TW200901530A - Long lifetime phosphorescent organic light emitting device (OLED) structures - Google Patents

Long lifetime phosphorescent organic light emitting device (OLED) structures Download PDF

Info

Publication number
TW200901530A
TW200901530A TW096150920A TW96150920A TW200901530A TW 200901530 A TW200901530 A TW 200901530A TW 096150920 A TW096150920 A TW 096150920A TW 96150920 A TW96150920 A TW 96150920A TW 200901530 A TW200901530 A TW 200901530A
Authority
TW
Taiwan
Prior art keywords
organic layer
emissive
layer
organic
phosphorescent
Prior art date
Application number
TW096150920A
Other languages
Chinese (zh)
Other versions
TWI481089B (en
Inventor
Vadim I Adamovich
Michael Stuart Weaver
Andrade Brian W D
Original Assignee
Universal Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Display Corp filed Critical Universal Display Corp
Publication of TW200901530A publication Critical patent/TW200901530A/en
Application granted granted Critical
Publication of TWI481089B publication Critical patent/TWI481089B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/731Liquid crystalline materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic light emitting device is provided having an emissive layer with an internal interface. The concentration of a second phosphorescent material in a second organic layer is different from the concentration of a first phosphorescent material in a first organic layer, creating the interface. The materials in the first and second organic layers may be the same or different. In addition to this interface within the emissive layer, the device has one or more features designed to mitigate failure mechanisms which may be associated with electrons or excitons passing from the cathode through the emissive layer to damage organic layers on the anode side of the emissive layer. In addition, devices are provided having an interface within the emissive layer as described above, and a lower energy emissive material on at least one side of the interface.

Description

200901530 九、發明說明: 【發明所屬之技術領域】 本 請 中 入 本發明係關於有機發光裝置(OLED)。更特定言之, 發明係關於具有可增強使用期限之特定結構的〇 L E D。 本申清案主張2GG6年12月28日中請之美國專利臨時申 案第6〇/877,696號及2007年2月8曰申請之美國專利臨時 請案第6G/9GM24號之優先權,其全文以引用之方式併 本文中。 所主張之|明係由大學聯盟聯合研究協冑之以下當事人 之-或多方所完成、代表大學聯盟聯合研究協定之以下當 事人之一或多方所完成及/或與大學聯盟聯合研究協定之 以下當事人之一或多方有關:密西根大學之董事會董事 (Regents of the University of Michigan)、普林斯頓大學 (Princeton UniVersity)、南加州大學(The ―猜吻打 Southern California)^ the Universal Display C〇rporation 0 該協定於所主張發明完成之日期t前及之時為有效,且所 主張發明係由於在該較之範圍内所進行之活動而完成。 【先前技術】 由於若干原因’日益需要使用有機材料之光電裝置。許 多用於製造該等裝置之材料相對便宜’因此有機光電裝置 具有優於無機裝置之成本優勢潛能。此外,有機材料之固 有特性(諸如其可撓性)可使得其非常適^找應用,諸如 製造可撓性基板。有機光電裝置之實例包括有機發光裝置 (OLED)、有機光電晶體、有機光電電池及有機光偵測 12E110.doc 200901530 機材料可能具有優於習知材料之 機發射層在其下發光之波長通常 諸。 D使用當電壓施加於整個裝置上時發光之薄有機薄 膜。對於用於諸如平板顯示器、照明及背光之應用而言,200901530 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an organic light-emitting device (OLED). More specifically, the invention relates to 〇 L E D having a specific structure that enhances the lifespan. The purpose of this application is to claim the priority of US Patent Provisional Application No. 6/877,696, which was filed on December 28, 2, GG, and the US Patent Provisional Application No. 6G/9GM24, filed on February 8, 2007. By reference and in this article. The following claims are made by one or more of the following parties to the University Alliance Joint Research Association, or by one or more of the following parties representing the University Alliance Joint Research Agreement and/or the following parties to the University Alliance Joint Research Agreement One or more related: Regents of the University of Michigan, Princeton UniVersity, University of Southern California (The ―Kissing Southern California) ^ the Universal Display C〇rporation 0 It is valid before and at the date t of the claimed invention, and the claimed invention is completed as a result of activities carried out within the scope of the invention. [Prior Art] Optoelectronic devices using organic materials are increasingly required for several reasons. Many of the materials used to make such devices are relatively inexpensive' so organic optoelectronic devices have a cost advantage over inorganic devices. In addition, the inherent properties of the organic material, such as its flexibility, can make it very suitable for applications such as the manufacture of flexible substrates. Examples of organic optoelectronic devices include organic light-emitting devices (OLEDs), organic optoelectronic crystals, organic photovoltaic cells, and organic light detection. 12E110.doc 200901530 Machine materials may have wavelengths that are superior to conventional materials in which the emission layer of the device emits light. . D uses a thin organic film that emits light when a voltage is applied to the entire device. For applications such as flat panel displays, lighting and backlighting,

器。對於OLED而言,有 效能優勢《舉例而言,有 可用適當摻雜劑容易地調 〇㈣成為-種日益關注之技術。—些〇咖材料及組態描 述於美國專利第5,844,363號、第m〇3,238號及第 5’7〇7,745號中’其以引用的方式全文併入本文中。 磷光性發射性分子之一種應用為全色顯示。用於該顯示 之工業標準需要適合於發射特定色彩(稱v,飽和&quot;色彩)之 像素詳σ之,該荨彳示準需要飽和紅色、綠色及藍色像 素。色彩可使用此項技術熟知之CIE座標量測。 綠色發射性分子之一實例為參(2_苯基吼啶)銥,表示為 Ir(ppy)3 ’其具有式I之結構:Device. For OLEDs, there are performance advantages. For example, there are techniques that can be easily tuned with appropriate dopants. - </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; One application of phosphorescent emissive molecules is full color display. The industry standard for this display requires a pixel that is suitable for emitting a particular color (called v, saturated &quot;color), which is required to saturate red, green, and blue pixels. Colors can be measured using the CIE coordinates that are well known in the art. An example of a green emissive molecule is ginseng (2-phenyl acridine) oxime, denoted Ir(ppy)3' having the structure of formula I:

Μ 在本文之此圖及隨後之圖中,描述氮至金屬(此處為⑺ 之配位鍵為直線。 如本文所用之術語”有機”包括可用以製造有機光電裝置 之聚合材料以及小分子有機材料。&quot;小分子&quot;係指不為聚合 物之任何有機材料,且實際上”小分子,,可相當大。在某些 情況下,小分子可包括重複單元。舉例而言,使用長鏈烷 基作為取代基的分子並未自”小分子&quot;類中排除。小分子亦 1281t0.doc 200901530 可併入聚合物中,例如作為聚合物主鏈上之側基或作為主 鏈之一部分。小分子亦可充當樹枝狀聚合物之核心部分, 該樹枝狀聚合物由一系列建立在核心部分之化學殼組成。 樹枝狀聚合物之核心部分可為螢光性或磷光性小分子發射 極。樹枝狀聚合物可為&quot;小分子'',且據信通常用於OLED 領域中之所有樹枝狀聚合物均為小分子。 如本文所用之”頂部”意謂距離基板最遠,而底部”意謂 最靠近基板。當將第一層描述為&quot;安置於第二層上”時,該 第一層係遠離基板安置。除非指定第一層與第二層&quot;接觸”, 否則在第一層與第二層之間可能有其他層。舉例而言,即 使在中間存在各種有機層,仍可將陰極描述為&quot;安置於陽 極上”。 如本文所用之&quot;溶液可加工”意謂能夠以溶液或懸浮液形 式於液體介質中溶解、分散或傳輸及/或自液體介質中沈 積。 當據信配位體有助於發射性材料之光敏性特性時,將該 配位體稱為”光敏性的”。 若第一能階(HOMO或LUMO)在習知能階圖上較低,則 認為其&quot;低於”或”小於&quot;第二能階,其意謂第一能階將具有 與第二能階相比在較大程度上為負之值。若第一能階 (HOMO或LUMO)在習知能階圖上較高,則認為其&quot;高於”第 二能階,其意謂第一能階將具有與第二能階相比在較小程 度上為負之值。舉例而言,CBP之HOMO為-5.32 eV且TPBI 之HOMO為-5.70 eV,因此CBP之HOMO比 TPBI之HOMO ”高” 128110.doc 200901530 0. 38 eV。類似地,mCP 之 LUMO 為-0.77 eV 且 CBP 之 LUMO 為-1.23 eV ’ 因此mCP之LUMO比 CBP之LUMO ” 高&quot;0.46 eV。 使用利用可自美國加州Irvine之Wavefunction Inc.獲得之 Spartan 02套裝軟體在B3LYP/6-31G*水平下執行密度泛函 計算(density functional calculation)測定上述值。虛位能選擇 可用於含有重金屬之物質,諸如Ir(ppy)3。已於文獻中證 實密度泛函計算能夠定性預測有機及無機化合物之能量。 可在美國專利第7,279,7〇4號中發現以上所述〇Led及定 義之更詳細說明,其以引用的方式全文併入本文中。 如本文所用之術語”基本上由一或多種如塗覆於有機發 光裝置中之塗層的材料組成&quot;意謂除彼等列舉者外還可能 有材料存在’但任何該等其他材料僅以微量(諸如雜質)形 式存在且不顯著影響裝置之電子特性或發射性,亦即其不 顯著促進電洞或電子之傳輸或截獲,其不引起重組位置之 位移且其不顯著促進或參與激子衰變、發射或其他方面。 除非另外指出’否則本文所述之各層之有機化合物的百 分比為重量百分數。 包括Samuel作為合著者之以下兩個參考文獻描述與IT〇 直接接觸之具有摻雜之發射層的可加工磷光性OLED溶 液:E.E_ Namdas、T.D. Anthopoulos、I.D.W· Samuel,Μ In this and subsequent figures herein, nitrogen to metal (wherein the coordination bond of (7) is a straight line. The term "organic" as used herein includes polymeric materials that can be used to fabricate organic optoelectronic devices, as well as small molecule organics. Material. "Small molecule" means any organic material that is not a polymer, and in fact "small molecules, can be quite large. In some cases, small molecules can include repeating units. For example, long The molecule in which the alkyl group is a substituent is not excluded from the "small molecule" category. The small molecule is also incorporated into the polymer, for example as a pendant group on the polymer backbone or as part of the backbone. The small molecule can also serve as the core of the dendrimer, which consists of a series of chemical shells built on the core. The core of the dendrimer can be a fluorescent or phosphorescent small molecule emitter. Dendrimers can be &quot;small molecules&quot;, and it is believed that all dendrimers commonly used in the field of OLEDs are small molecules. As used herein, "top" means distance The bottom of the substrate is the farthest, and the bottom means the closest to the substrate. When the first layer is described as &quot;placed on the second layer, the first layer is placed away from the substrate. Unless the first layer and the second layer are specified&quot Contact", otherwise there may be other layers between the first layer and the second layer. For example, even if various organic layers are present in the middle, the cathode can be described as "placed on the anode". As used herein &quot;solution processable&quot; means that it can be dissolved, dispersed or transported in a liquid medium in the form of a solution or suspension and/or deposited from a liquid medium. When it is believed that the ligand contributes to the photosensitivity properties of the emissive material The ligand is referred to as "photosensitive." If the first energy level (HOMO or LUMO) is lower on the conventional energy level diagram, it is considered to be lower than or less than &quot;second energy level , which means that the first energy level will have a negative value to a greater extent than the second energy level. If the first energy level (HOMO or LUMO) is higher on the conventional energy level diagram, it is considered to be &quot Higher than "second energy level, which means that the first energy level will have a higher energy level than the second energy level To a lesser extent, it is a negative value. For example, the HOMO of CBP is -5.32 eV and the HOMO of TPBI is - 5.70 eV, so the HOMO of CBP is higher than the HOMO of TPBI 128110.doc 200901530 0. 38 eV. Ground, the LUMO of mCP is -0.77 eV and the LUMO of CBP is -1.23 eV 'so the LUMO of mCP is higher than the LUMO of CBP" 0.46 eV. Use the Spartan 02 software package available from Wavefunction Inc. of Irvine, California, USA. The above values were determined by performing a density functional calculation at the B3LYP/6-31G* level. The virtual position can be selected for substances containing heavy metals such as Ir(ppy)3. It has been documented in the literature that density functional calculations can qualitatively predict the energy of organic and inorganic compounds. A more detailed description of the above-described 〇Led and definitions can be found in U.S. Patent No. 7,279,7, which is incorporated herein in its entirety by reference. The term "consisting essentially of one or more materials such as coatings applied to an organic light-emitting device" as used herein means that material may be present in addition to those enumerated 'but any such other materials are only Traces (such as impurities) are present and do not significantly affect the electronic properties or emissivity of the device, ie, they do not significantly promote the transport or interception of holes or electrons, which do not cause displacement of the recombination sites and which do not significantly promote or participate in excitons Decay, emission, or other aspects. Unless otherwise indicated, 'the percentage of organic compounds of the various layers described herein is percent by weight. The following two references, including Samuel as co-authors, describe doped emitter layers in direct contact with IT〇 Processable phosphorescent OLED solutions: E.E_ Namdas, TD Anthopoulos, IDW· Samuel,

Applied physics letters 86 , 161 104 (2005) ; T.DApplied physics letters 86 , 161 104 (2005) ; T.D

Anthopoulos、M.J. Frampton、Ε·Β· Namdas、P.L. Burn、 1. D.W. Samuel,Adv. Mater. 2004,16,第 6期,3 月 18 曰,第557-560頁。 128110.doc 200901530 【發明内容】 在第-態樣令,提供一種在發射層令具有 發光裝置。該裳置具有一陽極、_ —面之有機 與該陰極之間的發射層。該發射層n·極 第一有機層包括第一磷光性材料及 忒 第一有機層中之第一構光性材料之濃度射^生材料。該 該第一有機層中之第一非;Ο JO W,且 0/ _ ^ f材科之濃度為l〇_9n W“。該發射層亦包括一第二有機層Anthopoulos, M.J. Frampton, Ε·Β·Namdas, P.L. Burn, 1. D.W. Samuel, Adv. Mater. 2004, 16, No. 6, March 18 曰, pp. 557-560. 128110.doc 200901530 SUMMARY OF THE INVENTION In a first aspect of the invention, there is provided an illumination device having an illumination device. The skirt has an emitter layer between the anode and the cathode and the cathode. The emitter layer n·pole first organic layer includes a first phosphorescent material and a concentration of the first photosynthetic material in the first organic layer. The first non-Ο in the first organic layer; Ο JO W, and the concentration of the 0/ _ ^ f material is l〇_9n W". The emissive layer also includes a second organic layer

第二鱗光性材料及第二非發射性㈣1第二^2括 鱗光性材料之濃度為3-25 ♦且該第二有機層中之第: 非發射性材料之濃度為75-97 wt%。第二有機層中之第= 碟光性材料之濃度低於第一有機層中之第—構光性材料之 派度,較佳低至少5 wt%,且更佳低至少1〇 wt%。第 發射性材料與第二非發射性材料可為相同材料或不同材 料,且第—磷光性材料與第二碟純材料可為相同材料或 不同材料。因此,存在4種組合:⑴在第_與第二有機層 中鱗先性材料相同,且在第一與第二有機層中非發射性材 料相同;⑺在第一及第二有機層中磷光性材料不同 第一與第二有機層中非發射性材料相同;⑺在第一與第二 有機層中填光性材料相同’且在第-及第二有機層令非; 射性材料不同;及⑷在第一及第二有機層中碌光性材料不 同’且在第-及第二有機層中非發射性材料不同。各組合 均有其優勢。第-有機層可基本上由第一填光性材料及第 一非發射性材料組成’且第二有機層可基本上由第—有機 128110.doc •10· 200901530 層之第-鱗光性材料及第-非發射性材料組成。亦提 輕裝置損害及延長裝置使用期限之裝置架構以個別地或以 組合形式用於第一態樣。 第-有機層、第二有機層或兩者可視情況進一步 低能量發射性材料,其中該較低能量發射性 0.1-12 wt%。 叶 &lt; 瑕度為 在第二態樣中,提供—種減輕損害之架構 層與陽極之間的所有有機層均复 第有機 ^_層均具有—電祠遷移率及 、移率’以致該電洞遷移率為該電子遷移率之 較佳大至少十倍,且更佳大至少⑽倍。 ‘, =三態樣中’提供減輕損害之另一架構。在 A胺間的所有有機層均不包括任何含有選自由三芳 ^之群^_二:7/㈣)三苯胺、四芳基胺及味唾組 在第四態樣中,提供減輕損害之另 層與陽極之間不存在有機層。 在第-有機 在第五態樣中,提供減輕損害之另一 於第一有機層與陽極之間的第三有❹。;第:=—安置 上由第一磷光性材料組…第二有機層基本 機層及陽極,Μ其#— 層係直接接觸於第-有 在第六態樣中’提供減輕損之間的唯-層。 不超過3種不同有機 ° '、構。該裝置包括 最少。 以使遭受損害之材料數目減至 在第七態樣中,楹视# ± 減輕損害之另一架構。該裝置包括 I28J30.doc 200901530 不超過4種不同有機材料,其中該等有機材料中之一者為 僅存在於裝置之發射層肖陰極之間的電子傳輸材料。對於 材料數目之限制使遭受損害之材料數目減至最少。 在第八態樣中,提供減輕損害之另一架構。第一有機層 與陽極之間的所有有機層基本上由有機金屬材料組成。 在第九態樣中,提供減輕損害之另一架構。第一有機層 與陽極之間的所有有機層均具有充分大之電洞傳導率,以 致在10 mA/cm2之電流下該層之厚度增加1〇 nm導致電壓上 升0.1 V或以下。 在第十態樣中,提供減輕損害之另一架構。第一非發射 性材料具有2.7 eV或以上之三重態能量。 在第十一態樣中,在存在或不存在各種損害減輕架構之 情況下,提供可用於第一態樣之較低能量發射性材料。該 較低能量發射性材料可為螢練射性材料、-光性材料或 兩種之、.且σ,其中存在多種較低能量發射性材料。較低能 量發射&amp;材料之農度可為〇·1 -12 wt%,且較低能量發射性材 料可僅存在於第—有機層中,僅存在於第二有機層中或存在 於兩層中。包括較低能量發射性材料之有機層可基本上由 科光性材料、非發射性材料及較低能量發射性材料組成。 在第十一態樣中,提供類似於第一態樣之裝置的裝置, 但與低於相反’其中第二有機層中之麟光性材料之濃度高 於第有機層之磷光性材料之濃度。第一有機層中之第一 磷光性材料之〉辰度為3-25 wt%,且第一有機層中之第一非 發射性材料之濃度為75-97 wt%。第二層中之構光性材料 128H0.doc •12· 200901530 之濃度為10-90 wt%,且第二有機層中之非發射性材料之 濃度為10-90 wt%。如上所述各種其他態樣可結合第十二 態樣使用。 在各種態樣中,第一有機層可基本上由第一磷光性材料 及第一非發射性材料組成,且第二有機層可基本上由第一 有機層之第二磷光性材料及第二非發射性材料組成。The second scale light material and the second non-emissive (4) 1 second 2 scale light material have a concentration of 3-25 ♦ and the second layer of the second organic layer: the concentration of the non-emissive material is 75-97 wt %. The concentration of the first dish material in the second organic layer is lower than the concentration of the first light-modulating material in the first organic layer, preferably at least 5 wt%, and more preferably at least 1 wt%. The first emissive material and the second non-emissive material may be the same material or different materials, and the first phosphorescent material and the second disc pure material may be the same material or different materials. Therefore, there are four combinations: (1) the first material in the first and second organic layers is the same, and the non-emissive material is the same in the first and second organic layers; (7) phosphorescence in the first and second organic layers The material is different from the first non-emissive material in the second organic layer; (7) the light-filling material is the same in the first and second organic layers and is different in the first and second organic layers; And (4) the light-emitting material is different in the first and second organic layers' and the non-emissive materials are different in the first and second organic layers. Each combination has its advantages. The first organic layer may consist essentially of the first light-filling material and the first non-emissive material' and the second organic layer may consist essentially of the first-scale light-sensitive material of the first organic layer 110110.doc •10·200901530 And a non-emissive material composition. The device architecture that also mitigates device damage and extends the life of the device is used individually or in combination for the first aspect. The first organic layer, the second organic layer or both may further be a low energy emissive material, wherein the lower energy emissivity is 0.1-12 wt%. The leaf &lt; 瑕 degree is in the second aspect, providing all the organic layers between the structural layer and the anode of the mitigating damage, and the organic layer has the electromigration mobility and the mobility rate so that the The hole mobility is preferably at least ten times greater than the electron mobility, and more preferably at least (10) times greater. ‘, = three-states' provide another framework for mitigating damage. All of the organic layers between the A amines do not include any of the triphenylamines, tetraarylamines, and saliva groups selected from the group consisting of triaryl groups, in the fourth aspect, providing additional damage mitigation. There is no organic layer between the layer and the anode. In the first-organic, in the fifth aspect, a third flaw is provided between the first organic layer and the anode to mitigate damage. ;:: - placed on the first phosphorescent material group ... the second organic layer basic layer and the anode, Μ its # - layer system directly in contact with the first - there is in the sixth aspect of the 'providing damage between Only-layer. No more than 3 different organic ° ', structure. The device includes a minimum. In order to reduce the number of materials damaged to the seventh aspect, scorn #± to mitigate another structure of damage. The apparatus comprises no more than 4 different organic materials of I28J30.doc 200901530, wherein one of the organic materials is an electron transporting material present only between the cathodes of the emissive layer of the device. The limit on the number of materials minimizes the number of materials that are subject to damage. In the eighth aspect, another architecture for mitigating damage is provided. All of the organic layer between the first organic layer and the anode consists essentially of an organometallic material. In the ninth aspect, another architecture for mitigating damage is provided. All of the organic layers between the first organic layer and the anode have a sufficiently large hole conductivity such that the thickness of the layer increases by 1 〇 nm at a current of 10 mA/cm 2 resulting in a voltage rise of 0.1 V or less. In the tenth aspect, another architecture for mitigating damage is provided. The first non-emissive material has a triplet energy of 2.7 eV or more. In an eleventh aspect, a lower energy emissive material that can be used in the first aspect is provided in the presence or absence of various damage mitigation structures. The lower energy emissive material can be a swellable radioactive material, a photoactive material, or both, and σ, in which a plurality of lower energy emissive materials are present. The energy of the lower energy emission &amp; material may be 〇·1 -12 wt%, and the lower energy emissive material may exist only in the first organic layer, only in the second organic layer or exist in two layers in. The organic layer comprising the lower energy emissive material can consist essentially of a luminescent material, a non-emissive material, and a lower energy emissive material. In an eleventh aspect, a device similar to the device of the first aspect is provided, but with a concentration lower than the opposite of the phosphorescent material in which the concentration of the light-sensitive material in the second organic layer is higher than that of the organic layer . The first phosphorescent material in the first organic layer has a ?? degree of 3-25 wt%, and the concentration of the first non-emissive material in the first organic layer is 75-97 wt%. The photo-curable material in the second layer 128H0.doc •12·200901530 has a concentration of 10-90 wt%, and the concentration of the non-emissive material in the second organic layer is 10-90 wt%. Various other aspects as described above can be used in conjunction with the twelfth aspect. In various aspects, the first organic layer can be substantially composed of the first phosphorescent material and the first non-emissive material, and the second organic layer can be substantially composed of the second phosphorescent material of the first organic layer and the second Non-emissive material composition.

ί 在各種態樣巾’第-及第:有機層之總厚度較佳為至少 400 A。第一有機層之厚度較佳為至少5〇 A且第二有機層 之厚度較佳為至少50 A。 在各種態樣中,第-鱗光性材料較佳具有比第—非發射 性材料之最高佔據分子軌域高至少0.3…之最高佔據分子 軌域,且第二填光性材料較佳具有比第—非發射性材料之 第-佔據分子軌域高至少〇.3…之最高佔據分子執域。 在各種態樣中’可提供一安置於第二有機層與陰極之間 的第四有機層。該第四有機層基本上由第二非 組成,且其係直接接觸於第二有機層。 材枓 在各種態樣中,可提供—安置於第二有機層與陰極 的第四有機層。該第四有機層基本上由具有比第二璘光性 :枓之二重“量大至少。·! eV之三重態能量的材料电 成,且第四有機層係直接接觸於第二有機層。 在各種態樣中’第一非發射性材料可選自 伸三苯、咔唑、二苯并噻吩及與咔唑偶合之二 ? 成之群之基團的材料。 °塞吩組 在各種態樣中,第-有機層可直接接觸於第 128110.doc -13- 200901530 【實施方式】 一般而^ ’ OLED包含至少-安置於陽極與陰極之間且 與陽極及陰極電連接之有機層。當施加電流時,陽極將電 洞注入有機層中且陰極將電子注入有機層中。注入之電洞 及電子各自向帶相反電荷之電極遷移。當電子及電洞定位 於同一分子上時,形成具有激發能態之定位電子-電洞對&quot;激 子&quot;。當激子經由光發射機制鬆弛時發射光。在某些情況 下,激子可定位於準分子或激發複合物體上。雖然亦可出 現非輻射機制(諸如熱鬆弛),但一般認為其不合乎需要。 如(例如)美國專利第4,769,292號中所示,初始〇LED使 用自其單重態發射光(&quot;螢光&quot;)之發射性分子,該專利以引ί The total thickness of the 'first and third: organic layers of the various types of towels is preferably at least 400 A. The first organic layer preferably has a thickness of at least 5 Å and the second organic layer preferably has a thickness of at least 50 Å. In various aspects, the first-scale optical material preferably has a highest occupied molecular orbital domain at least 0.3... higher than the highest occupied molecular orbital domain of the first non-emissive material, and the second light-filling material preferably has a ratio The first-occupied molecular orbital of the first-non-emissive material is at least 〇.3...the highest occupied molecular domain. In a variety of aspects, a fourth organic layer disposed between the second organic layer and the cathode can be provided. The fourth organic layer consists essentially of a second non-contact and is in direct contact with the second organic layer. Materials In various aspects, a fourth organic layer disposed in the second organic layer and the cathode may be provided. The fourth organic layer is substantially made of a material having a triplet energy greater than a second light-emitting property: a triplet energy amount of at least .·! eV, and the fourth organic layer is in direct contact with the second organic layer In various aspects, the first non-emissive material may be selected from the group consisting of triphenyl, carbazole, dibenzothiophene, and a group bonded to oxadiazole. In this example, the first organic layer may be in direct contact with the 128110.doc -13 - 200901530. [Embodiment] Generally, the OLED comprises at least an organic layer disposed between the anode and the cathode and electrically connected to the anode and the cathode. When a current is applied, the anode injects a hole into the organic layer and the cathode injects electrons into the organic layer. The injected holes and electrons each migrate toward the oppositely charged electrode. When the electron and the hole are positioned on the same molecule, the formation The position of the excited energy state electron-hole pair &quot;exciton&quot;. When the excitons relax through the light emission mechanism, in some cases, the excitons can be positioned on the excimer or the excited composite object. Non-radiative mechanism Such as thermal relaxation, but is generally considered to be undesirable. As shown in, for example, U.S. Patent No. 4,769,292, the initial 〇LED uses an emissive molecule that emits light from its singlet state (&quot;fluorescent&quot;). Patent cited

用的方式全文併入本文中。螢光發射一般在小於1〇奈秒之 時間範圍内發生。 近年來,已證實具有自三重態發光(”磷光&quot;)之發射性材 料之 OLED。Baldo等人,&quot;Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices&quot; » Nature,第 395 卷,15i_154,1998,(&quot;Bddo-r);及㈣如 等人’ &quot;Very high-efficiency green organic light-emitting devices based on electrophosphorescence&quot; &gt; Appl. Phys. Lett· ’ 第 75卷,第 3期,4-6(1999)(&quot;Baldo-II”),其以引用的 方式全文併入本文中。在美國專利第7,279,704號第5-6行中 更詳細地描述磷光’該專利以引用的方式併入本文中。 圖1展示一有機發光裝置1〇〇。該等圖並不一定按比例繪 製。裝置100可包括一基板11〇、一陽極丨15、一電洞注入 128110.doc .14- 200901530 層120、一電洞傳輸層l25、一電子阻擋層13〇、一發射層 135、一電洞阻擋層140、一電子傳輸層145、一電子注入 層150、一保護層155及一陰極16〇。陰極16〇為一具有一第 一導電層162及一第二導電層164之複合陰極。裝置1〇〇可 藉由按次序沈積所述層來製造。該等各層之特性及功能以 及實例材料更詳細地描述於us 7,279,704第6·1〇行中,該 專利以引用的方式併入本文中。 可獲得該等層中之每一者之更多實例。舉例而言,可撓 性及透明基板-陽極組合揭示於美國專利第5,844,363號 中,其以引用的方式全文併入本文中。_換雜之電洞傳 輸層之實例為用F^TCNQ以50:1之莫耳比摻雜之m_ MTDATA,如美國專利申請公開案第2〇〇3/〇23〇98〇號中所 揭示,其以引用的方式全文併入本文中。發射性及主體材 料之實例揭示於丁hompson等人之美國專利第6,3〇3,238號 中其以引用式全文併入本X中βη型推雜之電子# 輸層之實例為用Li以1:1之莫耳比摻雜iBphen,如美國專 利申請公開案第2003/0230980號中所揭示,其以引用的方 式全文併入本文中。以引用的方式全文併入本文中之美國 專利第5,703,436號及第5,707,745號揭示陰極之實例,其包 括具有具備-上覆透明、導電、經麟沈積之ιτ〇層的薄 金屬(諸如Mg:Ag)層的複合陰極。阻擋層之理論及使用更 詳細地描述於美國專利第M97,l47號及美國專利申請公開 案第2003/0230980號中,其以引用的方式全文併入本文 中。注入層之實例提供於美國專利申請公開案第 128110.doc • 15- 200901530 2004/0 1741 16號中,其以引用的方式全文併入本文中。保 護層之說明可見於美國專利申請公開案第2004/01741 16號 中,其以引用的方式全文併入本文中。The method used is fully incorporated herein. Fluorescence emission typically occurs over a time period of less than 1 nanosecond. In recent years, OLEDs have been demonstrated to have emissive materials from triplet luminescence ("phosphorescence"). Baldo et al., &quot;Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices&quot; » Nature, Vol. 395, 15i_154, 1998, ( &quot;Bddo-r); and (4) et al. 'Very high-efficiency green organic light-emitting devices based on electrophosphorescence&quot;&gt; Appl. Phys. Lett· 'Vol. 75, No. 3, 4-6 ( 1999) (&quot;Baldo-II"), which is incorporated herein in its entirety by reference. Phosphorescence is described in more detail in U.S. Patent No. 7,279,704, lines 5-6, the disclosure of which is incorporated herein by reference. Figure 1 shows an organic light-emitting device 1A. These figures are not necessarily drawn to scale. The device 100 can include a substrate 11 , an anode 15 , a hole injection 128110.doc . 14 - 200901530 layer 120 , a hole transport layer 125 , an electron blocking layer 13 , an emissive layer 135 , a hole The barrier layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 16A. The cathode 16 is a composite cathode having a first conductive layer 162 and a second conductive layer 164. The device 1 can be fabricated by depositing the layers in order. The properties and functions of the various layers, as well as example materials, are described in more detail in U.S. Patent 7,279,704, the disclosure of which is incorporated herein by reference. More examples of each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Patent No. 5,844,363, which is incorporated herein in its entirety by reference. An example of a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , which is incorporated herein by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Patent No. 6,3,3,238, the entire disclosure of which is incorporated herein by reference in its entirety by reference in the the the the The molar ratio of 1 is iBphen, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated herein in its entirety by reference. Examples of cathodes are disclosed in U.S. Patent Nos. 5,703,436 and 5,707,745, the entire disclosure of which is incorporated herein by reference to the entire entire entire entire entire entire entire entire disclosure disclosure disclosure disclosure disclosure a composite cathode of the layer. The theory and use of the barrier layer is described in more detail in U.S. Patent No. M97,147, and U.S. Patent Application Serial No. 2003/0230980, which is incorporated herein in its entirety by reference. An example of an injection layer is provided in U.S. Patent Application Publication No. 128,110, the entire disclosure of which is incorporated herein by reference. A description of the protective layer can be found in U.S. Patent Application Publication No. 2004/01741, which is incorporated herein in its entirety by reference.

