm) Depth/pitch (%) Evaluation Example 25 280 250 89 〇 Example 26 280 230 82 〇 Example 27 300 250 82 〇 Example 28 280 230 82 〇 Example 29 280 230 82 〇 Comparative Example 10 1100 700 64 X Comparative Example 11 No uneven pattern X was formed X Comparative Example 12 300 28 9 X Comparative Example 13 No uneven pattern X was formed Example 30 280 250 89 〇Example 31 280 250 89 〇Example 32 280 250 89 〇Example 3 3 280 250 89 〇In Examples 25 to 29 and Comparative Examples 10 and 12, the substrate was made of the first resin.

V 一面上,設置有硬質層之積層片蛇行變形,上述硬質層由 玻璃轉移溫度相較於第1樹脂之玻璃轉移溫度高出1 o°c以 上的第2樹脂所構成,於此製造方法中,可容易製造凹凸 圖案形成片。又,對於實施例25〜29中獲得之凹凸圖案形 成片而言,凹凸圖案之最頻間距為1 μιη以下,底部之平均 深度為將上述最頻間距設為1 00%時之1 0%以上,故適宜作 為光學元件。於實施例25〜29中,之所以有獲得如上所述 之最頻間距及平均深度,係由於表面平滑硬質層之厚度為 5 0 μιη以下,且變形率為50%以上。 126510.doc 106- 200912388 又’根據將實施例25中獲得之凹凸圖案形成片用作工程 片之實施例30〜33之製造方法,可簡便地製造具有與凹凸 圖案形成片之最頻間距及平均深度相同之凹凸圖案的光學 元件。 再者’比較例10中’由於表面硬質平滑層厚度超過5〇 nm,因此所獲得之凹凸圖案形成片之凹凸圖案之最頻間距 超過1 μιη。又,比較例12中,由於將變形率設為3%,故 所獲得之凹凸圖案形成片之凹凸圖案之底部的平均深度不 足將最頻間距設為100%時之1〇%。該等比較例未必適宜作 為光學元件。 與此相對’於將二軸延伸聚對苯二甲酸乙二酯薄膜用作 樹脂層之比較例11、及使用有第2樹脂之玻璃轉移溫度低 於第1樹脂之玻璃轉移溫度的積層片之比較例13之製造方 法中,由於表面平滑硬質層未蛇行變形,因此凹凸圖案並 未形成。 [產業上之可利用性] 本發明之凹凸圖案形成片可用作光擴散體,且可簡便地 製造。根據本發明之凹凸圖案形成片之製造方法,可簡便 地製造用作光擴散體之凹凸圖案形成片。 本發明之光擴散體之擴散之異向性優異。根據本發明之 光擴散體製造用工程片及光擴散體之製造方法,可簡便且 大直地製造形成有與凹凸圖案形成片之最頻間距及平均深 度相同之凹凸圖案的光擴散體。 本發明之光學片之目標光學特性優異,並且可容易使光 126510.doc -107- 200912388 :特性:均句。本發明之光擴散片之目標光擴散性優異, 並且可谷易使光擴散性不均勻。 、 根據本發明之擴散導光體及背光單元’可 光充分地異向性擴散。 九源之 凹凸圖案形成片可較好地用作防反射體或相位 :光…。x’本發明之凹凸圖案形成片亦可較好 ::作先學兀件製造用工程片,該光學元件製造 :為用以製造具有波狀凹凸圖案之光學元件的模; 用0 【圖式簡單說明】 圖1係將本發明之|U]几m Μ月之凹凸圖案形成片之一實施形態之一部 分進行放大表示的放大立體圖。 圖2係在與凹凸圖案之形成方向正交之方向上將圖i之凹 凸圖案形成片截斷後之剖面圖。 圖係藉由表面光學顯微鏡對凹凸圖案之表面進行拍攝 所得之圖像之灰度轉換圖像。 圖4係對圖3之圖像進行傅立葉轉換後所得之圖像。 圖5係對與圖4之圖像中的圓環中心之距離上的亮度所描 繪之圖表。 圖6係對圖4圖像中的辅助線13上之亮度所描緣之圖表。 圖7係表示本發明之凹凸圖案形成片之製造方法之一實 施形態的積層片之剖面圖。 圖係使用有本發明之凹凸圖案形成片之光擴散體之製 造方法之一例的說明圖。 126510.doc 200912388 圖9係藉由表面光學顯微鏡對比較例4中的凹凸圖宰之表 面進行拍攝所得之圖像之灰度轉換圖像。 圖10係對圖9之圖像進行傅立葉轉換後所得之圖像。 圖11係對與圖10之圖像中的圓環中心之距離上的亮度所 描、繪之圖表。 圖12係對圖10之圖像中的輔助線Ls上之亮度所描繪之圖 表0 圖13係表示本發明之光學片之第1實施形態的立體圖。 圖14係表示製造圖13所示之光學片時所使用之印刷片的 剖面圖。 圖15係印刷片表面之透射型電子顯微鏡照片。 圖1 6係光學片表面之透射型電子顯微鏡照片。 圖1 7係表示本發明之光學片之第2實施形態的立體圖。 圖1 8係表示本發明之光學片之第3實施形態的立體圖。 圖19係表示本發明之光學片之第4實施形態的立體圖。 圖20係表示本發明之擴散導光體之其他實施形態的剖面 圖。 圖2 1係表示本發明之背光單元之第1實施形態的剖面 圖。 圖22係表示本發明之背光單元之第2實施形態的剖面 圖。 圖23係將本發明之凹凸圖案形成片之一實施形態之〜部 分進行放大表示的放大立體圖。 圖24係藉由原子間力顯微鏡對並未沿著特定方向之凹凸 126510.doc -109- 200912388 圖案之表面進行拍攝所得的圖像之灰度轉換圖像。 圖25係對圖24之圖像進行傅立葉轉換後所得之圖像。 圖26係對與圖25之圖像中的圓環中心之距離上的亮度所 描繪之圖表。 【主要元件符號說明】 10 凹凸圖案形成片 10a 積層片 11 基材(透明樹脂層) 11a 加熱收縮性薄膜 12 硬質層 12a 凹凸圖案 12b 底部 13 表面平滑之樹脂製硬質層(表 質層) 210a、210b、 光學片 210c ' 210d 211 平坦之一面 212 、 215 、 凹凸區域 216 、 217 213 加熱收縮性薄膜 214 凹凸區域形成用凸部 100 ' 200 背光單元 310 擴散導光體 315 表面 126510.doc •110- 200912388 316 背面 320 反射板 330 光源 340 擴散薄膜 350 稜鏡片 360 亮度上升薄膜 126510.doc - in .On one side of the V, a laminated sheet provided with a hard layer is formed by serpentine deformation, and the hard layer is composed of a second resin having a glass transition temperature higher than a glass transition temperature of the first resin by more than 1 ° C, and is used in the production method. The concave-convex pattern forming sheet can be easily manufactured. Further, in the concave-convex pattern forming sheets obtained in Examples 25 to 29, the groove width of the concave-convex pattern is 1 μm or less, and the average depth of the bottom portion is 10% or more when the above-mentioned mode spacing is 100%. Therefore, it is suitable as an optical component. In Examples 25 to 29, the above-mentioned maximum frequency pitch and average depth were obtained because the thickness of the surface smooth hard layer was 50 μm or less and the deformation ratio was 50% or more. 126510.doc 106-200912388 Further, according to the manufacturing method of Examples 30 to 33 in which the uneven pattern forming sheet obtained in Example 25 is used as an engineering sheet, it is possible to easily manufacture the most frequent pitch and average with the concave-convex pattern forming sheet. Optical elements of the same concave and convex pattern. Further, in the comparative example 10, since the thickness of the surface hard smoothing layer exceeds 5 Å, the pitch of the concave-convex pattern of the obtained concave-convex pattern forming sheet exceeds 1 μm. Further, in Comparative Example 12, since the deformation ratio was 3%, the average depth of the bottom portion of the uneven pattern of the obtained concave-convex pattern forming sheet was less than 1% by weight when the most frequent pitch was 100%. These comparative examples are not necessarily suitable as optical elements. On the other hand, in Comparative Example 11 in which a biaxially stretched polyethylene terephthalate film was used as the resin layer, and a laminate sheet in which the glass transition temperature of the second resin was lower than the glass transition temperature of the first resin, In the manufacturing method of Comparative Example 13, since the smooth surface of the hard layer was not meandered, the uneven pattern was not formed. [Industrial Applicability] The uneven pattern forming sheet of the present invention can be used as a light diffuser and can be easily produced. According to the method for producing a concave-convex pattern forming sheet of the present invention, the