200900244 九、發明說明: 【發明所屬之技術領域】 本發明係有關感光性積層體的製造裝置及製造方法, 係將基板與在支撐體上設有感光材料層之長條狀感光性薄 片送出至一對壓接滾筒間,藉由將前述感光材料層貼合於 前述基板而製造感光性積層體。 【先前技術】 如液晶面板用基板、印刷電路板用基板及PDP用基 板,係將具有感光性樹脂層(感光材料層)之感光性片體 (感光性薄片)貼合於基板表面而構成。感光性片體係例 如在可撓性塑膠支撐體上依序積層感光性樹脂層與保護 膜。 使用於此種感光性片體之貼合的製造裝置,通常係採 用使玻璃基板或樹脂基板等之基板各以指定之間隔離開, 而搬運至層壓滾筒間,並且將已剝離與前述基板上所貼合 之感光性樹脂層的範圍對應之保護膜的感光性片體搬運至 前述層壓滾筒間之方式。 例如,在日本特開平1 1 -34280號公報之製造裝置中, 如第11圖所示,從薄膜輥1陸續送出之積層體薄膜(感光 性片體)la係纏繞於導引滾筒2a、2b,而沿著水平之薄膜 搬運面延伸。該導引滾筒2b上安裝有輸出因應積層體薄膜 la之進給量的數値之脈衝訊號的旋轉編碼器3。 沿著水平之薄膜搬運面而延伸之積層體薄膜la繞掛 於吸入滾筒4,並且在前述導引滾筒2b與前述吸入滾筒4 之間設有半切裝置5與保護膜剝離裝置6。 200900244 指定 著積 ,在 )將 A與 黏合 離部 分A 繞輥 定間 12b, 疊並 膜捲 在使 留部 離部 保護 成位 精確 半切裝置5具備在積層體薄膜la之搬運方向隔開 間隔之一對碟片刀具5a、5b。碟片刀具5a、5b藉由沿 層體薄膜la之薄膜寬度方向移動,而如第12圖所示 保留支撐薄膜之狀態下,連同感光性樹脂層(無圖示 . 前述積層體薄膜la之保護膜(無圖示)中之剝離部分 . 殘留部分B間的2處交界部分1 4a、1 4b —起切斷。 保護膜剝離裝置6將從黏合膠帶輥7陸續送出之 膠帶7a,在擠壓滾筒8a、8b間強力壓接於保護膜之剝 ^ : 分A後,藉由捲繞輥9捲繞。藉此,保護膜之剝離部 從感光性樹脂層剝離,而與黏合膠帶7 a —起捲繞於捲 9 〇 在吸入滾筒4之下游,於藉基板搬運裝置10以指 隔作搬運的數個基板1 1上面,設置一對層壓滾筒1 2a、 用以將保護膜已剝離之積層體薄膜1 a的剝離部分A重 壓接。在該層壓滾筒1 2a、1 2b之下游側配置有支撐薄 繞輥1 3。貼合於感光性樹脂層之支撐薄膜(無圖示) i J 基板11殘留有感光性樹脂層之狀態下,與保護膜之殘 分B —起捲繞於支撐薄膜捲繞輥13。 再者,爲了將已剝離保護膜之積層體薄膜1 a的剝 分A正確地貼合於基板1 1希望之範圍,例如有需要以 膜之剝離部分A與殘留部分B的交界部分1 4a可設定 在離基板11之前端部是距離K的指定位置之方式,高 度地將積層體薄膜la送出至層壓滾筒12a、12b間。 此時,在先前之製造裝置中係計數從旋轉編碼器3輸 出之脈衝訊號的脈衝數,在成爲藉半切裝置5所形成之交 200900244 界部分14a到達層壓滾筒12a、12b爲止的規定脈 間點,開始將積層體薄膜1 a之剝離部分A對基板 但是,因爲積層體薄膜1 a係在可撓性之支撐 成有感光性樹脂層者,且在賦予張力之狀態下被 , 以可能因搬運中積層體薄膜la之延展而發生貼 .11之前述交界部分14a的位置偏差。特別因爲 12a、 12b是在加熱的狀態下將積層體薄膜la | 貼合,所以在層壓滾筒12a、12b附近之積層體薄 延展大。 因此,對基板11連續進行貼合處理時,會造 合位置之偏差而超過容許範圍。因而,在進行指 貼合處理後,需要計測積層體薄膜1 a對基板1 1 置的偏差量,修正半切裝置5形成交界部分14a、 置,以修正其偏差。此時,因爲可連續處理之感 體片量受到限制,所以生產效率顯著降低。 【發明内容】 本發明之目的爲提供一種可以簡易之構成高 測形成於長條狀感光性薄片之加工部位的位置, 效製造高品質之感光性積層體的感光性積層體之 及製造方法。 本發明之感光性積層體之製造裝置,係送出 上依序積層感光材料層與保護膜而構成之長條狀 片,將對應於前述保護膜之剝離部分與殘留部分 置之加工部位’形成於從前述保護膜至前述感光 部分,在將前述保護膜之前述剝離部分剝離後, 衝數之時 11壓接。 薄膜上形 搬運,所 合於基板 層壓滾筒 运基板11 〖膜1 a的 成累積貼 定片數之 之貼合位 14b之位 光性積層 精確度檢 並且可有 製造裝置 在支撐體 感光性薄 的交界位 材料層的 將目U述長 200900244 條狀感 加熱之 述保護 貼合於 進 長條狀 位 之加工 運路徑 訊; 施 述進給 給量的 進 修正前 此 支撐體 光性薄 交界位 料層的 述長條 對被加 置前述 料層貼 包含以 光性薄片與被以指定之間隔供給的基板一起’對被 一對壓接滾筒間連續地送出’在前述基板間配置前 膜之前述殘留部分’並且將露出之前述感光材料層 前述基板上,以製造感光性積層體’其特徵爲具備: 給量計測部,其係計測形成有前述加工部位之前述 感光性薄片的進給量; 置偏差資訊取得部,其係配置在形成前述加工部位 部與前述壓接滚筒間之前述長條狀感光性薄片的搬 中,而取得前述加工部位對基準位置之位置偏差資 力部,其係爲了取得前述位置偏差資訊,於藉由目U 量計測部所計測出之前述進給量達到指定之設定進 時間點,對前述位置偏差資訊取得部施力;及 給量修正部,其係依據取得之前述位置偏差資訊’ 述長條狀感光性薄片對前述壓接滾筒之進給量。 外,本發明之感光性積層體之製造方法,係送出在 上依序積層感光材料層與保護膜而構成之長條狀感 片,將對應於前述保護膜之剝離部分與殘留部分的 置之加工部位,形成於從前述保護膜至前述感光材 部分,.在前述保護膜之前述剝離部分剝離後,將前 狀感光性薄片與被以指定之間隔供給的基板一起, 熱之一對壓接滾筒間連續地送出,在前述基板間配 保護膜之前述殘留部分,並且將露出之前述感光材 合於前述基板上,以製造感光性積層體,其特徵爲 下步驟: 200900244 片的 之前 進給 位對 感光 狀感 之前 正長 感光 可明 的製 機EL 長條 轉印 片22 計測形成有前述加工部位之前述長條狀感光性薄 進給量; 在形成前述加工部位之加工部與前述壓接滾筒間 述長條狀感光性薄片的搬運路徑中,於所計測之前述 量達到指定之設定進給量的時間點,取得前述加工部 基準位置之位置偏差資訊;及 依據取得之前述位置偏差資訊,修正前述長條狀 性薄片對前述壓接滾筒之進給量。 本發明可以簡易之構成高精確度檢測形成於長條 光性薄片之加工部位的位置。此外,藉由取得檢測出 述加工部位的位置對基準位置之位置偏差資訊,而修 條狀感光性薄片之進給量,可有效率地製造高品質之 性積層體。 從配合附圖之以下適當的實施形態例之說明,應 瞭上述之目的、特徵及優點。 【實施方式】 第1圖係本發明第一種實施形態之感光性積層體 造裝置20之槪略構成圖,該製造裝置20以液晶或有: 用濾色器等之製程,進行將由指定之寬度尺寸構成的 狀感光性薄片22之感光性樹脂層28 (於後述)熱 (Laminate;層壓)於玻璃基板24的作業。 第2圖係使用於製造裝置20之長條狀感光性薄 的剖面圖。該長條狀感光性薄片22積層可撓性基底膜(支 撐體)26、感光性樹脂層(感光材料層)28及保護膜30 而構成。 200900244 如第1圖所示,製造裝置20具備:收容已將長條狀 光性薄片22捲繞成輥狀之感光性薄片輥23,而可從感光 薄片輥23送出前述長條狀感光性薄片22之薄片送出機 32 ;形成可在送出之長條狀感光性薄片22的保護膜30 感光性樹脂層28之寬度方向切斷的2處交界部分之半切 位(加工部位)34a、34b (參照第2圖)的加工機構36 ( 工部);及使一部分具有非接合部38a之接合標籤38 (參 第3圖)接合於保護膜3 0的標籤接合機構40。 在標籤接合機構40之下游設置:用於將長條狀感光 薄片22從間歇輸送變更成連續輸送之貯存機構42;以指 之長度間隔從長條狀感光性薄片22剝離保護膜30之剝 機構44;將玻璃基板24以加熱至指定溫度之狀態下供給 貼合位置之基板供給機構45 ;及將藉剝離前述保護膜 而露出之感光性樹脂層28 —體地貼合於前述玻璃基板 之貼合機構46。 在貼合機構46中之貼合位置的上游附近,設置攝影 47,以對包含有半切部位34a之長條狀感光性薄片22圖 進行攝影。 在薄片送出機構32之下游附近設置貼合座49,其貼 槪略使用完之長條狀感光性薄片22的後端與新使用之 條狀感光性薄片22前端。在貼合座49之下游,爲了控 因感光性薄片輥23捲曲偏差造成寬度方向之偏差,而設 薄膜終端位置檢測器5 3。此處’薄膜終端位置調整係使 片送出機構32在寬度方向移動而進行,不過亦可附設組 滾筒之位置調整機構而進行。 感 性 構 及 部 加 照 性 定 離 至 30 24 部 像 合 長 制 置 薄 合 -10- 200900244 加工機構36配置於滾筒組50下游,該滾筒組50係用 於算出被收容捲繞於薄片送出機構32之感光性薄片輥23 的輥徑。該滾筒組50連結用以計測長條狀感光性薄片22 之進給量的旋轉編碼器(進給量計測部)5 1。加工機構3 6 具備離開距離Μ程度之一對圓刃52a、52b。圓刃52a、52b 在長條狀感光性薄片22之寬度方向移動,而在夾著保護膜 30之殘留部分B的指定之2處位置形成半切部位34a、 34b (參照第2圖)。 如第2圖所示,半切部位34a、34b至少需要切斷保護 膜30及感光性樹脂層28,實際上,係以切入至可撓性基底 膜26之方式設定圓刃52a、5 2b之切入深度。圓刃52a、52b 採用在不旋轉而固定之狀態下,於長條狀感光性薄片22之 寬度方向移動,而形成半切部位34a' 34b之方式;及不在 前述長條狀感光性薄片22上滑動,而於前述寬度方向一邊 旋轉一邊移動,而形成前述半切部位34a、34b之方式。該 半切部位34a、34b亦可取代圓刃52a、52b ’而採用如使用 雷射光及超音波之切割方式,或是以刀刃、剪切刃(湯姆 生刃)等形成之方式。 半切部位34a、34b,設定成將感光性樹脂層28貼合於 玻璃基板24時,例如由前述玻璃基板24之兩端部分別進 入內側各10mm的位置(對應於第12圖中之距離K )。另外, 玻璃基板24間之保護膜30的殘留部分B ’係作爲在後述 之貼合機構4 6中,將感光性樹脂層2 8外框狀地貼合於前 述玻璃基板24時之遮罩的功能者。 標籤接合機構40,爲了對應於玻璃基板24間,保留保 -11 - 200900244 護膜3 0之殘留部分B ’而供給連結半切部位3 4 b側之剝離 部分A與半切部位3 4 a側之剝離部分A的接合標籤3 8。 如第3圖所示’接合標籤3 8構成長條紙狀,例如由與 保護膜3 0相同之樹脂材料所形成。接合標籤3 8具有中央 部不塗布黏合劑之非接合部(包含微黏合)38a,並且在該 非接合部3 8 a之兩側,亦即在前述接合標籤3 8之長度方向 兩端部具有:接合於前方之剝離部分A的第一接合部3 8b, 及接合於後方之剝離部分A的第二接合部38c。 如第1圖所示,標籤接合機構40具備離開各指定間隔 並可貼合最大7片接合標籤38的吸附墊54a〜5 4g,並且在 藉由前述吸附墊54a〜54g貼合前述接合標籤38之位置,升 降自如地配置用於從下方保持長條狀感光性薄片22之托 架 5 6。 貯存機構42爲了吸收上游側之長條狀感光性薄片22 的間歇輸送與下游側之前述長條狀感光性薄片22的連續 輸送之速度差,而具備在箭頭方向搖動自如之跳動滾筒60。 配置於貯存機構42下游之剝離機構44具備吸入筒 62,用於遮斷長條狀感光性薄片22之送出側的張力變動’ 使層壓時之張力穩定。在吸入筒62附近配置剝離滾筒63 ’ 同時經由該剝離滾筒63而自長條狀感光性薄片22以銳角 之剝離角剝離的保護膜30,係捲繞於保護膜捲繞部64’殘 留部分B除外。 在剝離機構44之下游側設置可賦予長條狀感光性薄片 22張力之張力控制機構66。張力控制機構66在汽缸68之 驅動作用下,藉由張力調節器7 0搖動變位,可調整長條狀 -12- 200900244 感光性薄片22之張力。另外,張力控制機構66依需要使 用即可,亦可刪除。 檢測一方之半切部位34a的位置之攝影部47 ’如第4 圖所示,具備:設置於搬運滾筒71與搬運滾筒73間之長 條狀感光性薄片22會成爲直線狀的部分,並具有延伸於長 條狀感光性薄片22之搬運方向的攝影區域之二維感測 器,如CCD相機72 ;及經由長條狀感光性薄片22與CCD 相機72相對配置,而將照明光照射於長條狀感光性薄片22 的二維光源6 9。 CCD相機72只要是可檢測半切部位34a對長條狀感光 性薄片22之搬運方向的位置者即可,如亦可由數個檢測像 素排列於前述搬運方向之一維CCD相機構成。此外,從二 維光源69輸出之照明光係由不使感光性樹脂層28感光之 波長構成的光,例如紅色光。在CCD相機72之攝影區域 中設置規定基準位置之基準片67。另外,亦可取代使用基 準片67,而改爲特定構成CCD相機72之檢測像素,將其 檢測像素之位置作爲基準位置。 基板供給機構45具備:以夾著玻璃基板24之方式而 設置之基板加熱部(如加熱器)74,在箭頭Y方向搬運該 玻璃基板2 4之搬運部7 6,及檢測玻璃基板2 4之後端部的 停止位置之停止位置檢測感測器78。基板加熱部74隨時監 視玻璃基板24之溫度,於異常時’停止搬運部76及發出 警報,並且發送異常資訊,在爾後步驟NG排出異常之玻 璃基板24,可活用於品質管理或生產管理等。搬運部76 中設置無圖示之氣浮板,浮起玻璃基板24而在箭頭γ方向 -13- 200900244 搬運。玻璃基板24之搬運亦可藉由滾筒輸送機進行。 玻璃基板24之溫度測定宜在基板加熱部74內或貼合 位置之前進行。測定方法除了接觸式(如熱電偶)之外, 亦可爲非接觸式。 貼合機構46具備設置於上下,並且加熱成指定溫度之 橡膠滾筒(壓接滾筒)80a、80b。橡膠滾筒80a、80b上滑 接備份滾筒82a、82b。一方之備份滾筒82b藉由構成滾筒 壓板部83之加壓汽缸84而被推壓於橡膠滾筒80b側。 玻璃基板24從貼合機構46經由延伸於箭頭Y方向之 搬運路徑88而被搬運。該搬運路徑88中設置薄膜搬運滾 筒90a、9 0b及基板搬運滾筒92。橡膠滾筒80a、80b與基 板搬運滾筒92之間隔宜設定成一片玻璃基板24份量的長 度以下。 此外,在基板搬運滾筒92之下游側的指定位置設置刀 具機構48,用於切斷玻璃基板24間之長條狀感光性薄片 22作成感光性積層體100。 另外,以上構成之製造裝置20係將薄片送出機構32、 加工機構3 6、標籤接合機構40、貯存機構42、剝離機構 44、張力控制機構66及攝影部47配置於貼合機構46之上 方,反之,亦可建構成從前述薄片送出機構32至前述攝影 部47配置於前述貼合機構46之下方,長條狀感光性薄片 22之上下顛倒,而將感光性樹脂層28貼合於玻璃基板24 下側,此外,亦可將長條狀感光性薄片22之搬運路徑構成 直線狀。 製造裝置20內,經由隔牆110而隔離第一潔淨室112a • μ- 200900244 與第二潔淨室112b。第一潔淨室112a中收容薄片送 32至張力控制機構66,第二潔淨室1 12b中收容攝 以後之機構。第一潔淨室1 12a與第二潔淨室1 12b 穿部1 1 4而連通。 第5圖顯示製造裝置20之控制電路區塊圖。製 20之控制電路具備··圖像檢查控制盤1 20 (位置偏 取得部)’其係依據藉由構成攝影部47之CCD相卷 取得的包含半切部位34a之長條狀感光性薄片22的 訊,取得半切部位34a之位置偏差資訊;及層壓裝 盤1 22 ’其係按照圖像檢查控制盤1 20取得之前述位 資訊,控制貼合機構46,修正長條狀感光性薄片22 量,以進行半切部位34a之位置調整。 圖像檢查控制盤1 20具有:快門控制部1 24(施 其係將控制CCD相機72之圖像攝影時間點的快門 出至CCD相機72;圖像處理部126,其係處理藉由 機72攝影之半切部位34a及基準片67的圖像資訊 置偏差量算出部1 2 8,其係依據處理之圖像資訊,算 部位34a相對於以基準片67之位置所決定的基準位 置偏差量。 快門控制部124中連接:旋轉編碼器51,其計 狀感光性薄片22藉由滾筒組50之進給量,作爲脈 及半切控制部1 30,控制加工機構36而實施半切部 34b之加工。半切控制部1 30對旋轉編碼器5 i,對 切部位34a、34b之加工時,而輸出脈衝計數開始{ 且對快門控制部1 24,將對應於長條狀感光性薄片 出機構 影部47 經由貫 造裝置 差資訊 慈72所 圖像資 置控制 置偏差 之進給 力部), 信號輸 CCD相 :及位 出半切 置之位 數長條 衝數; 位 3 4 a、 應於半 [號,並 22之半 -15- 200900244 切部位34a到達設定於攝影部47之基準位置的規定進給 之規定脈衝數輸出至快門控制部1 2 4。快門控制部1 2 4比 從旋轉編碼器51供給之脈衝數的計數値與從半切控制 1 3 0供給之規定脈衝數,在此等一致的時間點,輸出快門 號至CCD相機72。 層壓裝置控制盤122具備:控制脈衝修正部132 (進 量修正部),其係依據位置偏差量算出部1 2 8算出之半切 位34a的位置偏差量,以修正藉由貼合機構46控制長條 ( 感光性薄片22之搬運的控制脈衝;操作顯示部1 34 (修 條件設定部),其係用於設定控制脈衝修正部1 3 2之修正 件;及層壓裝置控制部1 3 6,其係依據藉由控制脈衝修正 132所修正之控制脈衝,控制貼合機構46。層壓裝置控 部136經由馬達控制部138控制驅動橡膠滾筒80a、80b 驅動馬達1 40。另外,所謂修正條件,如係在控制脈衝修 部132中修正半切部位34a之位置的感光性積層體1〇〇 量的修正頻率,及用於修正控制脈衝之位置偏差量的處 ί 方法等之條件。 其次,針對以上構成之製造裝置20的動作,茲以與 發明之製造方法的關連作說明。 首先,從安裝於薄片送出機構32之感光性薄片輥 送出長條狀感光性薄片22。長條狀感光性薄片22搬運至 工機構36。 加工機構36中,圓刃52a、52b移動於長條狀感光 薄片22之寬度方向,從保護膜30至感光性樹脂層28乃 可撓性基底膜26切入前述長條狀感光性薄片22,而形成 量 較 部 信 給 部 狀 正 條 部 制 之 正 數 理 本 23 加 性 至 保 -16- 200900244 護膜30之殘留部分b的寬度μ程度離開之半切部位34a、 3 4b (參照第2圖)。藉此,在長條狀感光性薄片22中,夾 著殘留部分B而設置前方之剝離部分A與後方之剝離部分 A (參照第2圖)。 另外’殘留部分B之寬度Μ係以長條狀感光性薄片22 不延伸作爲前提,將供給至貼合機構46之橡膠滾筒80a、 8 0b間的玻璃基板24間之距離爲基準而設定。此外,以寬 度Μ形成之一組半切部位34a、34b係以貼合於玻璃基板 24之感光性樹脂層28的基準長度之間隔而形成於長條狀 感光性薄片2 2。 其次,長條狀感光性薄片22搬運至標籤接合機構40, 而將保護膜3 0之指定貼合部位配置於托架5 6上。