圖2展示一倒置型OLED 200。該裝置包括一基板21〇、 一陰極215、一發射層220、一電洞傳輸層225及一陽極 230。裝置200可藉由按次序沈積所述層來製造。因為最通 用之OLED組態具有一安置於陽極上之陰極,且裝置2〇〇具 有安置於陽極230下之陰極215,故可將裝置2〇〇稱為&quot;倒置 型&quot;OLED。可將與關於裝置1〇〇所述之彼等材料類似之材 料用於裝置200之相應層中。圖2提供一個如何自裝置1〇〇 之結構省略某些層的實例。 圖1及2中說明之簡單層狀結構以非限制性實例之方式提 供’且應瞭解本發明之實施例可結合廣泛多種其他結構加 以使用。實際上,料之特定材似結構為心性的,且 可使用其他材料及結構。可根據設計、效能及成本因素藉 由以不同方式組合所述之各種層或可完全省略各層來獲得 功能性OLED。亦可包括未特定描述之其他層。可使用&amp; 特定描述之彼等材料外之絲 施换 十卩之材枓。雖然本文所提供之許多實 例將各層描述為包含單—U n 匕各早材枓,但應瞭解可使用諸如主體 與摻雜劑之混合物或更—如★、日人&amp; 體 兮箄層叮且古々 材料組合。同樣, 邊專層可具有各種子層。本文對各種層給 欲將其嚴格限制。舉例 稱並不思 芈例而έ ,在裝置2〇〇中, 225傳輸電洞且將雷 電,同傳輸層 電洞傳輸層二 發射層220中’且可將其描述為 电/丨Μ寻掏層或電洞注入一 在實施例中’可將〇LED描 128110.doc -16 - 200901530 述u #置於陰極與陽極之間的&quot;有機層&quot;。該有機層 p 3單層或可進一步包含如(例如)關於圖1及圖2所 述之不同有機材料的多層。 亦可使用未特定描述之材料及結構,諸如由諸如在 Friend等人之美國專利第5,247,19〇號中所揭示之聚合村料 (PLED)組成的〇led,該專利以引用&amp;方式纟文併入本文 中。作為另一實例,可使用具有單一有機層之〇LED。舉 、 例而言,如Forrest等人之美國專利第5,7〇7,745號中所述, f 可將〇LED堆疊,該專利以引用的方式全文併入本文中。 0LED結構可與圖1及圖2中說明之簡單層狀結構不同。舉 例而言’基板可包括一傾斜反射性表面以改良外部耦合, 諸如如F〇rrest等人之美國專利第6,〇91,195號中所述之台面 結構(mesa structure)及/或如Bulovic等人之美國專利第 5,834,893號中所述之坑形結構(pit structure),該等專利以 引用的方式全文併入本文中。 除非另外說明,否則各種實施例之層中之任一者可藉由 / V 任何合適方法沈積。對於有機層而言,較佳方法包括熱蒸 發、喷墨(諸如美國專利第6,013,982號及第6,087,196號中 所述,該等專利以引用的方式全文併入本文中)、有機氣 相沈積(0VPD)(諸如Forrest等人之美國專利第6,337,102號 中所述,該專利以引用的方式全文併入本文中)及藉由有 機喷氣打印(organic vapor jet printing,0VJP)沈積(諸如美 國專利申請案第10/233,470號中所述’該案以引用的方式 全文併入本文中)。其他合適沈積方法包括旋塗及其他基 128110.doc -17- 200901530 於溶液之製帛。基於溶液之製 進行。對減μ 〇 k μ在氮U惰性氣氛中 化方法勺括: ° κ佳方法包括熱蒸發。較佳圖案 =包括經由遮蔽沈積、冷焊(諸如美國專利第 ==468,819號中所述,該等專利以引用的方式全文併 文中)及與某些諸如噴墨及〇训之沈積方法相關之圖FIG. 2 shows an inverted OLED 200. The device includes a substrate 21, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 can be fabricated by depositing the layers in sequence. Since the most common OLED configuration has a cathode disposed on the anode and the device 2 has a cathode 215 disposed under the anode 230, the device 2 can be referred to as an &quot;inverted&quot; OLED. Materials similar to those described for device 1A can be used in the respective layers of device 200. Figure 2 provides an example of how to omit certain layers from the structure of the device. The simple layered structure illustrated in Figures 1 and 2 is provided by way of non-limiting example and it should be understood that embodiments of the invention may be utilized in conjunction with a wide variety of other structures. In fact, the material-like structure of the material is mechanical, and other materials and structures can be used. The functional OLEDs can be obtained by combining the various layers in different ways depending on design, performance and cost factors or by completely omitting the layers. Other layers not specifically described may also be included. You can use the materials that are described in the &amp; specific descriptions to replace the materials of the Ten Commandments. While many of the examples provided herein describe layers as comprising a single-U n 匕 each early 枓, it should be understood that a mixture such as a host and a dopant may be used or, for example, ★, Japanese &amp; And the combination of ancient materials. Also, the edge layer can have various sublayers. This article is intended to impose strict limits on various layers. For example, it is not considered as an example. In the device 2, 225 transmits a hole and transmits lightning, which is the same as the transmission layer hole transmission layer 2, and can be described as electric/丨Μ The layer or hole is implanted into an &quot;organic layer&quot; between the cathode and the anode in the embodiment of the 〇LED trace 128110.doc -16 - 200901530. The organic layer p 3 monolayer may further comprise, for example, multiple layers of different organic materials as described with respect to Figures 1 and 2 . It is also possible to use materials and structures that are not specifically described, such as 〇led, which is composed of a polymeric village material (PLED) as disclosed in U.S. Patent No. 5,247,19, the disclosure of which is incorporated herein by reference. This article is incorporated herein. As another example, a germanium LED having a single organic layer can be used. For example, 〇 LEDs can be stacked as described in U.S. Patent No. 5,7,7,745, the entire disclosure of which is incorporated herein by reference. The 0 LED structure can be different from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate can include a slanted reflective surface to improve the external coupling, such as the mesa structure as described in U.S. Patent No. 6, 〇 91, 195 to F. Rrest et al. and/or, for example, Bulovic et al. A pit structure as described in U.S. Patent No. 5,834,893, the disclosure of which is incorporated herein in its entirety by reference. Any of the various embodiments may be deposited by any suitable method of /V unless otherwise stated. Preferred methods for the organic layer include thermal evaporation, ink jetting (such as those described in U.S. Patent Nos. 6,013,982 and 6,087,196, the entireties of each of each of each of And (as described in US Pat. 'The case is incorporated herein by reference in its entirety. Other suitable deposition methods include spin coating and other substrates in the solution of 128110.doc -17- 200901530. Based on the solution system. For the method of reducing μ 〇 k μ in a nitrogen U inert atmosphere, the method of ° κ includes thermal evaporation. Preferred patterns = include by masking deposition, cold soldering (such as described in U.S. Patent No. </RTI> </RTI> </RTI> </RTI> </RTI> <RTIgt; Figure

盘三亦可使用其他方法。可改質待沈積之材料以使得其 =疋沈積方法相容。舉例而言,可在小分子中使用分枝 或“枝且較佳含有至少3個碳的諸如烧基及芳基之取代 ^以增強其經受溶液加卫之能力。可使用具有20個或更多 石反之取代基,且3_2G個碳為較佳_。因為㈣稱材料可具 有較低之再結晶趨勢’所以與具有對稱結構之材料相比,具 ^不對稱結構之材料可能具有較佳溶液可加工性。可使用 樹枝狀聚合物取代基以增強小分子經受溶液加工之能力。 可將根據本發明之實施例製造之裝置併入廣泛多種消費 型產品中,其包括平板顯示器,電腦監視器,電視,告示 牌,用於内部或外部照明及/或信號傳輸之燈,抬頭顯示 器,全透明顯示器,可撓性顯示器,雷射打印機,電話, 蜂巢式電話,個人數位助理(PDA),膝上型電腦,數位攝 影機,錄像攝像機(camcorder)、檢景器,微顯示器,車輛, 大面積牆、劇場或露天大型運動場螢幕或標誌。可使用各 種控制機制以控制根據本發明製造之裝置,包括被動矩陣 及主動矩陣。許多該等裝置意欲在對人類舒適之溫度範圍 中,諸如18°C至30°C,且更佳在室溫(2(TC_25°C)下使用。 本文所述之材料及結構可應用於除〇LED外之裝置中。 128110.doc -18- 200901530 舉例而言,諸如右Ά 另機太陽電池及有機光偵測器其 裝置可使用該等材料用“ 〈具他先電 4及、,Ό構。更一般而言,諸如有機電晶 體之有機裝置可使用該等材料及結構。 術語函基、齒素、'掠其 is -a- ^ 牙 况暴、環烷基、烯基、炔基、芳烷 基雜環彡基、芳族基及雜芳基為此項技術所已知且 在US 7,279,704第31_32行中定義,該專利以引用的方式併 入本文中。 如本文所用,以下化合物具有以下結構:Other methods can be used for Pan 3. The material to be deposited can be modified to make it compatible with the 疋 deposition method. For example, a branch or "branch and preferably a substituent such as an alkyl group and an aryl group containing at least 3 carbons may be used in a small molecule to enhance its ability to withstand solution strengthening. It may be used with 20 or more. The multi-stone and the substituent, and 3_2G carbons are preferred. Because (4) the material can have a lower recrystallization tendency, so the material with asymmetric structure may have a better solution than the material with symmetric structure. Processability. Dendrimer substituents can be used to enhance the ability of small molecules to undergo solution processing. Devices made in accordance with embodiments of the present invention can be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors , TV, signage, for internal or external lighting and / or signal transmission lights, head-up display, full transparent display, flexible display, laser printer, telephone, cellular phone, personal digital assistant (PDA), knee Laptop, digital camera, camcorder, viewfinder, microdisplay, vehicle, large-area wall, theater or outdoor stadium screen or standard Various control mechanisms can be used to control the devices made in accordance with the present invention, including passive matrices and active matrices. Many of these devices are intended to be in a temperature range that is comfortable for humans, such as 18 ° C to 30 ° C, and more preferably in the room. Temperature (2 (TC_25 ° C). The materials and structures described herein can be applied to devices other than xenon LEDs. 128110.doc -18- 200901530 For example, such as right Ά another solar cell and organic light The device of the detector can use the materials to use the materials and structures. More generally, organic materials such as organic transistors can use the materials and structures. Terminology, acne , 'Sweeping its is-a- ^ dysprosium, cycloalkyl, alkenyl, alkynyl, aralkylheterocycloalkyl, aromatic and heteroaryl are known in the art and in US 7,279,704 As defined in line 31-32, this patent is incorporated herein by reference. As used herein, the following compounds have the following structures:

BB

CC

FF

128110.doc •19· 200901530128110.doc •19· 200901530

ss

圖8展示一通用磷光性OLED結構。在某些態樣中,揭示 一磷光性0LED之新穎架構。圖9展示一在一電洞注入層 (HIL)與一電洞阻擋層(BL)之間併入一厚發射層(EML)之簡 128110.doc -20- 200901530 化裝置架構。已證實當在磷光性OLED中NPD HTL經化合 物B :化合物A摻雜層替代時,此使得新穎綠色磷光性 OLED之使用期限非常長。已證實綠色裝置具有6〇〇 A化合 物B :化合物A 15% EML,在1000尼特下效率為44 cd/A且 80%使用期限為65,000 h,參見表2,實例1與比較實例2相 比較。在此裝置中,6〇〇 A化合物B :化合物A層提供電子 與電洞傳輸能力。化合物B提供非常穩定之基質。提供化 合物A作為電洞傳輸摻雜劑,因為化合物b具有優先電子 傳輸特徵。亦可將經掺雜之化合物B :化合物A層用作紅 色與藍色結構之HTL。化合物B:化合物A為證實經摻雜之 HTL·之概念的實例。亦可將化合物a用作電洞注入層,且 化合物B可充當發射層與電子傳輸層(若存在)及隨後陰極 之間的層。 本文所揭示之某些特徵能夠顯著改良磷光性OLED之穩 定性。此包括利用材料(化合物B),該材料起初係用作主 體且現已證實其為有效BL(阻擋層)及HTL(電洞傳輸層)。 以下參考文獻係以引用的方式全文併入本文中:Vadim Adamovich &gt; Novel materials and techniques of fabrication for Organic light emitting diodes,PhD, Thesis,2003年 11 月 25 日發表,Peter Mackenzie、Vadim Adamovich、Yeh Tung、Michael S. Weaver,EML ON ITO OLED DEVICES ’臨時申請案第60/763,189號;美國專利第 7,022,421號;美國專利第7,078,113號;美國專利公開案第 2006/0280965號 ° 128110.doc •21 - 200901530 CBP主體、HPT阻擋層(BL)及NPD電洞傳輸層(HTL)材料 之低穩定性對實現穩定及長使用期之綠色磷光性〇LED存 在顯著障礙。在綠色磷光性OLED中,在發射層、BL及 HTL中利用諸如化合物b之更穩定材料可使綠色磷光性 0LED使用期限提高約10倍。對於綠色裝置用以化合物A掺 雜之化合物B之層替代NPD HTL顯著改良裝置使用期限。 5亥概念亦適用於藍色裝置。 化合物B為非常穩定之主體材料。揭示具有在裝置内之 各種層中用作主體、阻擋層及電洞傳輸層組份之化合物B 的綠色結構及效能。表1展示關於改良綠色磷光性〇LED穩 定性之裝置資料。圖8展示一展示來自表1之各層結構之通 用裝置結構。 表1 :歸因於裝置結構中之新穎材料的綠色磷光性〇LED效 能之演變 結構 1 2 3 4 5 6 HIL 100 A 化合物A 化合物A 化合物A 化合物A 化合物A CuPc HTL 300 A NPD NPD NPD 化合物B : 化合物A 15% 化合物B : 化合物A 30% 化合物B : 化合物A 15% EML 300 A CBP : 化合物A 10% 化合物B ·· 化合物A 10% 化合物 B :化合 物A 15% 化合物B : 化合物A 15% 化合物B : 化合物A 15% 化合物B : 化合物A 15% BL HPT 50 A HPT 50 A 化合物B 100 A 化合物B 100 A 化合物B 100 A 化合物B 100 A ETL Alq 450 A Alq 450 A Alq 400 A Alq 400 A Alq 400 A Ala 400 A 1000尼特下之 電壓[V】 5.8 5.7 6.4 7.6 6.4 8.8 在1000尼特下 之發光效率 [cd/Al 61 59 54.7 44.2 51.8 25.6 在1000尼特下 之EQE [%] 17.7 16.3 15.3 12.3 14.4 6.9 128110.doc -22- 200901530 在 40 mA/cm2 下之初始照度 [cd/m2l 16155 16840 17300 13714 15666 8229 在 40 mA/cm2 下之Ts〇% [h】 80 160 185 870 〜900 2000 在1000尼特下 之 T5e%[h】* 25,000 55,000 75,000 280,000 &gt;500,000 &gt;600,000Figure 8 shows a general phosphorescent OLED structure. In some aspects, a novel architecture of a phosphorescent OLED is disclosed. Figure 9 shows a simplified device structure incorporating a thick emissive layer (EML) between a hole injection layer (HIL) and a hole blocking layer (BL). It has been confirmed that when the NPD HTL is replaced by the compound B doped layer of the Compound B in the phosphorescent OLED, this makes the novel green phosphorescent OLED have a very long service life. The green device has been shown to have 6 〇〇A Compound B: Compound A 15% EML, an efficiency of 44 cd/A at 1000 nits and an 80% lifetime of 65,000 h, see Table 2, Example 1 compared to Comparative Example 2 . In this device, the 6 Å A compound B: Compound A layer provides electron and hole transport capabilities. Compound B provides a very stable matrix. Compound A is provided as a hole transporting dopant because compound b has a preferential electron transport characteristic. The doped Compound B: Compound A layer can also be used as the HTL of the red and blue structures. Compound B: Compound A is an example of the concept of confirming the doped HTL. Compound a can also be used as a hole injection layer, and compound B can serve as a layer between the emission layer and the electron transport layer (if present) and then the cathode. Certain features disclosed herein can significantly improve the stability of phosphorescent OLEDs. This includes the use of a material (Compound B) which was originally used as a host and which has been confirmed to be an effective BL (barrier layer) and an HTL (hole transport layer). The following references are hereby incorporated by reference in their entirety: Vadim Adamovich &gt; Novel materials and techniques of fabrication for Organic light emitting diodes, PhD, Thesis, published on November 25, 2003, Peter Mackenzie, Vadim Adamovich, Yeh Tung , Michael S. Weaver, EML ON ITO OLED DEVICES 'Provisional Application No. 60/763, 189; U.S. Patent No. 7,022,421; U.S. Patent No. 7,078,113; U.S. Patent Publication No. 2006/0280965 No. 128110.doc • 21 - 200901530 The low stability of CBP body, HPT barrier layer (BL) and NPD hole transport layer (HTL) materials poses significant obstacles to achieving stable and long-life green phosphorescent 〇 LEDs. In green phosphorescent OLEDs, the use of more stable materials such as compound b in the emissive layer, BL and HTL can increase the lifetime of green phosphorescent 0 LED by a factor of about 10. Substituting the NPD HTL for the green device with Compound B doped Compound B significantly improved the life of the device. The 5H concept also applies to blue devices. Compound B is a very stable host material. The green structure and efficacy of Compound B, which is used as a host, barrier layer, and hole transport layer component in various layers within the device, is disclosed. Table 1 shows the device information for improving the stability of green phosphorescent 〇 LEDs. Figure 8 shows a generic device structure showing the various layer structures from Table 1. Table 1: Evolution of green phosphorescent 〇 LED efficacy due to novel materials in the device structure 1 2 3 4 5 6 HIL 100 A Compound A Compound A Compound A Compound A Compound A CuPc HTL 300 A NPD NPD NPD Compound B : Compound A 15% Compound B: Compound A 30% Compound B: Compound A 15% EML 300 A CBP : Compound A 10% Compound B ·· Compound A 10% Compound B: Compound A 15% Compound B: Compound A 15% Compound B: Compound A 15% Compound B: Compound A 15% BL HPT 50 A HPT 50 A Compound B 100 A Compound B 100 A Compound B 100 A Compound B 100 A ETL Alq 450 A Alq 450 A Alq 400 A Alq 400 A Alq 400 A Ala 400 A 1000 nits voltage [V] 5.8 5.7 6.4 7.6 6.4 8.8 Luminous efficiency at 1000 nits [cd/Al 61 59 54.7 44.2 51.8 25.6 EQE at 1000 nits [%] 17.7 16.3 15.3 12.3 14.4 6.9 128110.doc -22- 200901530 Initial illuminance at 40 mA/cm2 [cd/m2l 16155 16840 17300 13714 15666 8229 Ts〇% at 40 mA/cm2 [h] 80 160 185 870 ~900 2000 under 1000 nits T5e%[h]* 25,000 5 5,000 75,000 280,000 &gt;500,000 &gt;600,000

預測形式增加之LT 如自表1得出,將化合物B穩定材料作為各種層引入裝置 中顯著改良裝置使用期限。雖然不意欲受理論限制,但 HTL替代會改良該裝置。據信對於綠色裝置而言此可能尤 (') 其重要。NPD在綠色裝置中不如在諸如紅色裝置之其他裝 置中穩定。此外,在不意欲受理論限制的情況下,據信 NPD可藉由經發射層漏出電子及(或)藉由磷光性激子來降 級。如表1所示,用更穩定化合物B :化合物A層替代NPD HTL使裝置使用期限提高4倍。在包括化合物A與化合物B 之層中化合物B傳輸電子且化合物A摻雜劑傳輸電洞。替 代NPD使綠色裝置之使用期限與紅色裝置之使用期限類似 (&gt;100,000 h)。可利用其他材料使用經摻雜之HTL之相同概 ί 念且可將其用於紅色及藍色磷光性OLED。 可考慮之其他裝置架構包括分級結構,其中HIL為100% Ρ型摻雜劑(例如化合物Α)且隨後引入主體材料,例如作為 看上去遠離陽極之主體材料的化合物Β。亦可在陽極與BL 或ETL之間使用不同濃度(0-1 00%)之搀雜劑及主體之多 層。 亦可將化合物Β用作紅色及藍-綠色發射極之主體。 亦可將化合物Β用作紅色、綠色、藍色或白色裝置或任 128110.doc -23- 200901530 何其他顏色裝置中之BL。 具有600 A化合物B :化合物A層及化合物B作為阻擋劑 之裝置在不同HIL(CuPc、化合物A及無HIL)上生成。 具有化合物B :化合物A摻雜之HTL的特定裝置實例概括 於表2中。圖21提供於表2中所述之裝置的結構。 表2:當裝置中替代NPDHTL時之裝置效能比較 參數 實例1 實例2 實例3 實例4 實例5 比較實石厂 HIL 100 A 化合物A CuPc 無 化合物A 化合物A 化合物A HTL 300 A 化合物B : 化合物A 15% 化合物B : 化合物A 15% 化合物B : 化合物A 15% 化合物B : 化合物A 30% 化合物B : 化合物A 15% NPD EML 300 A 化合物B : 化合物A 15% 化合物B : 化合物A 15% 化合物B : 化合物A 15% 化合物B : 化合物A 15% CBP:化合 物A 10% 化合物B : 化合物A 15% Cffi『x,yl 0.38 0.59 0.36 0.61 0.36 0.60 0.37 0.60 0.37 0.60 0.38 0.59 在1000尼特下 之電壓[V] 7.6 8.8 8.6 6.4 7.8 6.4 在1000尼特下 之發光效率 TCd/Al 44.2 25.6 34 51.8 45.8 54.7 在1000尼特下 之EQE [%] 12.3 6.9 9.3 14.39 12.78 15.3 在70°C、1000 尼特下之T90% 『hi 625 900 482 293 在 40 mAa/cm2 下之初始照度 [cd/m2l 13714 8229 9434 15666 13697 17300 在 40 mA/cm2 下之 Tso% [h] 870 2000 1200 〜900 -460 185 在1000尼特下 之丁腦[h]* 65,000 140,000 &gt;150,000 98,000 &gt;15,000 在1000尼特下 之T50% [h]* 280,000 &gt;600,000 &gt;500,000 &gt;400,000 &gt;75,000The LT with an increased predicted form is derived from Table 1, and the use of the Compound B stabilizing material as a means of introducing various layers significantly improves the life of the device. Although not intended to be limited by theory, HTL replacement will improve the device. It is believed that this may be important (') for green devices. NPD is not as stable in green devices as in other devices such as red devices. Moreover, without wishing to be bound by theory, it is believed that NPD can be degraded by electron leakage through the emissive layer and/or by phosphorescent excitons. As shown in Table 1, replacing the NPD HTL with a more stable Compound B: Compound A layer increased the life of the device by a factor of four. Compound B transports electrons in the layer including Compound A and Compound B and the Compound A dopant transports holes. Substituting NPD allows the life of the green device to be similar to the lifetime of the red device (&gt;100,000 h). Other materials can be used with the same concept of the doped HTL and can be used for red and blue phosphorescent OLEDs. Other device architectures that may be considered include hierarchical structures in which the HIL is a 100% bismuth dopant (e.g., a compound ruthenium) and subsequently introduced into the host material, e.g., as a host material that appears to be away from the anode. Different concentrations (0-1 00%) of dopants and multiple layers of the body can also be used between the anode and the BL or ETL. The compound ruthenium can also be used as the main body of the red and blue-green emitters. The compound Β can also be used as a red, green, blue or white device or as a BL in any other color device of 128110.doc -23- 200901530. A device having 600 A of Compound B: Compound A layer and Compound B as a blocking agent was formed on different HILs (CuPc, Compound A, and no HIL). Specific device examples of Compound H: Compound A doped HTL are summarized in Table 2. Figure 21 provides the structure of the apparatus described in Table 2. Table 2: Device performance comparison parameters when replacing NPDHTL in the device Example 1 Example 2 Example 3 Example 4 Example 5 Comparison of real stone plant HIL 100 A Compound A CuPc No compound A Compound A Compound A HTL 300 A Compound B : Compound A 15 % Compound B: Compound A 15% Compound B: Compound A 15% Compound B: Compound A 30% Compound B: Compound A 15% NPD EML 300 A Compound B: Compound A 15% Compound B: Compound A 15% Compound B: Compound A 15% Compound B: Compound A 15% CBP: Compound A 10% Compound B: Compound A 15% Cffi "x, yl 0.38 0.59 0.36 0.61 0.36 0.60 0.37 0.60 0.37 0.60 0.38 0.59 Voltage at 1000 nits [V ] 7.6 8.8 8.6 6.4 7.8 6.4 Luminous efficiency at 1000 nits TCd/Al 44.2 25.6 34 51.8 45.8 54.7 EQE at 1000 nits [%] 12.3 6.9 9.3 14.39 12.78 15.3 at 70 ° C, 1000 nits T90% 『hi 625 900 482 293 initial illumination at 40 mAa/cm2 [cd/m2l 13714 8229 9434 15666 13697 17300 Tso% at 40 mA/cm2 [h] 870 2000 1200 ~900 -460 185 at 1000 ney Special Ding Brain [h]* 65,000 140,000 &gt; 150,000 98,000 &gt; 15,000 T50% under 1000 nits [h]* 280,000 &gt;600,000 &gt;500,000 &gt;400,000 &gt;75,000

*-預測形式增加之LT 經穩定摻雜之HTL(化合物B :化合物A)替代NPD引起綠 128110.doc -24- 200901530 色裝置使用期限顯著提高。實驗結果展示於表1及表2及相 關圖中。使具有600 Α化合物Β :化合物A 15%層之裝置(由 於該材料混合物具有電子傳輸與電洞傳輸能力)在各 HIL(CuPc、化合物a及無HIL)上生成(分別為表2之實例2、 1及3)。將具有300 A NPD HTL及300 A化合物B :化合物A 1 5°/。EML之相同裝置結構以比較實例展示。與具有npd HTL之裝置相比,不具有NPD之裝置穩定得多。在該裝置 η 中’將化合物B主體(基質)及化合物A(電洞傳輸及發射性 摻雜劑)用於一層中。 在展示於表2中之特定實驗中量測之裝置的優良效能及 最佳效此(長使用期限以及咼裝置效率及低工作電壓)為表2 之實例5。實例5之結構展示於圖9中。該裝置僅具有三種 有機材料。可將該裝置之HIL·、EML及BL視為具有接近 〇(電洞/主入介面)為1〇〇%化合物A及接近Alq ETL(電子注*-Increased form of LT The stabilized doped HTL (Compound B: Compound A) replaces NPD to cause green 128110.doc -24- 200901530 The color device lifetime is significantly improved. The experimental results are shown in Tables 1 and 2 and related figures. A device having a 600 Α compound Β: compound A 15% layer (due to the electron transport and hole transport capability of the material mixture) was generated on each HIL (CuPc, compound a, and no HIL) (Example 2 of Table 2, respectively) , 1 and 3). Will have 300 A NPD HTL and 300 A Compound B: Compound A 1 5 ° /. The same device structure of EML is shown in a comparative example. Devices without NPD are much more stable than devices with npd HTL. The compound B host (matrix) and compound A (hole transport and emissive dopant) are used in one layer in the device η. The superior performance and best efficacy of the devices measured in the specific experiments shown in Table 2 (long lifespan and helium device efficiency and low operating voltage) are Example 5 of Table 2. The structure of Example 5 is shown in Figure 9. The device has only three organic materials. The device's HIL·, EML, and BL can be considered to have a near 〇 (hole/primary interface) of 1% for compound A and close to Alq ETL (electronic note)

入介面)為100%化合物B之分級濃度的化合物A:化合物B 層0 表1及表2之裝置說明若干與優良裝置效能相關之要點。 J用'、&amp;摻雜之HTL(穩定基質(不必為電洞傳輸的)及電 洞傳輸摻雜劑)(亦可能為ETL); 〇 HTL及發射層利用相同材料(主體及摻雜劑); 肖相同材料(例如化合物A)作為發射性磷光性綠色播 / W及電洞傳輸摻雜劑及電洞注入層; :用才目同材料(例如化合物3)作為讀匕中之主體、肌 土質、僅作為裝置中之阻擋層; 1281I0.doc -25- 200901530 〇在裝置中僅有3種材料(例如化合物a、化合物β、 Alq); °尚穩定性綠色磷光性結構(在1000尼特下超過300,000 h 之使用期限)。 此外,揭示具有以下有利架構之裝置架構,其可單獨或 組合使用:Incoming interface) is a 100% compound B fractionated concentration of Compound A: Compound B Layer 0 The devices of Tables 1 and 2 illustrate several points associated with superior device performance. J uses ', &amp; doped HTL (stabilized matrix (not necessarily for hole transport) and hole transport dopant) (may also be ETL); 〇HTL and emissive layer use the same material (body and dopant) Xiao; the same material (such as compound A) as the emissive phosphorescent green broadcast / W and hole transport dopant and hole injection layer; : use the same material (such as compound 3) as the main body in the reading, Musculosity, only as a barrier in the device; 1281I0.doc -25- 200901530 〇 Only three materials in the device (eg compound a, compound β, Alq); ° still stable green phosphorescent structure (in 1000 nits) More than 300,000 hours of use). Furthermore, device architectures having the following advantageous architectures are disclosed, which can be used individually or in combination:

利用穩定主體,諸如聯伸三苯化合物,例如化合物B 1. 聯伸三苯化合物作為PHOLBD之主體。 2. 聯伸三苯化合物作為PHOLED中之阻擋層或阻抗層。 3 _聯伸二苯化合物作為同一 OLED中之主體及阻擋層。 4 ·聯伸三苯化合物作為同一 OLED中之主體及HTL·組份。 5 ·聯伸二笨化合物作為同一 OLED中之HTL組份及阻擋 層。 6 ·聯伸二苯化合物作為同一裝置(例如3組份裝置)中之 HTL組份、主體及阻擋層。 7·架構1-6 ’具有或不具有電子傳輸層。 8. 架構1-7,使用化合物B作為特定聯伸三苯化合物。 9. 上述架構1-7,但使用咔唑化合物替代聯伸三苯化合物 作為穩定主體。 10·架構9,使用mCBP或化合物尺作為特定咔唑化合物。 可使用為聯伸二本化合物或叶吐化合物之穩定主體材料 來製造裝置。該等裝置可包括僅3種或僅2種有機組份,且 可包括具有不同濃度之相同材料之層。表3展示該等裝置 之實例。表3之裝置的結構展示於圖8中。指示圖8中htl 128110.doc •26- 200901530 及ETL略具可撓性,其中據信在許多結構中,尤其在其中 HTL與ETL具有相同材料但濃度不同之彼f結構中,該兩 層均發射。實際上製造表3之裝置丨及2,而未製造裝置3及 4,但為說明之目的仍包括裝置3及4。據信化合物s為麟光 性分子之實例’其可在發射層中傳輸電子。 表3:在不同層中,基於不同濃度之相同材料之&quot;3組份&quot;及 ”2組份”磷光性OLED結構的實例 \層 結才 HIL HTL EML BL~ ETL 1 A B:A(30%) B _2 Γ A CBP:A(30%) CBPrAriO%) R --- 4 1 A NPD R:A(30%) NPD r R:Ag〇%) NPD:S05%) R * ' 1 1 1 Vi / ..Aiq(若有) Alq(若有) 該等裝置應用於平板顯示器及照明應用中。經證實之優 良裝置在高效磷光性OLED中具有能夠使使用期限更長之 優勢。並非必需特殊製造設備,且裝置可藉由此項技術中 已知之方法製造。可視共用層是否可用於並列RGB應用之 情況來考慮陰罩法。 圖3展示一有機發光裝置’其具有具備不同濃度之磷光 性材料及非發射性材料之第一及第二有機層,且第一有機 層與陽極之間的有機層具有特定電荷載流子遷移率特徵。 作為說明,圖3之裝置包括一基板310、一陽極315、一第 三有機層320、一具有一第一有機層330及一第二有機層 340之發射層、一電洞阻擋層35〇、一電子傳輸層36〇及一 陰極370。電洞阻擋層350及電子傳輸層360係可選的。如 許多裝置所通用,展示圖3之裝置及本文所示之各種其他 128110.doc •27· 200901530 裝置具有鄰近於基板之陽極 基板之陰極。 但該等裝置亦可具有鄰近於A stable tribo compound such as a compound B 1. a triphenyl compound is used as a main body of PHOLBD. 2. A triphenyl compound is used as a barrier or barrier layer in a PHOLED. 3 _ Coextruded diphenyl compounds act as the main body and barrier layer in the same OLED. 4. Coexisting triphenyl compounds as the main body and HTL component in the same OLED. 5 · The two-block compound is used as the HTL component and barrier layer in the same OLED. 6. A biphenyl compound is used as the HTL component, body and barrier layer in the same device (for example, a three component device). 7. Architectures 1-6 'with or without an electron transport layer. 8. Schemes 1-7, using Compound B as the specific co-triphenyl compound. 9. The above structures 1-7, but using a carbazole compound instead of a terphenyl compound as a stabilizing substance. 10. Architecture 9, using mCBP or compound ruler as the specific carbazole compound. A device can be made using a stable host material that is a two-component compound or a leaf-spray compound. Such devices may include only three or only two organic components, and may include layers of the same material having different concentrations. Table 3 shows examples of such devices. The structure of the apparatus of Table 3 is shown in Figure 8. Indicating that htl 128110.doc •26-200901530 and ETL in Figure 8 are slightly flexible, it is believed that in many structures, especially in the structure where the HTL and ETL have the same material but different concentrations, the two layers are emission. Devices 3 and 2 of Table 3 were actually fabricated, while devices 3 and 4 were not manufactured, but devices 3 and 4 were still included for illustrative purposes. It is believed that the compound s is an example of a smectic molecule which can transport electrons in the emissive layer. Table 3: Examples of &quot;3 components&quot; &&quot;2component&quot; phosphorescent OLED structures based on different concentrations of the same material in different layers. HIL HTL EML BL~ ETL 1 AB: A (30 %) B _2 Γ A CBP: A (30%) CBPrAriO%) R --- 4 1 A NPD R: A (30%) NPD r R: Ag〇%) NPD: S05%) R * ' 1 1 1 Vi / ..Aiq (if any) Alq (if available) These devices are used in flat panel displays and lighting applications. The proven superior device has the advantage of a longer lifetime in high efficiency phosphorescent OLEDs. Special manufacturing equipment is not required and the apparatus can be manufactured by methods known in the art. The shadow mask method is considered in the case where the visible shared layer can be used for parallel RGB applications. 3 shows an organic light-emitting device having first and second organic layers having different concentrations of phosphorescent material and non-emissive material, and the organic layer between the first organic layer and the anode has specific charge carrier migration Rate characteristics. For example, the device of FIG. 3 includes a substrate 310, an anode 315, a third organic layer 320, an emission layer having a first organic layer 330 and a second organic layer 340, and a hole blocking layer 35, An electron transport layer 36 and a cathode 370. Hole blocking layer 350 and electron transport layer 360 are optional. As is common to many devices, the device of Figure 3 and the various other devices shown herein have a cathode having an anode substrate adjacent to the substrate. But such devices may also have proximity to