concave-convex pattern forming sheet used as the light diffusing body can be easily produced. The light diffusing body of the present invention is excellent in the anisotropy of diffusion. According to the method for producing a light-diffusing body and the method for producing a light-diffusing body of the present invention, it is possible to easily and directly produce a light-diffusing body in which a concave-convex pattern having the same pitch and average depth as that of the uneven pattern-forming sheet is formed. The optical sheet of the present invention has excellent target optical characteristics and can easily make light 126510.doc -107- 200912388: characteristics: uniform sentence. The light-diffusing sheet of the present invention has excellent target light diffusibility, and is easy to make the light diffusibility non-uniform. The diffusing light guide and the backlight unit ' according to the present invention can be sufficiently diffused anisotropically. The embossed pattern forming sheet of Jiuyuan can be preferably used as an antireflector or phase: light... x' The concave-convex pattern forming sheet of the present invention may also be preferably: an engineering sheet for manufacturing a first element, which is a mold for manufacturing an optical element having a corrugated concave-convex pattern; BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an enlarged perspective view showing an enlarged portion of an embodiment of a concave-convex pattern forming sheet of |U] m of the present invention. Fig. 2 is a cross-sectional view showing the concave-convex pattern forming sheet of Fig. i cut in a direction orthogonal to the direction in which the concave-convex pattern is formed. The image is a gradation conversion image of an image obtained by photographing the surface of the concave-convex pattern by a surface optical microscope. Fig. 4 is an image obtained by performing Fourier transform on the image of Fig. 3. Figure 5 is a graph depicting the brightness over the distance from the center of the circle in the image of Figure 4. Figure 6 is a graph depicting the brightness on the auxiliary line 13 in the image of Figure 4. Fig. 7 is a cross-sectional view showing a laminated sheet according to an embodiment of the method for producing a concave-convex pattern forming sheet of the present invention. The drawing is an explanatory view showing an example of a method of producing a light diffuser having the uneven pattern forming sheet of the present invention. 126510.doc 200912388 Fig. 9 is a gradation conversion image of an image obtained by photographing the surface of the uneven pattern in Comparative Example 4 by a surface optical microscope. Fig. 10 is an image obtained by performing Fourier transform on the image of Fig. 9. Figure 11 is a graph depicting and plotting the brightness over the distance from the center of the circle in the image of Figure 10. Fig. 12 is a view showing the luminance on the auxiliary line Ls in the image of Fig. 10. Fig. 13 is a perspective view showing the first embodiment of the optical sheet of the present invention. Fig. 14 is a cross-sectional view showing a printing sheet used in the production of the optical sheet shown in Fig. 13. Figure 15 is a transmission electron micrograph of the surface of the printed sheet. Fig. 1 is a transmission electron micrograph of the surface of the optical sheet. Fig. 1 is a perspective view showing a second embodiment of the optical sheet of the present invention. Fig. 18 is a perspective view showing a third embodiment of the optical sheet of the present invention. Fig. 19 is a perspective view showing a fourth embodiment of the optical sheet of the present invention. Fig. 20 is a cross-sectional view showing another embodiment of the diffused light guide of the present invention. Fig. 2 is a cross-sectional view showing a first embodiment of a backlight unit of the present invention. Figure 22 is a cross-sectional view showing a second embodiment of the backlight unit of the present invention. Fig. 23 is an enlarged perspective view showing an enlarged portion of an embodiment of the concave-convex pattern forming sheet of the present invention. Fig. 24 is a gradation conversion image of an image obtained by photographing a surface of a pattern 126510.doc - 109 - 200912388 which is not in a specific direction by an atomic force microscope. Fig. 25 is an image obtained by performing Fourier transform on the image of Fig. 24. Figure 26 is a graph depicting the brightness over the distance from the center of the circle in the image of Figure 25. [Description of main component symbols] 10 concave-convex pattern forming sheet 10a laminated sheet 11 base material (transparent resin layer) 11a heat shrinkable film 12 hard layer 12a concave-convex pattern 12b bottom portion 13 resin-hard layer (surface layer) 210a 210b, optical sheet 210c' 210d 211 flat side surface 212, 215, uneven area 216, 217 213 heat shrinkable film 214 concave and convex area forming convex part 100' 200 backlight unit 310 diffusing light guide body 315 surface 126510.doc • 110- 200912388 316 Back 320 Reflector 330 Light Source 340 Diffusion Film 350 Bracts 360 Brightness Rising Film 126510.doc - in .