標籤接 合機構40係藉由吸附墊54b〜54g吸附保持指定數量之接合 標籤38’各接合標籤38橫跨保護膜30之殘留部分B,而 一體地接合於前方之剝離部分A與後方之剝離部分A (參 照第3圖)。 例如接合有7片接合標籤38之長條狀感光性薄片22, 如第1圖所示’經由貯存機構42防止送出側之張力變動 後,連續地搬運至剝離機構44。剝離機構44將長條狀感光 性薄片22之可撓性基底膜26吸附保持於吸入筒62,並且 保護膜30保留殘留部分B’而自前述長條狀感光性薄片22 剝離。該保護膜3 0經由剝離滾筒63剝離,而捲繞於保護 膜捲繞部64 (參照第1圖)。 在剝離機構4 4之作用下,保護膜3 0保留殘留部分B, 而自可撓性基底膜26剝離後,長條狀感光性薄片22藉由 -17- 200900244 張力控制機構66進行張力調整,其次,在攝影部47中, 以指定之攝影時間點,攝影包含半切部位34a及基準片67 之長條狀感光性薄片2 2的圖像。 藉由攝影部47取得之圖像資訊在圖像檢查控制盤1 20 中算出半切部位34a之位置偏差量,其次在層壓裝置控制 盤1 22中進行長條狀感光性薄片22之進給量的修正處理。 另外,圖像檢查控制盤120及層壓裝置控制盤122中之修 正處理詳細內容於後述。 藉由通過攝影部47之長條狀感光性薄片22搬運至貼 合機構46,進行感光性樹脂層28對玻璃基板24之轉印處 理(Laminate;層壓)。 貼合機構46起初係設定成橡膠滾筒80a、80b離開之 狀態,在橡膠滾筒80a、80b間之指定位置定位長條狀感光 性薄片2 2之半切部位3 4 a的狀態下,暫時停止搬運長條狀 感光性薄片22。在該狀態下,藉由搬運部76將藉由構成基 板供給機構4 5之基板加熱部7 4而加熱至指定溫度之玻璃 基板24的前端部搬入橡膠滾筒80a、80b間時,在加壓汽 缸84之作用下,備份滾筒82b及橡膠滾筒80b上昇,而在 橡膠滾筒8 0 a、8 0 b間以指定之壓力機壓力夾入玻璃基板2 4 及長條狀感光性薄片22。另外’橡膠滾筒80a、80b加熱至 指定之層壓溫度。 其次’在層壓裝置控制部1 3 6之控制下,經由馬達控 制部1 3 8驅動驅動馬達1 4 0,使橡膠滾筒8 0 a、8 0 b旋轉, 將玻璃基板2 4及長條狀感光性薄片2 2搬運至箭頭γ方 向。結果感光性樹脂層28被加熱溶化而轉印(Laminate; -18- 200900244 層壓)於玻璃基板24。 另外,層壓條件係速度爲1.0m/ min~10.0m / min,橡 膠滾筒80a、80b之溫度爲80 °C〜140 °C,前述橡膠滾筒80a、 8 0b之橡膠硬度爲40度~90度,該橡膠滾筒80a、80b之壓 力機壓力(線壓)爲50N/cm~400N/cm。 對玻璃基板24層壓一片長條狀感光性薄片22結束 時,停止橡膠滾筒80a、80b之旋轉,另外,藉由基板搬運 滾筒92夾住層壓有長條狀感光性薄片22之玻璃基板24的 感光性積層體100之前端部。此時,在橡膠滾筒80a、8 0b 間之指定位置配置半切部位34b。 而後,橡膠滾筒80b退開於從橡膠滾筒80a離開之方 向,而解除夾住,並且基板搬運滾筒92以低速再度開始旋 轉,感光性積層體100在箭頭Y方向搬運對應於保護膜30 之殘留部分B的寬度Μ之距離程度,其次之半切部位34a 被搬運至橡膠滾筒80a之下方附近的指定位置後,停止橡 膠滾筒80a、80b之旋轉。另外,以下將僅在半切部位34a、 3 4b間搬運長條狀感光性薄片22之處理,稱爲「基板間搬 運」。 另外,在前述之狀態下,經由基板供給機構45,而向 貼合位置搬運其次之玻璃基板24,藉由反覆進行以上之動 作,而連續地製造感光性積層體1 00。 此時,感光性積層體10 0如第4圖所示,各個端部藉 由保護膜30的殘留部分B覆蓋。因此,感光性樹脂層28 被層壓於玻璃基板24時,橡膠滾筒80a、80b不致被前述 感光性樹脂層2 8污染。 -19- 200900244 以貼合機構46層壓之感光性積層體1〇〇’藉由刀具機 構4 8切斷玻璃基板2 4間之長條狀感光性薄片2 2而分離。 另外,在分離之感光性積層體1〇〇中安裝有可撓性基底膜 26,該可撓性基底膜26與玻璃基板24間之保護膜30 —起 剝離後,供給至其次之處理步驟。 其次,按照第6圖所示之流程圖,說明長條狀感光性 薄片22之進給量的修正處理。 首先,作業人員使用由觸摸式面板等構成之操作顯示 部1 3 4指定修正條件(步驟S 1 )。 此時,操作顯示部134就修正條件,如指定感光性積 層體100之數量,可指示層壓裝置控制盤122從指定數量 以後的感光性積層體1 00開始修正處理。藉由指定該修正 條件,可在高精確度調整製造裝置20的開始製造初期,不 進行修正,而有效製造感光性積層體1 00。 此外,就修正條件可指定進行修正處理之頻率。如將 藉由圖像檢査控制盤120算出之半切部位34a的位置偏差 量,可指定每次反饋於層壓裝置控制盤1 22進行修正處理, 或是求出算出之位置偏差量的平均値,使用其平均値,在 幾次後進行1次修正處理,或是在幾次後算出1次位置偏 差量,以進行修正處理的修正處理頻率。 此外,就修正條件,可指定於算出之位置偏差量中設 定容許範圍,僅於位置偏差量在容許範圍內時進行修正處 理,超過容許範圍時,如藉由操作顯示部134發出警告等, 而暫時停止製造裝置20之動作。 ’ 指定修正條件後,半切控制部1 30對圖像檢查控制盤 -20- 200900244 1 20之快門控制部1 24設定對應於藉由加工機構3 6而形成 於長條狀感光性薄片22之半切部位34a到達攝影部47之 基準位置的規定進給量之規定脈衝數(步驟S2 )。此時’ 規定脈衝數如可將半切部位3 4 a、3 4 b從加工機構3 6移動 至攝影部47之基準位置間,長條狀感光性薄片22不致伸 縮作爲條件,而設定其次之半切部位34a到達先行之半切 部位34a的位置前,從旋轉編碼器5 1輸出之脈衝信號的脈 衝數。 因此,半切控制部1 30在控制加工機構36,於長條狀 感光性薄片22中形成半切部位34a、34b之同時(步驟S3 ), 對旋轉編碼器51輸出脈衝計數開始信號,旋轉編碼器51 開始脈衝數之計數(步驟S4 )。 其次,搬運形成有半切部位34a、34b之長條狀感光性 薄片22,半切部位34a到達攝影部47之攝影區域142 (參 照第7圖、第8圖),藉由旋轉編碼器5 1計數之脈衝數與 在步驟S2設定之規定脈衝數一致時(步驟S5 ),快門控制 部124對CCD相機72輸出快門信號。 此時,驅動二維光源69,照明光照射於長條狀感光性 薄片22,而藉由CCD相機72攝影將基準片67及半切部位 34a包含於攝影區域142的長條狀感光性薄片22之圖像(步 驟S6 )。藉由CCD相機72攝影之圖像作爲圖像資訊而傳送 至圖像處理部1 26,藉由實施指定之圖像處理,而取得基準 片67及半切部位34a之位置資訊(步驟S7 )。取得之位置 資訊傳送至位置偏差量算出部128,算出半切部位34a之位 置對基準片67作爲基準而設定之基準位置的位置偏差量 -21 - 200900244 △ K (步驟S8,參照第7圖、第8圖)。 算出之半切部位34a的位置偏差量△ K傳送至控制脈 衝修正部1 32後,按照操作顯示部1 34指定之修正條件進 行基板間進給脈衝數之修正(步驟S 9、S 1 0 )。另外,並非 每次檢測半切部位34a而進行修正處理時,係按照跳過修 正處理之次數,反覆進行步驟S3~S9之處理。 經控制脈衝修正部1 3 2修正之基板間進給脈衝數傳送 至層壓裝置控制部1 3 6。層壓裝置控制部1 3 6依據傳送之基 板間進給脈衝數,經由馬達控制部1 3 8控制驅動馬達1 40 (步驟S 1 1 ),以調整基板間進給量。 第9圖係長條狀感光性薄片22之層壓控制及依據修正 後之基板間進給脈衝數的基板間進給控制之說明圖。 層壓裝置控制部136對玻璃基板24之前端部,在第12 圖所示之距離K程度離開的位置對準長條狀感光性薄片22 之半切部位3 4 a的狀態下進行層壓後(層壓1 ),暫時停止 長條狀感光性薄片2 2之進給。其次,按照修正後之基板間 進給脈衝數,藉由以低速基板間搬運長條狀感光性薄片 22,設定成其次之半切部位34a成爲橡膠滾筒80a、80b間 之指定位置後,在橡膠滾筒80a、80b間供給玻璃基板24, 再度於玻璃基板24上層壓長條狀感光性薄片22(步驟 S 12,層壓 2 )。 此處,進行基板間進給處理時,如第7圖所示,半切 部位34a之位置係位置偏差量△ K程度偏離於加工機構36 側時,按照位置偏差量△ K增加基板間進給脈衝數,而以 第9圖之圖案144a進行基板間進給控制。此外,如第8圖 -22- 200900244 所示,半切部位34a之位置係位置偏差量ΔΚ程度偏離於 橡膠滾筒8 0 a、8 0 b側時,按照位置偏差量△ Κ減少基板間 進給脈衝數,而以第9圖之圖案1 44b進行基板間進給控制。 如此,藉由進行基板間進給控制,可將半切部位34a 對玻璃基板24之位置調整成希望之位置,以製造高品質之 感光性積層體100。此外,因爲可不停止製造裝置20之動 作,而進行長條狀感光性薄片22對玻璃基板24之貼合位 置的調整處理,所以可有效率地製造感光性積層體1 〇〇。再 者,攝影部47之位置藉由調整對應於半切部位34a、34b 之設定進給量的基板間進給脈衝數,而可設定於加工機構 36與貼合機構46間之任意位置。 第1 0圖係本發明第二種實施形態之感光性積層體的 製造裝置200之槪略構成圖。另外,在與第一種實施形態 之感光性積層體的製造裝置20相同之構成要素上註記相 同之參照符號,而省略其詳細之說明。 製造裝置200係從貼合於玻璃基板24之長條狀感光性 薄片22連續地剝離殘留之可撓性基底膜26而構成者,在 貼合機構46之下游側,沿著搬運路徑88依序設置:冷卻 層壓後之玻璃基板24及長條狀感光性薄片22的冷卻機構 202 ;及從感光性樹脂層28連續地剝離可撓性基底膜26之 基礎剝離機構204。 基礎剝離機構204具備:預剝離部206、小直徑之剝離 滾筒208、捲繞軸210及自動貼合機212。捲繞軸210於驅 動時實施轉矩控制,在可撓性基底膜26上賦予張力,另 外,如宜藉由在剝離滾筒2 0 8中設置張力檢測器(無圖示), -23- 200900244 來進行張力之反饋控制。預剝離部206具備可在玻璃基板 24間升降之剝離桿214。 貼合機構46中層壓之玻璃基板24及長條狀感光性薄 片22藉由冷卻機構202冷卻後,玻璃基板24間之長條狀 感光性薄片22藉由構成預剝離部206之剝離桿214推上於 上方,藉此,從感光性樹脂層28剝離可撓性基底膜26之 一部分。其次,藉由將貼合有感光性樹脂層28之玻璃基板 24搬運於箭頭Y方向,另外,將可撓性基底膜26經由剝 離滾筒208而捲繞於捲繞軸210,從感光性樹脂層28連續 地剝離可撓性基底膜26,分離玻璃基板24間,以製造感光 性積層體1 0 0。 另外,上述之第一及第二種實施形態係藉由將從1支 感光性薄片輥23供給之長條狀感光性薄片22貼合於玻璃 基板24 ’以製造所謂單輥鋪設之感光性積層體1 〇〇而構 成’不過亦可如將從2支感光性薄片輥或3支以上之感光 性薄片輥供給長條狀感光性薄片22貼合於玻璃基板24,以 製造所謂二輕鋪設、三輕鋪設等之感光性積層體而構成。 此外,檢測長條狀感光性薄片2 2之進給量的旋轉編碼 器51係連結於加工機構36前段之滾筒組50,不過亦可構 成連結於攝影部47之上游側的希望位置,如連結於吸入筒 62 ’以檢測吸入筒62之旋轉量。 此外,上述實施形態係取得一方之半切部位3 4 a的位 置偏差資訊,以修正基板間進給量,不過,亦可取得另一 方半切部位3 4b之位置偏差資訊,以修正基板間進給量。 【圖式簡單說明】 -24- 200900244 第1圖係本發明第一種實施形態之製造裝置的槪略構 成圖。 第2圖係使用於第一種實施形態之製造裝置的長條狀 感光性薄片之剖面圖。 第3圖係在長條狀感光性薄片上接合有接合標籤之狀 態的說明圖。 第4圖係形成半切部位之加工機構,取得半切部位之 位置偏差資訊的攝影部及貼合機構之配置關係說明圖。 第5圖係依據半切部位之位置偏差資訊,進行基板間 進給控制之修正處理的電路構成區塊圖。 第6圖係依據半切部位之位置偏差資訊,進行基板間 進給控制之修正處理的流程圖。 第7圖係藉由攝影部取得之半切部位的位置偏差資訊 之說明圖。 第8圖係藉由攝影部取得之半切部位的位置偏差資訊 之說明圖。 第9圖係長條狀感光性薄片之層壓控制及基板間進給 控制的說明圖。 第10圖係本發明第二種實施形態之製造裝置的槪略 構成圖。 第11圖係先前技術之製造裝置的槪略構成圖。 第1 2圖係形成於長條狀感光性薄片之半切部位與貼 合長條狀感光性薄片之基板的位置關係說明圖。 【主要元件符號說明】 薄膜輥 -25- 200900244 la 積層體薄膜 2a 2b 3 4 5 導引滾筒 導引滾筒 旋轉編碼器 吸入滾筒 半切裝置 5a 碟片刀具 5b 6 7 7a 8 a 8b 9 10 11 12a 12b 13 14a 14b 20 22 23 24 碟片刀具 保護膜剝離裝置 黏合膠帶輥 黏合膠帶 擠壓滾筒 擠壓滾筒 捲繞輥 基板搬運裝置 基板 層壓滾筒 層壓滾筒 支撐薄膜捲繞輥 交界部分 交界部分 製造裝置 長條狀感光性薄片 感光性薄片輥 玻璃基板 -26- 200900244 f \ 26 可 撓 性 基 礎 膜 28 感 光 性 樹 脂 層 30 保 護 膜 32 薄 片 送 出 機 構 34a 半 切 部 位 34b 半 切 部 位 36 加 工 機 構 38 接 合 標 籤 38a 非 接 合 部 38b 第 一 接 合 部 38c 第 二 接 合 部 40 標 籤 接 合 機 構 42 貯 存 機 構 44 剝 離 機 構 45 基 板 供 給 機 構 46 貼 合 機 構 47 攝 影 部 48 刀 具 機 構 49 貼 合 座 50 滾 筒 組 5 1 旋 轉 編 碼 器 52a 圓 刃 52b 圓 刃 53 薄 膜 終 端 位 置檢測器 5 4 a ~ 5 4 g 吸 附 墊 200900244 r[Technical Field] The present invention relates to a manufacturing apparatus and a manufacturing method for a photosensitive laminate, in which a substrate and a long photosensitive sheet having a photosensitive material layer on a support are fed to A photosensitive laminate is produced by bonding the photosensitive material layer to the substrate between a pair of pressure rollers. [Prior Art] A substrate for a liquid crystal panel, a substrate for a printed circuit board, and a substrate for a PDP are formed by bonding a photosensitive sheet (photosensitive sheet) having a photosensitive resin layer (photosensitive material layer) to the surface of the substrate. In the photosensitive sheet system, for example, a photosensitive resin layer and a protective film are sequentially laminated on a flexible plastic support. The manufacturing apparatus used for bonding such a photosensitive sheet is usually such that a substrate such as a glass substrate or a resin substrate is separated from each other by a predetermined interval, and is transported between the lamination rolls, and is peeled off from the substrate. The photosensitive sheet of the protective film according to the range of the photosensitive resin layer to be bonded is transported between the laminate drums. For example, in the manufacturing apparatus of Japanese Laid-Open Patent Publication No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. And extending along the horizontal film transport surface. A rotary encoder 3 that outputs a pulse signal of a number of pulses in accordance with the feed amount of the laminated body film la is attached to the guide roller 2b. The laminated body film la extending along the horizontal film conveying surface is wound around the suction drum 4, and a half-cutting device 5 and a protective film peeling device 6 are provided between the guiding roller 2b and the suction drum 4. 