t 第-有機層330安置於陽極與陰極之間,且包㈣_ 材料及非發射性材料。第-有機層中碌光性材料之濃 10-90 Wt%。冑一有機層中非發射性材料之濃度為二〇 wt%。第二有機層340安置於第—有機層與陰極之間。第 二有機層340較佳係直接接觸於第一有機層”❹,但在第— 有機層330與第二有機層34〇之間亦可能存在一能夠傳 子與電洞之薄有機層。第二有機層亦包㈣光性材料及非 發射性材料。第二層中磷光性材料之濃度為3_25㈣。第 二有機層中非發射性材料之濃度為75_97 wt%。第二有 層中磷光性材料之濃度低於第—有機層中磷光性材料之濃 度。由於第-有機層330及第二有機層34{)中磷光性材料: 濃度不同,故在該等層之間存在一&quot;介面&quot;。在一態樣中, 第一有機層330及第二有機層340僅包括碌光性材料及非發 射性材料。因為使材料數目減至最少簡化製造且避免可能 與其他材料有關之失效機制,故此態樣有利。 b 圖3以及其他圖展示包括&quot;磷光性”材料及”非發射性&quot;材 之有機層。 如本文所用,”磷光性”材料為在室溫下(例如在約^25 °Cf)能夠自三重激發態發光之材料。然而,任何給定之 磷光性材料在特定層或特定裝置中均可能發光或可能不發 光。在本文所揭*之許多架構巾1光性材料發光。然 而’在其他架構中,填光性材料不發光,而是將激子轉移 128110.doc 28- 200901530 r ^可具磷光性或螢光性之其他分子中,該等分子隨後發 材料之鱗光性性質在該等裝置中仍具有作用,因為在 厂下自二重激發態發光之能力與諸如系統間穿越及強烈 自旋軌道偶合之其他特性有關,儘管其不能發光,作其可 :得有效地形成於分子上且轉移至其他分子。、此 ,♦多鱗先性材料亦為良好電洞傳輸體。據信如本申請 案所定義之術語&quot;磷光性,以義通常符合其在此項技術中 但不意欲擴展至該術語可以不同方式使用之其他 如,本文所用非發射性”材料在將該材料描述為”非發 射:之裝置中不發光。然而,在該裝置中非發射性材料 不電惰性的’且通常可能與電荷傳輸有關,最 與電子傳輸有關。在其他情況τ,該材料可能為發射性 的’例如在溶液中或在其他裝置中。一般而言, 射性&quot;材料能夠在除包括其作為非發射性材料之裝置外之 情況下發光,則在特定裝置中固態因素使材料在裝置中不 發先。舉例而言,”非發射性”材料可由具有低於非發射性 ^料之了重態$1至少eV之三重態能量的磷光性材料 ’雜以致在非發射性材料上形成之任何三重態 光性材料而不發光。 主磷 不受任何關於本發明之態樣如何運作之理論限 在許多磷純则_,重組發生在裝置之介面上或^ 近’因為在介面兩側之電子及電洞遷移率可能不同,且因 為電子及電洞可能難以穿過介面。若發射層不包括任何内 128110.doc -29- 200901530 部介面,則重組很可能發生在發射層與非發射層之介面上 或附近。因此,激子及兩種類型之電荷載流子以有效濃度 位於所述非發射層附近。在非發射層易受來自激子及/或 電何載流子之損害的情況下’對裝置使用期限可有不利影 響。此外,非發射層與重組區域之接近可提供激子之非發 射性衰變途徑,從而不利地影響裝置效率。 進一步據信,在許多磷光性裝置中,磷光性材料負責在 發射層中傳輸電洞’且非發射性主體材料負責傳輸電子。 據信第一有機層33〇與第二有機層34〇之間的磷光性材料濃 度上之變化可導致電子在第一有機層33〇中之遷移率高於 在第一有機層340中之遷移率,及電洞在第二有機層Μ。中 之遷移率高於在第一有機層330中之遷移率。因此,電子 及電洞之重組可發生在第一有機層33〇與第二有機層34〇之 間的η面上或附近。第二有機層34〇中磷光性材料之濃度 較佳比第一有機層330中之濃度低至少5糾%,且更佳低至 v 10 wt/〇。總之,第一有機層33〇與第二有機層34〇可形成 裝置之發射層。因為重組發生在第一有機層33〇與第二有 機層340之間的介面上或附近,亦即發生在發射層内之介 面處,故可避免由附近介面與非發射層重組引起之問題。 該等段落中所述之推論適用於本文所述之各種裝置,該等 裝置具有一具有一内部介面(亦即一在第一有機層與第二 有機層之間的介面)之發射層。 第一有機層330及第二有機層34〇之磷光性材料可為相同 材料或可為不同磷光性材料。第一有機層33〇及第二有機 128110.doc -30- 200901530 層340之非發射性材料可為相同材料或不同材料。因此, 存在4種組合:(1)在第一與第二有機層中磷光性材料相 同,且在第一與第二有機層中非發射性材料相同;(2)在第 一及第二有機層中磷光性材料不同,且在第一與第二有機 層中非發射性材料相同;(3)在第一與第二有機層中磷光性 材料相同,且在第一及第二有機層中非發射性材料不同; 及(4)在第一及第二有機層中磷光性材料不同,且在第—及 第二有機層十非發射性材料不同。各組合均有其優勢。 在第一有機層330與第二有機層34〇中使用相同非發射性 材料藉由減少裝置中材料數目來簡化製造。此外,因為各 新穎材料可能引入新穎故障機制,故在多層中使用相同材 料可減少故障機制。使用相同非發射性材料亦可有助於展 開裝置之重組區域,其亦有助於獲得較長裝置使用期限, 同時還可在第一有機層33〇與第二有機層34〇之間的介面附 近藉由調節介面處非發射性材料之濃度而使重組發生。 然而,在第一有機層330及第二有機層340中使用不同非 發射性材料亦具有優勢。*同材料可具有*同電荷傳輸特 ^。在非發射性材料主要負責傳輸特定電荷載流子,最通 书為電子的情況下,在第—有機層33()及第二有機層中 使用不同非發射性材料可使在裝置中發生之重組易於控 制特疋έ之,對於第一有機層330及第二有機層34〇選擇 不同非發射性材料,可易於在第一有機層330與第二有機 層340之間的介面附近產生電荷載流子梯度,因為除非發 射陡材料之浪度外對於此目的還可使用非發射性材料方面 128110.doc -31 - 200901530 之差異。 在第一有機層330與第二有機層340中使用相同鱗光性材 料(但濃度不同)具有如上關於使用相同非發射性材料所述 之相同優勢中之多個。較少材料可意謂較少故障機制。不 同濃度可使得重組受控制地在第一有機層33〇與第二有機 層340之間的介面附近發生,而使用相同磷光性材料可使 得重組區域相對寬。 在第一有機層330與第二有機層340中使用不同磷光性材 料(濃度不同)具有如上關於使用不同非發射性材料所述之 相同優勢中之多個。使用不同材料可增加可用以控制重組 發生之額外參數。 此外,磷光性材料在裝置中可發光或可不發光。在需要 高效飽和發射之情況下,或㈣於在需要鮮發射之顯示 益裝置中使用而言’可較佳在第一有機層33〇與第二有機 層34〇中使用相同填光性材料作為發射性材料。在鱗光性 材料傳輸電荷但不發射之組雉中 ,且也肀描述為&quot;較低能量”材料 之其他材料可添加至第一有機層 另飛層及第二有機層340中且 發光。&quot;較低能量”意謂較低能晉鉻 月权低此董發射性材料之發射光譜的 峰值比同一層中磷光性材料 l赞射先谱的峰值高至少20 nm。較長波長與較低能量相斜施 *對應。激子可經由各種機制存 在於較低能量發射性材料令日又立,冰抑 旦 笮且不忍欲限制激子到達較低能 里發射性材料之方法。舉例 , J而s,激子可形成於磷光性材 ;斗且轉移至較低能量發射性+ 耵性材枓中,或激子可直接形成 於較低能量發射性材料上。— ^ '組態中’較低能量發射性 128110.doc •32- 200901530 材枓可為自璘光性材料接受激子之榮光材料,其包括 光性材料上形成為三重態之激子。 η i. 、、、: 在而要較不飽和發射,或許用於全面照明目的之 t色發射之情況下’可能需要在相同裝置中具有多個分子 么射為此目的,不同磷光性材料可用於第一有機層33〇 及第一有機層340中作為彼等層之發射極,以致在裝置中 存在多種發射性材料。插述為”較低能量,,材料之其他材料 亦可添加至第—有機層330及第二有機層340中之一者或兩 者::在需要來自多種材料之發射之情況下,可將不同較 低能量發射性材料用於第一有機層330與第二有機層34〇 中,或可將較低能量發射性材料用於第-有機層330及第 二有機層340中之一者中,㈣麟光性材料自第—有機層 330及第二有機層34〇中之另一者發射。 然而,具有發射層(其具有第一有機層及第二有機層, 在第-有機層及第二有機層之間具有介面)之裝置可能仍 具有短使用期限。據信在許Μ光性有機發光裝置中之主 要故障機制包括電子自陰極穿過發射層至發射層之陽極側 的有機層。據信用於〇咖之陽極側之許多有機材料易受 到該等電子之損害。圖44·5〇及相關文字展示通用電洞傳 輸材料NPD在縮短裝置使用期限中之作用。使用具有第一 有機層33〇及第二有機層州之發射層可有助於使得重組在 發射層内之介面處發生。因此’可減少到達非發射層之激 子的數目及穿過整個發射層到達另一側之電荷载流子(亦 即’到達發射層之陽極側的電子及到達發射層之陰極側的 128110.doc -33. 200901530 電洞)的數目。然而’有利的是具 架構s文所述之裝置 層’不利地影響裝置使用期限。據作 章:制包括電子穿過發射層到達發射層之陽極 1貝j且相害相鄰非發射層。 二損害在發射層之陽極側之有機材料而引 ::知害及裝置使用期限縮短的方法為在發射層之陽極側 使用電洞遷移率顯著高於電子遷移率 I顯著以致在該層中大多數電荷載流子具有—種類型= :3,第三有機層32。位於發射層(亦即第一有機層及/ 或第一有機層340)之陽極側。在由第三有機層3 =可能存在超過一個有機層。發射層與陽極之間的各有 機層可包括單-有機材料或多種有機材料。對於單一材料 層而言,此意謂各層材料具有顯著高於該層電子遷移率之 ^同遷移率。對於包括多種材料之層而言,此意謂該層之 電洞遷移率顯著高於該層之電子遷移率。&quot;層&quot;之電洞遷移 率與主要負責在該層中傳輸電洞之該層材料的電洞遷移率 強烈相關’尤其在所述材料以顯著數量存在之情況下。電 2電洞遷移率可藉由包括飛行時間、暗電流注入及導納 光4法之各種方法量測。顯著高於意謂電洞遷移率為電子 遷移率之至少兩倍,較佳為電子遷移率的至少十倍,且最 佳為電子遷移率的至少100倍。 NPD傳統上用於電洞傳輸層(htl)且其通常與狐接 觸然而’So等人報導NPD具有類似於其電洞遷移率之電 128110.doc •34- 200901530 子遷移率(〜5xl〇-4 cm2 V-丨s.1)。參見,So等人,,BipolarThe first-organic layer 330 is disposed between the anode and the cathode and is provided with a material and a non-emissive material. The concentration of the light-emitting material in the first-organic layer is 10-90 Wt%. The concentration of the non-emissive material in the organic layer is 〇 wt%. The second organic layer 340 is disposed between the first organic layer and the cathode. The second organic layer 340 is preferably in direct contact with the first organic layer ❹, but a thin organic layer capable of passing through the holes and the hole may exist between the first organic layer 330 and the second organic layer 34 。. The second organic layer also comprises (4) a light material and a non-emissive material. The concentration of the phosphorescent material in the second layer is 3_25 (four). The concentration of the non-emissive material in the second organic layer is 75_97 wt%. The second layer has phosphorescence. The concentration of the material is lower than the concentration of the phosphorescent material in the first organic layer. Since the phosphorescent material in the first organic layer 330 and the second organic layer 34{) have different concentrations, there is a &quot;interface between the layers &quot; In one aspect, the first organic layer 330 and the second organic layer 340 comprise only a light-emitting material and a non-emissive material. The number of materials is minimized to simplify manufacturing and avoid failures that may be associated with other materials. The mechanism is therefore advantageous. b Figure 3 and other figures show organic layers including &quot;phosphorescent&quot; materials and &quot;non-emissive&quot; materials. As used herein, &quot;phosphorescent&quot; materials are at room temperature (e.g. About ^25 °Cf) can be self-excited Light-emitting material. However, any given phosphorescent material may or may not emit light in a particular layer or in a particular device. Many of the architectural materials disclosed herein have a light-emitting material. However, in other architectures, The light-filling material does not illuminate, but instead transfers excitons 128110.doc 28- 200901530 r ^ Other molecules that can be phosphorescent or fluorescent, the spheroidal properties of the subsequent materials in these devices are in these devices Still functioning, because the ability to emit light from a double-excited state at the factory is related to other characteristics such as intersystem crossing and strong spin-orbit coupling, although it cannot emit light, it can be effectively formed on the molecule and transferred. To other molecules. Here, the multi-scale material is also a good hole transporter. It is believed that the term &quot;phosphorescence, as defined in this application, is generally in line with its skill in the art but is not intended to be extended. Others that the term can be used in different ways, such as the non-emissive" materials used herein, do not emit light in devices that describe the material as "non-emissive". However, non-emissive in the device The material is not electrically inert and may generally be associated with charge transport, most related to electron transport. In other cases, the material may be emissive, such as in solution or in other devices. In general, radioactivity The material can emit light in addition to the device comprising it as a non-emissive material, in which the solid state factor causes the material to not be present in the device. For example, a "non-emissive" material can have a lower A non-emissive material having a triplet energy of at least the triplet energy of at least eV is miscellaneous so that any triplet optical material formed on the non-emissive material does not emit light. The primary phosphorus is not subject to any aspect of the invention. The theory of how the sample works is limited to many pure phosphorus _, recombination occurs at the interface of the device or close to 'because the electron and hole mobility on both sides of the interface may be different, and because electrons and holes may be difficult to penetrate the interface . If the emissive layer does not include any of the internal interfaces, the recombination is likely to occur at or near the interface between the emissive layer and the non-emissive layer. Therefore, excitons and two types of charge carriers are located in the vicinity of the non-emissive layer at an effective concentration. In the case where the non-emissive layer is susceptible to damage from excitons and/or electrical carriers, the use of the device may be adversely affected. In addition, the proximity of the non-emissive layer to the recombination region provides a non-radiative decay path for the excitons, which adversely affects device efficiency. It is further believed that in many phosphorescent devices, the phosphorescent material is responsible for transporting holes in the emissive layer and the non-emissive host material is responsible for transporting electrons. It is believed that a change in the concentration of the phosphorescent material between the first organic layer 33A and the second organic layer 34〇 may result in a higher mobility of electrons in the first organic layer 33〇 than in the first organic layer 340. The rate, and the hole in the second organic layer. The mobility in the middle is higher than the mobility in the first organic layer 330. Therefore, recombination of electrons and holes can occur on or near the η plane between the first organic layer 33〇 and the second organic layer 34〇. The concentration of the phosphorescent material in the second organic layer 34 is preferably at least 5 correction % lower than the concentration in the first organic layer 330, and more preferably as low as v 10 wt/〇. In summary, the first organic layer 33 and the second organic layer 34 can form an emissive layer of the device. Since recombination occurs at or near the interface between the first organic layer 33A and the second organic layer 340, i.e., at the interface within the emissive layer, problems caused by recombination of the nearby interface and the non-emissive layer can be avoided. The inferences described in these paragraphs apply to the various devices described herein having an emissive layer having an internal interface (i.e., an interface between the first organic layer and the second organic layer). The phosphor materials of the first organic layer 330 and the second organic layer 34 may be the same material or may be different phosphorescent materials. The non-emissive material of the first organic layer 33 and the second organic layer 12810.doc -30- 200901530 layer 340 may be the same material or different materials. Therefore, there are four combinations: (1) the phosphorescent material is the same in the first and second organic layers, and the non-emissive material is the same in the first and second organic layers; (2) in the first and second organic The phosphorescent material in the layer is different and is the same as the non-emissive material in the first and second organic layers; (3) the phosphorescent material is the same in the first and second organic layers, and is in the first and second organic layers The non-emissive materials are different; and (4) the phosphorescent materials are different in the first and second organic layers, and the non-emissive materials in the first and second organic layers are different. Each combination has its advantages. The use of the same non-emissive material in the first organic layer 330 and the second organic layer 34 is simplified by reducing the number of materials in the device. In addition, the use of the same material in multiple layers reduces the failure mechanism because each novel material may introduce a novel failure mechanism. The use of the same non-emissive material can also aid in unwinding the reconstituted area of the device, which also helps to achieve a longer device life, while also providing an interface between the first organic layer 33〇 and the second organic layer 34〇. Recombination occurs nearby by adjusting the concentration of the non-emissive material at the interface. However, it is also advantageous to use different non-emissive materials in the first organic layer 330 and the second organic layer 340. *The same material can have *the same charge transfer characteristic ^. In the case where the non-emissive material is primarily responsible for transporting specific charge carriers, the most common case is electrons, the use of different non-emissive materials in the first organic layer 33 () and the second organic layer may occur in the device. The reorganization is easy to control, and different non-emissive materials are selected for the first organic layer 330 and the second organic layer 34, and the electric load can be easily generated in the vicinity of the interface between the first organic layer 330 and the second organic layer 340. The flow gradient, because the difference in the non-emissive material aspect 128110.doc -31 - 200901530 can be used for this purpose unless the steepness of the material is emitted. The use of the same scale light material (but different concentrations) in the first organic layer 330 and the second organic layer 340 has a plurality of the same advantages as described above with respect to the use of the same non-emissive material. Less material can mean fewer failure mechanisms. Different concentrations may cause recombination to occur in the vicinity of the interface between the first organic layer 33A and the second organic layer 340, while the same phosphorescent material may be used to make the recombination region relatively wide. The use of different phosphorescent materials (different concentrations) in the first organic layer 330 and the second organic layer 340 has a plurality of the same advantages as described above with respect to the use of different non-emissive materials. Using different materials increases the additional parameters that can be used to control recombination. Furthermore, the phosphorescent material may or may not emit light in the device. In the case where high-efficiency saturated emission is required, or (d) in the use of a display device requiring fresh emission, it is preferable to use the same light-filling material as the first organic layer 33〇 and the second organic layer 34〇. Emissive material. Other materials that are described in the &quot;lower energy&quot; material may be added to the first organic layer and the second organic layer 340 and illuminate in a group in which the scalar material transfers charge but does not emit. &quot;Low energy means that the lower the energy of the chrome is lower. The peak of the emission spectrum of the Dong emissive material is at least 20 nm higher than the peak of the phosphorescent material in the same layer. The longer wavelength corresponds to the lower energy phase. Excitons can exist through a variety of mechanisms in which lower-energy emissive materials stand up again, and ice is not acceptable to limit the way excitons reach lower-energy emissive materials. For example, J and s, excitons can be formed on a phosphorescent material; and transferred to a lower energy emissive + bismuth material, or excitons can be formed directly on a lower energy emissive material. — ^ 'In the configuration' lower energy emissivity 128110.doc •32- 200901530 The material can be a glory material that accepts excitons from a photometric material, including excitons formed on a photo-material in a triplet state. η i. , , , : In the case of a less-saturated emission, perhaps for t-color emission for general illumination purposes, 'may need to have multiple molecules in the same device, for this purpose, different phosphorescent materials are available The emitters of the layers are used in the first organic layer 33 and the first organic layer 340 such that a plurality of emissive materials are present in the device. Inserted as "lower energy, other materials of the material may also be added to one or both of the first-organic layer 330 and the second organic layer 340: in the case where emission from a plurality of materials is required, Different lower energy emissive materials are used in the first organic layer 330 and the second organic layer 34, or a lower energy emissive material may be used in one of the first organic layer 330 and the second organic layer 340 (4) the lenticular material is emitted from the other of the first organic layer 330 and the second organic layer 34. However, it has an emissive layer (having a first organic layer and a second organic layer, in the first organic layer and The device having an interface between the second organic layers may still have a short life span. It is believed that the main failure mechanism in the X-ray organic light-emitting device includes electrons passing from the cathode through the emission layer to the organic layer on the anode side of the emission layer. It is believed that many of the organic materials used on the anode side of the coffee maker are susceptible to damage by such electrons. Figure 44.5〇 and related texts show the role of the universal hole transport material NPD in shortening the life of the device. Layer 33 and The organic layer of the emissive layer can help to cause recombination to occur at the interface within the emissive layer. Thus 'the number of excitons reaching the non-emissive layer and the charge carriers passing through the entire emissive layer to the other side can be reduced ( That is, the number of electrons reaching the anode side of the emissive layer and the 128110.doc -33. 200901530 hole reaching the cathode side of the emissive layer. However, it is advantageous to adversely affect the device layer described in the structure s The service life of the device. According to the chapter: the system consists of electrons passing through the emissive layer to reach the anode of the emissive layer and harming the adjacent non-emissive layer. Second, the organic material on the anode side of the emissive layer is damaged: The method of shortening the life of the device is such that the hole mobility on the anode side of the emissive layer is significantly higher than the electron mobility I so that most of the charge carriers in the layer have a type = : 3, the third organic layer 32 Located on the anode side of the emissive layer (ie, the first organic layer and/or the first organic layer 340). In the third organic layer 3 = more than one organic layer may be present. The organic layer between the emissive layer and the anode may be Including single-organic materials A variety of organic materials. For a single material layer, this means that each layer of material has a significantly higher mobility than the electron mobility of the layer. For a layer comprising multiple materials, this means the hole mobility of the layer. Significantly higher than the electron mobility of the layer. The hole mobility of the layer is strongly related to the hole mobility of the layer of material responsible for transporting holes in the layer, especially in the case of significant amounts of the material. In the case of electricity, the electric 2 hole mobility can be measured by various methods including time-of-flight, dark current injection and admittance light 4. It is significantly higher than the mobility of the hole is at least twice the electron mobility. Preferably, the electron mobility is at least ten times, and optimally at least 100 times the electron mobility. NPD is conventionally used for the hole transport layer (htl) and is usually in contact with the fox. However, 'So et al. report that the NPD has Similar to its hole mobility, the electricity is 128110.doc •34- 200901530 sub-mobility (~5xl〇-4 cm2 V-丨s.1). See, So et al,, Bipolar

Carrier Transport in Organic Small Molecules for OLED,, Proceedings of the Society f〇r Information Display,38, 1497 (2007)。此表明在習知結構中電子可藉由npd容易地 傳輸。此使得能有兩種潛在不利狀況❶首先,電子及電洞 可在NPD中再結合。NPD可為穩定電洞傳輸層,但預期展 不NPD發射之裝置在操作上不穩定,因為對於此目的而言 該發射無效且NPD不包括於裝置中。舉例而言,圖38展示 具有NPD及BAlq發射之裝置。當該裝置在2〇 mA/cm2之恆 疋電流下驅動時,圖43中所示之此裝置之使用期限(LT5〇) 小於300小時。為進行比較,僅具有Alq發射之類似裝置 (參見圖44)具有久得多的使用期限。3〇〇小時之後且對於4〇 mA/cm之連續驅動電流’ Alq發射裝置之照度降至其初始 值之約86%(參見圖49)。其次,NPD對於電子本質上可為 不穩定的》存在充足證明以據信NpD僅在電洞裝置中穩 定;然而不確定其對電子之穩定性。 在一較佳態樣中,第三有機層32〇為安置於第一有機層 330與陽極315之間的單—有機層,亦即第三有機層32〇係 直接接觸於第—有機層33()及陽極315。亦在此較佳態樣 中第—有機層320僅包括第一有機層330之磷光性材料。 般而σ,電子存在於裝置之發射層中,且在發射層中裝 置之發射性材料暴露於電子中。因此,大部分用於具有相 田長使用期限之裝置中的鱗光性發射性分子對來自電子之 相σ有抵抗力。因&amp;,以其他作用使用第一有機層咖及 128110.doc -35- 200901530 第二有機層340之磷光性材 0日1 f作馬第—有機層330盥陽搞 315之間的唯一有機材 Ά極 導致在裝置中避免與電 了月b 害相關之故障機制。㈣射層之陽極側之有機層的損 避免由電子損害發射層之陽極側之有機材料而 害及使用期限縮短的另一 之知 用易於焚到來自電子之招宝 使 層之陽極彳f 、口,貝材料。據信一般在發射 層之%極側使用之許多材 該等材料之—實例。更 ^、又到6亥袖害°_為 D,可在發射層之陽極側有 利地避免之材料包括具有來 # ,、有采自以下清單之基團的分子·•三 方土胺、萘基、三(N_肼甲醯 唑。 土本胺、四方基胺及咔 避免由電子知害發射層之陽極側之有機材料而引起之 害及使用期限縮短的另一方法 、 有高電洞傳導率之材料。古雷在發射層之陽極側使用具 ㈣導率可使電洞以足以使 廢發射層之陽極側的電子數目減至最少的速率注入發射 、居争^ 0LED令,層傳導率之有用量測為襄置中因使特 疋層更厚而導致之電壓上升。特定言之,可製造若干除一 種差異外在其他方面相同之裝置,該等裝置具有一用以量 測傳導率之特定層,該特^層在不同裝置中具有不同厚 度。因為裝置在其他方面相同’故由特定層之厚度增加引 起之電壓差異可與歸因於除用以量測傳導率之介面及層外 之各種介面及層的電壓差異分離。特定言之,電洞傳導率 裝置中進行該量測來量測’其中不同厚度之層在 128110.doc •36- 200901530 該裝置中位於根據裝置中之其他薄層電子不能大量到達且 電洞為主要電荷载流子之位置。諸如載流子遷移率之影響 傳導率之參數可為電流之函數,儘管據信具有輕度依賴 性。為控制此因素,可在特定電流密度下進行量測。i 〇 mA/cm2為用於本文所述量測之合適電流密度。已以此方 法量測NPD之電洞傳導率,且證實對於在1〇 mA/cm2之電 流下,NPD厚度每增加1〇 nm,穿過裝置之電壓增加〇.6 V。以類似方法量測LG101tm(可自K〇reaiLG獲得)之電洞 傳導率,且證實在1〇 mA/cm2之電流下,[⑴…厚度每增 加10 nm,穿過裝置之電壓增加不足〇5 v。可藉由廣泛多 種裝置結構重複該等量測。在發射層與陽極之間僅具有層 厚度每增加10 nm穿過裝置之電壓上升〇1 v或以下之層的 裝置可能有利地使對於發射層之陽極侧之有機層的損害減 至最少。LG101層為該層之一實例。 避免由電子損害發射層之陽極側之有機材料而引起之損 害及使用期限縮短的另一方法為在發射層之陽極側僅使用 有機金屬材料。據信與諸如NPD之一般用於電洞傳輸層之 某些材料相比,有機金屬材料(尤其已知在有機發光裝置 中用作磷光性發射極之有機金屬材料)—般對來自電子之 損害更具抵抗力。當然’在裝置之發射層中用作發射極之 有機金屬材料暴露於電子相對富集之環境中。在裝置之電 子相對貧乏之陽極财使用該等材料不會導致㈣電子损 害。此外’在有機發光裝置中用作發射極之許多有機、 材枓為良好電洞傳輸體,且據信在許多情況下負責有機發 128110.doc •37- 200901530 光裝置之發射層中之電洞傳輸。 避免由電子損害發射層之陽極側之有機材料 害及使用期限縮短的另— 起之知 之第一非發射性姑粗弟有機層33〇 非⑷生材枓(亦即第一有機 用高三重態能量材料。據卜輕柄h輯性材枓)使 機制可包括到達發射層之 。 .tI w徑w且相害發射層之陽極側之 有機材料的三重態。在具有一 ^在發射層内之介面的裝置架 ί :聋二據信重組(亦即,激子形成,包括三重態形成)發: 二面上或附近。依賴於發射層中各種材料之相 U存在於非發射性㈣以及磷光性材料 旦。藉由對於第一有機層之非發射性材料選擇高三重態能 讀料’可減少能在非發射性材料上形成及/或由其 料轉移至非發射性材料中之三重態之數目。此外,將極其 有利於存在於此非發射性材料中之任何三重態轉移至且^ 較低三重態能量之發射層中之其他分子中。因為第機 層係在發射層内但在陽極側,故麟光性材料之濃度高於第 二有機層’提供可使三重態由第一有機層之非發射性材料 轉移至其中之更多位點。因此,對於第一非發射性材料使 用高三重態能量材料可減少到達發射層之陽極側之激子數 目。關於此點,”高&quot;三重態能量材料為具有27 ev或以上 之三重態能量的材料。 獲得高裝置使用期限之另一方法為對第一有機層之非發 射性材料使用含有選自由聯伸三苯、咔唑、喹啉金屬、二 苯并噻吩及與咔唑偶合之二苯并噻吩組成之群的基團之材 128110.doc -38 · 200901530 料。當與避免由電子損害發射層之陽極側之有機材料而引 起之損害及使用期限縮短之其他方法組合使用時,該等材 料最有用。 對於藍色發光磷光性裝置,亦即具有具備峰值波長在 =0 nm與500 nm之間的發射光譜之磷光性材料之裝置而 δ ’裝置使用期限為一尤其重要之問題。此係因為在可見 光譜中藍色光子為能量最高之光子’以致藍色發光有機分 子一般相應具有較高三重態及/或單重態能量。因此,與 其他裝置相比,可將藍色發光裝置中之許多材料暴露於較 高能量激子及/或電荷載流子中。亦可藉由對於與最高佔 據分子軌域、最低未㈣分子軌域、能帶隙等有關之特定 特性的約束以確保裝置中之正常電荷傳輸來限制有效用於 :色裝置中之材料的選擇,然而可更放鬆對於發射較低能 量光子之裝置的約束^因為藍色裝置之材料的選擇受到限 制’故用於發射綠色或紅色之裝置的更合乎需要之材料中 之-些可能不為藍色發光裝置之可行選擇。對於綠色發光 裝置,亦即具有具備峰值波長在5〇〇 11111與53〇 nm2間的發 射光譜之磷光性材料之裝置而言,裝置使用期限亦重要: 對於藍色裝置所述之相同問題中之一些適用於綠色裝置, 但適用程度較小。因此,對於用於具有該等波長,尤其藍 色之裝置而言,尤其需要本文所述特徵中之多種。然而, s亥專特徵可用於發射任何色彩之裝置中。 較佳地,第一有機層33〇及第二有機層34〇之總厚度為至 少4〇〇 A,且第一有機層33〇之厚度為至少5〇 A且第二有機 1281I0.doc •39· 200901530 層340之厚度為至少5〇 A。在該等厚度下,第—有機層33〇 及第二有機層34G之總厚度充分大以允許寬㈣區域。各 層之最小厚度亦意謂第-有機層咖與第二有機層34〇之間 的介面(在其下或附近可發生許多重組)距離其他可含有其 他材料之層至少5 0 A。因此,ότ限把丄μ u此可降低由該等其他材料引起 之任何裝置使用期限問題。Carrier Transport in Organic Small Molecules for OLED, Proceedings of the Society f〇r Information Display, 38, 1497 (2007). This indicates that electrons can be easily transmitted by npd in the conventional structure. This enables two potential adverse conditions. First, electrons and holes can be recombined in the NPD. The NPD may be a stable hole transport layer, but it is expected that the device exhibiting NPD emissions is operationally unstable because the transmission is not valid for this purpose and the NPD is not included in the device. For example, Figure 38 shows a device with NPD and BAlq emissions. When the device is driven at a constant current of 2 mA/cm2, the lifespan (LT5 〇) of the device shown in Fig. 43 is less than 300 hours. For comparison, a similar device with only Alq emissions (see Figure 44) has a much longer lifespan. After 3 hours and for a continuous drive current of 4 〇 mA/cm, the illumination of the Alq emitter was reduced to approximately 86% of its initial value (see Figure 49). Second, NPD has sufficient evidence that electrons can be unstable in nature. It is believed that NpD is only stable in the hole device; however, its stability to electrons is not determined. In a preferred embodiment, the third organic layer 32 is a single-organic layer disposed between the first organic layer 330 and the anode 315, that is, the third organic layer 32 is directly in contact with the first organic layer 33. () and anode 315. Also in this preferred embodiment, the first organic layer 320 includes only the phosphorescent material of the first organic layer 330. Typically, σ, electrons are present in the emissive layer of the device, and the emissive material in the emissive layer is exposed to the electrons. Therefore, most of the luminescent emitter molecules used in devices having a phase of use have resistance to phase σ from electrons. Because of &amp;, use the first organic layer coffee and other functions 128110.doc -35- 200901530 The second organic layer 340 phosphorescent material 0 day 1 f for the horse - the organic layer 330 盥阳 engage 315 between the only The bungee of the machine causes the failure mechanism associated with the electric moon to be avoided in the device. (4) The damage of the organic layer on the anode side of the shot layer is prevented from being damaged by the organic material of the anode side of the emissive layer, and the other end of the period is shortened, and it is easy to incinerate the anode 彳f of the layer from the electrons. Mouth, shell material. It is believed that many of the materials used in the extreme side of the emission layer are examples of such materials. More ^, and to 6 hai sleeves °_ is D, the material that can be advantageously avoided on the anode side of the emissive layer includes molecules with a #, and a group from the following list · Trigonal tertamine, naphthyl , N (N-carbazole). Another method of avoiding the damage caused by the organic material on the anode side of the electron-damaging emission layer and the shortening of the use period, and having high hole conduction. The material of the rate. Gulei uses the (four) conductivity on the anode side of the emissive layer to inject the emitter at a rate sufficient to minimize the number of electrons on the anode side of the spent emissive layer. The measurable amount is a voltage increase caused by making the enamel layer thicker in the sputum. In particular, a device having the same aspect except for one difference can be manufactured, and the device has a device for measuring conductivity. The particular layer, which has different thicknesses in different devices. Because the device is otherwise identical, the voltage difference caused by the increase in the thickness of the particular layer can be attributed to the interface and layer used to measure the conductivity. Various interfaces and layers Pressure difference separation. In particular, the measurement is performed in a hole conductivity device to measure 'the layers of different thicknesses are in 128110.doc • 36- 200901530. The other thin layer electrons according to the device cannot be reached in large quantities in the device. And the hole is the location of the main charge carriers. Parameters such as carrier mobility that affect conductivity can be a function of current, although it is believed to have a slight dependence. To control this factor, at a particular current density Measurements were made. i 〇 mA/cm 2 is the appropriate current density for the measurements described herein. The hole conductivity of the NPD has been measured in this way and it has been confirmed that for a current of 1 〇 mA/cm 2 , the thickness of the NPD For every 1 〇 nm increase, the voltage across the device is increased by 66 V. The hole conductivity of LG101tm (available from K〇reaiLG) is measured in a similar manner and confirmed at a current of 1 mA/cm2, [ (1)... For every 10 nm increase in thickness, the voltage across the device increases by less than v5 v. These measurements can be repeated by a wide variety of device configurations. There is only a layer thickness between the emitter layer and the anode. The voltage rises 〇1 v or below The layered device may advantageously minimize damage to the organic layer on the anode side of the emissive layer. The LG101 layer is an example of this layer. Avoid damage and use caused by electron damage to the organic material on the anode side of the emissive layer. Another method of shortening the duration is to use only organometallic materials on the anode side of the emissive layer. It is believed that organometallic materials (especially known in organic light-emitting devices) are known to be compatible with certain materials such as NPDs that are commonly used in hole transport layers. The organometallic material used as a phosphorescent emitter is generally more resistant to damage from electrons. Of course, the organometallic material used as an emitter in the emissive layer of the device is exposed to an environment in which electrons are relatively enriched. The use of such materials in the anodes where the electronics of the device are relatively poor does not cause (iv) electronic damage. In addition, many organic materials used as emitters in organic light-emitting devices are good hole transporters, and it is believed that in many cases, they are responsible for the holes in the emissive layer of the organic device 128110.doc •37-200901530 transmission. Avoiding the organic material damage caused by the electron damage on the anode side of the emissive layer and the shortening of the service life, the first non-emissive organic layer of the non-emissive material is not the (4) green material (that is, the first organic high triplet state) The energy material. According to the light handle, the mechanism can include reaching the emission layer. .tI w is the triplet state of the organic material on the anode side of the emissive emissive layer. In the case of a device having an interface within the emissive layer, it is believed that recombination (i.e., exciton formation, including triplet formation) is emitted on or near the surface. The phase U depending on the various materials in the emissive layer is present in the non-emissive (four) and phosphorescent materials. The selection of a high triplet energy reading material for the non-emissive material of the first organic layer reduces the number of triplet states that can be formed on the non-emissive material and/or transferred from the material to the non-emissive material. In addition, it will be extremely advantageous to transfer any triplet present in the non-emissive material to other molecules in the emissive layer of lower triplet energy. Since the first layer is in the emissive layer but on the anode side, the concentration of the collimating material is higher than that of the second organic layer 'providing that the triplet state can be transferred from the non-emissive material of the first organic layer to more of them. point. Therefore, the use of a high triplet energy material for the first non-emissive material reduces the number of excitons reaching the anode side of the emissive layer. In this regard, the "high" triplet energy material is a material having a triplet energy of 27 ev or more. Another method of obtaining a high device lifetime is to use a non-emissive material for the first organic layer. a group of groups consisting of triphenyl, carbazole, quinoline metal, dibenzothiophene, and dibenzothiophene coupled with carbazole 128110.doc -38 · 200901530. When and avoiding damage to the emissive layer by electrons These materials are most useful when combined with other methods of damage caused by the organic material on the anode side and shortened service life. For blue light-emitting phosphorescent devices, there is a peak wavelength between 0 nm and 500 nm. The device for emitting spectral phosphorescent materials and δ 'device lifetime is a particularly important problem. This is because blue photons are the most energy photons in the visible spectrum, so blue-emitting organic molecules generally have higher triplet states. And/or singlet energy. Therefore, many materials in the blue light-emitting device can be exposed to higher energy excitons and/or charge carriers than other devices. It is also possible to limit the effective use of materials in a color device by constraining specific characteristics associated with the highest occupied molecular orbital, the lowest (four) molecular orbital, energy band gap, etc., to ensure normal charge transport in the device. Choice, however, may be more relaxed for the device that emits lower energy photons; because the choice of materials for the blue device is limited, so in a more desirable material for emitting green or red devices - some may not be A viable option for blue illuminators. For green illuminators, ie devices with phosphorescent materials with emission spectra with peak wavelengths between 5〇〇11111 and 53〇nm2, the lifetime of the device is also important: for blue Some of the same problems described in the apparatus are applicable to green devices, but are less suitable. Therefore, for devices having such wavelengths, especially blue, a variety of features described herein are particularly desirable. Preferably, the first organic layer 33 and the second organic layer 34 have a total thickness of at least 4 〇A, and the thickness of the first organic layer 33〇 is at least 5〇A and the thickness of the second organic 1281I0.doc •39·200901530 layer 340 is at least 5〇A. At the thicknesses, the first organic layer 33〇 And the total thickness of the second organic layer 34G is sufficiently large to allow a wide (four) region. The minimum thickness of each layer also means the interface between the first organic layer and the second organic layer 34〇 (many recombinations may occur under or in the vicinity thereof) ) at least 50 A from other layers that may contain other materials. Therefore, ότ limits 丄μ u to reduce the lifetime of any device caused by such other materials.