Claims (1)

200912388 十、申請專利範圍: 1. 一種凹凸圖案形成片,其特徵在於: 具備樹脂製基材、及設置於該基材之一面上之樹脂製 硬質層’且於該硬質層之表面上形成有沿著一方向之凹 凸圖案’ 構成硬質層之樹脂的玻璃轉移溫度Tg2與構成基材之 樹脂的玻璃轉移溫度Tgl之差(1^2_1^1)為1(rc以上, 凹凸圖案之最頻間距超過1 μηι且為20 pm以下,凹凸 圖案之底部之平均深度為將上述最頻間距設為丨〇〇%時之 10%以上。 2· —種凹凸圖案形成片之製造方法,其特徵在於包括: 於樹脂製基材之一面上,設置表面平滑、厚度超過 0.05 μπι且為5.0 μιη以下之樹脂製硬質層,以形成積層片 之步驟;以及使上述積層片之至少硬質層以摺疊之方式 而變形之步驟;且200912388 X. Patent application scope: 1. A concave-convex pattern forming sheet comprising: a resin substrate and a resin hard layer provided on one surface of the substrate; and formed on a surface of the hard layer The difference between the glass transition temperature Tg2 of the resin constituting the hard layer and the glass transition temperature Tgl of the resin constituting the substrate (1^2_1^1) is 1 (rc or more, the most frequent pitch of the concave-convex pattern) When the thickness is more than 1 μm and is 20 pm or less, the average depth of the bottom of the concave-convex pattern is 10% or more when the above-mentioned maximum frequency spacing is 丨〇〇%. 2) A method for producing a concave-convex pattern forming sheet, which is characterized by including a step of forming a hard layer having a smooth surface, a thickness of more than 0.05 μm and a thickness of 5.0 μm or less to form a laminated sheet on one surface of a resin substrate; and folding at least the hard layer of the laminated sheet The step of deformation; and 硬質層藉由玻璃轉移溫度相較於構成基材之樹脂高出 10°c以上之樹脂所構成。 3.如請求項2之凹凸圖案形成片之製造方法,其中 使用單軸方向加熱收縮性薄膜作為樹脂製基材,且於 使硬質層以摺疊之方式而變形之步驟中,對積層片進行 加熱以使單軸方向加熱收縮性薄膜收縮。 4_ 一種光擴散體,其具備請求们之凹凸圖案形成片,且 該凹凸圖案形成片之基材及硬質層為透明。 5_ 一種凹凸圖案形成片,其特徵在於: 126510.doc 200912388 具備樹脂製基材、及設置於該基材之一面上之樹脂製 硬質層,且於該硬質層之表面上形成有沿著一方向之凹 凸圖案, 硬質層由金屬或金屬化合物構成, 凹凸圖案之最頻間距超過i μιη且為20 μΓη以下,凹凸 圖案底部之平均深度為將上述最頻間距設為1 00%時之 10%以上。 6. 如請求項5之凹凸圖案形成片,其中硬質層由金屬構 成。 7. 如請求項5之凹凸圖案形成片,其中金屬係選自由金、 鋁、銀、碳、銅、鍺、銦、鎂、鈮、鈀、鉛、鉑、矽、 錫鈦、釩、鋅、鉍所組成之群中之至少一種金屬❶ 8. 一種凹凸圖案形成片,其特徵在於包括: 於樹脂製基材之一面上’設置表面平滑、厚度超過 0.01 μπι且為〇·2 μιη以下之金屬製或金屬化合物製硬質 層,以形成積層片之步驟;以及使上述積層片之至少硬 質層以摺疊之方式而變形之步驟;且 硬質層藉由金屬或金屬化合物所構成。 9. 如請求項8之凹凸圖案形成片之製造方法,其中使用單 、方向加熱收縮性薄膜作為樹脂製基材,且於使硬質層 ^摺疊之方式而變形之步驟中,對積層片進行加熱以使 單勒方向加熱收縮性薄膜收縮。 。種光擴散體製造用工程片原版,其具備如請求項卜5 之凹凸圖案形成片,且其作為用以製造於表面上形 126510.doc 200912388 成有與該凹凸圖案形成片之最頻間距及平均深度相同之 凹凸圖案的光擴散體之模具而使用。 η· —種光擴散體之製造方法,其包括: 於如請求項10之光擴散體製造用工程片原版之形成有 凹凸圖案的面上’塗佈未硬化之硬化性樹脂之步驟;以及 使該硬化性樹脂硬化,之後自工程片原版上剝離已硬 化之塗膜之步驟。 12. —種光擴散體之製造方法,其包括: 使片狀之熱可塑性樹脂接觸如請求項10之光擴散體製 造用工程片原版之形成有凹凸圖案的面之步驟; 將該片狀之熱可塑性樹脂按壓於工程片原版上,且於 此狀態下進行加熱而使其軟化,其後進行冷卻之步驟; 自工程片原版上剝離已冷卻之片狀熱可塑性樹脂之步The hard layer is composed of a resin having a glass transition temperature higher than 10 ° C or more than the resin constituting the substrate. 3. The method for producing a concave-convex pattern forming sheet according to claim 2, wherein a uniaxially oriented heat shrinkable film is used as the resin substrate, and the laminated sheet is heated in the step of deforming the hard layer in a folded manner. The heat shrinkable film is shrunk in a uniaxial direction. 4_ A light diffusing body comprising a concave-convex pattern forming sheet of a request, wherein the base material and the hard layer of the concave-convex pattern forming sheet are transparent. 5_ a concave-convex pattern forming sheet, comprising: a resin base material; and a resin hard layer provided on one surface of the base material; and a direction along the one surface of the hard layer is formed In the concave-convex pattern, the hard layer is made of a metal or a metal compound, and the pitch of the concave-convex pattern exceeds i μηη and is 20 μΓη or less, and the average depth of the bottom of the concave-convex pattern is 10% or more when the above-mentioned maximum frequency spacing is 100%. . 6. The concavo-convex pattern of claim 5, wherein the hard layer is made of metal. 7. The concave-convex pattern forming sheet of claim 5, wherein the metal is selected from the group consisting of gold, aluminum, silver, carbon, copper, bismuth, indium, magnesium, bismuth, palladium, lead, platinum, rhodium, tin-titanium, vanadium, zinc, At least one metal ruthenium of the group consisting of 铋 8. A concave-convex pattern forming sheet, comprising: a metal having a smooth surface and a thickness exceeding 0.01 μm and being less than 2 μmη on one surface of a resin substrate a step of forming a hard layer to form a laminated sheet; and a step of deforming at least the hard layer of the laminated sheet by folding; and the hard layer is composed of a metal or a metal compound. 