200900244 specifies the product, the A and the adhesive portion A are wound around the roller 12b, and the laminated film is wound in the retaining portion to protect the position. The precise half-cutting device 5 is provided at intervals in the conveying direction of the laminated film la A pair of disc cutters 5a, 5b. The disc cutters 5a, 5b are moved in the film width direction along the layer film la, and in the state where the support film is retained as shown in Fig. 12, together with the photosensitive resin layer (not shown). The peeling portion in the protective film (not shown) of the laminated film la. The two boundary portions 14a, 14b between the remaining portions B are cut off together. The protective film peeling device 6 is a tape 7a which is successively fed out from the adhesive tape roll 7, and is strongly pressed against the peeling of the protective film between the squeeze rolls 8a and 8b, and then wound by the winding roll 9. Thereby, the peeling portion of the protective film is peeled off from the photosensitive resin layer, and is wound around the roll 9 in the vicinity of the suction roll 4 together with the adhesive tape 7a, and is transported by the substrate transfer device 10 by finger separation. On the upper surface of the substrate 1 1 , a pair of laminating rolls 1 2 a are provided, and a peeling portion A for laminating the laminated film 1 a from which the protective film has been peeled off is pressure-bonded. On the downstream side of the laminating rolls 1 2a, 1 2b, a supporting thin roll 13 is disposed. The support film (not shown) bonded to the photosensitive resin layer is wound around the support film winding roller 13 together with the residue B of the protective film in a state where the photosensitive resin layer remains on the substrate J. Further, in order to properly adhere the peeling A of the laminated body film 1 a of the peeled protective film to the desired range of the substrate 11, for example, it is necessary to form the boundary portion 14a of the peeled portion A and the residual portion B of the film. The laminated body film la is highly fed between the laminating rolls 12a and 12b so as to be set at a predetermined position of the distance K from the front end of the substrate 11. At this time, in the prior manufacturing apparatus, the number of pulses of the pulse signal output from the rotary encoder 3 is counted, and the predetermined pulse between the boundary portion 14a formed by the half-cutting device 5 and the stacking roller 12a, 12b is reached. At the same time, the peeling portion A of the laminated body film 1 a is placed on the substrate. However, since the laminated film 1 a is supported by the flexible resin layer and is provided with a photosensitive resin layer, it may be caused by the tension. During the handling, the laminated film la is stretched and applied. The positional deviation of the aforementioned boundary portion 14a of 11. In particular, since 12a and 12b are bonded together in a heated state, the laminated body in the vicinity of the laminating rolls 12a and 12b is thin and large. Therefore, when the substrate 11 is continuously subjected to the bonding process, the variation in the position is exceeded and the allowable range is exceeded. Therefore, after the finger bonding process is performed, it is necessary to measure the amount of deviation of the laminated film 1 a with respect to the substrate 1 1 , and the correction half-cut device 5 forms the boundary portion 14 a to correct the deviation. At this time, since the amount of the sensor sheet which can be continuously processed is limited, the production efficiency is remarkably lowered. SUMMARY OF THE INVENTION An object of the present invention is to provide a photosensitive laminate which can be manufactured at a position where a processed portion of a long-length photosensitive sheet can be easily formed, and which is capable of producing a high-quality photosensitive laminate. In the apparatus for producing a photosensitive laminate according to the present invention, a long sheet formed by sequentially laminating a photosensitive material layer and a protective film is formed, and a processed portion corresponding to the peeled portion and the remaining portion of the protective film is formed. From the protective film to the photosensitive portion, after the peeling portion of the protective film is peeled off, the pressure is 11 at the time of punching. The film is conveyed on the substrate, and the substrate is laminated on the substrate 11 of the substrate. The film 1a is laminated to the position of the bonding position 14b. The optical layer is accurately checked and the photosensitive device can be used for the support. The thin junction material layer is affixed to the 200900244 strip-like heating and the protection is applied to the processing path of the strip-shaped position; the support is given the light-weight boundary of the support before the correction The strip of the material layer is attached to the material layer, and the optical sheet is continuously fed out between the pair of pressure rollers together with the substrate supplied at a predetermined interval. The remaining portion 'and the photosensitive material layer exposed on the substrate to produce a photosensitive laminated body' is characterized by comprising: a dose measuring unit that measures a feed amount of the photosensitive sheet on which the processed portion is formed And a deviation information acquisition unit that is disposed in the movement of the long-length photosensitive sheet between the processing portion and the pressure roller, and obtains the addition In order to obtain the positional deviation information, the positional deviation information acquisition unit obtains the positional deviation information, and the amount of the feed measured by the U-measurement measuring unit reaches a predetermined set time point, and the positional deviation information acquisition unit And a feeding amount correction unit that refers to the amount of feed of the long photosensitive sheet to the pressure roller according to the obtained positional deviation information. Further, in the method for producing a photosensitive laminate of the present invention, a long-length photosensitive sheet comprising a photosensitive layer and a protective film laminated thereon is fed, and a peeling portion and a residual portion corresponding to the protective film are placed. The processing portion is formed from the protective film to the photosensitive material portion. After the peeling portion of the protective film is peeled off, the front photosensitive sheet and the substrate supplied at a predetermined interval are continuously fed between the pair of heat-bonding rolls, and the residue of the protective film is interposed between the substrates. And the exposed photosensitive material is combined on the substrate to produce a photosensitive laminate, which is characterized by the following steps: 200900244 The previous feed position of the sheet is positively long before the photosensitive feeling is long. The strip transfer sheet 22 measures the long-length photosensitive thin feed amount in which the processed portion is formed; and in the conveyance path of the long-length photosensitive sheet between the processed portion forming the processed portion and the pressure-contact roller, Correcting the positional deviation information of the reference position of the processing unit when the measured amount reaches the specified set feed amount; and correcting the advancement of the long strip to the crimping roller according to the obtained positional deviation information Give the amount. The present invention can be easily constructed to detect the position formed at the processing portion of the long optical sheet with high precision. Further, by obtaining the positional deviation information of the position of the processed portion and the reference position, the amount of feed of the strip-shaped photosensitive sheet can be efficiently produced to efficiently produce a high-quality laminated body. The above objects, features and advantages are set forth in the description of the preferred embodiments of the invention. [Embodiment] FIG. 1 is a schematic structural view of a photosensitive laminate manufacturing apparatus 20 according to a first embodiment of the present invention, and the manufacturing apparatus 20 is designed by liquid crystal or by a color filter or the like. The photosensitive resin layer 28 (described later) of the photosensitive sheet 22 having the width dimension is heat-laminated to the glass substrate 24. Fig. 2 is a cross-sectional view of a strip of photosensitive thinness used in the manufacturing apparatus 20. The long photosensitive sheet 22 is formed by laminating a flexible base film (support) 26, a photosensitive resin layer (photosensitive material layer) 28, and a protective film 30. 