較k地麟光f生材料具有比非發射性材料之最高佔據分 子軌域高至少0.3 eV之最高佔據分子軌域。因此,第一有 機層330及第二有機層34G中之電洞傳輸可能將主要發生於 磷光性材料上。因此,第一層33〇與第二層34〇之間的磷光 !·生材料之浪度差異可能導致兩層之電洞傳輸特性之顯著差 異,以致重組發生在兩層之間的介面上或附近。 當存在電洞阻擔層35〇時,對於該層存在若干較佳材料 選擇。在不意欲受任何關於本發明之態樣為何運作之理論 限制的情況下,電洞阻擔層35〇之目的為阻止電洞由第二 有機層34〇移動至電洞阻擋層35Q。電洞阻擋層州安置於 第二有機層34〇與陰極之間,且係直接接觸於第二有機 層340。層350亦可稱為&quot;第四,,有機層。 一種阻止電洞移動至電洞阻擋層350之方法為對於電洞 阻擋層350使用第一有機層33〇及第二有機層34〇之非發射 性材料。因為第一有機層330及第二有機層340之磷光性材 料不存在於電洞阻播層3财,且彼材料負責在第一有機 層330及第一有機層34〇中傳輸電洞,故電洞可能不能進入 電洞阻擋層350。如上所述 在磷光性材料具有比非發射 128110.doc •40· 200901530 軌域的声 據分子軌域高至少〇·3…之最高佔據分子 層350 :況下尤其如此。由於若干原因,需要在電洞阻擋 層咖中使用此特定非發射性材料。首先,該材料已存在 於第一有機層@ 及第一有機層340中,因此在電洞阻擋層 3其=。此其材㈣引入任何與似 、'、人,據仏在許多裝置中,發射層之非發射性 責在發射層中傳輸電子,以致不會存在任何由 r、 广由發射層之陰極側傳輸電子及將其注入發射層 中而引:之問題。此外’製造藉由使不同材料之數目保持 最小來間化。較佳地’電洞阻擋層僅包括第-有機層33〇 及第二有機層340之非發射性材料,可能具有不影響曰褒置 特m 1雜f。然而,其他材料亦可用於電洞阻播層 3、50諸如▲具有比第二有機層34〇之麟光性材料的最高佔據 刀子軌域回至少0.3 eV之最高佔據分子執域的材料。 層350亦可用以阻擋激子離開第二有機層34〇。較佳地, 層350僅包括具有比發射性摻雜劑之三重態能量高至少ο」 eV之三重態能量的材料。 避免由電子損害發射層之陽極側之有機材料而引起之損 害及使用期限縮短的另一方法為簡單地避免在發射層之陽 極側使用任何有機材料。圖4展示-有機發光裝置,並具 有一具有第一及第二有機層之發射層,該第一有機層及該 第二有機層具有不同濃度之磷光性材料及非發射性材料, 裝置包括一基板410、一陽極415 且在第-有機層與陽極之間無有機層。作為說明,圖*之 具有一第一有機層 128110.doc 200901530 430及一第二有機層44G之發射層、-電洞阻擋層450、- 電子傳輸層460及一陰極47〇。電洞阻擋層柳及電子傳輸 層460為可選的。 第-有機層430安置於陽極與陰極之間,且包括鱗光性 材料及非發射性材料。第-有機層巾似性材料之濃度為The k-ray photon material has a highest occupied molecular orbital domain that is at least 0.3 eV higher than the highest occupied molecular orbital domain of the non-emissive material. Therefore, the hole transport in the first organic layer 330 and the second organic layer 34G may mainly occur on the phosphorescent material. Therefore, the phosphorescence between the first layer 33〇 and the second layer 34〇 may cause a significant difference in the transmission characteristics of the two layers, so that recombination occurs on the interface between the two layers or nearby. When the hole blocking layer 35 is present, there are several preferred material choices for the layer. Without intending to be bound by any theory as to why the aspect of the invention operates, the purpose of the hole-resisting layer 35 is to prevent the hole from being moved from the second organic layer 34 to the hole barrier 35Q. The hole barrier state is disposed between the second organic layer 34 and the cathode and is in direct contact with the second organic layer 340. Layer 350 can also be referred to as &quot;fourth, organic layer. One method of preventing holes from moving to the hole blocking layer 350 is to use a non-emissive material of the first organic layer 33 and the second organic layer 34 for the hole blocking layer 350. Because the phosphorescent material of the first organic layer 330 and the second organic layer 340 is not present in the hole blocking layer, and the material is responsible for transmitting holes in the first organic layer 330 and the first organic layer 34, The hole may not enter the hole blocking layer 350. As noted above, this is especially true where the phosphorescent material has a higher occupied molecular layer 350 than the non-emitting 128110.doc •40·200901530 orbital domain. This particular non-emissive material needs to be used in the hole barrier layer for several reasons. First, the material is already present in the first organic layer @ and the first organic layer 340, and thus in the hole barrier layer 3 =. This material (4) introduces any similarity, ', human, according to many devices, the non-emissive property of the emission layer is responsible for transmitting electrons in the emission layer, so that there is no transmission from the cathode side of the emission layer by r, widely The problem of electrons and injection into the emissive layer: In addition, manufacturing is achieved by keeping the number of different materials to a minimum. Preferably, the hole blocking layer includes only the non-emissive material of the first-organic layer 33 and the second organic layer 340, and may have a property of not affecting the enthalpy. However, other materials may be used for the hole blocking layer 3, 50 such as ▲ a material having a highest occupied molecular domain of at least 0.3 eV than the highest occupied knife track of the second organic layer 34. Layer 350 can also be used to block excitons from leaving second organic layer 34. Preferably, layer 350 includes only materials having a triplet energy that is at least ο"eV higher than the triplet energy of the emissive dopant. Another method of avoiding damage caused by electron damage to the organic material on the anode side of the emissive layer and shortening the lifespan is to simply avoid the use of any organic material on the anode side of the emissive layer. 4 shows an organic light-emitting device having an emissive layer having first and second organic layers, the first organic layer and the second organic layer having different concentrations of phosphorescent material and non-emissive material, and the device includes a The substrate 410, an anode 415, and no organic layer between the first organic layer and the anode. By way of illustration, FIG. 4 has a first organic layer 128110.doc 200901530 430 and an emitter layer of a second organic layer 44G, a hole barrier layer 450, an electron transport layer 460, and a cathode 47A. The hole barrier layer and the electron transport layer 460 are optional. The first organic layer 430 is disposed between the anode and the cathode and includes a scale material and a non-emissive material. The concentration of the first organic layer-like material is

Wt/〇第有機層中非發射性材料之濃度為10-90 Wt%。第二有機層440安置於第-有機層與陰極之間,且 係直接接觸於第一有機層43〇。第二有機層包括第一有機 層之麟光性㈣及树射性材料H㈣光性材料之 濃度為3·25 wt%e第二有機層中非發射性材料之濃度為 75 97 wt/〇。第一有機層中磷光性材料之濃度低於第一有 機層中磷光性材料之濃度。在一態樣中,第一有機層43〇 及第二有機層44G僅包括碟光性材料及非發射性材料。 圖4之裝置依賴於獲得長使用期限之裝置的特徵之組 合。因為由陽極-發射層介面且尤其由在彼介面上或附近 重組引起之問題,簡單地避免在陽極與發射層之間使用任 何有機層不可能產生良好裝置。然而,圖4之裝置亦包括 具有不同濃度之磷光性發射性摻雜劑之不同層。如圖3之 裝置,據信第一有機層43〇與第二有機層44〇之間的磷光性 材料濃度之變化(在發射層内產生介面)可引起電子在第一 有機層430中之遷移率高於在第二有機層44〇中之遷移率, 且電洞在第二有機層440中之遷移率高於在第一有機層43〇 中之遷移率。因此,電子及電洞之重組可發生在第—有機 層430與第二有機層44〇之間的介面上或附近。因此,圖4 128110.doc • 42· 200901530 免可忐已存在於具有與陽極接觸之發射層的先前 1題圖4之裝置亦避免可能已存在於先前裝置 電子知害發射層與陽極之間的有機材料而引起的問 題因為圖4之裝置不具有任何會由電子損害之該等有機 材料。 圖5展不一僅且右二從士, 八有二種有機材料之有機發光裝置。作為 說明,圖5之裝置 括基板510、一陽極515、一第三有 機層520、一具有—笛 ^ 第一有機層53〇及一第二有機層54〇之 發射層、一電洞阻擋厝 570 〇 5〇、-電子傳輸層56。及-陰極 第有機層530安置於陽極與陰極之間,且包括鱗光性 材料及非發射性材料。第一有機層中鱗光性材料之濃度為 %第有機層中非發射性材料之濃度為10-90 Wt%。第二有機層540安置於第-有機層與陰極之間,且 係直接接觸於第一有機層53〇。第二有機層包括第_ f之磷光性材料及非發射性材料。第二層中嶙光性材料之 /辰度為3 25 wt/〇。帛二有機層中非發射性材料之濃度 75-97 wt%。第二有機層中鱗光性材料之濃度低於第 機層中磷光性材料之滚度。第一有機層53〇及第二 5利僅包括磷光性材料及非發射性材料。 θ 第一有機層520僅包括第一有機層53〇之鱗光性材料 係直接接觸於第-有機層53〇。在第三有機層⑽中 性材料實際上不能發射’而可用以由陽極515傳輪電洞且 將電洞注入第一有機層530中。 I28JJ0.doc -43- 200901530 電洞阻擋層550僅包括第一有機層530之非發射性材料。 在不受任何關於本發明之態樣如何運作之理論限制的情況 下,據信第一層530及第二層54〇中之電洞傳輸在磷光性材 料上發生,且該傳輸不在非發射性材料上發生。因此,電 洞阻擋層550不能自第二有機層54〇傳輸電洞且其用作電洞 阻擋層。 因此,僅存在兩種在第三有機層52〇、第一有機層53〇、 第二有機層540及第三有機層55()之間使用之有機材料。圖 5之裝置’之第三有機材料為作為電子傳輸層560中之唯一 材料存在之電子傳輸材料。 雖然本文所說明之裝置中之許多具有可存在於或可不存 之特之本發明態樣中之各種層,圖5中所說明 音^勺?欲恰好具有所示之層(無增加且無省略),且 括二種有機材料。因此,可避免與額外層及額外 料機材枓相關之損害機制。料性材料為裝置之發射性材 在一不同態樣中,圖5之奘罟开,、,☆ 包括第四有機材料二二置可之方法改變以 有機材料中之—者為财:裝置僅包括4種有機材料’且 的電子傳輸材料。此;:裝置中之發射層與陰極之間 發射層中,以及有機材料存在於裝置之 及/或阻擋層+。舉S何電洞傳輸、電洞注入 舉例而吕,該炉番 兩種不同磷光性材料及二了匕括在發射層中之 單一碟光性材料及兩㈣=材料,在發射層中之 發射性材料,或磷光性材 128110.doc -44 - 200901530 料、非發射性材料及較低能量發射性材料。 圖6展示一類似於圖3之有機發光裝置的有機發光裝置, 但其包括多種鱗光性材料。作為說明,圖6之裝置包括一 基板610、一陽極615、一第三有機層62〇、—具有一第一 有機層630及-第二有機層64〇之發射層、1洞阻_ ㈣、-電子傳輸層_及一陰極67〇。第三有機層62〇、電 洞阻擋層650及電子傳輸層660為可選的。 第-有機層630安置於陽極與陰極之間,且包括第一鱗 光=材料及非發射性材料。第-有機層中第-磷光性材料 之7辰度為3-50 wt%。第一右她爲士斗外 $有機層+非發射性材料之濃度為 心。第二有機層6懈置於第—有機層咖與陰極 =二且係直接接觸於第一有機層㈣。第二有機層州包 括第-有機層H光性材料及非發射性材料。第二層 中第-填光性㈣之濃度為3·25 A1 罘一有機層中非發 :生材料之濃度為10-9。wt%e第二有機層中The concentration of the non-emissive material in the Wt/〇 organic layer is 10-90 Wt%. The second organic layer 440 is disposed between the first organic layer and the cathode and is in direct contact with the first organic layer 43A. The second organic layer includes the first organic layer (4) and the dendritic material H (iv). The concentration of the optical material is 3·25 wt%. The concentration of the non-emissive material in the second organic layer is 75 97 wt/〇. The concentration of the phosphorescent material in the first organic layer is lower than the concentration of the phosphorescent material in the first organic layer. In one aspect, the first organic layer 43A and the second organic layer 44G include only a light-transmitting material and a non-emissive material. The device of Figure 4 relies on a combination of features of a device that achieves a long life. Because of the problems caused by the anode-emissive layer interface and especially by recombination at or near the interface, simply avoiding the use of any organic layer between the anode and the emissive layer is unlikely to result in a good device. However, the apparatus of Figure 4 also includes different layers of phosphorescent emissive dopants having different concentrations. As shown in the apparatus of FIG. 3, it is believed that a change in the concentration of the phosphorescent material between the first organic layer 43A and the second organic layer 44A (the interface is created in the emissive layer) may cause migration of electrons in the first organic layer 430. The rate is higher than the mobility in the second organic layer 44, and the mobility of the holes in the second organic layer 440 is higher than that in the first organic layer 43. Therefore, recombination of electrons and holes can occur at or near the interface between the first organic layer 430 and the second organic layer 44A. Thus, Figure 4 128110.doc • 42· 200901530 The device of Figure 4, which was already present in the first layer of the emitter layer in contact with the anode, also avoids the possibility that it may already exist between the electron-damping emissive layer and the anode of the prior device. Problems caused by organic materials because the device of Figure 4 does not have any such organic materials that would be damaged by electrons. Figure 5 shows an organic light-emitting device with only two kinds of organic materials. For example, the device of FIG. 5 includes a substrate 510, an anode 515, a third organic layer 520, an emission layer having a first organic layer 53A and a second organic layer 54, and a hole blocking barrier. 570 〇 5 〇, - electron transport layer 56. And a cathode The organic layer 530 is disposed between the anode and the cathode and includes a spheroidal material and a non-emissive material. The concentration of the luminescent material in the first organic layer is %. The concentration of the non-emissive material in the organic layer is 10-90 Wt%. The second organic layer 540 is disposed between the first organic layer and the cathode and is in direct contact with the first organic layer 53A. The second organic layer includes a phosphorescent material of the first f and a non-emissive material. The lightness of the calendering material in the second layer is 3 25 wt/〇. The concentration of the non-emissive material in the organic layer is 75-97 wt%. The concentration of the luminescent material in the second organic layer is lower than the thickness of the phosphorescent material in the first layer. The first organic layer 53 and the second layer include only a phosphorescent material and a non-emissive material. θ The first organic layer 520 includes only the first organic layer 53. The scale material is in direct contact with the first organic layer 53A. The neutral material in the third organic layer (10) is practically incapable of emitting 'and can be used to transfer holes from the anode 515 and inject holes into the first organic layer 530. I28JJ0.doc -43- 200901530 The hole blocking layer 550 includes only the non-emissive material of the first organic layer 530. Without being bound by any theory as to how the aspect of the invention operates, it is believed that the hole transport in the first layer 530 and the second layer 54 is occurring on the phosphorescent material and that the transmission is not non-emissive. Occurs on the material. Therefore, the hole blocking layer 550 cannot transmit holes from the second organic layer 54 and it functions as a hole blocking layer. Therefore, there are only two organic materials used between the third organic layer 52, the first organic layer 53, the second organic layer 540, and the third organic layer 55 (). The third organic material of the device of Fig. 5 is an electron transporting material which is present as the sole material in the electron transport layer 560. Although many of the devices described herein have various layers in the aspect of the invention that may or may not exist, the sounds illustrated in Figure 5 are intended to have exactly the layers shown (no increase and no omission) ), and includes two organic materials. As a result, damage mechanisms associated with additional layers and additional material 枓 can be avoided. The material is the emissive material of the device in a different aspect, as shown in Figure 5, ☆, including the fourth organic material, the method of changing the organic material is the same: the device is only Includes 4 organic materials' and electronic transmission materials. This; the emissive layer between the emissive layer and the cathode in the device, and the organic material present in the device and/or the barrier layer +. For example, the S-hole transmission and the hole injection example are two different phosphorescent materials and two single-disc optical materials included in the emission layer and two (four)= materials, which are emitted in the emission layer. Materials, or phosphorescent materials 128110.doc -44 - 200901530 Materials, non-emissive materials and lower energy emissive materials. Figure 6 shows an organic light-emitting device similar to the organic light-emitting device of Figure 3, but which includes a plurality of scale-sensitive materials. By way of illustration, the apparatus of FIG. 6 includes a substrate 610, an anode 615, a third organic layer 62, an emission layer having a first organic layer 630 and a second organic layer 64, a hole resistance _ (four), - an electron transport layer _ and a cathode 67 〇. The third organic layer 62, the hole blocking layer 650, and the electron transport layer 660 are optional. The first organic layer 630 is disposed between the anode and the cathode and includes a first scale light material and a non-emissive material. The 7-degree of the first phosphorescent material in the first-organic layer is 3 to 50 wt%. First right, she is outside the squad. The concentration of organic layer + non-emissive material is the heart. The second organic layer 6 is placed on the first organic layer and the cathode = two and is in direct contact with the first organic layer (four). The second organic layer state includes a first-organic layer H-light material and a non-emissive material. The concentration of the first-filling property (4) in the second layer is 3·25 A1. The organic layer is non-facilitated: the concentration of the raw material is 10-9. Wt%e in the second organic layer