9. The method for producing a concave-convex pattern forming sheet according to claim 8, wherein a single-direction, direction-heat-shrinkable film is used as a resin substrate, and the laminated sheet is heated in a step of deforming the hard layer to be folded. The heat shrinkable film is shrunk in a single direction. . An engineering sheet original for manufacturing a light diffuser, which has the concave-convex pattern forming sheet of claim 5, and which is used as a surface-shaped 126510.doc 200912388 to form a pattern with the concave-convex pattern forming sheet and The mold of the light diffuser having the same depth and the same unevenness is used. A method for producing a light diffusing body, comprising: a step of applying an unhardened curable resin on a surface on which a concave-convex pattern is formed on an original sheet for producing a light diffusing body of claim 10; The curable resin is cured, and then the step of peeling off the cured coating film from the original sheet of the engineering sheet. 12. A method of producing a light-diffusing body, comprising: contacting a sheet-shaped thermoplastic resin with a surface on which a concave-convex pattern is formed on an original sheet for producing a light-diffusing body of claim 10; The thermoplastic resin is pressed against the original sheet of the engineering sheet, and heated in this state to soften it, followed by cooling; the step of peeling off the cooled sheet-shaped thermoplastic resin from the original sheet of the engineering sheet 使該硬化性樹脂硬化, 造方法,其包括: 光擴散體製造用工程片原版之形成有 積層凹凸圖案轉印用材料之步驟; 外观上刹離積層於凹凸圖案上之凹凸圖 以製作二次工程用成形物之步驟; 用成形物之已與上述工程片原版之凹凸 之面上,塗佈未硬化之硬化性樹脂之步 之後自二次工程用成形物上剝 126510.doc 200912388 離已硬化之塗膜之步驟。 14· 一種光擴散體之製造方法,其包括: 於如請求項10之光擴散體製造用工 ηπ n ^ ^ %片原版之形成有 圖案的面上’積層凹凸圖案轉印用材料之步驟; 上述工程片原版上剝離積層於凹凸圖案上之凹凸圖 案轉印用材料’以製作二次工程用成形物之步驟. 使片狀之熱可塑性樹脂接觸該二次工程用:形物之已 與上述工程片原、版之凹凸圖案接觸之一侧之面之步驟; 將該片狀之熱T塑性樹脂按壓於:次工程用成形物 上,且於此狀態下進行加熱而使其軟化,其後進行冷卻 之步驟;以及 自二次工程用成形物上剝離已冷卻之片狀之熱可塑性 樹脂之步驛。 15. —種光學片,其特徵在於於平坦之一面或兩面上,分散 配置有具有凹凸之凹凸區域。 16·如請求項15之光學片,其中凹凸區域係不均勻地配置。 17. —種光擴散片’其具備如請求項15之光學片。 18. 如請求項17之光擴散片,其中凹凸區域内之凹凸之最頻 間距A超過1 μιη且為20 μηι以下,凹凸之平均深度b相對 於最頻間距Α之比(Β/Α)為(Μ〜3.0。 19·如請求項18之光擴散片,其中凹凸區域係呈點狀分散。 20. —種擴散導光體,其特徵在於: 其係由在一面上形成有蛇行之波狀凹凸圖案之透明樹 脂層而構成, 126510.doc 200912388 凹凸圖案之最頻間距超過1.0 μπι且為20 μηι以下,凹凸 之平均深度Β相對於最頻間距Α之比(Β/Α)為0.1〜3.0。 21· 一種背光單元,其特徵在於具備: 如請求項20之擴散導光體; 反射板,其對向於該擴散導光體之與形成有上述凹凸 圖案之面相反側的面而配設;以及 光源’其配設於上述擴散導光體及上述反射板之間。 22_ 一種背光單元,其特徵在於具備: 如請求項20之擴散導光體; 反射板,其對向於該擴散導光體之與形成有上述凹凸 圖案之面相反側的面而配設;以及 光源’其鄰接於上述擴散導光體之任一個側面。 23. —種凹凸圖案形成片,其特徵在於: 具備樹脂製基材、及設置於該基材外表面之至少一部 分上之樹脂製硬質層,且該硬質層具有波狀之凹凸圖 案, 構成硬質層之樹脂的玻璃轉移溫度Tg2與構成基材之 樹脂的玻璃轉移溫度Tgl之差(Tg2-Tgl)為1(TC以上, 凹凸圖案之最頻間距為1 μιη以下’凹凸圖案之底部之 平均深度為將上述最頻間距設為1 〇〇%時之1 〇%以上。 24. —種凹凸圖案形成片之製造方法,其特徵在於包括·· 於樹脂製基材外表面之至少一部分上,設置表面平滑 之樹脂製硬質層,以形成積層片之步驟;以及使該積層 片之至少硬質層蛇行變形之步驟;且 126510.doc 200912388 硬質層藉由玻璃轉移溫度相較於構成基材之樹脂高出 1 〇。〇以上之樹脂所構成。 25. —種防反射體,其具備如請求項23之凹凸圖案形成片。 26. —種相位差板,其具備如請求項23之凹凸圖案形成片。 27. 一種光學元件製造用工程片,其具備如請求項23之凹凸 圖案形成片之特徵,且其作為用以製造具有與該凹凸圖 案形成片之最頻間距及平均深度相同之凹凸圖案的光學 元件之模具而使用。 126510.docA method for curing the curable resin, comprising: a step of forming a material for laminating concave-convex pattern transfer on an original sheet for producing a light-diffusing body; and forming a concave-convex pattern on the concave-convex pattern Step of molding a product for engineering; peeling off the surface of the second engineering using the step of applying the uncured curable resin to the surface of the original surface of the original sheet of the above-mentioned engineering sheet, 126510.doc 200912388 The step of coating the film. A method of producing a light-diffusing body, comprising: a step of forming a material for forming a textured uneven pattern on a surface on which a pattern of a light-diffusing body for manufacturing a light-diffusing body is required to be ηπ n ^ %; The step of peeling off the uneven pattern transfer material deposited on the concave-convex pattern on the original sheet of the engineering sheet to prepare a molded article for secondary engineering. The sheet-shaped thermoplastic resin is brought into contact with the secondary engineering: the shape and the above-mentioned engineering a step of contacting the surface of the original sheet and the concave-convex pattern on one side; pressing the sheet-like hot T plastic resin on the secondary engineering molded article, and heating and softening in this state, and thereafter performing a step of cooling; and a step of peeling off the cooled sheet-shaped thermoplastic resin from the molded article for secondary engineering. An optical sheet characterized in that a concave-convex region having irregularities is dispersedly disposed on one side or both sides of a flat surface. 