200900244 As shown in Fig. 1, the manufacturing apparatus 20 is provided with a photosensitive sheet roll 23 in which the long optical sheet 22 is wound into a roll shape, and the long photosensitive sheet can be fed from the photosensitive sheet roll 23. A sheet-feeding machine 32 of 22; a half-cut (processed portion) 34a, 34b which can be cut at two boundary portions in the width direction of the protective film 30 of the protective film 30 of the long-length photosensitive sheet 22 (see The processing mechanism 36 (working portion) of Fig. 2) and the label bonding mechanism 40 for bonding a part of the bonding label 38 (see Fig. 3) having the non-joining portion 38a to the protective film 30. A storage mechanism 42 for changing the long-length photosensitive sheet 22 from intermittent conveyance to continuous conveyance is provided downstream of the label joining mechanism 40; and a peeling mechanism for peeling off the protective film 30 from the long-length photosensitive sheet 22 at intervals of the finger length 44; a substrate supply mechanism 45 that supplies the glass substrate 24 to the bonding position in a state of being heated to a predetermined temperature; and a photosensitive resin layer 28 exposed by peeling off the protective film to be bonded to the glass substrate Mechanism 46. A photographing 47 is provided in the vicinity of the upstream of the bonding position in the bonding mechanism 46 to photograph the long-length photosensitive sheet 22 including the half-cut portion 34a. In the vicinity of the downstream of the sheet feeding mechanism 32, a bonding seat 49 is provided which is attached to the trailing end of the long strip-shaped photosensitive sheet 22 and the front end of the newly used strip-shaped photosensitive sheet 22. Downstream of the bonding seat 49, a film end position detector 53 is provided in order to control the deviation in the width direction caused by the curl deviation of the photosensitive sheet roll 23. Here, the film end position adjustment is performed by moving the sheet feeding mechanism 32 in the width direction, but it may be carried out by attaching a position adjusting mechanism of the group drum. The inductive structure and the illumination are fixed to 30 24, and the image forming mechanism 36 is disposed downstream of the drum set 50. The drum set 50 is used for calculating the wrapped and wound sheet feeding mechanism. The roll diameter of the photosensitive sheet roll 23 of 32. The drum set 50 is coupled to a rotary encoder (feed amount measuring unit) 51 for measuring the feed amount of the long-length photosensitive sheet 22. The machining mechanism 3 6 has one of the separation distances 对 to the round edges 52a, 52b. The rounded edges 52a and 52b move in the width direction of the long-length photosensitive sheet 22, and the half-cut portions 34a and 34b are formed at two designated positions of the remaining portion B of the protective film 30 (see Fig. 2). As shown in Fig. 2, the half-cut portions 34a and 34b need to be cut at least by the protective film 30 and the photosensitive resin layer 28. Actually, the cutting of the round edges 52a and 52b is set so as to cut into the flexible base film 26. depth. The circular blades 52a and 52b are formed in a manner of being moved in the width direction of the long photosensitive sheet 22 without being rotated, and forming the half-cut portions 34a' to 34b; and not sliding on the long-length photosensitive sheet 22 On the other hand, the half-cut portions 34a and 34b are formed while moving in the width direction while rotating. The half-cut portions 34a and 34b may be formed by cutting a laser beam or an ultrasonic wave instead of the round edges 52a and 52b', or by a blade or a cutting edge (Tomb blade). When the photosensitive resin layer 28 is bonded to the glass substrate 24, for example, the half-cut portions 34a and 34b are set to a position of 10 mm on the inner side of each of the glass substrates 24 (corresponding to the distance K in FIG. 12). . In addition, the remaining portion B' of the protective film 30 between the glass substrates 24 is a mask when the photosensitive resin layer 28 is bonded to the glass substrate 24 in a frame shape in a bonding mechanism 46 to be described later. Functional. The label bonding mechanism 40 supplies the peeling portion A of the half-cut portion 3 4 b side and the peeling portion of the half-cut portion 3 4 a side in order to correspond to the remaining portion B′ of the protective film 30 from the glass substrate 24. Part A's joint label 38. As shown in Fig. 3, the bonding label 38 constitutes a long paper shape, and is formed of, for example, the same resin material as the protective film 30. The bonding label 38 has a non-joining portion (including a micro-adhesion) 38a which is not coated with a binder at the center portion, and has two sides on the both sides of the non-joining portion 38 a, that is, at both ends in the longitudinal direction of the bonding label 38: The first joint portion 38b joined to the front peeling portion A and the second joint portion 38c joined to the rear peeling portion A. As shown in Fig. 1, the label joining mechanism 40 includes suction pads 54a to 54g which are spaced apart from each other by a predetermined interval and which can be bonded to a maximum of seven sheets of bonding labels 38, and the bonding labels 38 are attached to the suction pads 54a to 54g. At the position, the bracket 56 for holding the long-length photosensitive sheet 22 from below is disposed to be lifted and lowered. In order to absorb the difference in speed between the intermittent conveyance of the long-length photosensitive sheet 22 on the upstream side and the continuous conveyance of the long-length photosensitive sheet 22 on the downstream side, the storage unit 42 includes a dancer cylinder 60 that is rockable in the direction of the arrow. The peeling mechanism 44 disposed downstream of the storage mechanism 42 is provided with a suction cylinder 62 for blocking the tension fluctuation on the delivery side of the long photosensitive sheet 22 to stabilize the tension at the time of lamination. The release film 63' is disposed in the vicinity of the suction tube 62. The protective film 30 peeled off from the long-length photosensitive sheet 22 at an acute angle by the peeling roll 63 is wound around the remaining portion B of the protective film winding portion 64'. except. A tension control mechanism 66 that can impart tension to the elongated photosensitive sheet 22 is provided on the downstream side of the peeling mechanism 44. The tension control mechanism 66, under the driving action of the cylinder 68, can be adjusted by the tension adjuster 70 to adjust the tension of the elongated sheet -12-200900244 photosensitive sheet 22. Further, the tension control mechanism 66 may be used as needed or may be deleted. As shown in FIG. 4, the photographing unit 47' that detects the position of the half-cut portion 34a includes a portion in which the long-length photosensitive sheet 22 provided between the transport roller 71 and the transport roller 73 is linear and has an extension. A two-dimensional sensor in the imaging region in the conveyance direction of the long-length