V 材料之濃度低於第一有機層中該磷光性材料之濃产。 第一有機層630、第二有機層64Q或兩者包二 ==在之較低能量發射性材料。該較低能量發射 光發射性材料。在該較低能量發射性材心 下’該裂置可展示磷光性敏感之瑩光發射, 亦即能量可由第-磷光性材 ^發射’ 性材料。 &lt; 二㈣轉移至螢光發射 第-有機層630與第二有機層 ^ ^ . ^ , JJ 匕枯以 〇·1·12 wt0/〇 之浪度存在之較低能量發射 ^ 虱,僅第一有機層 128110.doc •45· 200901530 630可包括以o.1·12 wt%之濃度存在之較低能量發射性材 料,而第二有機層64〇不包括較低能量發射性材料。或材 僅第-有機層640可包括a(U.12wt%之濃度存在之較低妒 =射性材料,而第一有機層63。不包括較低能量發射: r\ \ 在-態樣巾’第—錢層㈣僅包括第_磷光性材料及 非發射性材料,且第二有機層刚僅包括第—嶙光性材 枓、非發射性材料及較低能量發射性材料。在 中:因為在任何給定層中所有材料之百分比的和= 〇%故第一有機層中非發射性材料之濃度為50-97 Wt%,且第二有機層中非發射性材料之濃度為63-90 wt%。 第鱗光性材料與較低能量發射性材料均可在圖6之裝 置中發射。舉例而言,若第一磷光性材料為存在於第一有' 機層630中之唯一發射性材料,則其可自該層發射。若第 -磷光性㈣與較低能量發㈣㈣均存在於第二有機層 M〇中,^'較低能量發射性材料為磷光性的且與第-磷光 材料相比具有較低二重態能量,則在第二有機層㈣中 來自第二碟光性材料之發射可有利。然而,依賴於第二有 s 40中之第_麟光性材料及第二構光性材料之濃度, 第有機層640中還可存在一些來自第一磷光性材料之 發射S任何情況下,第―璘光性材料可自第—有機層 發射因此,圖6之裝置可具有多種具有不同發射光譜 ^㈣材料’以致可獲得裝置之寬闊整體發射。對於某 應用,諸如全面照明而言,需要該發射光譜。 128110.doc -46- 200901530 :7展示-有機發光裝置,其具有—具有第—及第二有 機層之發射層,該第一有機層及 彦之磁龙’機層具有不同濃 =材料及非發射性材料,且第一有機層與陰極之 應用類似於圖3所述,但如’置 層中傳輪電子且不傳輸電洞之裝置斤==負責在發射 冬裝置所應用之彼等概念之概 輸之發㈣^光性裝置不包括電子在鱗光性材料上傳 η 碌二子之:據信化合物8為可在發射層中傳輸電子之 ”。、―陽極715 : 圖7之裝置包括-基板 -第-有^ 有機層72()、—第-有機層73〇、 第一有機層740、一電洞阻播層75〇、 及一陰極770。第:有梏厚7% ^ 电千傳輸層760 輸料可選:層I電洞阻播層.及電子傳 第有機層730安置於陽極食降極 材料及非發射性材料。第一有機且包括鱗光性 3-25 wt…“層中磷光性材料之濃度為 wt/0。第一有機層中非發射性材料之 wt%。第二有機層74〇安 : ⑽觸於第-有機層73。。第二有 =之:光性材料及非發射性材料。第二有機層中 度為1G_9i) Wt%。第二有機層中非發射性材料之 痕度為H)-90 wt%。第二有機層中構光性材料之濃产 第一有機層中磷光性材料之濃度。 X间於 圖7之裝置以與圖3之裝置類:之原理操作, 在於意欲有材料之組合,其Μ光性發射性摻雜劑負責^ 128110.doc •47- 200901530 輸電子而非傳給I .n 寻輸電洞。因此,與第一有機層73〇相比更接 近陰極770之笸-士仙q ” 弟一有機層740具有比第一有機層73〇高之電 ▲〗磷幻生材料濃度。因此,相對於第二有機層而 第★有機層73 0中之電子遷移率應降低,以致重組可 發生在第-有機層73〇與第二有機層74()之間的介面上或附 近。 圖8展不使用表1及表3中之參數製造之有機發光裝 置。 圖9展不經製造且測試之特定有機發光裝置,其具有 具備不同濃度之磷光性材料及非發射性材料之第一及第二 有機層。 圖10展不一經製造且測試之特定有機發光裝置。圖1〇之 裝置僅包括4種有機材料:化合物八、化合物f、及 Alq。特定5之,圖1〇之裝置按次序包括一 ιτ〇陽極、一 ι〇 nm厚之化合物Α的電洞注入層、一 6〇nm厚之經15%化合物 F摻雜之mCBP的發射層、一5 11111厚之111(:81&gt;的電洞阻擋 層、一20 nm厚之Alq的電子傳輸層、一 〇5 nm厚之UF的 無機電子注入層及一 100 nm厚A1陰極。 圖11展示圖10之裝置之電流密度對電壓的曲線圖。 圖12展示圖10之裝置之外部量子效率(EqE)對電流密度 的曲線圖。 圖13展示圖10之裝置之正規化強度(任意單位)對時間的 曲線圖。 圖14展示圖10之裝置之正規化電致發光強度對波長的曲 128110.doc •48· 200901530 線圖。 圖15展示一經製造且測試之特定有機發光裝置。圖^之 裝置僅包括三種有機材肖:化合物F、mCBP及Alq。特定 δ之,圖15之裝置按次序包括一 ITO陽極、一 1〇 nm厚之化 口物F的電洞庄入層、一 6〇 厚之經ι5%化合物f摻雜之 mCBP的發射層、一5 nm厚之mCBp的電洞阻擋層、一2〇 nm厚之Alq的電子傳輸層、一 〇5 厚之的無機電子注 入層及一 10011111厚八1陰極。除將化合物F替代化合物A用於 電洞注人層外,® 15之裝置類似於® 10之裝置。特別地, 化合物F亦為圖15之裝置中之發射性材料。 圖16展不圖15之裝置之電流密度對電壓的曲線圖。 圖17展不圖15之裝置之外部量子效率(EQE)對電流密度 的曲線圖。 圖18展示圖15之裝置之正規化強度(任意單位)對時間的 曲線圖。 圖19展示圖15之裝置之正規化電致發光強度對波長的曲 線圖。 圖20展示各種裝置結構之正規化發光對時間的曲線圖。 圖15之裝置及圖16-19中所繪製之實驗結果展示圖15之 裝置具有與圖1 〇之裝置類似的量測結果。此證明化合物F 為類似於化合物A之良好電洞傳輸體。若化合物?不具有可 與化合物A相當之電洞傳輸特性,則由於化合物F傳輸電洞 能力較差,故預計圖15之裝置將展示比圖10之裝置差之效 能0 I28110.doc -49- 200901530 圖21展示一使用表2中之參數製造之有機發光裝置,其 具有具備不同濃度之磷光性材料及非發射性材料之第一及 第二有機層。 圖22展示一使用表4中之參數製造之有機發光裝置,其 具有具備不同濃度之磷光性材料及非發射性材料之第一及 第二有機層。表5展示表4之裝置的裝置效能。 表4 HIL1 HIL2 HTL EML BL 100 A 賞例6 化合物A 無 化合物D :化合物E 30% 300 A 化合物D :化合物E 10% 300 A 化合物D 實例7 化合物A 無 化合物C :化合物A 30% 300 A 化合物C :化合物A 10% A 化合物c 實例8 LG-101 化合物A Balq :化合物A 30% : 化合物G 3% 300 A BAlq :化合物A 10%: 化合物Τ 3% A BAlq 實例9 化合物A 無 Balq :化合物A 30% : 化合物G 3% 300 A BAlq :化合物A 10%: 化合物G 3% A BAlq 比較 實例2 化合物A 無 NPD 400 A Balq :化合物G 12% 無 表5 CIE 在1000尼特Ί 在 40 mA/cm2 下 X y 電壓[V] LE「cd/Al EQE Γ%] Lo [尼特] 丁80% [h] 實例6 0.34 0.62 8.5 42.9 11.8 13815 1,700 實例7 0.36 0.61 7.4 52.6 14.5 16380 1,200 實例8 0.66 0.34 7.3 20.2 16.7 7359 -3,500 實例9 0.66 0.34 7.7 19.1 15.8 6343 -3,500 比較實例2 0.67 0.33 7.8 18.8 18.1 6382 963 圖23展示使用來自表4之參數根據圖22製造之裝置之正 規化電致發光強度對波長的曲線圖。 圖24展示使用來自表4之參數根據圖22製造之裝置之發 光效率對照度的曲線圖。 圖25展示使用來自表4之參數根據圖22製造之裝置之外 128110.doc •50- 200901530 部量子效率對照度的曲線圖。 圖26展示使用來自表4之參數根據圖22製造之裝置之電 流密度對電壓的曲線圖。 圖27展示使用來自表4之參數根據圖22製造之裝置之照 度對電壓的曲線圖。 圖28展示使用來自表4之參數根據圖22製造之裝置之正 規化照度對時間的曲線圖。 圖29展示一使用表6中之參數製造之有機發光裝置,其 具有具備不同濃度之磷光性材料及非發射性材料之第一及 第二有機層,一些裝置具有NPD層且一些不具有NPD層。 表6中之資料展示在電洞注入層與發射層之間引入100 A NPD層降低紅色發光裝置之使用期限。 表6 : HIL層(各層100 A) C] [E 在1,000尼特下 在 40 mA/cm2 下 X Y 電壓 Μ LE. fcd/Al EQE [%] P.E. [lm/Wl LT5〇〇/0 [h] Lo [尼特] LTs〇〇/〇 M LG- 101 化合 物A NPD 0.659 0.339 7.5 22.5 18.8 9.4 195,000 8,170 2,800 LG- 101 化合 物A - 0.658 0.340 7.3 20.2 16.7 8.7 346,000 7,359 4,000 - 化合 物A NPD 0.658 0.340 7.7 24.3 20.2 9.9 8,490 2,200 - 化合 物A - 0.657 0.341 7.7 19.1 15.8 7.8 285,000 6,343 4,000 圖30展示一不具有NPD層之有機發光裝置。 圖31展示一具有NPD層之有機發光裝置。 圖32展示圖30及圖31之裝置之外部量子效率對照度的曲 線圖。 128110.doc -51 - 200901530 圖33展示圖30及圖31之裝置之功率效能對照度的曲線 圖。 圖34展示圖30及圖31之裝置之照度對電壓的曲線圖。 圖3 5展示圖30及圖31之裝置之電致發光強度對波長的曲 線圖* 圖36展示在各種初始照度下圖30之裝置之正規化照度對 時間的曲線圖。 圖3 7展示在各種初始照度下圖3 1之裝置之正規化照度對 時間的曲線圖。 圖38展示一具有自NPD與BAlq之發射的有機發光裝置。 圖39展示圖38之裝置之外部量子效率對照度的曲線圖。 圖40展示圖38之裝置之功率效能對照度的曲線圖。 圖41展示圖38之裝置之照度對電壓的曲線圖。 圖42展示圖38之裝置之電致發光強度(任意單位)對波長 的曲線圖。 圖43展示圖38之裝置之正規化照度對時間的曲線圖。 圖44展示一僅具有自Alq之發射之有機發光裝置。 圖45展示圖44之裝置之外部量子效率對照度的曲線圖。 圖46展示圖44之裝置之功率效能對照度的曲線圖。 圖47展示圖44之裝置之照度對電壓的曲線圖。 圖48展示圖44之裝置之電致發光強度(任意單位)對波長 的曲線圖。 圖49展示圖44之裝置之正規化照度對時間的曲線圖。 圖展示-有機發光裝置,其僅具有—在發射層與陽極 128110.doc •52· 200901530 之間具有高電洞傳導率之層及一與用作發射層中之非發射 性主體相同之材料的電洞阻擋層。圖50之裝置包括一 10 mn厚之LG101的電洞注入層、一 6〇 nm厚之由i5 w⑼化合 物Η摻雜之化合物j的第一有機發射層、一u厚之化合 物J的電洞阻擋層、一 2〇 nm厚之Alq的電子傳輸層及一 LiF/Al陰極。 圖5 1展不圖5〇之裝置之正規化發光對時間的曲線圖。 圖52展不圖50之裝置之外部量子效率對照度的曲線圖。 圖53展示圖50之裝置之功率效能對照度的曲線圖。 圖54展示圖50之裝置之照度對電壓的曲線圖。 圖55展示圖50之裝置之EL強度對波長的曲線圖。 圖56展示一有機發光裝置,其僅具有一在發射層與陽極 之間具有高電洞傳導率之層、一與用作發射層中之非發射 性主體相同之材料的電洞阻檔層及一具有具備不同濃度之 磷光性材料及非發射性材料之第一及第二有機層之發射 層,其中在第二有機層中之磷光性材料的濃度可變。圖56 之裝置包括一 10 nm厚之LG101的電洞注入層、一 3〇 nm厚 之經30 wt%化合物Η摻雜之化合物J的第一有機發射層、一 30 nm厚之經X wt%化合物η摻雜之化合物j的第二有機發 射層、一25 nm厚之化合物J的電洞阻擋層、一 2〇 nm厚之 Alq的電子傳輸層及一 LiF/Al陰極。在所製造之裝置中χ由 10 wt%至18 wt%變化,如圖57之圖例中所示χ=1〇、14及 18 wt%之裝置。圖56之裝置與圖50之裝置非常類似,不同 之處在於在圖56之裝置中存在摻雜劑Η之濃度梯級,而在 128110.doc • 53- 200901530 圖50之裝置中不存在。 圖57展示圖56之裝置之正規化發光對時間的曲線圖。 圖58展示圖56之裝置之外部量子效率對照度的曲線圖。 圖59展示圖56之裝置之功率效能對照度的曲線圖。 圖60展示圖56之裝置之照度對電壓的曲線圖。 圖61展示圖56之裝置之EL&amp;度對波長的曲線圖。 圖56之裝置可與圖5〇之裝置相比較。依據裝置架構,除 、 在發射層中圖%之裝置具有化合物η之濃度梯級,而圖5〇 之裝置不具有外,該等裝置類似。該等兩個裝置之量測結 果展示圖56之裝置具有一藉由摻雜劑濃度之梯級實現之較 低操作電壓。與圖50之裝置相比,圖56之裝置亦具有較佳 藍色CIE座標。據信較佳CIE座標係歸因於由接近於圖%之 裝置之陰極的重組產生之光學效應,歸因於經3〇%化合物 Η摻雜之層中增加之電洞傳導率。圖兄之裝置亦展示高於 圖50之裝置之外部量子效率。據信圖56之裝置之較高效率 《 係歸因於由摻雜劑濃度梯級引起之更加展開之重組及在重 \ :&gt; , 、且位置之較佳電子及電洞平衡。此外,重組通常發生在介 面上’且圖56之裝置具有由濃度梯級引起之包括可發光之 層之三個介面’而圖50之裝置僅具有兩個該介面。 圖62展示一有機發光裝置’其僅具有:一在發射層與陽 極之間具有高電洞傳導率之層、一與用作發射層中之非發 射性主體相同之材料的電洞阻擋層及一具有在第一及第二 有機發射層中具有不同濃度之磷光性材料之第一及第二有 機層之發射層’其中在第二有機發射層中磷光性材料的濃 12811〇,d〇c • 54· 200901530 度可變。圖62之裝置包括一 ι〇 11]11厚2LG1〇1的電洞注入 層、一30 nm厚之經30 wt%化合物a摻雜之化合物j的第一 有機發射層、一 30 nm厚之經X wt%化合物H摻雜之化合物 J的第二有機發射層、一25 nm厚之化合物j的電洞阻擋 層、一20 nm厚之Alq的電子傳輸層及一UF/A1陰極。在所 製造之裝置中X由10 wt%至18 wt%變化,如圖57之圖例中 所示X=10、14及18 wt%之裝置。圖62之裝置與圖56之裝 置非常類似,不同之處在於圖62之裝置在第—及第二有機 發射層中使用不同發射性磷光性材料,而圖56之裝置在兩 層中使用相同磷光性材料。與圖62之裝置相比,圖56之裝 置中磷光性材料之濃度相同。 圖63展示圖62之裝置之外部量子效率對照度的曲線圖。 圖64展示圖62之裝置之功率效能對照度的曲線圖。 圖65展示圖62之裝置之照度對電壓的曲線圖。 圖66展示圖62之裝置之EL強度對波長的曲線圖。 圖62之裝置可與圖56之裝置相比較。依據裝置架構,除 在發射層中圖62裝置具有經攝光性發射極化合物a摻雜之 發射層及經填光性發射極化合物Η摻雜之另一發射層,而 圖56之裝置僅具有麟光性發射極化合物η之外,該等裝置 類似。即使在各層中實際摻雜劑不同,兩裝置亦具有摻雜 劑濃度梯級及類似濃度。由比較該等兩裝置架構可瞭解若 干要點。首先,圖62之裝置展示來自化合物a與化合物Η 之發射組合之寬闊發射光譜。因此,可推斷圖5 6之裝置自 經3 0%化合物η摻雜之層與經較小濃度化合物η摻雜之層發 128ll0.doc 55· 200901530 射。比較圖58與圖63,可見與圖兄之裝置相比 之裝 置具有較佳電荷平衡,#由在與圖56之裝置之⑽數量級 上相比在圖62裝置之3個數量級上相對平坦之 率所證明。 使用諸如NPD之材料製造大量具有兩個經不@ t發 射層之裝置’纟中該等裝置不包括電洞傳輸層。表7展示 绞等裝置之結構。表8展示所量測之該等裝置之實驗結 果。-般而言,該等裝置具有一IT〇陽極The concentration of the V material is lower than the concentration of the phosphorescent material in the first organic layer. The first organic layer 630, the second organic layer 64Q, or both are included in the lower energy emissive material. The lower energy emits a light-emitting material. Under the lower energy emissive material, the cleavage exhibits a phosphorescent-sensitive fluorescent emission, i.e., energy can be emitted from the first-phosphorescent material. &lt; Two (four) transfer to the fluorescent emission of the first organic layer 630 and the second organic layer ^ ^ . ^ , JJ 匕 〇 1 1 1 wt wt wt wt wt wt wt wt wt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 An organic layer 128110.doc • 45· 200901530 630 may comprise a lower energy emissive material present at a concentration of o.1·12 wt%, while the second organic layer 64〇 does not include a lower energy emissive material. Or only the first-organic layer 640 may comprise a (U.12 wt% concentration present in the lower 妒 = radioactive material, while the first organic layer 63. does not include lower energy emission: r \ \ in the - state sample towel The 'th-money layer (4) includes only the first-phosphorescent material and the non-emissive material, and the second organic layer includes only the first-light-emitting material, the non-emissive material, and the lower-energy emitting material. Since the sum of the percentages of all materials in any given layer = 〇%, the concentration of the non-emissive material in the first organic layer is 50-97 Wt%, and the concentration of the non-emissive material in the second organic layer is 63- 90 wt%. Both the squama light material and the lower energy emissive material can be emitted in the apparatus of Figure 6. For example, if the first phosphorescent material is the only emission present in the first 'machine layer 630' a material that can be emitted from the layer. If the first-phosphorus (four) and the lower energy (four) (four) are both present in the second organic layer M, the lower energy emissive material is phosphorescent and the first - If the phosphorescent material has a lower doublet energy, the emission from the second optical material in the second organic layer (4) may have However, depending on the concentration of the second light-emitting material and the second light-structural material in the second s 40, there may be some emission S from the first phosphorescent material in the organic layer 640, in any case, The first light-emitting material can be emitted from the first organic layer. Thus, the device of Figure 6 can have a plurality of different emission spectra ('fourth material') such that a broad overall emission of the device can be obtained. For an application, such as full illumination, The emission spectrum. 128110.doc -46- 200901530:7 shows an organic light-emitting device having an emission layer having a first and a second organic layer, the first organic layer and the magnetic layer of the Yanlong's machine layer having different concentrations = Materials and non-emissive materials, and the application of the first organic layer and the cathode is similar to that described in Figure 3, but as in the case of a device that transmits electrons in the layer and does not transmit holes, == is responsible for the application of the winter device The concept of the loss of the concept (4) ^ optical device does not include electrons in the scaly material upload η 二 二 子: It is believed that compound 8 is the electron transporter in the emission layer." - anode 715: Figure 7 Device includes - substrate - - Organic layer 72 (), - Organic layer 73 〇, first organic layer 740, a hole blocking layer 75 〇, and a cathode 770. No: 7% thick 电 ^ 千 千 层 760 The feed material is optional: the layer I hole blocking layer and the electron transport organic layer 730 are disposed on the anode food anode material and the non-emissive material. The first organic and including the scale light 3-25 wt... The concentration of the material is wt/0. The wt% of the non-emissive material in the first organic layer. The second organic layer 74 :: (10) touches the first organic layer 73. The second has = optical material and Non-emissive material. The second organic layer has a moderate degree of 1G_9i) Wt%. The non-emissive material in the second organic layer has a trace of H) - 90 wt%. The concentration of the photo-curable material in the second organic layer is the concentration of the phosphorescent material in the first organic layer. The device between Figure X and Figure 7 operates on the principle of the device class of Figure 3, in that it is intended to have a combination of materials, and the light-emitting emissive dopant is responsible for the electron transfer rather than the transmission of 128110.doc •47-200901530 I.n find holes. Therefore, the organic layer 740 is closer to the cathode 770 than the first organic layer 73 具有, and the organic layer 740 has a higher concentration than the first organic layer 73. Therefore, relative to the concentration of the phosphorous material. The electron mobility in the second organic layer and the organic layer 73 0 should be lowered, so that recombination may occur on or near the interface between the first organic layer 73 and the second organic layer 74 (). An organic light-emitting device manufactured using the parameters in Tables 1 and 3. Figure 9 shows a specific organic light-emitting device that is not manufactured and tested, and has first and second organic materials having different concentrations of phosphorescent materials and non-emissive materials. Figure 10 shows a specific organic light-emitting device that has not been manufactured and tested. The device of Figure 1 includes only four organic materials: Compound 8, Compound f, and Alq. Specific 5, the device of Figure 1 includes one in order. Ιτ〇 anode, a hole injection layer of a 〇 〇 thick compound Α, a 6 〇 nm thick 15% compound F doped mCBP emission layer, a 5 11111 thick 111 (: 81 > hole Barrier layer, a 20 nm thick Alq electron transport layer, one 〇 5 nm thick The inorganic electron injecting layer of UF and a 100 nm thick A1 cathode. Figure 11 is a graph showing the current density versus voltage of the device of Figure 10. Figure 12 is a graph showing the external quantum efficiency (EqE) versus current density of the device of Figure 10. Figure 13 is a graph showing the normalized intensity (arbitrary unit) versus time for the device of Figure 10. Figure 14 is a graph showing the normalized electroluminescence intensity versus wavelength for the device of Figure 10; 128110.doc • 48· 200901530 Figure 15 shows a specific organic light-emitting device that has been fabricated and tested. The device of Figure 1 includes only three organic materials: Compound F, mCBP, and Alq. Specific δ, the device of Figure 15 includes an ITO anode in sequence, one by one. The thickness of the nm-thicked material F, the emission layer of a 6-inch thick ι5% compound f-doped mCBP, a 5 nm-thick mCBp hole barrier layer, a 2 〇 nm thick layer Alq's electron transport layer, a 5-thick inorganic electron injecting layer, and a 10011111 thick octa cathode. The device of the ® 15 is similar to the ® 10 device except that the compound F is used instead of the compound A for the hole injection layer. In particular, compound F is also the device of Figure 15. The emissive material is shown in Fig. 16. The current density versus voltage curve of the device of Fig. 15. Fig. 17 is a graph showing the external quantum efficiency (EQE) versus current density of the device of Fig. 15. Fig. 18 shows Fig. 15 A graph of the normalized intensity (arbitrary unit) versus time for the device. Figure 19 shows a graph of normalized electroluminescence intensity versus wavelength for the device of Figure 15. Figure 20 shows a graph of normalized illumination versus time for various device configurations. The apparatus of Figure 15 and the experimental results plotted in Figures 16-19 show that the apparatus of Figure 15 has similar measurements as the apparatus of Figure 1. This demonstrates that compound F is a good hole transporter similar to compound A. If a compound? Without the hole transfer characteristics comparable to Compound A, the device of Figure 15 is expected to exhibit a lower performance than the device of Figure 10 due to the poor ability of the compound F to transmit holes. I28110.doc -49 - 200901530 Figure 21 shows An organic light-emitting device manufactured using the parameters in Table 2, which has first and second organic layers having phosphorescent materials and non-emissive materials of different concentrations. Figure 22 shows an organic light-emitting device fabricated using the parameters in Table 4, having first and second organic layers having phosphorescent materials and non-emissive materials of different concentrations. Table 5 shows the device performance of the device of Table 4. Table 4 HIL1 HIL2 HTL EML BL 100 A Reward 6 Compound A No compound D: Compound E 30% 300 A Compound D: Compound E 10% 300 A Compound D Example 7 Compound A No compound C: Compound A 30% 300 A Compound C: Compound A 10% A Compound c Example 8 LG-101 Compound A Balq: Compound A 30%: Compound G 3% 300 A BAlq: Compound A 10%: Compound Τ 3% A BAlq Example 9 Compound A No Balq: Compound A 30% : Compound G 3% 300 A BAlq : Compound A 10%: Compound G 3% A BAlq Comparative Example 2 Compound A No NPD 400 A Balq : Compound G 12% No Table 5 CIE at 1000 nits at 40 mA /cm2 X y voltage [V] LE "cd/Al EQE Γ%] Lo [nit] D 80% [h] Example 6 0.34 0.62 8.5 42.9 11.8 13815 1,700 Example 7 0.36 0.61 7.4 52.6 14.5 16380 1,200 Example 8 0.66 0.34 7.3 20.2 16.7 7359 -3,500 Example 9 0.66 0.34 7.7 19.1 15.8 6343 -3,500 Comparative Example 2 0.67 0.33 7.8 18.8 18.1 6382 963 Figure 23 shows the normalized electroluminescence intensity versus the device manufactured according to Figure 22 using the parameters from Table 4 A plot of the wavelength. Figure 24 shows the use from Table 4. A graph of the luminous efficiency illuminance of the device manufactured according to Fig. 22. Fig. 25 is a graph showing the quantum efficiency of the 128110.doc • 50-200901530 portion of the device manufactured according to Fig. 22 using the parameters from Table 4. 26 shows a plot of current density vs. voltage for a device fabricated according to Figure 22 using parameters from Table 4. Figure 27 shows a plot of illuminance versus voltage for a device fabricated according to Figure 22 using parameters from Table 4. Figure 28 shows the use The parameters from Table 4 are based on the normalized illuminance vs. time of the device fabricated in Figure 22. Figure 29 shows an organic light-emitting device fabricated using the parameters in Table 6, having phosphorescent materials with different concentrations and non-emissive properties. The first and second organic layers of the material, some devices have NPD layers and some do not have NPD layers. The data in Table 6 shows the introduction of a 100 A NPD layer between the hole injection layer and the emissive layer to reduce the life of the red illuminating device . Table 6: HIL layer (each layer 100 A) C] [E XY voltage at 40 mA/cm2 at 1,000 nits Μ LE. fcd/Al EQE [%] PE [lm/Wl LT5〇〇/0 [ h] Lo [Nit] LTs〇〇/〇M LG- 101 Compound A NPD 0.659 0.339 7.5 22.5 18.8 9.4 195,000 8,170 2,800 LG- 101 Compound A - 0.658 0.340 7.3 20.2 16.7 8.7 346,000 7,359 4,000 - Compound A NPD 0.658 0.340 7.7 24.3 20.2 9.9 8,490 2,200 - Compound A - 0.657 0.341 7.7 19.1 15.8 7.8 285,000 6,343 4,000 Figure 30 shows an organic light-emitting device without an NPD layer. Figure 31 shows an organic light-emitting device having an NPD layer. Figure 32 is a graph showing the external quantum efficiency contrast of the devices of Figures 30 and 31. 128110.doc -51 - 200901530 Figure 33 shows a plot of power performance contrast for the devices of Figures 30 and 31. Figure 34 is a graph showing the illuminance versus voltage for the devices of Figures 30 and 31. Figure 35 shows a plot of electroluminescence intensity versus wavelength for the apparatus of Figures 30 and 31. Figure 36 shows a graph of normalized illumination versus time for the apparatus of Figure 30 under various initial illuminations. Figure 37 shows a graph of normalized illumination versus time for the device of Figure 31 under various initial illuminations. Figure 38 shows an organic light-emitting device having emission from NPD and BAlq. Figure 39 is a graph showing the external quantum efficiency contrast of the device of Figure 38. Figure 40 is a graph showing the power performance contrast of the device of Figure 38. Figure 41 shows a graph of illumination versus voltage for the device of Figure 38. Figure 42 is a graph showing the electroluminescence intensity (arbitrary unit) versus wavelength for the device of Figure 38. Figure 43 shows a graph of normalized illumination versus time for the device of Figure 38. Figure 44 shows an organic light-emitting device having only emission from Alq. Figure 45 is a graph showing the external quantum efficiency contrast of the device of Figure 44. Figure 46 is a graph showing the power performance contrast of the device of Figure 44. Figure 47 is a graph showing the illuminance versus voltage for the device of Figure 44. Figure 48 is a graph showing the electroluminescence intensity (arbitrary unit) versus wavelength for the device of Figure 44. Figure 49 shows a graph of normalized illumination versus time for the device of Figure 44. The figure shows an organic light-emitting device having only a layer having a high hole conductivity between the emission layer and the anode 128110.doc • 52· 200901530 and a material similar to the non-emissive body used as the emission layer. Hole blocking layer. The device of Figure 50 comprises a 10 mn thick LG101 hole injection layer, a 6 〇 nm thick first organic emission layer of compound j doped with i5 w(9) compound yttrium, and a hole blocking of a thick compound J. Layer, an electron transport layer of 2 〇 nm thick Alq and a LiF/Al cathode. Figure 5 is a graph showing the normalized illumination versus time for the device of Figure 5. Figure 52 is a graph showing the external quantum efficiency contrast of the device of Figure 50. Figure 53 is a graph showing the power performance contrast of the device of Figure 50. Figure 54 shows a plot of illumination versus voltage for the device of Figure 50. Figure 55 shows a plot of EL intensity versus wavelength for the device of Figure 50. Figure 56 shows an organic light-emitting device having only a layer having a high hole conductivity between an emissive layer and an anode, a hole barrier layer having the same material as a non-emissive body in the emissive layer, and An emissive layer having first and second organic layers having different concentrations of phosphorescent material and non-emissive material, wherein the concentration of the phosphorescent material in the second organic layer is variable. The device of Figure 56 comprises a 10 nm thick hole injection layer of LG101, a 3 Å thick layer of 30 wt% compound Η doped compound J, a first organic emission layer, a 30 nm thick X wt% A second organic emission layer of compound j doped with compound η, a hole barrier layer of a 25 nm thick compound J, an electron transport layer of 2 nm thick Alq, and a LiF/Al cathode. In the device manufactured, χ varies from 10 wt% to 18 wt%, as shown in the legend of Fig. 57, χ=1〇, 14 and 18 wt%. The apparatus of Figure 56 is very similar to the apparatus of Figure 50, except that there is a concentration step of dopant enthalpy in the apparatus of Figure 56, but not in the apparatus of Figure 50 of 128110.doc • 53-200901530. Figure 57 shows a graph of normalized illumination versus time for the device of Figure 56. Figure 58 is a graph showing the external quantum efficiency contrast of the device of Figure 56. Figure 59 is a graph showing the power performance contrast of the device of Figure 56. Figure 60 shows a graph of illumination versus voltage for the device of Figure 56. Figure 61 shows a plot of EL&amp;degree versus wavelength for the device of Figure 56. The device of Figure 56 can be compared to the device of Figure 5A. Depending on the device architecture, except that the device in Figure 5% of the emission layer has a concentration step of compound η, and the device of Figure 5 不 does not have, the devices are similar. The measurement results of the two devices show that the device of Figure 56 has a lower operating voltage achieved by a step of dopant concentration. The device of Figure 56 also has a preferred blue CIE coordinate as compared to the device of Figure 50. It is believed that the preferred CIE coordinate is due to the optical effect produced by the recombination of the cathode of the device close to Figure %, due to the increased hole conductivity in the layer doped with 〇% of the compound Η. The device of the Tudor also shows the external quantum efficiency of the device above that of Figure 50. It is believed that the higher efficiency of the device of Figure 56 is due to the more unfolded recombination caused by the dopant concentration step and the better electron and hole balance at the position of &gt; In addition, recombination typically occurs on the interface 'and the device of Figure 56 has three interfaces comprising a layer of illuminable caused by a concentration step' and the device of Figure 50 has only two such interfaces. 62 shows an organic light-emitting device that has only one layer having a high hole conductivity between the emission layer and the anode, and a hole barrier layer which is the same material as the non-emissive body in the emission layer and An emissive layer having first and second organic layers of phosphorescent materials having different concentrations in the first and second organic emissive layers, wherein the phosphorescent material is concentrated in the second organic emissive layer by 12811〇, d〇c • 54· 200901530 is variable. The device of Fig. 62 comprises a hole injection layer of 11 Å 11]11 thick 2LG1〇1, a first organic emission layer of a 30 nm thick compound 30 doped with compound a, and a 30 nm thick layer. X wt% compound H doped compound J second organic emissive layer, a 25 nm thick compound j hole blocking layer, a 20 nm thick Alq electron transport layer and a UF/A1 cathode. In the device manufactured, X was varied from 10 wt% to 18 wt%, as shown in the legend of Fig. 57, X = 10, 14 and 18 wt%. The apparatus of Figure 62 is very similar to the apparatus of Figure 56, except that the apparatus of Figure 62 uses different emissive phosphorescent materials in the first and second organic emissive layers, while the apparatus of Figure 56 uses the same phosphorescence in both layers. Sexual material. The concentration of the phosphorescent material in the device of Fig. 56 is the same as that of the device of Fig. 62. Figure 63 is a graph showing the external quantum efficiency contrast of the device of Figure 62. Figure 64 is a graph showing the power performance contrast of the device of Figure 62. Figure 65 shows a plot of illumination versus voltage for the device of Figure 62. Figure 66 shows a plot of EL intensity versus wavelength for the device of Figure 62. The device of Figure 62 can be compared to the device of Figure 56. According to the device architecture, the device of FIG. 62 has an emissive layer doped with a photo-emissive emitter compound a and another emissive layer doped with a photo-emissive emitter compound, except that in the emissive layer, the device of FIG. 56 has only These devices are similar except for the luminescent emitter compound η. Both devices have a dopant concentration step and similar concentrations even though the actual dopants are different in each layer. A comparison of these two device architectures can be used to understand the key points. First, the device of Figure 62 shows a broad emission spectrum from the emission combination of compound a and compound 。. Therefore, it can be inferred that the device of Fig. 56 is irradiated with a layer doped with 30% of the compound η and a layer doped with a smaller concentration of the compound η 128l0.doc 55· 200901530. Comparing Fig. 58 with Fig. 63, it can be seen that the device has a better charge balance than the device of Fig. 25, and is relatively flat at the order of magnitude of the device of Fig. 62 compared to the order of (10) of the device of Fig. 56. Proved. A device having two layers of non-transmission layers is fabricated using a material such as NPD, which does not include a hole transport layer. Table 7 shows the structure of the device such as the twist. Table 8 shows the experimental results of the devices measured. In general, these devices have an IT〇 anode

=入層及-具有在中間具有一介面之一第一有= -有機層的發射層。該等裝置中之—些具有—電洞阻播 層所有送等裝置均具有_可自與LG1〇^同之來源獲得 ^LG201的電子傳輸層及一 LiF/A1陰極。裝置i、2及4在第 及第-有機層巾包括相同非發射性材料,但不同碟光性 材料。裝置5·8具有具備不同非發射性材料及不同磷光性 材料之第一及第二有機層。裝置9、11及12具有具備不同 非發射性材料及不同碟光性材料之第一及第二有機層,其 中第有機層另外包括發射性材料。裝置13_22具有具備 相同非lx射性材料及不同磷光性材料之第—及第二有機 層,其中第-有機層另外包括較低能量發射性材料。所有 裝置1 ' 2、4、5-8、9、11、12及13-22包括具有在中間具 有&quot;®之第-及第二有機層#發射層。在大多數該等裝 f中,第一(接近於陽極)有機層中磷光性材料之濃度較 ^然而,在裂置8及9中,第二有機層中磷光性材料之濃 度較冋。裝置3之發射層不包括各自具有非發射性材料及 128110.doc • 56 - 200901530 磷光性材料,中間具有一介面的第一及第二有機層。裝置 10 二 性ί 料:表Ί 裝置 匕發射層亦不包括,因為在裝置10中化合物Β為非發射 治,且裝置10不包括各自具有非發射性材料及磷光性材 匕第一及第二有機層。 r 2 3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18 19 20 21 22 iTO [80nmJ ITO [80nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] ITO [120nm] iTO [120nm] ITO |120nm] ITO [120nm] ITO[120nm] ITO [120nm] iTO [120nm] iTO [120nm] ITO [120r»m] ITO[120nm] LG101 I10nmj LG101 [10nm] LG101 [10nm] LG101 |10nm] LO101 [10nm] LG101 I10nm| LG101 |1GnmJ LG101 [10nm] LG101 f10nm] LG101 [10nm] LG101 [10nm] LG101 [10nm] LG101 [10nm] LG101 I10nm] LG101 [10nmj LG101 [Iflnm] LG101 [10nm] LG101 [10nm] LG101 LG101 [10nm3 LG101 [10nm] LG101 [lOnm] D:P 30% [15nm] D:P 30% [15nm} CP 30% I30nmj B:P 30% [30nm] 8:P 30% [30nm] mCBP:N 9% i25nmj mCBP:N 9% i25nmj B:P:0 30%:1%I30nm] B:P:0 30%:1%[30nm] B:P;0 30% :0.5% IZQnm] B:P:0 30% :0.5% [30n:ml J:P:0 30%;0.5% [3GnmJ J:P:0 30%:0.5^ i30nm) M:P:0 30%:0.5% [30rim] M:P:0 30%:0.5% [30nm] M:P:0 30%:0.5% {30nmJ M:P;C 30%:0.5% [30nml M;P;0 30%:0.5% {30nm] M:P;0 30%:0.5% [30nm] M:PrO 3〇%:〇.5% [20nml M:P;0 30%:0,5% [20nm] D:N 12% [15nm] D:N12%i15nm] C:N 12% [30nm] C:N 12% [30nm] mCBP:N 9% [25nm] mCBP:N 9% [25nm] B:P 30% [30nm] B:P 30% [30nm] mCBP:N 12% [25nm] B[15nm] mCBP:N 12% [30nm] mCBP:N 12% [30nm] J:N 12% [25rtm] J:N m [25nm] M:N 18% [25nm] M:N 18% [25nm] M:N 24% [25nm] M:N 24% [25nm] U:H 18% [25nm] M:N 12% [25nmJ M:N 18% [25nm] M;N 18%[25nm] D |20nm] D (20nm] HPT [5nm] HPT I5nm] mC8P [5nm] B [5nm] mC8P:N 12% [25nm] ivl [5nm] M [5nm] M }5nm] M [5nm] M |5nmJ M f5mn] M I5nm] M [5nm] LG201 t20nm] LG201 [20nni) LG201 [40nm] LG2D1 [4Gnm] LG2G1 f45nm] LG2Q1 [45nm] LG201 [45nm] LG201 [45nmJ LG201 [45nm] LG2G1 [45nm] L02CM LG201 [30nm] LG201 [30nm] LG201 [30nm] LG201 [30nm] L6201 [30nm] LG201 [30nm] LG201 [30nm] U3201 [30嶋】 LG201 [30nm] LG2G1 [30nm] LG201 [30nm]= Incoming layer and - having an emissive layer having one of the first interfaces in the middle with an = organic layer. Some of the devices in the devices have a hole-carrying layer, and all of the devices have an electron transport layer of LG201 and a LiF/A1 cathode from the same source as LG1. Devices i, 2, and 4 include the same non-emissive material in the first and second organic layers, but different disc materials. Device 5·8 has first and second organic layers having different non-emissive materials and different phosphorescent materials. The devices 9, 11 and 12 have first and second organic layers having different non-emissive materials and different disc-light materials, wherein the first organic layer additionally comprises an emissive material. The device 13_22 has a first and a second organic layer having the same non-lx luminescent material and different phosphorescent materials, wherein the first organic layer additionally comprises a lower energy emissive material. All of the devices 1 ' 2, 4, 5-8, 9, 11, 12, and 13-22 include an emitter layer having a &quot;® and a second organic layer # in the middle. In most of these packages f, the concentration of the phosphorescent material in the first (near the anode) organic layer is better than that. However, in the cracks 8 and 9, the concentration of the phosphorescent material in the second organic layer is relatively low. The emissive layer of device 3 does not include first and second organic layers each having a non-emissive material and a phosphorescent material with an interface therebetween. Device 10: Material: The device 匕 emission layer is also not included, because the compound Β is non-emission treatment in the device 10, and the device 10 does not include the first and second non-emissive materials and phosphorescent materials, respectively. Organic layer. r 2 3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18 19 20 21 22 iTO [80 nmJ ITO [80 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] iTO [120 nm] ITO | 120 nm] ITO [120 nm] ITO [120 nm] ITO [120 nm] iTO [120 nm] iTO [120 nm] ] ITO [120r»m] ITO [120nm] LG101 I10nmj LG101 [10nm] LG101 [10nm] LG101 |10nm] LO101 [10nm] LG101 I10nm| LG101 |1GnmJ LG101 [10nm] LG101 f10nm] LG101 [10nm] LG101 [10nm] LG101 [10nm] LG101 [10nm] LG101 I10nm] LG101 [10nmj LG101 [Iflnm] LG101 [10nm] LG101 [10nm] LG101 LG101 [10nm3 LG101 [10nm] LG101 [lOnm] D:P 30% [15nm] D:P 30 % [15nm} CP 30% I30nmj B: P 30% [30nm] 8: P 30% [30nm] mCBP: N 9% i25nmj mCBP: N 9% i25nmj B: P: 0 30%: 1% I30nm] B: P: 0 30%: 1% [30 nm] B: P; 0 30%: 0.5% IZQnm] B: P: 0 30%: 0.5% [30n: ml J: P: 0 30%; 0.5% [3GnmJ J :P:0 30%:0.5^ i30nm) M:P:0 30%:0.5% [30rim] M:P:0 30%:0.5% [30nm] M:P:0 30%:0.5% {30nmJ M :P;C 30%:0.5% [30nml M;P;0 30%:0.5% {30nm] M:P;0 30%:0.5% [30nm] M:PrO 3〇%:〇.5% [20nml M: P; 0 30%: 0, 5% [20 nm] D: N 12% [15 nm] D: N12% i15 nm] C: N 12% [30 nm] C: N 12% [30 nm] mCBP: N 9% [25 nm] mCBP: N 9% [25 nm] B: P 30% [30 nm] B: P 30% [30 nm] mCBP: N 12% [25 nm] B [15 nm] mCBP: N 12% [30 nm] mCBP: N 12% [30 nm] J: N 12% [25rtm] J: N m [25nm] M: N 18% [25nm] M: N 18% [25nm] M: N 24% [25nm] M: N 24% [ 25 nm] U: H 18% [25 nm] M: N 12% [25 nm J M: N 18% [25 nm] M; N 18% [25 nm] D | 20 nm] D (20 nm) HPT [5 nm] HPT I5nm] mC8P [ 5nm] B [5nm] mC8P: N 12% [25nm] ivl [5nm] M [5nm] M }5nm] M [5nm] M |5nmJ M f5mn] M I5nm] M [5nm] LG201 t20nm] LG201 [20nni) LG201 [40nm] LG2D1 [4Gnm] LG2G1 f45nm] LG2Q1 [45nm] LG201 [45nm] LG201 [45nmJ LG201 [45nm] LG2G1 [45nm] L02CM LG201 [30nm] LG201 [30nm] LG201 [30nm] LG201 [30nm] L6201 [30nm ] LG201 [30nm] LG201 [30nm] U3201 [30嶋] LG201 [30nm] LG2G1 [30nm] LG201 [30nm]