16. The optical sheet of claim 15, wherein the uneven regions are unevenly arranged. 17. A light diffusing sheet comprising the optical sheet of claim 15. 18. The light-diffusing sheet of claim 17, wherein the frequency-to-frequency spacing A of the unevenness in the concave-convex region exceeds 1 μm and is less than 20 μm, and the ratio of the average depth b of the unevenness to the most frequent spacing Α (Β/Α) is (Μ~3.0. 19) The light-diffusing sheet of claim 18, wherein the concave-convex regions are dotted in a dotted manner. 20. A diffusing light guiding body characterized by: a wavy shape formed by a meandering on one side The transparent resin layer of the concave-convex pattern is formed, 126510.doc 200912388 The most frequent pitch of the concave-convex pattern is more than 1.0 μπι and is 20 μηι or less, and the ratio of the average depth 凹凸 of the unevenness to the most frequent spacing Α (Β/Α) is 0.1 to 3.0. A backlight unit comprising: a diffusing light guide according to claim 20; and a reflecting plate disposed opposite to a surface of the diffusing light guiding body opposite to a surface on which the concave-convex pattern is formed; And a light source ' disposed between the diffused light guide and the reflector. 22_ A backlight unit, comprising: a diffused light guide according to claim 20; and a reflector opposite to the diffusion guide Light body shape And a light source of the surface of the concave-convex pattern on the side opposite to the surface of the concave-convex pattern; and a light-emitting material that is adjacent to the one side surface of the diffusing light guide. 23. A concave-convex pattern-forming sheet, comprising: a resin substrate; a resin hard layer provided on at least a part of the outer surface of the substrate, wherein the hard layer has a wavy concave-convex pattern, and a glass transition temperature Tg2 of the resin constituting the hard layer and a glass transition temperature Tgl of the resin constituting the substrate The difference (Tg2-Tgl) is 1 (TC or more, and the most frequent pitch of the concave-convex pattern is 1 μm or less. The average depth of the bottom of the concave-convex pattern is 1% or more when the above-mentioned minimum frequency spacing is 1%%. A method for producing a concave-convex pattern forming sheet, comprising: providing a resin-made hard layer having a smooth surface on at least a part of an outer surface of a resin substrate to form a laminated sheet; and forming the laminated sheet a step of at least a hard layer serpentine deformation; and 126510.doc 200912388 The hard layer has a glass transition temperature that is 1 高 higher than the resin constituting the substrate. 25. An antireflection body comprising the concavo-convex pattern forming sheet of claim 23. 26. A phase difference plate comprising the concavo-convex pattern forming sheet of claim 23. 27. An optical element manufacturing process A sheet having the feature of the concave-convex pattern forming sheet of claim 23, and used as a mold for producing an optical element having a concave-convex pattern having the same frequency-to-frequency spacing and average depth as the concave-convex pattern forming sheet. Doc
TW096142138A 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same TWI448736B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007040694A JP5211506B2 (en) 2007-02-21 2007-02-21 Convex and concave pattern forming sheet and manufacturing method thereof, antireflection body, retardation plate and optical element manufacturing process sheet.
JP2007151795A JP4683011B2 (en) 2007-06-07 2007-06-07 Uneven pattern forming sheet and method for producing the same, light diffuser, process sheet original plate for producing light diffuser, and method for producing light diffuser
JP2007151676A JP5391529B2 (en) 2007-06-07 2007-06-07 Method for producing uneven pattern forming sheet
JP2007151677A JP5135539B2 (en) 2007-06-07 2007-06-07 Diffuse light guide and backlight unit
JP2007261176A JP5391539B2 (en) 2007-10-04 2007-10-04 Optical sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200912388A true TW200912388A (en) 2009-03-16
TWI448736B TWI448736B (en) 2014-08-11