photosensitive sheet 22, such as a CCD camera 72, and a long-length photosensitive sheet 22 disposed opposite to the CCD camera 72, illuminate the illumination light on the strip A two-dimensional light source 69 of the photosensitive sheet 22 is formed. The CCD camera 72 may be any one that can detect the position of the half-cut portion 34a in the conveyance direction of the long-length photosensitive sheet 22, and may be constituted by a CCD camera in which a plurality of detection pixels are arranged in the conveyance direction. Further, the illumination light output from the two-dimensional light source 69 is light composed of a wavelength that does not cause the photosensitive resin layer 28 to be light-sensitive, for example, red light. A reference piece 67 of a predetermined reference position is set in the imaging area of the CCD camera 72. Alternatively, instead of using the reference sheet 67, the detection pixels constituting the CCD camera 72 may be specifically formed, and the position of the detection pixel may be used as the reference position. The substrate supply mechanism 45 includes a substrate heating unit (such as a heater) 74 that is provided to sandwich the glass substrate 24, and conveys the transport unit 7 6 of the glass substrate 24 in the arrow Y direction and after detecting the glass substrate 24 The stop position detection sensor 78 of the stop position of the end. The substrate heating unit 74 monitors the temperature of the glass substrate 24 at any time, and stops the conveyance unit 76 and issues an alarm when an abnormality occurs, and transmits an abnormality information, and discharges the abnormal glass substrate 24 in the subsequent step NG, and can be used for quality management or production management. An air floating plate (not shown) is provided in the conveying portion 76, and the glass substrate 24 is floated and conveyed in the direction of the arrow γ -13 - 200900244. The conveyance of the glass substrate 24 can also be carried out by a roller conveyor. The temperature measurement of the glass substrate 24 is preferably performed in the substrate heating portion 74 or before the bonding position. In addition to contact methods (such as thermocouples), the measurement method can also be non-contact. The bonding mechanism 46 includes rubber rollers (crimping rollers) 80a and 80b which are disposed above and below and are heated to a predetermined temperature. The rubber rollers 80a, 80b are slidably attached to the backup rollers 82a, 82b. One of the backup rollers 82b is pressed against the rubber roller 80b side by the pressurizing cylinder 84 constituting the roller platen portion 83. The glass substrate 24 is conveyed from the bonding mechanism 46 via a conveyance path 88 extending in the direction of the arrow Y. The conveyance path 88 is provided with film conveyance rollers 90a and 90b and a substrate conveyance roller 92. The interval between the rubber cylinders 80a and 80b and the substrate carrying roller 92 should be set to be less than or equal to the length of one glass substrate. Further, a cutter mechanism 48 for cutting the long photosensitive sheet 22 between the glass substrates 24 to form the photosensitive laminate 100 is provided at a predetermined position on the downstream side of the substrate conveyance roller 92. Further, in the manufacturing apparatus 20 configured as described above, the sheet feeding mechanism 32, the processing mechanism 36, the label joining mechanism 40, the storage mechanism 42, the peeling mechanism 44, the tension control mechanism 66, and the photographing unit 47 are disposed above the bonding mechanism 46. On the other hand, the sheet feeding mechanism 32 to the image forming unit 47 may be disposed below the bonding mechanism 46, and the long photosensitive sheet 22 may be inverted upside down to bond the photosensitive resin layer 28 to the glass substrate. Further, the conveyance path of the long-length photosensitive sheet 22 may be linear. In the manufacturing apparatus 20, the first clean room 112a • μ- 200900244 and the second clean room 112b are separated via the partition wall 110. The first clean room 112a accommodates the sheet conveyance 32 to the tension control mechanism 66, and the second clean room 1 12b accommodates the mechanism after the pickup. The first clean room 1 12a is in communication with the second clean room 1 12b through portion 1 14 . Fig. 5 is a view showing a control circuit block diagram of the manufacturing apparatus 20. The control circuit of the system 20 includes an image inspection control panel 1 20 (positional deviation acquisition unit) which is based on the long photosensitive sheet 22 including the half-cut portion 34a obtained by the CCD phase coil constituting the imaging unit 47. The positional deviation information of the half-cut portion 34a is obtained; and the laminated disk 1 22' is controlled according to the bit information obtained by the image inspection control disk 120, and the bonding mechanism 46 is controlled to correct the amount of the long-length photosensitive film 22. To adjust the position of the half-cut portion 34a. The image inspection control panel 1 20 has a shutter control unit 14 (which performs a shutter that controls the image capturing time point of the CCD camera 72 to the CCD camera 72; and an image processing unit 126 that processes the machine 72 The image information setting amount calculation unit 1 2 8 of the half-cut portion 34a of the photographing and the reference sheet 67 calculates the deviation amount of the reference position determined by the position of the portion 34a with respect to the position of the reference sheet 67 based on the processed image information. The shutter control unit 124 is connected to the rotary encoder 51, and the gauge photosensitive sheet 22 is processed by the pulse and half-cut control unit 130 by the feed amount of the drum unit 50, and the processing mechanism 36 is controlled to perform the processing of the half-cut portion 34b. When the half-cut control unit 1 30 processes the rotary encoder 5 i and the tangent portions 34a and 34b, the output pulse count starts { and the shutter control unit 14 corresponds to the long-length photosensitive sheet discharge mechanism portion 47. Through the design of the device, the information is controlled by the image-based control unit, and the signal-transmission CCD phase: and the number of digits in the half-cutting position of the CCD phase; bit 3 4 a, should be in the half [number] And 22 half -15- 200900244 cut location 34 a predetermined number of pulses that have reached the predetermined feed set at the reference position of the imaging unit 47 is output to the shutter control unit 1 42. The shutter control unit 1 24 outputs a shutter number to the CCD camera 72 at a time point coincident with the number of pulses supplied from the rotary encoder 51 and the predetermined number of pulses supplied from the half-cut control 130. The laminating apparatus control panel 122 includes a control pulse correcting unit 132 (amount correcting unit) that controls the positional deviation amount of the half-cut position 34a calculated by the positional deviation amount calculating unit 1268 to correct the correction by the bonding mechanism 46. a long strip (control pulse for transporting the photosensitive sheet 22; an operation display unit 134 (repair condition setting unit) for setting a correction member for the control pulse correcting unit 133; and a laminating device control unit 1 3 6 The lamination device control unit 136 controls the driving rubber rollers 80a, 80b to drive the motor 140 via the motor control unit 138 via the control pulse corrected by the control pulse correction 132. In addition, the so-called correction condition The correction frequency of the photosensitive laminated body 1 in the position where the half-cut portion 34a is corrected in the control pulse repairing portion 132, and the condition for correcting the positional