LiF;Ai[100nm) LiF/Αί LiF/AE [100nmJ UF/ΑΪ [100nm] UF/Ai[100nm] LiF/Ai [100nm] LiF/Ai [tOOnm] LiF/Αί [100nm] LiF/At [10〇nm] LiF/AI [100nm] LiF/A! [100nm] LiF/Af [lOOnm] LiF/Αί [100nmj LiF/AI [100nm] LiF/Af [100nm] LiF/Αί [100nml LiF/Ai [100nmJ UF/AI [100nm] UF/AI [100nm] LiF/Αί [100nm] LiF/Αί [100nm) LiF/Al (1〇〇nmJ 置裝 123456789 在1,000尼特下之資料 在 10 mA/cm2 下 由1,000尼特 V cd/A EQE(%) PE (lm/W) CIEx CIEy LT70 LT50 7.5 17.1 5.1 7.2 0.439 0.545 6.0 15.4 4.6 8.0 0.439 0.545 6.2 6.4 2.1 3.3 0.258 0.569 6.7 28.4 9.1 13.4 0.464 0.521 10.0 30.2 9.8 9.5 0.444 0.517 9.0 32.9 10.4 11.4 0.442 0.523 9.8 7.6 2.3 2.4 0.401 0.552 9.2 7.1 2.2 2.4 0.361 0.560 7.7 23.6 13.2 9.6 0.516 0.424 1,000 5,000 128110.doc -57- 200901530 在1,〇 00尼特下^ 匕資料 在 10 mA/cm2 下 由].000^胜 V cd/A EQE(%) PE (ImAV) 8.3 CIE X 0.543 CIEy 0.413 —ίτ7° 1.500 LT50 5 000 8.3 21.9 12.8 8.9 24.6 13.5 8.7 0.533 0.424 1 0 ΛΛΛ 35.000 50.000 7.4 27.4 14.5 11.6 0.524 0.426 j 6.3 21.3 11.1 10.6 0.501 0.431 —^ υυυ 6.5 22.2 12.0 10.7 0.542 0.422 , _6.1 23.7 10.9 12.3 0.467 0.457 6,2 31.7 15.1 16.1 0.500 0.445 6.2 14.9 6.9 7.5 0.467 0.457 2,000,000 6.1 29.5 13.5 15.2 0.456 0.460 ------- _ ιοο,οοο 6.3 32.4 15.3 16.1 0.437 0.451 ~~ _7.0 33.2 16.3 15.0 0.505 0.439 —6,4 29.0 13.9 14.3 0.472 0.449 ^2 29.4 14.2 Γ 14.9 0.467 0.448 裝置 10 11 12 13 14 15 16 17 18 19LiF; Ai [100 nm) LiF/Αί LiF/AE [100nmJ UF/ΑΪ [100nm] UF/Ai[100nm] LiF/Ai [100nm] LiF/Ai [tOOnm] LiF/Αί [100nm] LiF/At [10〇 Nm] LiF/AI [100nm] LiF/A! [100nm] LiF/Af [lOOnm] LiF/Αί [100nmj LiF/AI [100nm] LiF/Af [100nm] LiF/Αί [100nml LiF/Ai [100nmJ UF/ AI [100nm] UF/AI [100nm] LiF/Αί [100nm] LiF/Αί [100nm] LiF/Al (1〇〇nmJ Mounted 123456789 Under 1,000 nits at 10 mA/cm2 by 1 , 000 nits V cd/A EQE (%) PE (lm/W) CIEx CIEy LT70 LT50 7.5 17.1 5.1 7.2 0.439 0.545 6.0 15.4 4.6 8.0 0.439 0.545 6.2 6.4 2.1 3.3 0.258 0.569 6.7 28.4 9.1 13.4 0.464 0.521 10.0 30.2 9.8 9.5 0.444 0.517 9.0 32.9 10.4 11.4 0.442 0.523 9.8 7.6 2.3 2.4 0.401 0.552 9.2 7.1 2.2 2.4 0.361 0.560 7.7 23.6 13.2 9.6 0.516 0.424 1,000 5,000 128110.doc -57- 200901530 At 1, 〇00 nits ^ 匕 information at 10 mA / Cm2 by].000^ wins V cd/A EQE(%) PE (ImAV) 8.3 CIE X 0.543 CIEy 0.413 — ίτ7° 1.500 LT50 5 000 8.3 21.9 12.8 8.9 24.6 13.5 8.7 0.533 0.424 1 0 ΛΛΛ 35.000 50.000 7.4 27.4 14.5 11.6 0.524 0.426 j 6.3 21.3 11.1 10.6 0.501 0.431 —^ υυυ 6.5 22.2 12.0 10.7 0.542 0.422 , _6.1 23.7 10.9 12.3 0.467 0.457 6,2 31.7 15.1 16.1 0.500 0.445 6.2 14.9 6.9 7.5 0.467 0.457 2,000,000 6.1 29.5 13.5 15.2 0.456 0.460 ------- _ ιοο,οοο 6.3 32.4 15.3 16.1 0.437 0.451 ~~ _7.0 33.2 16.3 15.0 0.505 0.439 —6,4 29.0 13.9 14.3 0.472 0.449 ^2 29.4 14.2 Γ 14.9 0.467 0.448 Device 10 11 12 13 14 15 16 17 18 19

V 20 21 22 表9展示一些具有一具有在一第一有機層與一第二有機 層之間之介面的發射層之襞置的裝置結構及所量測之實驗 結果,其中主體與摻雜劑(亦即非發射性材料)在兩 相同材料,且磷光性材料在兩層中為相同材料,但^度不 同。表9中之所有裝置具有一刚A化合物a之電洞=入 層、-⑽A視特定裝置而定之不同材料之電洞阻撐層 = ”)、—400A電子傳輸層及一以陰極。發 :一中間具有-介面之一第—有機層及一第二有機層,其中 之&quot;:體機二為:k濃度為7〇 Wt%之非發射性材料(表9中 _)農度為3〇 Wt%之磷光性材料(表9之”摻雜劑”), 且第二有機層為3 〇〇 A之濃声盔〇n ,0/ ^ , 料(表9中之”主體&quot;)及、;之相同非發射性材 農度為1〇 Wt%之相同磷光性材料(表9 二=)。在表9中鑑別各襄置之特定主體及 A(100 AV之裝置之通用裝置結構為:IT〇(1200 A)/化合物 )/主體(7G Wt%):摻雜劑(3〇 A)/主體(9〇 128110.doc -58- 200901530 wt%):摻雜劑(10 wt0/〇)(300 A)/BL(100 A)/Alq3(400 A)/LiF/ A卜 表9 實例 C :IE 在1,000尼特下 在40 mA/cm2 下 主體 摻雜劑 BL X Y 電壓 Μ L.E. [cd/A] e.q.e. [%] P.E. [lm/W] Lo f尼特1 LTs〇% [h] A T A T 0.36 0.61 6.4 57.5 15.9 28.2 17,225 1060 B T A HPT 0.36 0.61 5.8 60.4 16.6 32.7 16,732 1000 C T U T 0.34 0.62 8.4 46.4 12.5 17.3 15,184 2100 D T u HPT 0.35 0.62 7.8 54.7 14.8 22.0 15,904 1350 應瞭解本.文所述之各種實施例僅為舉例說明,且不意欲 限制本發明之範疇。舉例而言,在不偏離本發明之精神之 情況下,本文所述之材料及結構中之多數可由其他材料及 結構取代。因此,此熟習此項技術者將顯而易見,所主張 之本發明可包括來自本文所述之特定實例及較佳實施例之 變化。應瞭解不意欲限制關於本發明為何運作之各種理 論。 【圖式簡單說明】 圖1展示一有機發光裝置。 圖2展不一不具有一獨立電子傳輪層之倒置型有機發光 装置。 圖3展示一有機發光裝置 -- 其具有具備不同濃度之磷光 1·材料及非發射性材料之第—及第二有機層,&amp;第一有機 層與陽極之間的有機層具有特定電荷載流子遷移率特徵。 圖4展示一有機發光裝置,其具有具備不同濃度之磷光 性材料及非發射性材料之第_及第:有機層,且 128I10.doc -59· 200901530 機層與陽極之間無有機層。 圖展不一僅具有三種有機材料之有機發光裝置。 圖6展示一類似於圖3之有機發光裝置的有機發光裝置, 但其包括多種磷光性材料。 圖展不t機發光裝置,其具有具備不同濃度之磷光 性材料及非發射性材料之第一及第二有機層,且第一有機 層與陰極之間的有機層具有特定電荷載流子遷移率特徵。 圖8展示一通用磷光性OLED結構。 圖9展示一經製造且測試之特定有機發光裝置,其具有 具備不同濃度之鱗光性材料及非發射性材料之第一及第二 有機層。 圖10展示一經製造且測試之特定有機發光裝置。 圖11展示圖10之裝置之電流密度對電壓的曲線圖。 圖12展不圖10之裝置之外部量子效率對電流密度 的曲線圖。 圖13展示圖10之裝置之正規化強度(任意單位)對時間的 v 曲線圖。 圖14展示圖10之裝置之正規化電致發光強度對波長的曲 線圖。 圖15展示一經製造且測試之特定有機發光裝置。 圖16展示圖15之裝置之電流密度對電壓的曲線圖。 圖17展示圖15之裝置之外部量子效率(EqE)對電流密度 的曲線圖。 圖18展示圖15之裝置之正規化強度(任意單位)對時間的 128110.doc •60- 200901530 曲線圖。 =19展示圖15之裝置之正規化電致發光強度對波長的曲 綠圖。 。展不各種裝置結構之正規化發光對時間的曲線圖。 且圖21展示—使用表2中之參數製造之有機發光裝置,其 八〃備不同/辰度之墙光性材料及非發射性材料之第—芬 第二有機層。 及 置,其 第一及V 20 21 22 Table 9 shows the device structure of some devices having an emissive layer having an interface between a first organic layer and a second organic layer, and the experimental results measured, wherein the host and the dopant (ie, non-emissive material) is in the same material, and the phosphorescent material is the same material in the two layers, but the degree is different. All the devices in Table 9 have a hole of the A compound a = the in-layer, - (10) A hole blocking layer of different materials depending on the specific device = "), - 400 A electron transport layer and one cathode. An intermediate-intermediate-organic layer and a second organic layer, wherein the body machine is: a non-emissive material having a k concentration of 7〇Wt% (in Table 9), a farming degree of 3 〇Wt% phosphorescent material ("dopant" in Table 9), and the second organic layer is 3 〇〇A thick 〇n, 0/^, material ("body" in Table 9) And the same non-emissive material agronomy is 1 〇 Wt% of the same phosphorescent material (Table 9 II =). In Table 9, identify the specific body and A of each device (the general device structure of the 100 AV device is: IT〇 (1200 A) / compound) / body (7G Wt%): dopant (3〇A) / Body (9〇128110.doc -58- 200901530 wt%): dopant (10 wt0 / 〇) (300 A) / BL (100 A) / Alq3 (400 A) / LiF / A Table 9 Example C: IE at 1000 nits at 40 mA/cm2 host dopant BL XY voltage Μ LE [cd/A] eqe [%] PE [lm/W] Lo f nits 1 LTs〇% [h] ATAT 0.36 0.61 6.4 57.5 15.9 28.2 17,225 1060 BTA HPT 0.36 0.61 5.8 60.4 16.6 32.7 16,732 1000 CTUT 0.34 0.62 8.4 46.4 12.5 17.3 15,184 2100 DT u HPT 0.35 0.62 7.8 54.7 14.8 22.0 15,904 1350 It should be understood that the various embodiments described herein are examples only. It is intended that the scope of the invention not be limited. For example, many of the materials and structures described herein may be substituted by other materials and structures without departing from the spirit of the invention. Therefore, it will be apparent to those skilled in the art that the present invention may be construed to include variations of the specific examples and preferred embodiments described herein. It should be understood that it is not intended to limit the various aspects of the operation of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows an organic light-emitting device. Fig. 2 shows an inverted type organic light-emitting device which does not have an independent electron transfer layer. 3 shows an organic light-emitting device having a first and a second organic layer having different concentrations of phosphorescent material and non-emissive material, &amp; an organic layer between the first organic layer and the anode having a specific electric load Mob mobility characteristics. Fig. 4 shows an organic light-emitting device having a first and an organic layer having phosphorescent materials and non-emissive materials of different concentrations, and 128I10.doc -59·200901530 having no organic layer between the carrier layer and the anode. The display shows an organic light-emitting device with only three organic materials. Figure 6 shows an organic light-emitting device similar to the organic light-emitting device of Figure 3, but which includes a plurality of phosphorescent materials. The present invention has a first and second organic layer having phosphorescent materials and non-emissive materials of different concentrations, and the organic layer between the first organic layer and the cathode has specific charge carrier migration. Rate characteristics. Figure 8 shows a general phosphorescent OLED structure. Figure 9 shows a specific organic light-emitting device that has been fabricated and tested having first and second organic layers having different concentrations of scalar and non-emissive materials. Figure 10 shows a specific organic light-emitting device that has been fabricated and tested. Figure 11 shows a plot of current density versus voltage for the device of Figure 10. Figure 12 is a graph showing the external quantum efficiency vs. current density for the device of Figure 10. Figure 13 is a graph showing the normalized intensity (arbitrary unit) versus time v of the apparatus of Figure 10. Figure 14 is a graph showing the normalized electroluminescence intensity versus wavelength for the device of Figure 10. Figure 15 shows a specific organic light-emitting device that has been fabricated and tested. Figure 16 is a graph showing current density vs. voltage for the device of Figure 15. Figure 17 is a graph showing the external quantum efficiency (EqE) versus current density of the apparatus of Figure 15. Figure 18 is a graph showing the normalized intensity (arbitrary unit) versus time of the apparatus of Figure 15 versus 128110.doc • 60-200901530. =19 shows the morphogram of the normalized electroluminescence intensity versus wavelength for the device of Figure 15. . A graph of normalized illumination versus time for various device configurations. And Figure 21 shows an organic light-emitting device fabricated using the parameters in Table 2, which is provided with a wall material of different/lengths and a second organic layer of a non-emissive material. And its first and

圖22展示—使用表4中之參數製造之有機發光裝 '、'、備不同/農度之磷光性材料及非發射性材料之 第二有機層。 圖23展示使用來自表4之參數根據圖22製造之裝置之正 規化電致發光強度對波長的曲線圖。 圖24展示使用來自表4之參數根據圖22製造之裝置之 光效率對照度的曲線圖。 圖25展示使用來自表4之參數根據圖。製造之裝置之外 部量子效率對照度的曲線圖。 圖26展示使用來自表4之參數根據圖22製造之裝置之電 流雄·度對電壓的曲線圖。 圖27展示使用來自表4之參數根據圖22製造之裝置之照 度對電壓的曲線圖。 圖28展示使用來自表4之參數根據圖22製造之裝置之正 規化照度對時間的曲線圖。 圖29展示一使用表6中之參數製造之有機發光裝置,其 具有具備不同濃度之磷光性材料及非發射性材料之第一及 128110.doc • 61 - 200901530 第二有機層,一些裝置具有一npd層且一些裝置不具有 NPD 層。 圖30展示一不具有NPD層之有機發光裝置。 圖31展示一具有一npd層之有機發光裝置。 圖32展示圖30及圖3 1之裝置之外部量子效率對照度的曲 線圖。 圖33展示圖30及圖3 1之裝置之功率效能對照度的曲線 圖。 圖34展示圖30及圖31之裝置之照度對電壓的曲線圖。 圖35展示圖30及圖31之裝置之電致發光強度對波長的曲 線圖。 圖36展示在各種初始照度下圖3〇之裝置之正規化照度對 時間的曲線圖。 圖3&lt;7展示在各種初始照度下圖3丨之裝置之正規化照度對 時間的曲線圖。 圖38展示一具有來自nPd與BAlq之發射之有機發光裝 置。 圖39展示圖38之裝置之外部量子效率對照度的曲線圖。 圖4〇展示圖38之裝置之功率效能對照度的曲線圖。 圖41展示圖38之裝置之照度對電壓的曲線圖。 圖42展示圖38之裝置之電致發光強度(任意單位)對波長 的曲線圖。 圖43展示圖38之裝置之正規化照度對時間的曲線圖。 圖44展示一僅具有來自Aiq之發射之有機發光裝置。 128110.doc -62- 200901530 圖45展示圖44之裝置之外部量子效率對照度的曲線圖。 圖46展示圖44之裝置之功率效能對照度的曲線圖。 圖47展示圖44之裝置之照度對電壓的曲線圖。 圖48展示圖44之裝置之電致發光強度(任意單位)對波長 的曲線圖。 圖49展示圖44之裝置之正規化照度對時間的曲線圖。 圖5〇展示一有機發光裝置,其僅具有一在一發射層與陽 p 極之間具有高電洞傳導率之層及一在該發射層中用作非發 i 射性主體之相同材料的電洞阻播層。 圖51展示圖50之裝置之正規化發光對時間的曲線圖。 圖52展不圖50之裝置之外部量子效率對照度的曲線圖。 圖53展示圖50之裝置之功率效能對照度的曲線圖。 圖54展示圖50之裝置之照度對電壓的曲線圖。 圖55展示圖50之裝置之ELa度對波長的曲線圖。 圖56展示一有機發光裝置,其僅具有一在一發射層與陽 , 極之間具有高電洞傳導率之層、一在該發射層中用作非發 射性主體之相同材料的電洞阻擋層及一具有具備不同濃度 之碟光性材料及非發射性材料之第一及第二有機層的發射 層’其中在第二有機層中磷光性材料之濃度可變化。 圖57展示圖56之裝置之正規化發光對時間的曲線圖。 圖58展示圖56之裝置之外部量子效率對照度的曲線圖。 圖59展示圖56之裝置之功率效能對照度的曲線圖。 圖60展示圖56之裝置之照度對電壓的曲線圖。 圖61展示圖56之裝置之EL強度對波長的曲線圖。 128110.doc -63 - 200901530 圖62展示-有機發光裝置’其僅具有一在一發射層與陽 極之間具有高電洞傳導率之層、一在該發射層中用作非發 射性主體之相同材料的電洞阻擋層及一具有在第一及第二 有機發射層中具有不㈣光性材料之第—及第:有機層的 發射層’其中在遺第二有機發射層中磷光性材料之濃度可 變化。 圖63展tf圖62之t置之外部量子效率對照度的曲線圖。Figure 22 shows an organic light-emitting device ',' manufactured using the parameters in Table 4, a phosphorescent material of different/agronomic degree, and a second organic layer of a non-emissive material. Figure 23 shows a graph of normalized electroluminescence intensity versus wavelength for a device fabricated according to Figure 22 using parameters from Table 4. Figure 24 is a graph showing the light efficiency contrast of the device manufactured according to Figure 22 using the parameters from Table 4. Figure 25 shows the use of parameters from Table 4 according to the figure. A plot of the quantum efficiency contrast outside the fabricated device. Figure 26 is a graph showing current vs. voltage versus voltage for the device fabricated according to Figure 22 using parameters from Table 4. Figure 27 shows a plot of illuminance vs. voltage for a device fabricated according to Figure 22 using parameters from Table 4. Figure 28 shows a graph of normalized illuminance versus time for a device manufactured according to Figure 22 using parameters from Table 4. Figure 29 shows an organic light-emitting device fabricated using the parameters in Table 6, having a first organic layer having different concentrations of phosphorescent material and non-emissive material, and a second organic layer of 128110.doc • 61 - 200901530, some devices having one Npd layer and some devices do not have an NPD layer. Figure 30 shows an organic light-emitting device without an NPD layer. Figure 31 shows an organic light-emitting device having an npd layer. Figure 32 is a graph showing the external quantum efficiency contrast of the devices of Figures 30 and 31. Figure 33 is a graph showing the power efficiency contrast of the devices of Figures 30 and 31. Figure 34 is a graph showing the illuminance versus voltage for the devices of Figures 30 and 31. Figure 35 is a graph showing the electroluminescence intensity versus wavelength for the devices of Figures 30 and 31. Figure 36 shows a graph of normalized illuminance vs. time for the device of Figure 3 under various initial illuminations. Figure 3 &lt;7 shows a graph of normalized illuminance vs. time for the device of Figure 3 under various initial illuminations. Figure 38 shows an organic light emitting device having emission from nPd and BAlq. Figure 39 is a graph showing the external quantum efficiency contrast of the device of Figure 38. Figure 4 is a graph showing the power performance contrast of the device of Figure 38. Figure 41 shows a graph of illumination versus voltage for the device of Figure 38. Figure 42 is a graph showing the electroluminescence intensity (arbitrary unit) versus wavelength for the device of Figure 38. Figure 43 shows a graph of normalized illumination versus time for the device of Figure 38. Figure 44 shows an organic light-emitting device having only emission from Aiq. 128110.doc -62- 200901530 Figure 45 shows a graph of the external quantum efficiency contrast of the device of Figure 44. Figure 46 is a graph showing the power performance contrast of the device of Figure 44. Figure 47 is a graph showing the illuminance versus voltage for the device of Figure 44. Figure 48 is a graph showing the electroluminescence intensity (arbitrary unit) versus wavelength for the device of Figure 44. Figure 49 shows a graph of normalized illumination versus time for the device of Figure 44. Figure 5A shows an organic light-emitting device having only a layer having a high hole conductivity between an emissive layer and a positive p-electrode and a same material used as a non-imposing host in the emissive layer. Hole blocking layer. Figure 51 shows a graph of normalized illumination versus time for the device of Figure 50. Figure 52 is a graph showing the external quantum efficiency contrast of the device of Figure 50. Figure 53 is a graph showing the power performance contrast of the device of Figure 50. Figure 54 shows a plot of illumination versus voltage for the device of Figure 50. Figure 55 shows a plot of ELa versus wavelength for the device of Figure 50. Figure 56 shows an organic light-emitting device having only a layer having a high hole conductivity between an emissive layer and a positive electrode, and a hole blocking of the same material used as a non-emissive body in the emissive layer. And an emissive layer having a first and a second organic layer having different concentrations of the disc-like material and the non-emissive material, wherein the concentration of the phosphorescent material in the second organic layer may vary. Figure 57 shows a graph of normalized illumination versus time for the device of Figure 56. Figure 58 is a graph showing the external quantum efficiency contrast of the device of Figure 56. Figure 59 is a graph showing the power performance contrast of the device of Figure 56. Figure 60 shows a graph of illumination versus voltage for the device of Figure 56. Figure 61 shows a plot of EL intensity versus wavelength for the device of Figure 56. 128110.doc -63 - 200901530 Figure 62 shows an organic light-emitting device which has only one layer having a high hole conductivity between an emissive layer and an anode, and the same as a non-emissive body in the emissive layer a hole blocking layer of the material and an emissive layer having a first and an organic layer of the (four) photoactive material in the first and second organic emissive layers, wherein the phosphorescent material is in the second organic emissive layer The concentration can vary. Fig. 63 is a graph showing the external quantum efficiency of t in Fig. 62.

圖64展示圖62之裝置之功率效能對照度的曲線圖。 圖65展示圖62之裝置之照度對電壓的曲線圖。 圖66展示圖62之裝置之EL強度對波長的曲線圖。 【主要元件符號說明】 100 有機發光裝置 110 基板 115 陽極 120 電洞注入層 125 電洞傳輸層 130 電子阻擔層 135 發射層 140 電洞阻擋層 145 電子傳輸層 150 電子注入層 155 保護層 160 陰極 162 第一導電層 128110.doc -64 - 200901530 164 第二導電層 200 倒置型OLED 210 基板 215 陰極 220 發射層 225 電洞傳輸層 230 陽極 310 基板 315 陽極 320 第三有機層 330 第一有機層 340 第二有機層 350 電洞阻擋層 360 電子傳輸層 370 陰極 410 基板 415 陽極 430 第一有機層 440 第二有機層 450 電洞阻擋層 460 電子傳輸層 470 陰極 5 10 基板 515 陽極 128110.doc -65- 200901530 520 第三有機層 530 第一有機層 540 第二有機層 550 電洞阻擋層 560 電子傳輸層 570 陰極 610 基板 616 陽極 620 第三有機層 630 第一有機層 640 第二有機層 650 電洞阻擋層 660 電子傳輸層 670 陰極 710 基板 715 陽極 720 第三有機層 730 第一有機層 740 第二有機層 750 電洞阻擋層 760 電子傳輸層 770 陰極 128110.doc -66-Figure 64 is a graph showing the power performance contrast of the device of Figure 62. Figure 65 shows a plot of illumination versus voltage for the device of Figure 62. Figure 66 shows a plot of EL intensity versus wavelength for the device of Figure 62. [Main component symbol description] 100 organic light-emitting device 110 substrate 115 anode 120 hole injection layer 125 hole transmission layer 130 electron resistance layer 135 emission layer 140 hole barrier layer 145 electron transport layer 150 electron injection layer 155 protective layer 160 cathode 162 first conductive layer 128110.doc -64 - 200901530 164 second conductive layer 200 inverted OLED 210 substrate 215 cathode 220 emission layer 225 hole transport layer 230 anode 310 substrate 315 anode 320 third organic layer 330 first organic layer 340 Second organic layer 350 hole blocking layer 360 electron transport layer 370 cathode 410 substrate 415 anode 430 first organic layer 440 second organic layer 450 hole blocking layer 460 electron transport layer 470 cathode 5 10 substrate 515 anode 128110.doc -65 - 200901530 520 third organic layer 530 first organic layer 540 second organic layer 550 hole blocking layer 560 electron transport layer 570 cathode 610 substrate 616 anode 620 third organic layer 630 first organic layer 640 second organic layer 650 hole Barrier layer 660 electron transport layer 670 cathode 710 substrate 715 anode 7 20 Third organic layer 730 First organic layer 740 Second organic layer 750 Hole barrier 760 Electron transport layer 770 Cathode 128110.doc -66-

Claims (1)