Family

ID=39709770

Family Applications (7)

Application Number Title Priority Date Filing Date
TW103102368A TWI536047B (en) 2007-02-21 2007-11-07 Diffusion light guide body and backlight unit
TW105114333A TWI598638B (en) 2007-02-21 2007-11-07 Light diffuser
TW103102369A TWI545351B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same
TW103102364A TWI530713B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same
TW103125350A TWI518376B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same
TW103102372A TWI536048B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same
TW096142138A TWI448736B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same

Family Applications Before (6)

Application Number Title Priority Date Filing Date
TW103102368A TWI536047B (en) 2007-02-21 2007-11-07 Diffusion light guide body and backlight unit
TW105114333A TWI598638B (en) 2007-02-21 2007-11-07 Light diffuser
TW103102369A TWI545351B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same
TW103102364A TWI530713B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same
TW103125350A TWI518376B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same
TW103102372A TWI536048B (en) 2007-02-21 2007-11-07 Peak-valley pattern formed sheet and method for producing the same

Country Status (4)

Country Link
KR (5) KR101541288B1 (en)
CN (3) CN102628969B (en)
TW (7) TWI536047B (en)
WO (1) WO2008102487A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481914B (en) * 2012-12-28 2015-04-21 Chi Mei Corp An optical plate with microstructures
US9095944B2 (en) 2011-12-01 2015-08-04 Toshiba Kikai Kabushiki Kaisha Work setting apparatus, work setting method, and work holder removing method
TWI499474B (en) * 2011-11-28 2015-09-11 Toshiba Machine Co Ltd Work setting apparatus and method thereof
US9880340B2 (en) 2012-07-27 2018-01-30 Jun Sakamoto Light guide plate, light source device, light guide plate manufacturing apparatus, and method for manufacturing light guide plate
TWI616686B (en) * 2012-06-26 2018-03-01 王子控股股份有限公司 Light diffusion sheet
TWI698660B (en) * 2016-03-18 2020-07-11 日商捷客斯能源股份有限公司 Optical phase difference member, composite optical member with optical phase difference member, and method of manufacturing optical phase difference member