deviation amount of the control pulse, etc. The operation of the manufacturing apparatus 20 configured as described above will be described in connection with the manufacturing method of the invention. First, the long photosensitive thin film is fed from the photosensitive sheet roll attached to the sheet feeding mechanism 32. The sheet 22 is conveyed to the working mechanism 36. In the processing mechanism 36, the rounded edges 52a and 52b are moved in the width direction of the long-length photosensitive sheet 22, and the protective film 30 to the photosensitive resin layer 28 are available. The flexible base film 26 cuts into the long-length photosensitive sheet 22, and forms a positive amount 23 which is formed in a portion of the partial strip-shaped strip portion to be added to the width of the residual portion b of the protective film 30. The half-cut portions 34a and 34b (see Fig. 2) which are separated by a μ degree. Thereby, the front-side peeling portion A and the rear peeling portion A are provided in the long-length photosensitive sheet 22 with the remaining portion B interposed therebetween (refer to 2)) The width of the residual portion B is based on the assumption that the long photosensitive sheet 22 does not extend, and the distance between the glass substrates 24 supplied between the rubber cylinders 80a and 80b of the bonding mechanism 46 is In addition, one set of half-cut portions 34a and 34b formed in a width Μ is formed in the long-length photosensitive sheet 2 2 at intervals of the reference length of the photosensitive resin layer 28 bonded to the glass substrate 24. , long strip photosensitive sheet 22 The label bonding mechanism 40 is transported to place the designated bonding portion of the protective film 30 on the carrier 56. The label bonding mechanism 40 adsorbs and holds a predetermined number of bonding labels 38' by the adsorption pads 54b to 54g. 38 extends across the remaining portion B of the protective film 30, and is integrally joined to the front peeling portion A and the rear peeling portion A (refer to Fig. 3). For example, the long strip-shaped photosensitive sheet 22 to which 7 bonded labels 38 are joined is bonded. As shown in Fig. 1, the tension of the delivery side is prevented from being changed by the storage mechanism 42, and then continuously conveyed to the peeling mechanism 44. The peeling mechanism 44 sucks and holds the flexible base film 26 of the long-length photosensitive sheet 22 in the suction tube 62, and the protective film 30 retains the residual portion B' and is peeled off from the long-length photosensitive sheet 22. The protective film 30 is peeled off by the peeling roller 63 and wound around the protective film winding portion 64 (see Fig. 1). Under the action of the peeling mechanism 44, the protective film 30 retains the residual portion B, and after being peeled off from the flexible base film 26, the elongated photosensitive sheet 22 is tension-adjusted by the tension control mechanism 66 of -17-200900244. Next, in the photographing unit 47, an image of the long-length photosensitive sheet 2 2 including the half-cut portion 34a and the reference sheet 67 is imaged at a predetermined photographing time point. The positional deviation amount of the half-cut portion 34a is calculated in the image inspection control disk 1 20 by the image information acquired by the imaging unit 47, and the feed amount of the long-length photosensitive sheet 22 is subsequently performed in the laminating device control panel 1 22 Correction processing. The details of the correction processing in the image inspection control panel 120 and the laminating apparatus control panel 122 will be described later. The transfer process is performed by the photosensitive resin layer 28 on the glass substrate 24 by laminating the long photosensitive photosensitive sheet 22 of the image forming unit 47 to the bonding mechanism 46. The bonding mechanism 46 is initially set in a state in which the rubber rollers 80a and 80b are separated from each other, and the half-cut portion 3 4 a of the long-length photosensitive sheet 2 2 is positioned at a predetermined position between the rubber cylinders 80a and 80b, and the conveyance is temporarily stopped. Strip-shaped photosensitive sheet 22. In this state, when the front end portion of the glass substrate 24 heated to a predetermined temperature by the substrate heating portion 74 constituting the substrate supply mechanism 45 is carried between the rubber rollers 80a and 80b, the carrier is pressurized. Under the action of 84, the backup roller 82b and the rubber roller 80b are raised, and the glass substrate 24 and the long photosensitive sheet 22 are sandwiched between the rubber cylinders 80a and 80b at a predetermined press pressure. Further, the rubber rollers 80a, 80b are heated to a prescribed lamination temperature. Next, under the control of the laminating apparatus control unit 136, the driving motor 1400 is driven by the motor control unit 138 to rotate the rubber cylinders 80a and 80b, and the glass substrate 24 and the strip are formed. The photosensitive sheet 22 is transported in the direction of the arrow γ. As a result, the photosensitive resin layer 28 is melted by heating and transferred (Laminate; -18-200900244 laminated) to the glass substrate 24. In addition, the lamination condition is a speed of 1. 0m/ min~10. 0m / min, the temperature of the rubber rollers 80a, 80b is 80 ° C ~ 140 ° C, the rubber hardness of the rubber rollers 80a, 80b is 40 degrees - 90 degrees, the press pressure of the rubber rollers 80a, 80b (linear pressure ) is 50N/cm~400N/cm. When the long-length photosensitive sheet 22 is laminated on the glass substrate 24, the rotation of the rubber rolls 80a and 80b is stopped, and the glass substrate 24 on which the long-length photosensitive sheets 22 are laminated is sandwiched by the substrate carrying rolls 92. The front end of the photosensitive laminate 100. At this time, the half-cut portion 34b is disposed at a predetermined position between the rubber rollers 80a and 80b. Then, the rubber roller 80b is retracted from the direction away from the rubber roller 80a, and is detached, and the substrate conveyance roller 92 starts rotating again at a low speed, and the photosensitive laminated body 100 conveys the remaining portion corresponding to the protective film 30 in the arrow Y direction. The degree of the width B of the B is, and the second half-cut portion 34a is conveyed to a predetermined position near the lower side of the rubber roller 80a, and then the rotation of the rubber rollers 80a and 80b is stopped. In the following, the process of transporting the long photosensitive sheet 22 only between the half-cut portions 34a and 34b is referred to as "inter-substrate transport". In the above-described state, the next glass substrate 24 is conveyed to the bonding position via the substrate supply mechanism 45, and the photosensitive layered body 100 is continuously produced by repeating the above operation. At this time, as shown in Fig. 4, the photosensitive laminate 10 is covered with the remaining portion B of the protective film 30. Therefore, when the photosensitive resin layer 28 is laminated on the glass substrate 24, the rubber cylinders 80a and 80b are not contaminated by the photosensitive resin layer 28. -19- 200900244 The photosensitive laminate 1' laminated by the bonding mechanism 46 is separated by cutting the long photosensitive sheet 2 2 between the glass substrates 24 by the cutter mechanism 48. Further, the flexible base film 26 is attached to the separated photosensitive laminate 1 , and the protective film 30 between the flexible base film 26 and the glass substrate 24 is peeled off, and then supplied to the next processing step. Next, the correction processing of the feed amount of the long-length photosensitive sheet 22 will be described in accordance with the flowchart shown in Fig. 6. First, the operator specifies the correction condition using the