200901530 十、申請專利範圍: l 一種有機發光裝置,其包含: 一陽極; 一陰極; 該發射層進 文置於該陽極與該陰極之間的發射層 一步包含: +包含-第-碟光性材料及一第—非發射性材料之 第—有機層,其中200901530 X. Patent application scope: l An organic light-emitting device comprising: an anode; a cathode; the emission layer of the emission layer disposed between the anode and the cathode comprises: + inclusive-disc a material and a first organic layer of a non-emissive material, wherein 該第-有機層中之該第一磷光性材料之濃度為 10-90 wt% ;且 第有機層中之該第一非發射性材料之濃度為 10-90 wt°/〇 ; ’ L 3第一璘光性材料及一第二非發射性材料之 第一有機層,其中 I第一層中之該第二磷光性材料之濃度為Η; wt0/0 ;且 75-97 wt% ; 其中該第二有機層中之該第二碌光性材料之濃度低 於該第一有機層中之該第一璘光性材料之濃度;且 其中該第-非發射性材料與該第二非發射性材料可 為相同材料或不同材料,且該第,性材料與該第 —磷光性材料可為相同材料或不同材料;且 其中該第-有機層與該陽極之間的所有有機層均具 128110.doc 200901530 電洞遷移率及一電子遷移 為遠電子遷移率的至少兩倍。 彡該電物率 2_如%求項1之裝置,其中·· 光,-_’且 料。 射性材抖與該第二非發射性材料為相同材 3·如請求項I之裝置,其令·· r 光性材料與該第二料性材料為不同 料非發射性材料與該第二非發射性材料為相同材 4·如請求項1之裝置,其t : =1光性材料與該第二料性材料為不同材料,且 料。/ 1發射性材料與該第二非發射性材料為不同材 5. 如請求項〗之裝置,其中: 光性材料與該第二麟光性材料為相同材料,且 料y 一非發射性材料與該第二非發射性材料為不同材 6. 如請求項1之裝置,其中: 二,彳機層、該第二有機層或兩者進一步包含一較 -此夏發射性材料,其中該較低能量發 為0.1-12 wt%。 W之/辰度 7·如明求項1之裝置’其中在該第-有機層與該陽極之門 不存在有機層。 間 128110.doc 200901530 8. 9. η 10. 、、項1之裝置,其中在該第一有機層與該陽極之間 存在至夕一第二有機層,且該第一有機層與該陽極之間 的所有有機層均具有—電洞遷移率及—電子遷移率,以 致該電洞遷移率比該電子遷移率大至少十倍。 如請求们之裝置’其中在該第一有機層與該陽極之間 &gt;第一有機層,且該第一有機層與該陽極之間 的所有有機層均具有-電洞遷移率及—電子遷移率,以 致該電洞遷移率比該電子遷移率大至少1〇〇倍。 如請求項1之裝置,其中該第二有機層中之該第二磷光 陡材料之濃度比該第一有機層中之該第一磷光性材料之 浪度低至少5 wt%。 11_如請求们之裝置,其中該第二有機層巾之該第二鱗光 陡材料之濃度比該第一有機層中之該第一磷光性材料之 濃度低至少1 〇 wt0/〇。 :求項1之裝置,其中該第一有機層大體上由該第— 磷光性材料及該第一非發射性材料組成,且該第二有機 層大體上由該第一有機層之該第二磷光性材料及該第二 非發射性材料組成。 13. 如請求項丨之裝置,其中該第一有機層及該第二有機層 之總厚度U少400 A,且其中該帛_有機層之厚度為 至少50 A,且該第二有機層之厚度為至少5〇 A。 14. 2請求項丨之裝置,其中該第一磷光性材料具有一比該 弟非發射性材料之最高佔據分子轨域高至少〇 3 eV&lt; 最高佔據分子軌域,且該第二磷光性材料具有一比該第 128110.doc 200901530 ::::射性材料之第二佔據分子軌域高至少03 V吾 尚佔據分子軌域。 〇.3 eV之最 15·如請求項〗之裴置,1進一牛 層與該陽極之間 广3 一安置於該第-有機 间的弟二有機層,苴中 上由該第-磷光性材料組成,且;::有機層基本 觸於該第-有機層及㈣極。“—有機層係直接接 %如請求項丨之裝置,发 層與該陰極之間的第:有機層二;=於:第二有機 上由該第二非發射性材料組有:層基本 直接接觸於該第二有機層。 ”中該第四有機層係 17.如請求項1之裝置,其進 勺人一 &amp; 層盥匕3 一安置於該第二有機 上由具有_ + _^ β 叾Μ帛四有機層基本 第二磷光性材料之三重態能量大至少 接接觸於該第二有機層。 ”中&quot;第四有機層係直 18.如請求項丨之裝置,其中該 有選自由聯伸三苯〇 發射性材料係選自含 二苯 咔^ 、一苯并噻吩及與咔唑偶合之 ,开塞吩組成之群的基團之材料。 如靖求項1之裝置’其中該裝 材料。 夏匕括不超過3種不同有機 20.如凊求項1之裝置, 材料, 、μ裝置匕括不超過4種不同有機 鮮射展料㈣㈣巾之―者為―僅存在於該裝置之 4射層與該陰極之間的電子傳輸材料。 .如喷求項1之裝置’其中該第—有機層係直接接觸於該 I28110.doc 200901530 第二有機層。 22· —種有機發光裝置,其包含: 一陽極; 一陰極; -安置於該陽極與該陰極之間的發射該發射層進 一步包含: 一包含一第一磷光性材料及一第一非發射性材料之 第一有機層,其中 該第一有機層中之該第一磷光性材料之濃度為 10-90 wt% ;且 該第—有機層_之該第一非發射性材料之濃度為 10-90 wt% ; :包含一第二磷光性材料及-第二非發射性材料之 第二有機層,其中 X第—層中之該第二磷光性材料之濃度 wt0/0 ;且 厶。 ==層中之該第二非發射性材料之濃度為 其中該第-古秘 有機層令之該第二磷光性材料之请_你 於該第~有機禺何卄之艰度低 其中該 曰中之該第一璘光性材料之濃度;且 ° 非發射性材料與該第二非發β 41 為相同材料或不同材料,且,材料可 第二磷光性材料Μ第一碟光性材料與該 直中^ #可為相同材料或不同材料,•且 、第—有機層盥哕嗒 、該除極之間的所有有機層均不 128110.doc 200901530 包括任:含有選自由三芳基胺、萘基、三(Ν·肼甲 ^基)—本、四芳基胺及味始成之群的基團之材 23. 如請求項22之裝置,其中: 該第-麟光性材料與該第:嶙光性材料為相同材料且 料該第-非發射性材料與該第二非發射性材料為相同材 24. 如請求項22之裝置,其令: 該第一戟性㈣與㈣:磷光性材料為Μ材料且 該第-非發射性材料與該第二非發射性材料為相 料0 25·如請求項22之裝置,其中: 該第,光性材料與該第三磷紐材料為不同材料,且 该第一非發射性材料與該第二非發射性材料為不同材 料。 26. 如請求項22之裝置,其中: 該第-填光性材料與該第二嶙光性材料為相同材料,且 該第一非發射性材料與該第二非發射性材料為不 料。 27. 如請求項22之裝置,其中: 該第一有機層、該第二有機層或兩者進-步包含一較 低能量發射性材料’其令該較低能量發射性材料之濃度 為 〇· 1 -12 wt% 〇 28. 如請求項22之裝置,其中在該第一有機層與該陽極之間 128110.doc 200901530 不存在有機層。 29.如請求項22之裝置,其中該第一有機層基本上由該第一 磷光性材料及該第一非發射性材料組成,且該第二有機 層基本上由該第一有機層之該第二磷光性材料及該第二 非發射性材料組成。 3 0. 一種有機發光裝置,其包含: —陽極; —陰極;The concentration of the first phosphorescent material in the first organic layer is 10-90 wt%; and the concentration of the first non-emissive material in the first organic layer is 10-90 wt ° /〇; 'L 3 a first organic layer of a light-emitting material and a second non-emissive material, wherein the concentration of the second phosphorescent material in the first layer of I is Η; wt0/0; and 75-97 wt%; a concentration of the second luminescent material in the second organic layer is lower than a concentration of the first luminescent material in the first organic layer; and wherein the first non-emissive material and the second non-emissive material The material may be the same material or different materials, and the first material and the first phosphorescent material may be the same material or different materials; and wherein all organic layers between the first organic layer and the anode have 128110. Doc 200901530 Hole mobility and one electron migration are at least twice the far electron mobility.彡 The rate of the material 2_, such as % of the device of item 1, wherein ···, -_’ is the material. The irradiance material is the same material as the second non-emissive material. 3. The device of claim 1, wherein the radiant material and the second material are different materials, non-emissive materials and the second material. The non-emissive material is the same material. 4. The device of claim 1, wherein t: =1 the light material and the second material are different materials and materials. / 1 The emissive material and the second non-emissive material are different materials. 5. The device of claim 1, wherein: the photonic material is the same material as the second optic material, and the material y is a non-emissive material And the second non-emissive material is a different material. 6. The device of claim 1, wherein: the second layer, the second organic layer or both further comprise a relatively summer-emitting material, wherein the comparison The low energy is 0.1-12 wt%. W / Chen degree 7. The device of claim 1 wherein there is no organic layer in the first organic layer and the gate of the anode. The apparatus of item 1, wherein the second organic layer exists between the first organic layer and the anode, and the first organic layer and the anode are All of the organic layers have a hole mobility and an electron mobility such that the hole mobility is at least ten times greater than the electron mobility. As claimed in the apparatus 'where the first organic layer and the anode> a first organic layer, and all of the organic layers between the first organic layer and the anode have a hole mobility and an electron The mobility is such that the hole mobility is at least 1 times greater than the electron mobility. The apparatus of claim 1, wherein the concentration of the second phosphorescent material in the second organic layer is at least 5 wt% lower than the wavelength of the first phosphorescent material in the first organic layer. 11. The apparatus of claim 1, wherein the concentration of the second scaled material of the second organic layer towel is at least 1 〇 wt0/〇 lower than the concentration of the first phosphorescent material in the first organic layer. The device of claim 1, wherein the first organic layer consists essentially of the first phosphorescent material and the first non-emissive material, and the second organic layer is substantially the second of the first organic layer The phosphorescent material and the second non-emissive material are composed. 13. The device of claim 1, wherein the total thickness U of the first organic layer and the second organic layer is less than 400 A, and wherein the thickness of the organic layer is at least 50 A, and the second organic layer The thickness is at least 5 〇A. 14. The apparatus of claim 2, wherein the first phosphorescent material has a higher than the highest occupied molecular orbital domain of the non-emissive material of at least e3 eV&lt; the highest occupied molecular orbital region, and the second phosphorescent material Having a higher than the second occupied molecular orbital of the 128118.doc 200901530::::immobilistic material at least 03 V I still occupy the molecular orbital domain. 〇.3 eV of the most 15 · If the request item is set, 1 into a layer of cattle and the anode is widely distributed in the first organic layer of the first organic layer, the first - phosphorescent Material composition, and::: The organic layer substantially touches the first organic layer and the (four) electrode. "-the organic layer is directly connected to the device of the request item, the first layer between the layer and the cathode: the organic layer 2; = on the second organic layer from the second non-emissive material group: the layer is substantially direct Contacting the second organic layer. The fourth organic layer is in the apparatus of claim 1, wherein the device is placed on the second organic layer and has _ + _^ The β-tetra-organic layer has a triplet energy of substantially the second phosphorescent material at least in contact with the second organic layer. "中中"4 The fourth organic layer is a device as claimed in claim 18, wherein the device selected from the group consisting of a triphenylsulfonium-emitting material is selected from the group consisting of dibenzoquinone-containing, monobenzothiophene, and coupled with carbazole. a material of a group consisting of a group of phenotypes. A device such as a device of the present invention, wherein the device contains the material. The summer material includes no more than three different organic materials. 20. The device, material, and device of the item 1匕 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子- the organic layer is in direct contact with the second organic layer of the I28110.doc 200901530. An organic light-emitting device comprising: an anode; a cathode; - an emission layer disposed between the anode and the cathode The method includes: a first organic layer comprising a first phosphorescent material and a first non-emissive material, wherein the concentration of the first phosphorescent material in the first organic layer is 10-90 wt%; and the - the organic layer - the first non-emissive material The concentration is 10-90 wt%; a second organic layer comprising a second phosphorescent material and a second non-emissive material, wherein the concentration of the second phosphorescent material in the X first layer is wt0/0; And 厶. == The concentration of the second non-emissive material in the layer is the second phosphorescent material of the first-historic organic layer, and the difficulty of the second organic material is low. Wherein the concentration of the first luminescent material in the crucible; and the non-emissive material is the same material or different material as the second non-emission β 41, and the material is a second phosphorescent material Μ first disc light The material and the straight material may be the same material or different materials, and the organic layer of the first layer and the organic layer between the electrodes are not 128110.doc 200901530 includes: containing a selected from triaryl An amine, a naphthyl group, a tris- aryl group, a tetraarylamine, and a group of a group of the genus of the genus. 23. The device of claim 22, wherein: the temperament material And the first: non-emissive material and the second non-emissive material 24. The device of claim 22, wherein: the first (4) and (4): the phosphorescent material is a germanium material and the first non-emissive material and the second non-emissive material are phase materials. The device of claim 22, wherein: the first, optical material and the third phosphor material are different materials, and the first non-emissive material and the second non-emissive material are different materials. The device of claim 22, wherein: the first light-filling material and the second light-emitting material are the same material, and the first non-emissive material and the second non-emissive material are unexpected. 27. The device of claim 22, wherein: the first organic layer, the second organic layer, or both further comprise a lower energy emissive material that causes the concentration of the lower energy emissive material to be 〇 1 -12 wt% 〇 28. The device of claim 22, wherein there is no organic layer between the first organic layer and the anode 128110.doc 200901530. 29. The device of claim 22, wherein the first organic layer consists essentially of the first phosphorescent material and the first non-emissive material, and the second organic layer consists essentially of the first organic layer The second phosphorescent material and the second non-emissive material are composed. An organic light-emitting device comprising: an anode; a cathode; 步包含: 第-::居弟—磷光性材料及一第—非發射性材料之 ^ 有機層,其令 一有機層中之該第-磷光性材料之濃度為 10-90 wt〇/〇 ;且 =;有機層中之該第一非發射性材料之濃度為 I U-90 wt% ; ^ 3 第一嶙光性材料及一第_ 第二有機層,其中 帛-非發射性材料之 該第二層中之該 wt% ;且 _ Μ _之漠度為3_25 該第二有機層中之該第 75_97 wt% ;及 F謂性材枓之濃度為 戈·置於5亥第—有機芦虚兮胳姑^ 層, 機層與極之間的第三有機 128I10.doc 200901530 2中該第三有機層基本上由該第一磷光性材料組 5亥第三有機層係直接接觸於該第一有機層及該 極; =第中之該第二磷光性材料之濃度低 呈第#機層中之該第一磷光性材料之濃度;且 ^中該第-非發射性材料與該第二非發射性材料可 第-目问材料或不同材料,且該第一磷光性材料與該 —磷光性材料可為相同材料或不同材料。、’ h·如請求項30之裳置,其中: 柯科 磷光性材料與該第二料性材料為相同材料 料4發射性材料為相同材 32·如請求項3〇之裝置,其中: 性村料與該第二蹲光性材料為 料非發射性材料與該第二非發射性材料為相同村 33_如請求項3〇之裝置,其中: β第材料與該第: 料—二 34.如請求項3〇之裝置,其中: 與該第二鱗光性材料為相_,且 射性材料與該第二非發射性材料為不同材 128110.doc 200901530 料。 35·如請求項3〇之裳置,其中: 低二:欢有機層、该第二有機層或兩者進-步包含-較 低月b里發射性好 Λ〇 ! ^ 材枓,其中該較低能量發射性材料之濃度 砀 u.i-12 wt〇/〇。 ::::3。之裝置,其中該第&quot;'有機層基本上由該第- 層基本上2該第—非發射性材料組成,且該第二有機 非發射^有機層之該第一碌光性材料及該第一 非發射性材料組成。 η:::項Μ之裳置’其中該裝置包括不超過3種不同有 38::Ϊ項Μ之裝置,其中該裝置包括不超過4種不同有 機材枓’且該等有機材料中之一者為 之該發射層與該降梅夕… C㈣在於該装置 ,Q “ ㈤4極之間的電子傳輸材料。 39· 一種有機發光裝置,其包含: 一陽極; —陰極; —安置於該陽極盥兮昤 一步包含: /、該陰極之間的發射層,該發射層進 之 二含機::::性材料及-第,射性材料 該第一有機層中$ 10-90 wt% ;且 該第一有機層中之 凌第一磷光性材料之濃度為 第一非發射性材料之濃度為 128110.doc 200901530 f.....\ V 10-90 wt〇/〇 .;::c材料及―料之 w二且層中之該第二磷光性材料之濃度為3-25 =7 二::層中之該第二非發射性材料之濃度為 之該第二•光性材料之濃度低 其中該第該第一碟光性材料之濃度;且 為相同材料或二:材料與該第二非發射性材料可 第二碟光性材料可為相门:二第一碟光性材料與該 其中該第-有機層材料;且 上由有機金屬材料組成極之間的所有有機層基本 40.如請求項39之裝置,其中: 該第科與該第二鱗光性材料為相同材料,且 料。#發射性材料與該第二非發射性材料為相同材4】.如請求項39之裝置,其中: ^第碟光^生材料與該第二碟光性材科為不同材料 …非發射性材料與該第二非發射性材料I:同:42.如請求項%之裝置,其令: 該第1光性材料與該第二嶙光性材料為不同材料, 料 128110.doc 且 -10· 200901530 該第—非發射性材料與該第二非發射性材料為不同材 料0 43·如請求項39之裝置,其中: 該第—碟光性材料與該第二碟光性材料為相同材料,且 料°亥第-非發射性材料與該第二非發射性材料為不同材 44·如請求項39之裝置,其中: =第—有機層、該第二有機層或兩者進—步包含—較 低此*發射性材料,其中該較低能量發射性材料之濃产 為 0.1-12 wt0/〇。 &amp; 45· 一種有機發光裝置,其包含: —陽極; 一陰極; 女置於該陽極與該陰極之間的發射層,該發射層進 一步包含: 一包含一第—磷光性材料及一第一非發射性材料之 第一有機層,其中 該第一有機層中之該第一磷光性材料之濃度為 10-90 wt% ;且 該第一有機層中之該第一非發射性材料之濃度為 10-90 wt% ; ^ δ 第一璘光性材料及一第二非發射性材料之 第二有機層,其中 該第二層中之該第二磷光性材料之濃度為3-25 128110.doc 200901530 wt% ;且 該第二有機層中之該第二非發射性材料之濃度為 75-97 wt% ; 其:該第二有機層中之該第二磷光性材料之濃度低 於〆第有機層中之該第—碟光性材料之濃度;且 八中該第一非發射性村料與該第二非發射性材料可 為相同材料或不同材料,且該第一碌光性材料與該 第二磷光性材料可為相同材料或不同材料·且 八中該第-有機層與該陽極之間的所有有機層均具 有充分大之電洞傳導率,以致在1〇_2之電流 下該層之厚度增加10 nm導致電壓上升0.1 V或以 下。 46. 如請求項45之裝置,其中: Si?材料與該第二磷光性材料為相同材料,且 料,射性材料與該第二非發射性材料為相同材 47. 如請求項45之裝置,其中: 該第一磷光性材料與該第二磷光性 該第一非發射性 材枓為不同材料,且 料〇 材㈣該第二非發射性材料為相同材 48·如請求項45之裝置,其中·· 且 料 該:一性材料與該第二磷光性材料為不同材料 ^ 射性材料與該第二非發射性村料為不同材 128110.doc •12- 200901530 49.如請求項45之裝置,其中: 該第-碟光性材料與該第二碟光性材料為相同材料,且 該第一非發射性材料與㈣二非發射性材料為不同材 50.如請求項45之褒置 該第一有機層、 低能量發射性材料 為 0.1-12 wt%。 ,其中: 該第二有機層或兩者進一步包含—較 ,其中該較低能量發射性材料之濃声The step comprises: a -:: a phosphorescent material and a first layer of a non-emissive material, wherein the concentration of the first phosphorescent material in an organic layer is 10-90 wt〇/〇; And =; the concentration of the first non-emissive material in the organic layer is I U-90 wt%; ^ 3 the first phosphorescent material and a second organic layer, wherein the germanium-non-emissive material The wt% in the second layer; and the indifference of _ Μ _ is 3_25 of the 75th to 97th% in the second organic layer; and the concentration of the F-positive material is set to 5th The third organic layer between the layer and the third organic layer 128I10.doc 200901530 2 is substantially directly contacted by the third organic layer of the first phosphorescent material group An organic layer and the pole; = a concentration of the second phosphorescent material in the middle is a concentration of the first phosphorescent material in the first layer; and the first non-emissive material and the second The non-emissive material may be a first-visible material or a different material, and the first phosphorescent material and the phosphorescent material may be the same material or different Material. , h) as claimed in claim 30, wherein: the Koko phosphorescent material and the second material are the same material material 4 the emissive material is the same material 32. The device of claim 3, wherein: The village material and the second luminescent material are the same non-emissive material and the second non-emissive material is 33. The device of claim 3, wherein: the β material and the first material: The device of claim 3, wherein: the second luminescent material is phase _, and the luminescent material and the second non-emissive material are different materials 128110.doc 200901530. 35. If the request item 3〇 is placed, where: Low 2: Huan organic layer, the second organic layer or both are included - the emission in the lower month b is good! ^ Material, where The concentration of the lower energy emissive material is 砀ui-12 wt〇/〇. ::::3. The device, wherein the first organic layer consists essentially of the first layer of the first non-emissive material, and the first organic material of the second organic non-emissive organic layer The first non-emissive material consists of. η::: Μ Μ ' 其中 ' </ RTI> wherein the device comprises no more than 3 different devices having 38:: Ϊ ,, wherein the device comprises no more than 4 different organic materials 且 and one of the organic materials For this emission layer and the falling Mei Xi... C (four) lies in the device, Q "(5) electron transfer material between the 4 poles. 39. An organic light-emitting device comprising: an anode; a cathode; - disposed on the anode Further comprising: /, an emissive layer between the cathodes, the emissive layer comprising two: -:: material and - the first, the radioactive material in the first organic layer is $ 10-90 wt%; The concentration of the first phosphorescent material in the first organic layer is the concentration of the first non-emissive material is 128110.doc 200901530 f.....\V 10-90 wt〇/〇.;::c material And the concentration of the second phosphorescent material in the layer is 3-25 = 7 2: the concentration of the second non-emissive material in the layer is the concentration of the second photoactive material Lower than the concentration of the first first optical material; and the same material or two: the material and the second non-emissive material may be second The light material may be a phase gate: two first-disc optical materials and the first-organic layer material; and all organic layers between the electrodes of the organometallic material are substantially 40. The device of claim 39, wherein : The first material is the same material as the second scale light material, and the material is the same as the second non-emissive material. The device of claim 39, wherein: ^ The raw material and the second optical material are different materials... the non-emissive material and the second non-emissive material I: the same: 42. The device of claim 100, the order: the first light material And the second luminescent material is a different material, material 128110.doc and -10. 200901530, the first non-emissive material and the second non-emissive material are different materials. The device of claim 39, wherein The first-disc material is the same material as the second-disc material, and the material is a different material from the second non-emissive material. 44. The device of claim 39, Where: = the first - organic layer, the second organic layer or both a low emissive material, wherein the lower energy emissive material has a rich yield of 0.1-12 wt0/〇. &amp; 45. An organic light-emitting device comprising: an anode; a cathode; a female placed on the anode An emissive layer between the cathodes, the emissive layer further comprising: a first organic layer comprising a first phosphorescent material and a first non-emissive material, wherein the first phosphorescent material in the first organic layer The concentration is 10-90 wt%; and the concentration of the first non-emissive material in the first organic layer is 10-90 wt%; ^ δ the first luminescent material and the second non-emissive material a second organic layer, wherein the concentration of the second phosphorescent material in the second layer is 3-25 128110.doc 200901530 wt%; and the concentration of the second non-emissive material in the second organic layer is 75 -97 wt%; the concentration of the second phosphorescent material in the second organic layer is lower than the concentration of the first-disc photosensitive material in the first organic layer; and the first non-emissive village in the middle And the second non-emissive material may be the same material or different materials, The first phosphorescent material and the second phosphorescent material may be the same material or different materials, and all of the organic layers between the first organic layer and the anode have a sufficiently large hole conductivity, so that Increasing the thickness of this layer by 10 nm at a current of 1 〇 2 results in a voltage increase of 0.1 V or less. The device of claim 45, wherein: the Si? material is the same material as the second phosphorescent material, and the material, the radioactive material and the second non-emissive material are the same material. 47. The device of claim 45 Wherein: the first phosphorescent material and the second phosphorescent first non-emissive material are different materials, and the material coffin (4) the second non-emissive material is the same material 48. The device of claim 45 , wherein the material is different from the second phosphorescent material and the second non-emissive material is different material 128110.doc •12- 200901530 49. If request 45 The device, wherein: the first-disc material is the same material as the second-disc material, and the first non-emissive material and the (four) non-emissive material are different materials. 50. The first organic layer, the low energy emissive material is set to be 0.1-12 wt%. Wherein: the second organic layer or both further comprise - the sound of the lower energy emissive material 51. 一種有機發光裝置,其包含: —陽極; 一陰極; 該發射層進 -安置於該陽極與該陰極之間的發射層 一步包含: —包含一第~ 第一有機層, 磷光性材料及一第一非發射性材料 其中 之 該第一有機層中之該第一 10-90 wt% ; 非發射性材料之濃度為 該第一有機層中之該第 10-90 wt% ;且 一磷光性材料之濃度為 第_有機#碟光性材料及_第二非發射性材料之 乐一有機層,其中 該第二層 Φ 3- μ 中之该第二磷光性材料之濃度 Wt0/o ;且 1 :&gt; 該第二有機層中 之該第二非發射性材料之濃度為 128110.doc -13. 200901530 75-97 wt% ; :::I機層中之該第二磷光性材料之濃度低 於該第一有機層中 其中爷第一非政 鱗光性材料之濃度;且 為相_或不==第二非發射性材料可 ^ _生材料可為相同材:與該 重I:::非發射性材料具有-—上之三 52. 如請求項5〖之裝置,其中: =錄材料與該第二碟光性材料為相同材料 料非發射性材料與該第二非發射性材料為相同材 53. 如請求項51之裝置,其中·· =-破:光性材料與該第二璘光性材料為不同材料,且 料非發射性材科與該第二非發射性材料為相同材 54. 如請求項5 1之裝置,其中: =1光性㈣與該第二料性㈣為不同材料,且 料=1發射性材料與該第二非發射性材料為不同材 55. 如請求項51之裝置,其中: 談璘光性材料與該第二磷光性材料為相同材料,且 料=一非發射性材料與該第二非發射性材料為不同材 128110.doc -14- 200901530 56·如請求項5i之裝置,其中: 該第一有機層、該第二有機層或兩者進一步包含一較 低能量發射性材料,其中該較低能量發射性材料之濃度 為 〇. 1 -12 wt% 〇 57. —種有機發光裝置,其包含: 一陽極; 一陰極; 一安置於該陽極與該陰極之間的發射層,該發射層進 一步包含: 曰 一包含一第—磷光性材料及一第一非發射性材料之 第一有機層,其中 該第一有機層中之該第一磷光性材料之濃度為 10-90 wt0/〇 ;且 s第有機層中之該第一非發射性材料之濃度為 10-90 wt% ; 一包含一第二磷光性材料及一第二非發射性材料之 第二有機層,其中 該第二I中之該第二磷光性材料&lt;濃度為W 該第二有機層中之該第 75-97 wt°/〇 ; 二非發射性材料之濃度為 ” 一另飛層中之該第二磷光性材料之濃戶低 於該第:有機層中之該第一磷光性材料之濃度;且 其中S亥第—非發射性材料與該第二非發射性材料可 128110.doc ‘15- 200901530 為相同材料或不同材料,且 第二確光性材料可為光性材料與該 其中該第一有機層、:第=同:料且 合^ 第一有機層或兩者進一步包 二發射性材料,其中該較低能量發射性 、斗之浪度為〇 1 _丨2 wt%。 58.如請求項57之裝置,其中: 鱗光|±材料與該第二鱗光性材料為相同材且 料非發射性材料與該第二非發射性材料為相同材 59·如請求項57之裝置,其中: 光性材料與該第二嶙光性材料為不同材料,且 料非發射性材料與該第二非發射性材料為相同材 60. 如請求項57之裝置,其中·· 光性材料與該第二碟光性材料為不同材料,且 料。乂非發射性材料與該第二非發射性材料為不同材 61. 如請求項57之裝置,其中: =1光性材料與該第二碟光性材料為相同材料,且 Μ 1發射性材料與該第二非發射性材料為不同材 62. 如請求項57之裝置 光發射性材料。 63. 如請求項57之裝置 其中該較低能量發射性材料為一螢 其中該較低能量發射性材料為一螢 128110.doc -16- 200901530 光磷光性材料。 64·如請求項57之裝置,其中 均進一步包含該較低能量 層中及在該第二有機層中 為 0.1-12 wt%。 該第一有機層與該第二有機層 發射性材料,且在該第一有機 該較低能量發射性材料之濃度 65.如f求項57之裝置,其中該第—有機層進-步包含該較 低此篁發射性材料,該第—有機層中之該較低能量發射51. An organic light-emitting device comprising: an anode; a cathode; the emissive layer-initiating the emissive layer disposed between the anode and the cathode comprises: - comprising a first organic layer, a phosphorescent material and a first non-emissive material of the first 10-90 wt% of the first organic layer; a concentration of the non-emissive material being the 10-90 wt% of the first organic layer; and a phosphorescence The concentration of the material is the organic layer of the first organic light-distributing material and the second non-emissive material, wherein the concentration of the second phosphorescent material in the second layer Φ 3-μ is Wt0/o; And 1: the concentration of the second non-emissive material in the second organic layer is 128110.doc -13. 200901530 75-97 wt%; ::: the second phosphorescent material in the I layer The concentration is lower than the concentration of the first non-political scale material in the first organic layer; and the phase is _ or not == the second non-emissive material can be the same material: and the weight I ::: Non-emissive material has - - on the third 52. As requested in item 5, where: = The non-emissive material of the same material as the second disc is the same material as the second non-emissive material. 53. The apparatus of claim 51, wherein: ··-break: the optical material and the second The calendering material is a different material, and the non-emissive material is the same material as the second non-emissive material. 54. The device of claim 5, wherein: =1 optical (four) and the second material (four) The material of claim 51 is the same material as the second non-emissive material, wherein: the light-emitting material is the same material as the second phosphorescent material, and Material = a non-emissive material and the second non-emissive material are different materials. 128110.doc -14- 200901530 56. The device of claim 5, wherein: the first organic layer, the second organic layer or both Further comprising a lower energy emissive material, wherein the lower energy emissive material has a concentration of 〇. 1 -12 wt% 〇 57. An organic light-emitting device comprising: an anode; a cathode; An emissive layer between the anode and the cathode, the emissive layer The first organic layer comprising a first phosphorescent material and a first non-emissive material, wherein the concentration of the first phosphorescent material in the first organic layer is 10-90 wt0 / 〇; And the concentration of the first non-emissive material in the s organic layer is 10-90 wt%; a second organic layer comprising a second phosphorescent material and a second non-emissive material, wherein the second I The second phosphorescent material &lt;concentration is W of the 75th to 97th wt / 〇 in the second organic layer; the concentration of the second non-emissive material is "the second phosphorescence in a separate layer The concentration of the material is lower than the concentration of the first phosphorescent material in the first: organic layer; and wherein the S-first non-emissive material and the second non-emissive material are the same as 128110.doc '15-200901530 a material or a different material, and the second light-sensitive material may be a light material and the first organic layer, wherein: the first organic layer or the first organic layer or both further comprise two emissive materials, wherein The lower energy emissivity and the wave degree of the bucket are 〇1 _丨2 wt%. 58. The device of claim 57, wherein: the scale light|± material is the same material as the second scale light material and the non-emissive material is the same material as the second non-emissive material. 59. The device, wherein: the optical material and the second luminescent material are different materials, and the non-emissive material is the same material as the second non-emissive material. 60. The device of claim 57, wherein The material is different from the second material and is made of material. The non-emissive material is different from the second non-emissive material. 61. The device of claim 57, wherein: =1 the optical material is the same material as the second optical material, and the 发射 1 emissive material And the second non-emissive material is a different material 62. The device light-emitting material of claim 57. 63. The device of claim 57 wherein the lower energy emissive material is a firefly wherein the lower energy emissive material is a phosphorescent material. 64. The device of claim 57, which further comprises 0.1-12 wt% of the lower energy layer and in the second organic layer. The first organic layer and the second organic layer emissive material, and the concentration of the first organic lower energy emissive material is 65. The device of claim 57, wherein the first organic layer further comprises The lower 篁 emissive material, the lower energy emission in the first organic layer \ 性^之濃度為(U_12 wt%,㈣較低能量發射性材料 不存在於該第二有機層中。 低二ί項57之I置’其中該第二有機層進—步包含該較 科匕置發射性材料,該第二有機層中之該較低能量發射 ::之濃度為0.Μ2 wt% ’且該較低能量發射性材料 不存在於該第—有機層中。 一有機層及該第二有機層 該非發射性材料及該較低 67_如請求項57之裝置,其中該第 基本上由該第—磷光性材料、 能量發射性材料组成。 68. —種有機發光裝置,其包含: 一陽極; 一陰極; 女置於該陽極與該陰極之間的第一有機層, 該第—有機層包含-第-鱗光性材料及—第—非發 射性材料, X 其中該第-有機層中之該第—構光性材料 3一25_%;且 又馮 I28110.doc -17- 200901530 該第一有機層 97wt%;機日中之該第—非發射性材料之濃度為75_ -安置於該第—有機層與該陰極之間的第二有機層, 該第-有機層包含—第二磷光性材料及 射性材料; #發 :、中忒第一有機層係直接接觸於該第一有機層; :二―層中之該第二磷光性材料之濃度為1&quot;。 r 該第二有機層中之該第二非發射性材 90 wt% ;且 又句10- 其中該第二有機層中之該第二磷光 於該第一右媳恳 ’展度间 如請一 該第-璘光性材料之濃度。 光性材料與該第二鱗光性材料為相同材料,且 料:#發射性材料與該第二非發射性材料為相同材 70. 如請求項68之裝置,其中·· 光性材料與該第二碟光性材料為不同材料,且 料非發射性材料與該第二非發射性材料為相同材 71. 如請求項68之裝置,其中: 碟光性材料與該第二碟光性材料為不同材料,且 料f 一非發射性材料與該第二非發射性材料為不同材 128110.doc •18- 200901530 72·如請求項68之裝置,其tf?: 且 該第一磷光性材料與該第二磷光性材料 料該第一非發射性材料與該第二非發射性材科為:同材 73.如請求項68之裝置,其中: * 機層、該第二有機層或兩者進一步包含—^ 低能量發射性好4sL 4 較 材枓’其中該較低能量發射性材料 為 0.1-12 wt%。 辰度 128110.doc 19-\ The concentration of the sex ^ is (U_12 wt%, (4) the lower energy emissive material is not present in the second organic layer. The lower two of the 57th I set 'the second organic layer into the step contains the An emissive material is disposed, the lower energy emission in the second organic layer: a concentration of 0. Μ 2 wt% ' and the lower energy emissive material is not present in the first organic layer. And the second organic layer, the non-emissive material, and the apparatus of claim 57, wherein the first portion consists essentially of the first phosphorescent material, the energy-emitting material. 68. An organic light-emitting device, The method comprises: an anode; a cathode; a first organic layer disposed between the anode and the cathode, the first organic layer comprising a -first-scale optical material and a - non-emissive material, X of which The first light-organizing material in the first-organic layer is 3-25%; and von I28110.doc -17- 200901530, the first organic layer is 97% by weight; the concentration of the first non-emissive material in the machine day is 75_ - a second organic layer disposed between the first organic layer and the cathode, the first The organic layer comprises a second phosphorescent material and a radioactive material; #发:, the first organic layer of the middle layer is directly in contact with the first organic layer; the concentration of the second phosphorescent material in the second layer is 1&quot The second non-emissive material in the second organic layer is 90 wt%; and further, wherein the second phosphor in the second organic layer is between the first right 媳恳's spread The concentration of the first photo-curable material is the same as the second luminescent material, and the material: #emissive material and the second non-emissive material are the same material. 70. The device of claim 68, wherein the optical material and the second optical material are different materials, and the non-emissive material is the same material as the second non-emissive material. 71. The device of claim 68, wherein: The dish material is different from the second material, and the material f is a non-emissive material and the second non-emissive material is a different material 128110.doc • 18- 200901530 72. The device of claim 68 , tf?: and the first phosphorescent material and the second phosphorescent material The first non-emissive material and the second non-emissive material are: the same material 73. The device of claim 68, wherein: * the machine layer, the second organic layer or both further comprise -^ low energy emissivity Good 4sL 4 is better than the material 'where the lower energy emissive material is 0.1-12 wt%. Chen 128181.doc 19-
TW096150920A 2006-12-28 2007-12-28 Long lifetime phosphorescent organic light emitting device (oled) structures TWI481089B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87769606P 2006-12-28 2006-12-28
US90062407P 2007-02-08 2007-02-08

Publications (2)

Publication Number Publication Date
TW200901530A true TW200901530A (en) 2009-01-01
TWI481089B TWI481089B (en) 2015-04-11

Family

ID=40352446

Family Applications (2)

Application Number Title Priority Date Filing Date
TW096150920A TWI481089B (en) 2006-12-28 2007-12-28 Long lifetime phosphorescent organic light emitting device (oled) structures
TW103120919A TWI605625B (en) 2006-12-28 2007-12-28 Long lifetime phosphorescent organic light emitting device (oled) structures

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103120919A TWI605625B (en) 2006-12-28 2007-12-28 Long lifetime phosphorescent organic light emitting device (oled) structures

Country Status (7)

Country Link
US (1) US8866377B2 (en)
EP (1) EP2097938B1 (en)
JP (3) JP2010515255A (en)
KR (1) KR101118808B1 (en)
CN (1) CN104835914B (en)
TW (2) TWI481089B (en)
WO (1) WO2009030981A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449800A (en) * 2009-05-29 2012-05-09 株式会社半导体能源研究所 Light-emitting element, light-emitting device, lighting device, and electronic appliance