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628969B (en) 2007-02-21 2014-10-08 王子控股株式会社 Sheet having uneven pattern formed thereon and method for production thereof
JP5168256B2 (en) * 2008-09-25 2013-03-21 王子ホールディングス株式会社 Uneven pattern forming sheet, light diffuser, process sheet original plate for light diffuser production, and method for producing them
JP5277842B2 (en) * 2008-09-30 2013-08-28 王子ホールディングス株式会社 Light diffusion sheet
JP2010129507A (en) * 2008-12-01 2010-06-10 Asahi Kasei Corp Lighting apparatus
JP2011053495A (en) * 2009-09-02 2011-03-17 Sony Corp Optical element and method for producing the same
JP5135555B2 (en) * 2009-12-22 2013-02-06 王子ホールディングス株式会社 Convex / concave pattern forming sheet, optical sheet, brightness adjusting sheet, and manufacturing method thereof
KR101147095B1 (en) * 2010-01-13 2012-05-17 황장환 Composite Light Guide Plate, and Backlight Unit Using the Same
JP5494144B2 (en) * 2010-04-02 2014-05-14 日油株式会社 Anti-glare film
WO2011148504A1 (en) * 2010-05-28 2011-12-01 コニカミノルタオプト株式会社 Light diffusing film, method for manufacturing same, and polarizing plate, roll-shaped polarizing plate, and liquid crystal display device which employ same
JP2012022292A (en) * 2010-06-14 2012-02-02 Oji Paper Co Ltd Convex and concave pattern formation sheet, process sheet original plate for manufacturing optical diffuser, and method for manufacturing optical diffuser
JP5637074B2 (en) * 2011-06-02 2014-12-10 王子ホールディングス株式会社 Method for producing uneven pattern forming sheet, method for producing stamper for transfer molding, and method for producing light diffuser
JP2013008520A (en) * 2011-06-23 2013-01-10 Oji Holdings Corp Lighting system, and detector using the same
KR101112220B1 (en) * 2011-11-16 2012-02-14 (주)케이앤씨엘이디 lighting panel comprising LED
JP5660235B2 (en) * 2013-03-18 2015-01-28 王子ホールディングス株式会社 Surface fine unevenness and method for producing surface fine unevenness
CN104122611A (en) * 2013-04-29 2014-10-29 鸿富锦精密工业(深圳)有限公司 Manufacturing equipment of optical composite membrane and manufacturing method thereof
CN109270610B (en) * 2014-08-26 2021-07-09 友辉光电股份有限公司 Method for forming concave-convex structure on substrate and method for manufacturing mold
JP6599699B2 (en) 2014-12-26 2019-10-30 日東電工株式会社 Void structure film bonded through catalytic action and method for producing the same
JP6604781B2 (en) 2014-12-26 2019-11-13 日東電工株式会社 Laminated film roll and method for producing the same
TWI691732B (en) * 2014-12-26 2020-04-21 日商日東電工股份有限公司 Laminated film coil and its manufacturing method
JP6612563B2 (en) 2014-12-26 2019-11-27 日東電工株式会社 Silicone porous body and method for producing the same
JP6563750B2 (en) 2014-12-26 2019-08-21 日東電工株式会社 Paint and production method thereof
JP2016167063A (en) * 2015-03-02 2016-09-15 王子ホールディングス株式会社 Fine concavo-convex surfaced material
CN104808277A (en) * 2015-05-11 2015-07-29 武汉华星光电技术有限公司 Polarizing plate and liquid crystal display device comprising same
JP6713871B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Optical laminate, method for producing optical laminate, optical member, image display device, method for producing optical member, and method for producing image display device
JP6713872B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Laminated film, laminated film manufacturing method, optical member, image display device, optical member manufacturing method, and image display device manufacturing method
JP6892744B2 (en) 2015-08-24 2021-06-23 日東電工株式会社 Laminated optical film, manufacturing method of laminated optical film, optical members, and image display device
JP7152130B2 (en) 2015-09-07 2022-10-12 日東電工株式会社 Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device
WO2017099086A1 (en) * 2015-12-10 2017-06-15 王子ホールディングス株式会社 Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate
CN105489785B (en) 2016-01-29 2018-06-08 京东方科技集团股份有限公司 Organic Light Emitting Diode and preparation method thereof, display base plate, display device
JP6871705B2 (en) * 2016-09-29 2021-05-12 デクセリアルズ株式会社 Optical body, manufacturing method of optical body, and light emitting device
KR101872694B1 (en) * 2016-12-26 2018-06-29 서울대학교산학협력단 Sturcture for preventing abrasion and vehicle including the same
TWI731228B (en) * 2017-03-29 2021-06-21 日商大日本印刷股份有限公司 Optical film and image display device
CN109116455A (en) * 2017-12-29 2019-01-01 珠海迈时光电科技有限公司 Diffraction optical element and optical device comprising identical diffraction optical element
KR102128701B1 (en) * 2018-09-17 2020-07-03 창원대학교 산학협력단 A Pattern And A Fabricating Method of the same
TWI709259B (en) 2019-07-10 2020-11-01 群光電能科技股份有限公司 Light emitting device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043792B2 (en) * 1982-05-08 1985-09-30 株式会社ト−ピ Articles with patterns that appear due to differences in gloss and their manufacturing method
JPS59107230U (en) * 1983-01-10 1984-07-19 積水化成品工業株式会社 Daylight insulation board
JPS62102445A (en) * 1985-10-28 1987-05-12 Nippon Sheet Glass Co Ltd Production of optical disk substrate
JP2592608B2 (en) * 1987-06-02 1997-03-19 株式会社フジシール Manufacturing method of vapor deposition label
JPH03142401A (en) * 1989-10-30 1991-06-18 Asahi Chem Ind Co Ltd Synthetic resin layer, light transmission and diffusion plate and production thereof
JP3491467B2 (en) * 1996-10-25 2004-01-26 松下電工株式会社 Light diffusion plate and method of manufacturing the same
JP3694138B2 (en) * 1997-02-20 2005-09-14 アルプス電気株式会社 Reflector manufacturing method and liquid crystal display device including the reflector
JPH10253811A (en) * 1997-03-14 1998-09-25 Sankyo Seiki Mfg Co Ltd Diffraction grating and manufacture thereof
JP2002267815A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Reflection preventive molded part and method for manufacturing the same
JP2002286906A (en) * 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp Antireflection method, antireflection structure and antireflection structural body having antireflection structure and method for manufacturing the same
JP4531290B2 (en) * 2001-05-18 2010-08-25 大日本印刷株式会社 Protective diffusion film, surface light source device and liquid crystal display device
JP4835818B2 (en) * 2001-09-28 2011-12-14 コニカミノルタホールディングス株式会社 Optical element molding mold and optical element molding mold manufacturing method
JP3974787B2 (en) * 2002-01-24 2007-09-12 シャープ株式会社 Reflective liquid crystal display
JP4145585B2 (en) * 2002-07-05 2008-09-03 株式会社日立製作所 Liquid crystal display
JP3843427B2 (en) * 2002-09-13 2006-11-08 ソニーケミカル&インフォメーションデバイス株式会社 3D image display member and manufacturing method thereof
JP2004157430A (en) * 2002-11-08 2004-06-03 Dainippon Printing Co Ltd Manufacturing method of light diffusing plate
US7567318B2 (en) * 2002-11-28 2009-07-28 Alps Electric Co., Ltd. Reflector and liquid crystal display panel
EP1478034A2 (en) * 2003-05-16 2004-11-17 Kabushiki Kaisha Toyota Jidoshokki Light-emitting apparatus and method for forming the same
DE112004002586T5 (en) * 2004-01-05 2006-11-16 Dai Nippon Printing Co., Ltd. Light scattering film, surface light source unit and liquid crystal display
JP2005205683A (en) * 2004-01-21 2005-08-04 Hitachi Maxell Ltd Resin substrate and its manufacturing method
JP5009491B2 (en) * 2004-05-11 2012-08-22 出光興産株式会社 Prism-integrated light diffusing plate for LCD backlight device
JP2005352238A (en) * 2004-06-11 2005-12-22 Dainippon Printing Co Ltd Light diffusing member
JP2006003647A (en) * 2004-06-17 2006-01-05 Nippon Paint Co Ltd Coating composition for forming recess and projection layer, and method for manufacturing reflection plate
JP2006337575A (en) * 2005-05-31 2006-12-14 Nippon Oil Corp Homeotropically oriented liquid-crystal film, and device using the same
JP2006227267A (en) 2005-02-17 2006-08-31 Sharp Corp Reflective display device
CN102628969B (en) 2007-02-21 2014-10-08 王子控股株式会社 Sheet having uneven pattern formed thereon and method for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499474B (en) * 2011-11-28 2015-09-11 Toshiba Machine Co Ltd Work setting apparatus and method thereof
US9095944B2 (en) 2011-12-01 2015-08-04 Toshiba Kikai Kabushiki Kaisha Work setting apparatus, work setting method, and work holder removing method
TWI616686B (en) * 2012-06-26 2018-03-01 王子控股股份有限公司 Light diffusion sheet
US9880340B2 (en) 2012-07-27 2018-01-30 Jun Sakamoto Light guide plate, light source device, light guide plate manufacturing apparatus, and method for manufacturing light guide plate
TWI481914B (en) * 2012-12-28 2015-04-21 Chi Mei Corp An optical plate with microstructures
TWI698660B (en) * 2016-03-18 2020-07-11 日商捷客斯能源股份有限公司 Optical phase difference member, composite optical member with optical phase difference member, and method of manufacturing optical phase difference member