operation display unit 134 composed of a touch panel or the like (step S1). At this time, the operation display portion 134 corrects the condition, and if the number of the photosensitive laminates 100 is specified, the lamination device control panel 122 can be instructed to start the correction processing from the photosensitive laminate 1 00 after a predetermined number. By specifying the correction condition, it is possible to efficiently manufacture the photosensitive laminated body 100 without performing correction at the initial stage of starting the manufacturing of the high-precision adjustment manufacturing apparatus 20. In addition, the frequency of the correction processing can be specified as the correction condition. By the amount of positional deviation of the half-cut portion 34a calculated by the image inspection control panel 120, it is possible to specify that each feedback is applied to the laminating apparatus control panel 1 22 for correction processing, or to obtain an average value of the calculated positional deviation amount. Using the average 値, the correction processing is performed once after several times, or the position deviation amount is calculated once after several times to perform the correction processing frequency of the correction processing. Further, in the correction condition, the allowable range can be specified in the calculated positional deviation amount, and the correction processing can be performed only when the positional deviation amount is within the allowable range. When the allowable range is exceeded, the operation display unit 134 issues a warning or the like. The operation of the manufacturing apparatus 20 is temporarily stopped. After the correction condition is specified, the half-cut control unit 130 sets the shutter control unit 1 24 of the image inspection control disk -20-200900244 1 20 to the half-cut formed in the long-length photosensitive sheet 22 by the processing mechanism 36. The portion 34a reaches the predetermined number of pulses of the predetermined feed amount at the reference position of the imaging unit 47 (step S2). At this time, the number of predetermined pulses can be changed from the processing mechanism 36 to the reference position of the imaging unit 47, and the long photosensitive sheet 22 is not stretched as a condition, and the second half is set. The number of pulses of the pulse signal output from the rotary encoder 51 before the portion 34a reaches the position of the preceding half-cut portion 34a. Therefore, the half-cut control unit 130 controls the processing mechanism 36 to form the half-cut portions 34a and 34b in the long-length photosensitive sheet 22 (step S3), and outputs a pulse count start signal to the rotary encoder 51, and the rotary encoder 51. The counting of the number of pulses is started (step S4). Next, the long photosensitive sheet 22 having the half-cut portions 34a and 34b is conveyed, and the half-cut portion 34a reaches the image capturing region 142 of the image capturing unit 47 (see FIGS. 7 and 8), and is counted by the rotary encoder 51. When the number of pulses coincides with the predetermined number of pulses set in step S2 (step S5), the shutter control unit 124 outputs a shutter signal to the CCD camera 72. At this time, the two-dimensional light source 69 is driven, and the illumination light is irradiated onto the long-length photosensitive sheet 22, and the reference sheet 67 and the half-cut portion 34a are included in the long-length photosensitive sheet 22 of the photographing region 142 by the CCD camera 72. Image (step S6). The image captured by the CCD camera 72 is transmitted as image information to the image processing unit 126, and the position information of the reference piece 67 and the half-cut portion 34a is obtained by performing the specified image processing (step S7). The acquired position information is transmitted to the positional deviation amount calculation unit 128, and the positional deviation amount of the reference position set by the reference slice 67 as a reference is calculated as the positional deviation amount - 21,00, 244,244 ΔK (step S8, see FIG. 7 and 8 picture). The calculated positional deviation amount Δ K of the half-cut portion 34a is transmitted to the control pulse correcting unit 1 32, and the correction of the number of feed pulses between the substrates is performed in accordance with the correction condition designated by the operation display unit 134 (steps S9 and S1 0). Further, when the correction processing is not performed every time the half-cut portion 34a is detected, the processing of steps S3 to S9 is repeated in accordance with the number of times of skipping the correction processing. The number of inter-substrate feed pulses corrected by the control pulse correcting unit 133 is sent to the laminating apparatus control unit 136. The laminating apparatus control unit 136 controls the driving motor 1 40 via the motor control unit 138 in accordance with the number of feed pulses between the substrates (step S 1 1 ) to adjust the inter-substrate feed amount. Fig. 9 is an explanatory view showing the lamination control of the long-length photosensitive sheet 22 and the inter-substrate feed control in accordance with the corrected number of feed pulses between substrates. The laminating apparatus control unit 136 laminates the front end portion of the glass substrate 24 with the half-cut portion 34a of the long-length photosensitive sheet 22 at a position away from the distance K shown in Fig. 12 ( Lamination 1) temporarily stops the feeding of the long photosensitive sheet 2 2 . Then, the long-length photosensitive sheet 22 is conveyed between the low-speed substrates in accordance with the corrected number of feed pulses between the substrates, and the second half-cut portion 34a is set to a predetermined position between the rubber rolls 80a and 80b. The glass substrate 24 is supplied between 80a and 80b, and the long-length photosensitive sheet 22 is laminated on the glass substrate 24 (step S12, lamination 2). Here, when the inter-substrate feeding process is performed, as shown in Fig. 7, when the positional deviation amount ΔK of the half-cut portion 34a deviates from the processing mechanism 36 side, the inter-substrate feed pulse is increased in accordance with the positional deviation amount ΔK. The inter-substrate feed control is performed by the pattern 144a of Fig. 9. Further, as shown in Figs. 8-22 to 200900244, when the positional deviation amount ΔΚ of the half-cut portion 34a deviates from the rubber roller 8 0 a, 8 0 b side, the inter-substrate feed pulse is reduced according to the positional deviation amount Δ Κ The number is passed, and the inter-substrate feed control is performed by the pattern 1 44b of Fig. 9. By performing the inter-substrate feed control, the position of the glass substrate 24 can be adjusted to a desired position by the half-cut portion 34a to produce the high-quality photosensitive laminate 100. Further, since the adjustment processing of the bonding position of the long-length photosensitive sheet 22 to the glass substrate 24 can be performed without stopping the operation of the manufacturing apparatus 20, the photosensitive laminated body 1 can be efficiently produced. Further, the position of the photographing unit 47 can be set to an arbitrary position between the processing mechanism 36 and the bonding mechanism 46 by adjusting the number of inter-substrate feed pulses corresponding to the set feed amount of the half-cut portions 34a and 34b. Fig. 10 is a schematic structural view showing a manufacturing apparatus 200 for a photosensitive laminate according to a second embodiment of the present invention. The same components as those of the manufacturing apparatus 20 for the photosensitive laminate of the first embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. The manufacturing apparatus 200 is configured by continuously peeling off the remaining flexible base film 26 from the