Families Citing this family (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986780B2 (en) 2004-11-19 2015-03-24 Massachusetts Institute Of Technology Method and apparatus for depositing LED organic film
US8128753B2 (en) 2004-11-19 2012-03-06 Massachusetts Institute Of Technology Method and apparatus for depositing LED organic film
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
EP2399922B1 (en) 2006-02-10 2019-06-26 Universal Display Corporation Metal complexes of cyclometallated imidazo(1,2-f) phenanthridine and diimidazo(1,2-A;1',2'-C)quinazoline ligands and isoelectronic and benzannulated analogs therof
US8778508B2 (en) * 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
KR101118808B1 (en) 2006-12-28 2012-03-22 유니버셜 디스플레이 코포레이션 Long lifetime phosphorescent organic light emitting deviceoled structures
JP5482201B2 (en) * 2007-05-16 2014-05-07 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP5564942B2 (en) * 2007-05-16 2014-08-06 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP5278314B2 (en) * 2007-05-16 2013-09-04 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
US8556389B2 (en) 2011-02-04 2013-10-15 Kateeva, Inc. Low-profile MEMS thermal printhead die having backside electrical connections
JP5135433B2 (en) * 2007-06-14 2013-02-06 マサチューセッツ インスティテュート オブ テクノロジー Control method and control apparatus for controlling thin film lamination
US8330350B2 (en) * 2007-07-07 2012-12-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
KR102073400B1 (en) * 2007-08-08 2020-02-05 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
WO2009021126A2 (en) 2007-08-08 2009-02-12 Universal Display Corporation Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group
CN101910357B (en) * 2007-11-22 2014-08-13 葛来西雅帝史派有限公司 Blue electroluminescent compounds with high efficiency and display device using the same
WO2009073246A1 (en) 2007-12-06 2009-06-11 Universal Display Corporation Method for the synthesis of iridium (iii) complexes with sterically demanding ligands
WO2009085344A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US8040053B2 (en) 2008-02-09 2011-10-18 Universal Display Corporation Organic light emitting device architecture for reducing the number of organic materials
KR100924145B1 (en) 2008-06-10 2009-10-28 삼성모바일디스플레이주식회사 Organic light emitting diode and fabrication method of the same
US12018857B2 (en) 2008-06-13 2024-06-25 Kateeva, Inc. Gas enclosure assembly and system
US8899171B2 (en) 2008-06-13 2014-12-02 Kateeva, Inc. Gas enclosure assembly and system
US9604245B2 (en) 2008-06-13 2017-03-28 Kateeva, Inc. Gas enclosure systems and methods utilizing an auxiliary enclosure
US10434804B2 (en) 2008-06-13 2019-10-08 Kateeva, Inc. Low particle gas enclosure systems and methods
US11975546B2 (en) 2008-06-13 2024-05-07 Kateeva, Inc. Gas enclosure assembly and system
US8632145B2 (en) 2008-06-13 2014-01-21 Kateeva, Inc. Method and apparatus for printing using a facetted drum
US9048344B2 (en) 2008-06-13 2015-06-02 Kateeva, Inc. Gas enclosure assembly and system
US8383202B2 (en) * 2008-06-13 2013-02-26 Kateeva, Inc. Method and apparatus for load-locked printing
US12064979B2 (en) 2008-06-13 2024-08-20 Kateeva, Inc. Low-particle gas enclosure systems and methods
JP5609641B2 (en) * 2008-07-10 2014-10-22 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
US8513658B2 (en) 2008-09-04 2013-08-20 Universal Display Corporation White phosphorescent organic light emitting devices
DE102009022858A1 (en) 2009-05-27 2011-12-15 Merck Patent Gmbh Organic electroluminescent devices
CN102076813B (en) 2008-11-11 2016-05-18 默克专利有限公司 Organic electroluminescence device
KR101919207B1 (en) * 2008-11-11 2018-11-15 유니버셜 디스플레이 코포레이션 Phosphorescent emitters
US20100188457A1 (en) * 2009-01-05 2010-07-29 Madigan Connor F Method and apparatus for controlling the temperature of an electrically-heated discharge nozzle
US8709615B2 (en) 2011-07-28 2014-04-29 Universal Display Corporation Heteroleptic iridium complexes as dopants
US11910700B2 (en) 2009-03-23 2024-02-20 Universal Display Corporation Heteroleptic iridium complexes as dopants
WO2010127328A2 (en) * 2009-05-01 2010-11-04 Kateeva, Inc. Method and apparatus for organic vapor printing
TWI541234B (en) * 2009-05-12 2016-07-11 環球展覽公司 2-azatriphenylene materials for organic light emitting diodes
JP2011009205A (en) * 2009-05-29 2011-01-13 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, and method of manufacturing the same
DE102009031021A1 (en) 2009-06-30 2011-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009032922B4 (en) 2009-07-14 2024-04-25 Merck Patent Gmbh Materials for organic electroluminescent devices, processes for their preparation, their use and electronic device
CN102484923B (en) * 2009-09-04 2016-05-04 株式会社半导体能源研究所 Light-emitting component, light-emitting device and manufacture method thereof
DE102009042680A1 (en) * 2009-09-23 2011-03-24 Merck Patent Gmbh Organic electroluminescent device
DE102009048791A1 (en) 2009-10-08 2011-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011052516A1 (en) 2009-11-02 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, display device, electronic device, and lighting device
DE102009053382A1 (en) 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
DE102009053836A1 (en) 2009-11-18 2011-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2011139044A (en) 2009-12-01 2011-07-14 Semiconductor Energy Lab Co Ltd Luminous element, luminous device, electronic equipment, and lighting device
JP4691611B1 (en) * 2010-01-15 2011-06-01 富士フイルム株式会社 Organic electroluminescence device
DE102010004803A1 (en) 2010-01-16 2011-07-21 Merck Patent GmbH, 64293 Materials for organic electroluminescent devices
JP4620802B1 (en) 2010-01-20 2011-01-26 富士フイルム株式会社 Organic electroluminescence device
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
JP5833322B2 (en) 2010-03-12 2015-12-16 ユー・ディー・シー アイルランド リミテッド Organic electroluminescent device and manufacturing method thereof
DE102010012738A1 (en) 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010018321A1 (en) 2010-04-27 2011-10-27 Merck Patent Gmbh Organic electroluminescent device
DE102010019306B4 (en) 2010-05-04 2021-05-20 Merck Patent Gmbh Organic electroluminescent devices
JP5815280B2 (en) 2010-05-21 2015-11-17 株式会社半導体エネルギー研究所 Triazole derivative
DE102010024897A1 (en) 2010-06-24 2011-12-29 Merck Patent Gmbh Materials for organic electroluminescent devices
JP4751954B1 (en) 2010-07-09 2011-08-17 富士フイルム株式会社 Organic electroluminescence device
JP4751955B1 (en) * 2010-07-09 2011-08-17 富士フイルム株式会社 Organic electroluminescence device
JP5815341B2 (en) * 2010-09-09 2015-11-17 株式会社半導体エネルギー研究所 Heterocyclic compounds
KR20180081182A (en) 2010-09-10 2018-07-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element and electronic device
DE102010045405A1 (en) 2010-09-15 2012-03-15 Merck Patent Gmbh Materials for organic electroluminescent devices
JP5623996B2 (en) 2010-09-21 2014-11-12 株式会社半導体エネルギー研究所 Carbazole derivatives
JPWO2012039241A1 (en) * 2010-09-24 2014-02-03 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
KR101912675B1 (en) 2010-10-04 2018-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
DE102010048608A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20120042068A (en) 2010-10-22 2012-05-03 삼성모바일디스플레이주식회사 Organic light emitting diode display
KR101950363B1 (en) 2010-10-29 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Phenanthrene compound, light-emitting element, light-emitting device, electronic device, and lighting device
DE112011103904B4 (en) 2010-11-24 2022-12-15 Merck Patent Gmbh Materials for organic electroluminescent devices
JP5760415B2 (en) * 2010-12-09 2015-08-12 コニカミノルタ株式会社 Organic electroluminescence device
JP5771965B2 (en) * 2010-12-09 2015-09-02 コニカミノルタ株式会社 Multicolor phosphorescent organic electroluminescence device and lighting device
DE102010054316A1 (en) 2010-12-13 2012-06-14 Merck Patent Gmbh Substituted tetraarylbenzenes
DE102012000064A1 (en) 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices
US8751777B2 (en) 2011-01-28 2014-06-10 Honeywell International Inc. Methods and reconfigurable systems to optimize the performance of a condition based health maintenance system
US9056856B2 (en) 2011-02-01 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound
DE102011010841A1 (en) 2011-02-10 2012-08-16 Merck Patent Gmbh (1,3) -dioxane-5-one compounds
JP2012182443A (en) 2011-02-11 2012-09-20 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
DE102011011104A1 (en) 2011-02-12 2012-08-16 Merck Patent Gmbh Substituted dibenzonaphthacenes
US8883322B2 (en) * 2011-03-08 2014-11-11 Universal Display Corporation Pyridyl carbene phosphorescent emitters
EP2503618B1 (en) 2011-03-23 2014-01-01 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
CN103492383B (en) 2011-04-18 2017-05-10 默克专利有限公司 Materials for organic electroluminescent devices
WO2012153603A1 (en) 2011-05-10 2012-11-15 コニカミノルタホールディングス株式会社 Phosphorescent organic electroluminescent element and lighting device
KR101934135B1 (en) 2011-06-03 2019-04-05 메르크 파텐트 게엠베하 Organic electroluminescence device
US9309223B2 (en) 2011-07-08 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9397310B2 (en) * 2011-07-14 2016-07-19 Universal Display Corporation Organice electroluminescent materials and devices
US9029558B2 (en) 2011-08-18 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, light-emitting element, light-emitting device, electronic device, and lighting device
KR102077994B1 (en) 2011-09-21 2020-02-17 메르크 파텐트 게엠베하 Carbazole derivatives for organic electroluminescence devices
DE102011116165A1 (en) 2011-10-14 2013-04-18 Merck Patent Gmbh Benzodioxepin-3-one compounds
EP2768808B1 (en) 2011-10-20 2017-11-15 Merck Patent GmbH Materials for organic electroluminescent devices
JP6098518B2 (en) * 2011-10-21 2017-03-22 コニカミノルタ株式会社 Organic electroluminescence device
KR102021162B1 (en) 2011-11-01 2019-09-11 메르크 파텐트 게엠베하 Organic electroluminescent device
US9193745B2 (en) * 2011-11-15 2015-11-24 Universal Display Corporation Heteroleptic iridium complex
JP6081473B2 (en) 2011-11-17 2017-02-15 メルク パテント ゲーエムベーハー Spirodihydroacridine and its use as a material for organic electroluminescent devices
WO2013094276A1 (en) * 2011-12-20 2013-06-27 コニカミノルタ株式会社 Organic el element
US9461254B2 (en) * 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2013139431A1 (en) 2012-03-23 2013-09-26 Merck Patent Gmbh 9,9'-spirobixanthene derivatives for electroluminescent devices
JP6100368B2 (en) * 2012-06-14 2017-03-22 ユニバーサル ディスプレイ コーポレイション Biscarbazole derivative host material and green light emitter for OLED light emitting region
KR102161955B1 (en) 2012-07-10 2020-10-06 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR102102580B1 (en) * 2012-07-20 2020-04-22 롬엔드하스전자재료코리아유한회사 Organic Electroluminescence Device
KR102125199B1 (en) 2012-07-23 2020-06-22 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR102163770B1 (en) 2012-08-10 2020-10-12 메르크 파텐트 게엠베하 Materials for organic electroluminescence devices
US20150249224A1 (en) * 2012-09-11 2015-09-03 Rohm And Haas Electronic Materials Korea Ltd. Novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same
EP2906661B1 (en) 2012-10-11 2016-10-26 Merck Patent GmbH Materials for organic electroluminescent devices
US9653691B2 (en) * 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
CN109608473B (en) 2013-03-26 2021-05-11 株式会社半导体能源研究所 Compound for light-emitting element and synthesis method thereof
KR102042529B1 (en) * 2013-05-15 2019-11-08 엘지디스플레이 주식회사 Organic light emitting diode display device and method of fabricating the same
US9831437B2 (en) 2013-08-20 2017-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US10074806B2 (en) 2013-08-20 2018-09-11 Universal Display Corporation Organic electroluminescent materials and devices
KR101993129B1 (en) 2013-12-12 2019-06-26 메르크 파텐트 게엠베하 Materials for electronic devices
US9666822B2 (en) * 2013-12-17 2017-05-30 The Regents Of The University Of Michigan Extended OLED operational lifetime through phosphorescent dopant profile management
KR101878084B1 (en) 2013-12-26 2018-07-12 카티바, 인크. Apparatus and techniques for thermal treatment of electronic devices
KR102307190B1 (en) 2014-01-21 2021-09-30 카티바, 인크. Apparatus and techniques for electronic device encapsulation
US9397309B2 (en) 2014-03-13 2016-07-19 Universal Display Corporation Organic electroluminescent devices
KR102390045B1 (en) 2014-04-30 2022-04-22 카티바, 인크. Gas cushion apparatus and techniques for substrate coating
EP3140302B1 (en) 2014-05-05 2019-08-21 Merck Patent GmbH Materials for organic light emitting devices
KR102419246B1 (en) 2014-06-25 2022-07-08 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR102285389B1 (en) 2014-11-05 2021-08-04 삼성디스플레이 주식회사 Organic light-emitting device
JP2017537085A (en) 2014-11-11 2017-12-14 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
WO2016193845A1 (en) 2015-05-29 2016-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US20180182980A1 (en) * 2015-06-03 2018-06-28 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3307735A1 (en) 2015-06-10 2018-04-18 Merck Patent GmbH Materials for organic electroluminescent devices
CN113889586A (en) 2015-07-08 2022-01-04 株式会社半导体能源研究所 Light-emitting element, display device, electronic device, and lighting device
KR102660538B1 (en) 2015-07-22 2024-04-24 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR20180031770A (en) 2015-07-29 2018-03-28 메르크 파텐트 게엠베하 Material for organic electroluminescence device
CN107922359A (en) 2015-07-30 2018-04-17 默克专利有限公司 Material for organic electroluminescence device
JP6862420B2 (en) 2015-08-13 2021-04-21 メルク パテント ゲーエムベーハー Hexamethyl indane
JP6974315B2 (en) 2015-10-27 2021-12-01 メルク パテント ゲーエムベーハー Materials for organic electroluminescence devices
CN108431010B (en) 2015-12-25 2021-10-15 株式会社半导体能源研究所 Compound, light-emitting element, display device, electronic device, and lighting device
KR20180118744A (en) 2016-03-03 2018-10-31 메르크 파텐트 게엠베하 Material for organic electroluminescence device
US11094891B2 (en) * 2016-03-16 2021-08-17 Universal Display Corporation Organic electroluminescent materials and devices
TWI821807B (en) 2016-03-17 2023-11-11 德商麥克專利有限公司 Compounds having spirobifluorene structures
KR102592185B1 (en) * 2016-04-06 2023-10-20 솔루스첨단소재 주식회사 Organic compound and organic electroluminescent device comprising the same
TW202340153A (en) 2016-04-11 2023-10-16 德商麥克專利有限公司 Heterocyclic compounds having dibenzofuran and/or dibenzothiophene structures
WO2017186760A1 (en) 2016-04-29 2017-11-02 Merck Patent Gmbh Materials for organic electroluminescent devices
US20190312203A1 (en) 2016-06-03 2019-10-10 Merck Patent Gmbh Materials for organic electroluminescent devices
JP7039188B2 (en) 2016-06-24 2022-03-22 株式会社半導体エネルギー研究所 Host material for phosphorescent layer, organic compound, light emitting element, light emitting device, electronic device and lighting device
JP2019530676A (en) 2016-09-14 2019-10-24 メルク パテント ゲーエムベーハー Compound having carbazole structure
EP3512841B1 (en) 2016-09-14 2023-04-26 Merck Patent GmbH Compounds with spirobifluorene-structures
TWI766884B (en) 2016-09-30 2022-06-11 德商麥克專利有限公司 Compounds having diazadibenzofuran or diazadibenzothiophene structures, process for preparing the same and use thereof
WO2018060218A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazoles with diazadibenzofurane or diazadibenzothiophene structures
CN109890813B (en) 2016-11-09 2023-05-30 默克专利有限公司 Material for organic electroluminescent device
TWI756292B (en) 2016-11-14 2022-03-01 德商麥克專利有限公司 Compounds having an acceptor group and a donor group
EP3541890B1 (en) 2016-11-17 2020-10-28 Merck Patent GmbH Materials for organic electroluminescent devices
JP7127026B2 (en) 2016-11-30 2022-08-29 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Compound having valerolactam structure
US20190378996A1 (en) 2016-12-05 2019-12-12 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3548486B1 (en) 2016-12-05 2021-10-27 Merck Patent GmbH Materials for organic electroluminescent devices
TW201831468A (en) 2016-12-05 2018-09-01 德商麥克專利有限公司 Nitrogen-containing heterocycles
CN110088925A (en) 2016-12-22 2019-08-02 默克专利有限公司 Mixture comprising at least two organic functions chemical combination objects
KR102491829B1 (en) 2016-12-28 2023-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, organic compound, light-emitting device, electronic device, and lighting device
US11495751B2 (en) 2017-01-04 2022-11-08 Merck Patent Gmbh Materials for organic electroluminescent devices
KR102625926B1 (en) 2017-01-25 2024-01-17 메르크 파텐트 게엠베하 Carbazole derivatives
EP3573985B1 (en) 2017-01-30 2023-01-18 Merck Patent GmbH Materials for organic electroluminescent devices
TW201835075A (en) 2017-02-14 2018-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
TW201843143A (en) 2017-03-13 2018-12-16 德商麥克專利有限公司 Compounds containing arylamine structures
EP3596066B1 (en) 2017-03-15 2022-05-18 Merck Patent GmbH Materials for organic electroluminescent devices
US20180323393A1 (en) * 2017-05-03 2018-11-08 Wuhan China Star Optoelectronics Technology Co., Ltd. Organic light-emitting display apparatus
US11056656B2 (en) 2017-05-11 2021-07-06 Merck Patent Gmbh Organoboron complexes and their use in organic electroluminescent devices
EP3621971B1 (en) 2017-05-11 2021-06-23 Merck Patent GmbH Carbazole-based bodipys for organic electroluminescent devices
US11535619B2 (en) 2017-05-22 2022-12-27 Merck Patent Gmbh Hexacyclic heteroaromatic compounds for electronic devices
JP2019006763A (en) 2017-06-22 2019-01-17 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic apparatus, and lighting device
KR102395782B1 (en) 2017-07-31 2022-05-09 삼성전자주식회사 Organic light emitting device
EP3681890B1 (en) 2017-09-12 2021-08-18 Merck Patent GmbH Materials for organic electroluminescent devices
EP3692043B1 (en) 2017-10-06 2022-11-02 Merck Patent GmbH Materials for organic electroluminescent devices
KR102653073B1 (en) 2017-10-24 2024-03-29 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR102497284B1 (en) 2017-12-18 2023-02-08 삼성디스플레이 주식회사 Organic light emitting device
TW201938562A (en) 2017-12-19 2019-10-01 德商麥克專利有限公司 Heterocyclic compounds
TWI811290B (en) 2018-01-25 2023-08-11 德商麥克專利有限公司 Materials for organic electroluminescent devices
WO2019233904A1 (en) 2018-06-07 2019-12-12 Merck Patent Gmbh Organic electroluminescence devices
CN112384595B (en) 2018-07-09 2024-05-28 默克专利有限公司 Material for organic electroluminescent device
KR20210033497A (en) 2018-07-20 2021-03-26 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
JP7498113B2 (en) 2018-09-20 2024-06-11 株式会社半導体エネルギー研究所 Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting apparatus
US20210384443A1 (en) 2018-09-27 2021-12-09 Merck Patent Gmbh Compounds that can be used in an organic electronic device as active compounds
CN112771024A (en) 2018-09-27 2021-05-07 默克专利有限公司 Process for preparing sterically hindered nitrogen-containing heteroaromatics
CN112955437A (en) 2018-11-05 2021-06-11 默克专利有限公司 Compounds useful in organic electronic devices
EP3877373B1 (en) 2018-11-06 2023-01-11 Merck Patent GmbH 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorine and 6-phenyl-6h-dibenzo[c,e][1,2]thiazine-5,5-dioxide derivatives and related compounds as organic electroluminescent materials for oleds
KR20210091769A (en) 2018-11-14 2021-07-22 메르크 파텐트 게엠베하 Compounds that can be used in the manufacture of organic electronic devices
US12035625B2 (en) 2018-11-15 2024-07-09 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202039493A (en) 2018-12-19 2020-11-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
CN113316579A (en) 2019-01-16 2021-08-27 默克专利有限公司 Material for organic electroluminescent device
TW202122558A (en) 2019-09-03 2021-06-16 德商麥克專利有限公司 Materials for organic electroluminescent devices
WO2021052924A1 (en) 2019-09-16 2021-03-25 Merck Patent Gmbh Materials for organic electroluminescent devices
EP4049325A1 (en) 2019-10-22 2022-08-31 Merck Patent GmbH Materials for organic electroluminescent devices
WO2021078831A1 (en) 2019-10-25 2021-04-29 Merck Patent Gmbh Compounds that can be used in an organic electronic device
US20230069061A1 (en) 2019-12-18 2023-03-02 Merck Patent Gmbh Aromatic compounds for organic electroluminescent devices
US20230104248A1 (en) 2019-12-19 2023-04-06 Merck Patent Gmbh Polycyclic compounds for organic electroluminescent devices
WO2021151922A1 (en) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazole derivatives
KR20210099707A (en) 2020-02-04 2021-08-13 삼성디스플레이 주식회사 Light emitting device
EP4110884A1 (en) 2020-02-25 2023-01-04 Merck Patent GmbH Use of heterocyclic compounds in an organic electronic device
WO2021175706A1 (en) 2020-03-02 2021-09-10 Merck Patent Gmbh Use of sulfone compounds in an organic electronic device
US20230157170A1 (en) 2020-03-17 2023-05-18 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
US20230147279A1 (en) 2020-03-17 2023-05-11 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
KR20220158771A (en) 2020-03-26 2022-12-01 메르크 파텐트 게엠베하 Cyclic compounds for organic electroluminescent devices
KR20220164541A (en) 2020-04-06 2022-12-13 메르크 파텐트 게엠베하 Polycyclic compounds for organic electroluminescent devices
EP4168397A1 (en) 2020-06-18 2023-04-26 Merck Patent GmbH Indenoazanaphthalenes
CN115916795A (en) 2020-06-29 2023-04-04 默克专利有限公司 Heteroaromatic compounds for organic electroluminescent devices
JP2023530915A (en) 2020-06-29 2023-07-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Heterocyclic compounds for organic electroluminescent devices
TW202229215A (en) 2020-09-30 2022-08-01 德商麥克專利有限公司 Compounds for structuring of functional layers of organic electroluminescent devices
TW202222748A (en) 2020-09-30 2022-06-16 德商麥克專利有限公司 Compounds usable for structuring of functional layers of organic electroluminescent devices
US20230380285A1 (en) 2020-10-16 2023-11-23 Merck Patent Gmbh Compounds comprising heteroatoms for organic electroluminescent devices
EP4229064A1 (en) 2020-10-16 2023-08-23 Merck Patent GmbH Heterocyclic compounds for organic electroluminescent devices
WO2022101171A1 (en) 2020-11-10 2022-05-19 Merck Patent Gmbh Sulfurous compounds for organic electroluminescent devices
KR20230116023A (en) 2020-12-02 2023-08-03 메르크 파텐트 게엠베하 Heterocyclic compounds for organic electroluminescent devices
US20240101560A1 (en) 2020-12-18 2024-03-28 Merck Patent Gmbh Nitrogenous heteroaromatic compounds for organic electroluminescent devices
KR20230122093A (en) 2020-12-18 2023-08-22 메르크 파텐트 게엠베하 Nitrogen-containing compounds for organic electroluminescent devices
CN116583522A (en) 2020-12-18 2023-08-11 默克专利有限公司 Indolo [3.2.1-JK ] carbazole-6-carbonitrile derivatives as blue fluorescent emitters for use in OLEDs
CN116710454A (en) 2021-01-25 2023-09-05 默克专利有限公司 Nitrogen-containing compounds for organic electroluminescent devices
WO2022184601A1 (en) 2021-03-02 2022-09-09 Merck Patent Gmbh Compounds for organic electroluminescent devices
WO2022194799A1 (en) 2021-03-18 2022-09-22 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
US20240246983A1 (en) 2021-04-30 2024-07-25 Merck Patent Gmbh Nitrogenous heterocyclic compounds for organic electroluminescent devices
EP4402221A1 (en) 2021-09-14 2024-07-24 Merck Patent GmbH Boronic heterocyclic compounds for organic electroluminescent devices
KR20240091021A (en) 2021-10-27 2024-06-21 메르크 파텐트 게엠베하 Boron and nitrogen heterocyclic compounds for organic electroluminescent devices
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
WO2023161168A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatic hetreocycles for organic electroluminescent devices
CN118696106A (en) 2022-02-23 2024-09-24 默克专利有限公司 Nitrogen-containing heterocyclic compound for organic electroluminescent device
WO2023213837A1 (en) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclic compounds for organic electroluminescent devices
WO2024061942A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing compounds for organic electroluminescent devices
WO2024061948A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing hetreocycles for organic electroluminescent devices
WO2024094592A2 (en) 2022-11-01 2024-05-10 Merck Patent Gmbh Nitrogenous heterocycles for organic electroluminescent devices
WO2024149694A1 (en) 2023-01-10 2024-07-18 Merck Patent Gmbh Nitrogenous heterocycles for organic electroluminescent devices
WO2024153568A1 (en) 2023-01-17 2024-07-25 Merck Patent Gmbh Heterocycles for organic electroluminescent devices
WO2024184050A1 (en) 2023-03-07 2024-09-12 Merck Patent Gmbh Cyclic nitrogen compounds for organic electroluminescent devices

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711567A (en) * 1970-12-16 1973-01-16 American Cyanamid Co Bis-triphenylenes and use in photochromic and luminescent compositions
DE3421072A1 (en) * 1984-06-06 1985-12-12 Heinrich Mack Nachf., 7918 Illertissen 1,4: 3,6-DIANHYDRO-HEXIT DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS MEDICINAL PRODUCTS
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
GB8909011D0 (en) * 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5061569A (en) * 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
DE69412567T2 (en) 1993-11-01 1999-02-04 Hodogaya Chemical Co., Ltd., Tokio/Tokyo Amine compound and electroluminescent device containing it
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) * 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5844363A (en) * 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US6013982A (en) * 1996-12-23 2000-01-11 The Trustees Of Princeton University Multicolor display devices
US5834893A (en) * 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US6091195A (en) * 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6303238B1 (en) * 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6337102B1 (en) * 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
JP3424812B2 (en) * 1997-12-25 2003-07-07 日本電気株式会社 Organic electroluminescence device
US6492041B2 (en) * 1997-12-25 2002-12-10 Nec Corporation Organic electroluminescent device having high efficient luminance
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6097147A (en) * 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US6830828B2 (en) * 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6294398B1 (en) * 1999-11-23 2001-09-25 The Trustees Of Princeton University Method for patterning devices
US6458475B1 (en) 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
US6660410B2 (en) * 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP3812730B2 (en) * 2001-02-01 2006-08-23 富士写真フイルム株式会社 Transition metal complex and light emitting device
EP1374320B1 (en) * 2001-03-14 2020-05-06 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
ATE498898T1 (en) * 2001-05-16 2011-03-15 Univ Princeton HIGHLY EFFICIENT MULTI-COLOR ELECTROPHOSPHORESCENT OLEDS
JP3981331B2 (en) * 2001-05-24 2007-09-26 出光興産株式会社 Organic electroluminescence device
US7071615B2 (en) * 2001-08-20 2006-07-04 Universal Display Corporation Transparent electrodes
WO2003022007A1 (en) * 2001-08-29 2003-03-13 The Trustees Of Princeton University Organic light emitting devices having carrier blocking layers comprising metal complexes
KR100918988B1 (en) * 2001-08-29 2009-09-25 더 트러스티즈 오브 프린스턴 유니버시티 Use of metal complexes to facilitate hole transport in light emitting devices, and methods for fabrication thereof
US7431968B1 (en) * 2001-09-04 2008-10-07 The Trustees Of Princeton University Process and apparatus for organic vapor jet deposition
US6835469B2 (en) * 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
US6869695B2 (en) * 2001-12-28 2005-03-22 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
US6863997B2 (en) * 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
KR100691543B1 (en) 2002-01-18 2007-03-09 주식회사 엘지화학 New material for transporting electron and organic electroluminescent display using the same
DE10203328A1 (en) * 2002-01-28 2003-08-07 Syntec Ges Fuer Chemie Und Tec New triarylamine derivatives with space-filling wing groups and their use in electro-photographic and organic electroluminescent devices
JP3786023B2 (en) * 2002-01-31 2006-06-14 株式会社豊田自動織機 Organic EL device
US6951694B2 (en) * 2002-03-29 2005-10-04 The University Of Southern California Organic light emitting devices with electron blocking layers
US20030230980A1 (en) * 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US6687266B1 (en) * 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
CN101510589B (en) * 2002-12-26 2013-01-23 株式会社半导体能源研究所 Organic light emitting element
WO2004066685A1 (en) 2003-01-24 2004-08-05 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP3970253B2 (en) * 2003-03-27 2007-09-05 三洋電機株式会社 Organic electroluminescence device
US7862906B2 (en) * 2003-04-09 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Electroluminescent element and light-emitting device
EP2281861A3 (en) 2003-04-15 2012-03-28 Merck Patent GmbH Mixture of organic emission-enabled semiconductors and matrix materials, use of same and electronic components containing same
US7029765B2 (en) * 2003-04-22 2006-04-18 Universal Display Corporation Organic light emitting devices having reduced pixel shrinkage
CN100483779C (en) 2003-05-29 2009-04-29 新日铁化学株式会社 Organic electroluminescent element
JP2005011610A (en) 2003-06-18 2005-01-13 Nippon Steel Chem Co Ltd Organic electroluminescent element
JP4899284B2 (en) * 2003-07-18 2012-03-21 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device
US20050025993A1 (en) * 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
JP4703139B2 (en) 2003-08-04 2011-06-15 富士フイルム株式会社 Organic electroluminescence device
TWI390006B (en) 2003-08-07 2013-03-21 Nippon Steel Chemical Co Organic EL materials with aluminum clamps
KR100560783B1 (en) * 2003-09-03 2006-03-13 삼성에스디아이 주식회사 OLED with dopped emission layer
US20060269780A1 (en) 2003-09-25 2006-11-30 Takayuki Fukumatsu Organic electroluminescent device
JP2005108665A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Light-emitting device
JP4036812B2 (en) * 2003-09-30 2008-01-23 三洋電機株式会社 Organic electroluminescence device
US7151339B2 (en) * 2004-01-30 2006-12-19 Universal Display Corporation OLED efficiency by utilization of different doping concentrations within the device emissive layer
TW200531592A (en) 2004-03-15 2005-09-16 Nippon Steel Chemical Co Organic electroluminescent device
TWI252051B (en) * 2004-03-31 2006-03-21 Fujitsu Ltd Organic electroluminescent device and organic electroluminescent display device
US7491823B2 (en) * 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
US7279704B2 (en) * 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
JP4631316B2 (en) * 2004-06-07 2011-02-16 パナソニック株式会社 Electroluminescence element
WO2005123873A1 (en) 2004-06-17 2005-12-29 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
US20060008670A1 (en) * 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
TWI479008B (en) 2004-07-07 2015-04-01 Universal Display Corp Stable and efficient electroluminescent materials
US7175436B2 (en) * 2004-07-09 2007-02-13 Joshua Friedman Optical composite cure radiometer and method
WO2006008976A1 (en) * 2004-07-16 2006-01-26 Konica Minolta Holdings, Inc. White light emitting organic electroluminescence element, display apparatus and lighting apparatus
EP1784056B1 (en) 2004-07-23 2011-04-13 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
WO2006013738A1 (en) 2004-08-05 2006-02-09 Konica Minolta Holdings, Inc. Organic electroluminescence device, display apparatus and lighting apparatus
US20060040131A1 (en) * 2004-08-19 2006-02-23 Eastman Kodak Company OLEDs with improved operational lifetime
JP4110160B2 (en) * 2004-09-29 2008-07-02 キヤノン株式会社 Organic electroluminescent device and display device
DE102004057072A1 (en) 2004-11-25 2006-06-01 Basf Ag Use of Transition Metal Carbene Complexes in Organic Light Emitting Diodes (OLEDs)
US7795429B2 (en) * 2004-12-03 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the organometallic complex
US20060125379A1 (en) * 2004-12-09 2006-06-15 Au Optronics Corporation Phosphorescent organic optoelectronic structure
JP4496949B2 (en) * 2004-12-13 2010-07-07 株式会社豊田自動織機 Organic EL device
US7351999B2 (en) * 2004-12-16 2008-04-01 Au Optronics Corporation Organic light-emitting device with improved layer structure
KR100670254B1 (en) * 2004-12-20 2007-01-16 삼성에스디아이 주식회사 Triarylamine-based compound and organic electroluminescence display employing the same
GB2437453B (en) 2005-02-04 2011-05-04 Konica Minolta Holdings Inc Material for organic electroluminescence element, organic electroluminescence element, display device and lighting device
TWI272036B (en) * 2005-02-23 2007-01-21 Au Optronics Corp Organic electroluminescent devices and display apparatus
KR100803125B1 (en) * 2005-03-08 2008-02-14 엘지전자 주식회사 Red phosphorescent compounds and organic electroluminescence devices using the same
JP5125502B2 (en) 2005-03-16 2013-01-23 コニカミノルタホールディングス株式会社 Organic electroluminescence element material, organic electroluminescence element
JPWO2006103874A1 (en) 2005-03-29 2008-09-04 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
US9070884B2 (en) * 2005-04-13 2015-06-30 Universal Display Corporation Hybrid OLED having phosphorescent and fluorescent emitters
WO2006114966A1 (en) 2005-04-18 2006-11-02 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
US7505122B2 (en) * 2005-04-28 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Evaluation method and manufacturing method of light-emitting element material, manufacturing method of light-emitting element, light-emitting element, and light-emitting device and electric appliance having light-emitting element
US8487527B2 (en) * 2005-05-04 2013-07-16 Lg Display Co., Ltd. Organic light emitting devices
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
US8092924B2 (en) * 2005-05-31 2012-01-10 Universal Display Corporation Triphenylene hosts in phosphorescent light emitting diodes
US20090129612A1 (en) 2005-06-06 2009-05-21 Yusuke Takeuchi Electretization method of condenser microphone, electretization apparatus, and manufacturing method of condenser microphone using it
WO2007004380A1 (en) 2005-07-01 2007-01-11 Konica Minolta Holdings, Inc. Organic electroluminescent element material, organic electroluminescent element, display device, and lighting equipment
JP4887731B2 (en) 2005-10-26 2012-02-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
KR101082258B1 (en) 2005-12-01 2011-11-09 신닛테츠가가쿠 가부시키가이샤 Compound for organic electroluminescent element and organic electroluminescent element
JPWO2007063796A1 (en) 2005-12-01 2009-05-07 新日鐵化学株式会社 Organic electroluminescence device
EP2399922B1 (en) * 2006-02-10 2019-06-26 Universal Display Corporation Metal complexes of cyclometallated imidazo(1,2-f) phenanthridine and diimidazo(1,2-A;1',2'-C)quinazoline ligands and isoelectronic and benzannulated analogs therof
JP2007227117A (en) * 2006-02-23 2007-09-06 Sony Corp Organic electroluminescent element
JP4823730B2 (en) 2006-03-20 2011-11-24 新日鐵化学株式会社 Luminescent layer compound and organic electroluminescent device
US20070236140A1 (en) * 2006-04-05 2007-10-11 Hsiang-Lun Hsu System for displaying images including electroluminescent device and method for fabricating the same
US7768195B2 (en) * 2006-05-25 2010-08-03 Idemitsu Kosan Co., Ltd. Organic electroluminescent device with improved luminous efficiency
JP5556014B2 (en) * 2006-09-20 2014-07-23 コニカミノルタ株式会社 Organic electroluminescence device
JP5011908B2 (en) * 2006-09-26 2012-08-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
US8299787B2 (en) * 2006-12-18 2012-10-30 Konica Minolta Holdings, Inc. Multicolor phosphorescent organic electroluminescent element and lighting system
JP4254856B2 (en) * 2006-12-22 2009-04-15 ソニー株式会社 Organic electroluminescence device and display device
US20080152946A1 (en) * 2006-12-22 2008-06-26 Yen Feng-Wen Novel fluorene compounds, hole injection materials/hole transport materials containing said fluorene compounds, a light emitting element containing said fluorene compounds and methods of preparation thereof
KR101118808B1 (en) 2006-12-28 2012-03-22 유니버셜 디스플레이 코포레이션 Long lifetime phosphorescent organic light emitting deviceoled structures
US7862908B2 (en) 2007-11-26 2011-01-04 National Tsing Hua University Conjugated compounds containing hydroindoloacridine structural elements, and their use
US8513658B2 (en) 2008-09-04 2013-08-20 Universal Display Corporation White phosphorescent organic light emitting devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449800A (en) * 2009-05-29 2012-05-09 株式会社半导体能源研究所 Light-emitting element, light-emitting device, lighting device, and electronic appliance
US8841653B2 (en) 2009-05-29 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, lighting device, and electronic appliance
CN105742515A (en) * 2009-05-29 2016-07-06 株式会社半导体能源研究所 Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Appliance

Also Published As

Publication number Publication date
WO2009030981A3 (en) 2009-06-18
EP2097938B1 (en) 2019-07-17
KR101118808B1 (en) 2012-03-22
TWI481089B (en) 2015-04-11
JP2016181725A (en) 2016-10-13
US8866377B2 (en) 2014-10-21
TW201438315A (en) 2014-10-01
TWI605625B (en) 2017-11-11
JP2010515255A (en) 2010-05-06
JP2014041846A (en) 2014-03-06
WO2009030981A2 (en) 2009-03-12
CN104835914A (en) 2015-08-12
EP2097938A2 (en) 2009-09-09
JP6219453B2 (en) 2017-10-25
US20110057171A1 (en) 2011-03-10
KR20090106566A (en) 2009-10-09
JP5968862B2 (en) 2016-08-10
CN104835914B (en) 2018-02-09

Similar Documents

Publication Publication Date Title
TW200901530A (en) Long lifetime phosphorescent organic light emitting device (OLED) structures
Luo et al. Extremely simplified, high-performance, and doping-free white organic light-emitting diodes based on a single thermally activated delayed fluorescent emitter
TWI375486B (en) Oleds with mixed host emissive layer
KR101587307B1 (en) White phosphorescent organic light emitting devices
JP6813569B2 (en) Metal amides used as hole injection layers (HILs) in organic light emitting diodes (OLEDs)
JP5883548B2 (en) OLED using direct injection into triplet state
TW543337B (en) Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
JP5328356B2 (en) Electron blocking layer for highly efficient phosphorescent organic light-emitting devices
CN103779502B (en) stable blue phosphorescent organic light emitting devices
TWI279163B (en) White light emitting OLEDs from combined monomer and aggregate emission
JP5886945B2 (en) OLED with multi-component light emitting layer
TW201240074A (en) Organic light-emitting diode, display and illuminating device
TW200524471A (en) Doping of organic opto-electronic devices to extend reliability
Rhee et al. Heavily doped, charge-balanced fluorescent organic light-emitting diodes from direct charge trapping of dopants in emission layer
US20160149142A1 (en) Organic light emitting display device
TW200816860A (en) Tandem organic electroluminescent elements and display using the same
TW201121359A (en) Organic electroluminescence element
TW201017951A (en) Ternary emissive layers for luminescent applications
KR20220052294A (en) Energy levels and device structures for plasmonic oleds
Balaganesan et al. P‐173: New Triazine Derived Hosts for Next Generation Phosphorescent OLEDs with Enhanced Lifetime and Stability
Li et al. Organic light-emitting diodes based on bipolar material FLAMB-1T