Also Published As

Publication number Publication date
KR101541287B1 (en) 2015-08-03
KR101414004B1 (en) 2014-08-05
KR20140027529A (en) 2014-03-06
TW201447389A (en) 2014-12-16
TWI536048B (en) 2016-06-01
TW201418784A (en) 2014-05-16
KR101456522B1 (en) 2014-11-04
CN102176079A (en) 2011-09-07
CN104122612A (en) 2014-10-29
TWI598638B (en) 2017-09-11
TWI518376B (en) 2016-01-21
CN102628969B (en) 2014-10-08
TWI545351B (en) 2016-08-11
KR101541288B1 (en) 2015-08-03
TW201418783A (en) 2014-05-16
CN102176079B (en) 2013-01-23
KR20150027304A (en) 2015-03-11
TWI536047B (en) 2016-06-01
WO2008102487A1 (en) 2008-08-28
CN102628969A (en) 2012-08-08
CN104122612B (en) 2017-04-12
KR20140027530A (en) 2014-03-06
TW201631332A (en) 2016-09-01
TWI530713B (en) 2016-04-21
KR20120085940A (en) 2012-08-01
TW201418785A (en) 2014-05-16
KR20090125061A (en) 2009-12-03
TW201418786A (en) 2014-05-16
TWI448736B (en) 2014-08-11
KR101193615B1 (en) 2012-10-26

Similar Documents

Publication Publication Date Title
TW200912388A (en) Peak-valley pattern formed sheet and method for producing the same
JP5182658B2 (en) Method for producing uneven pattern forming sheet and method for producing optical element
JP5211506B2 (en) Convex and concave pattern forming sheet and manufacturing method thereof, antireflection body, retardation plate and optical element manufacturing process sheet.
JP5098450B2 (en) Method for producing uneven pattern forming sheet and uneven pattern forming sheet
JP2007069603A (en) Pattern forming method, pattern forming sheet and optically functional sheet formed using it
JP5391539B2 (en) Optical sheet and manufacturing method thereof
TW201407200A (en) Light diffusion sheet
JP2009282279A (en) Reflecting sheet and backlight unit
JP5636907B2 (en) Convex / concave pattern forming sheet and method for producing the same, concave / convex pattern forming sheet duplicating process sheet master, optical element, secondary process molding, duplicating sheet
JP5522287B2 (en) Optical sheet and process sheet master
JP5135539B2 (en) Diffuse light guide and backlight unit
JP2018120145A (en) Daylighting sheet and daylighting device
JP2010097108A (en) Light diffusion sheet and method for producing the same