long photosensitive sheet 22 bonded to the glass substrate 24, and is sequentially arranged along the conveyance path 88 on the downstream side of the bonding mechanism 46. The cooling mechanism 202 for cooling the laminated glass substrate 24 and the elongated photosensitive sheet 22 and the base peeling mechanism 204 for continuously peeling off the flexible base film 26 from the photosensitive resin layer 28 are provided. The base peeling mechanism 204 includes a pre-peeling portion 206, a small-diameter peeling roller 208, a winding shaft 210, and an automatic bonding machine 212. The winding shaft 210 is torque-controlled during driving, and tension is applied to the flexible base film 26. Further, it is preferable to provide a tension detector (not shown) in the peeling roller 208, -23-200900244 To perform feedback control of the tension. The pre-separation portion 206 is provided with a peeling bar 214 that can be moved up and down between the glass substrates 24. After the glass substrate 24 and the elongated photosensitive sheet 22 laminated in the bonding mechanism 46 are cooled by the cooling mechanism 202, the long photosensitive sheet 22 between the glass substrates 24 is pushed by the peeling bar 214 constituting the pre-separation portion 206. Above the upper side, a part of the flexible base film 26 is peeled off from the photosensitive resin layer 28. Then, the glass substrate 24 to which the photosensitive resin layer 28 is bonded is conveyed in the direction of the arrow Y, and the flexible base film 26 is wound around the winding shaft 210 via the peeling roll 208, from the photosensitive resin layer. The flexible base film 26 is continuously peeled off, and the glass substrate 24 is separated to produce a photosensitive laminated body 100. Further, in the first and second embodiments described above, the long photosensitive photosensitive sheet 22 supplied from one photosensitive sheet roll 23 is bonded to the glass substrate 24' to produce a so-called single roll laying photosensitive layer. The body 1 is configured to be spliced, but the long-length photosensitive sheet 22 may be attached to the glass substrate 24 from two photosensitive sheet rolls or three or more photosensitive sheet rolls to produce a so-called two-light laying. It is composed of a photosensitive laminate such as a light-drawing device. Further, the rotary encoder 51 that detects the feed amount of the long-length photosensitive sheet 2 2 is coupled to the drum unit 50 in the front stage of the processing unit 36, but may be connected to a desired position on the upstream side of the photographing unit 47, such as a link. The suction cylinder 62' is used to detect the amount of rotation of the suction cylinder 62. Further, in the above embodiment, the positional deviation information of one of the half-cut portions 34a is obtained to correct the amount of feed between the substrates, but the positional deviation information of the other half-cut portion 34b can be obtained to correct the amount of feed between the substrates. . BRIEF DESCRIPTION OF THE DRAWINGS -24- 200900244 Fig. 1 is a schematic view showing the configuration of a manufacturing apparatus according to a first embodiment of the present invention. Fig. 2 is a cross-sectional view showing a long photosensitive sheet used in the manufacturing apparatus of the first embodiment. Fig. 3 is an explanatory view showing a state in which a bonding label is bonded to a long photosensitive sheet. Fig. 4 is an explanatory view showing the arrangement relationship between the photographing unit and the bonding mechanism for forming the half-cut portion processing means and obtaining the positional deviation information of the half-cut portion. Fig. 5 is a circuit block diagram showing a process of correcting the inter-substrate feed control based on the positional deviation information of the half-cut portion. Fig. 6 is a flow chart showing the correction processing of the inter-substrate feed control based on the positional deviation information of the half-cut portion. Fig. 7 is an explanatory diagram of positional deviation information of a half-cut portion obtained by the photographing unit. Fig. 8 is an explanatory diagram of positional deviation information of a half-cut portion obtained by the photographing unit. Fig. 9 is an explanatory view of lamination control of the strip-shaped photosensitive sheet and feed control between the substrates. Fig. 10 is a schematic structural view showing a manufacturing apparatus of a second embodiment of the present invention. Figure 11 is a schematic block diagram of a prior art manufacturing apparatus. Fig. 1 is an explanatory view showing the positional relationship between the half-cut portion of the long-length photosensitive sheet and the substrate to which the long-length photosensitive sheet is bonded. [Description of main component symbols] Film roll-25- 200900244 la Laminate film 2a 2b 3 4 5 Guide roller guide roller rotary encoder suction roller half-cutting device 5a Disc cutter 5b 6 7 7a 8 a 8b 9 10 11 12a 12b 13 14a 14b 20 22 23 24 Disc cutter protective film peeling device Adhesive tape Roller adhesive tape Extrusion roller Extrusion roller Winding roller Substrate conveying device Substrate Laminating roller Laminating roller supporting film winding roller Junction part Junction part Manufacturing device length Strip photosensitive sheet photosensitive sheet roll glass substrate -26- 200900244 f \ 26 Flexible base film 28 Photosensitive resin layer 30 Protective film 32 Sheet feeding mechanism 34a Half cut portion 34b Half cut portion 36 Processing mechanism 38 Bonding label 38a Non-joining Portion 38b First joint portion 38c Second joint portion 40 Label joint mechanism 42 Storage mechanism 44 Peeling mechanism 45 Substrate supply mechanism 46 Attachment mechanism 47 Photo portion 48 Tool mechanism 49 Attachment seat 50 Roller set 5 1 Rotary knitting Coder 52a Round blade 52b Round blade 53 Thin film Terminal position detector 5 4 a ~ 5 4 g Suction pad 200900244 r
56 托架 60 跳動滾筒 62 吸入筒 63 剝離滾筒 64 保護膜捲繞部 66 張力控制機構 67 基準片 68 汽缸 69 二維光源 70 張力調節器 7 1 搬運滾筒 72 CCD相機 73 搬運滾筒 74 基板加熱部 76 搬運部 78 停止位置檢測感測器 80a 橡膠滾筒 80b 橡膠滾筒 82a 備份滾筒 82b 備份滾筒 83 滾筒壓板部 84 加壓汽缸 88 搬運路徑 90a 薄膜搬運滾筒 90b 薄膜搬運滾筒 -28- 200900244 92 基 板 搬 運 滾 筒 100 感 光 性 積 層 體 110 隔 牆 1 12a 第 一 潔 淨 室 1 12b 第 二 潔 淨 室 114 穿 部 120 圖 像 檢 查 控 制 盤 122 層 壓 裝 置 控 制 盤 124 快 門 控 制 部 126 圖 像 處 理 部 128 位 置 偏 差 量 算 出部 130 半 切 控 制 部 132 控 制 脈 衝 修 正 部 134 操 作 顯 示 部 136 層 壓 裝 置 控 制 部 138 馬 達 控 制 部 140 驅 動 馬 達 142 攝 影 區 域 144a 圖 案 144b 圖 案 200 製 造 裝 置 202 冷 卻 機 構 204 基 礎 剝 離 機 構 206 預 剝 離 部 208 剝 離 滾 筒 -29- 200900244 210 捲 繞 軸 2 12 白 動 貼 合機 214 剝 離 桿 A 剝 離 部 分 B 殘 留 部 分 f56 Bracket 60 Bounce drum 62 Suction cylinder 63 Peeling drum 64 Protective film winding portion 66 Tension control mechanism 67 Reference piece 68 Cylinder 69 Two-dimensional light source 70 Tension adjuster 7 1 Transport roller 72 CCD camera 73 Transport roller 74 Substrate heating portion 76 Transporting portion 78 Stop position detecting sensor 80a Rubber roller 80b Rubber roller 82a Backup roller 82b Backup roller 83 Roller pressing plate portion 84 Pressurizing cylinder 88 Transport path 90a Film carrying roller 90b Film carrying roller -28- 200900244 92 Substrate carrying roller 100 Photosensitive Separate layer 110 partition wall 1 12a first clean room 1 12b second clean room 114 wearing portion 120 image inspection control panel 122 laminating device control panel 124 shutter control unit 126 image processing unit 128 positional deviation amount calculation unit 130 half cut Control unit 132 control pulse correction unit 134 operation display unit 136 lamination device control unit 138 motor control unit 140 drive motor 142 photography area 144a pattern 144b Case 200 manufacturing apparatus 202 cooling mechanism 204 basis peeling mechanism 206 pre-peeling portion 208 peeling drum -29-200900244 210 roll about the shaft 212 white movable laminator 214 peeling lever A peeling portion B residual portion f
-30-30