TW200828424A - Semiconductor device with gate stack structure - Google Patents
Semiconductor device with gate stack structure Download PDFInfo
- Publication number
- TW200828424A TW200828424A TW96136856A TW96136856A TW200828424A TW 200828424 A TW200828424 A TW 200828424A TW 96136856 A TW96136856 A TW 96136856A TW 96136856 A TW96136856 A TW 96136856A TW 200828424 A TW200828424 A TW 200828424A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- nitrogen
- tungsten
- metal
- titanium
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 61
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 654
- 229910052751 metal Inorganic materials 0.000 claims abstract description 237
- 239000002184 metal Substances 0.000 claims abstract description 237
- 229910052721 tungsten Inorganic materials 0.000 claims description 498
- 239000010937 tungsten Substances 0.000 claims description 482
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 327
- 239000010936 titanium Substances 0.000 claims description 312
- 229910052719 titanium Inorganic materials 0.000 claims description 273
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 257
- 229910052757 nitrogen Inorganic materials 0.000 claims description 167
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 128
- 229920005591 polysilicon Polymers 0.000 claims description 123
- HPQRSQFZILKRDH-UHFFFAOYSA-M chloro(trimethyl)plumbane Chemical compound C[Pb](C)(C)Cl HPQRSQFZILKRDH-UHFFFAOYSA-M 0.000 claims description 102
- 238000000151 deposition Methods 0.000 claims description 99
- 238000005477 sputtering target Methods 0.000 claims description 76
- IAOQICOCWPKKMH-UHFFFAOYSA-N dithieno[3,2-a:3',2'-d]thiophene Chemical compound C1=CSC2=C1C(C=CS1)=C1S2 IAOQICOCWPKKMH-UHFFFAOYSA-N 0.000 claims description 71
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 claims description 68
- 238000005546 reactive sputtering Methods 0.000 claims description 63
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 52
- 229910052732 germanium Inorganic materials 0.000 claims description 51
- 239000012535 impurity Substances 0.000 claims description 50
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 43
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 claims description 42
- -1 nitrogen-containing metal halide Chemical class 0.000 claims description 28
- MWRJCEDXZKNABM-UHFFFAOYSA-N germanium tungsten Chemical compound [Ge].[W] MWRJCEDXZKNABM-UHFFFAOYSA-N 0.000 claims description 22
- 239000004576 sand Substances 0.000 claims description 19
- 230000008021 deposition Effects 0.000 claims description 18
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 claims description 14
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 12
- 229910001507 metal halide Inorganic materials 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 7
- GPMBECJIPQBCKI-UHFFFAOYSA-N germanium telluride Chemical compound [Te]=[Ge]=[Te] GPMBECJIPQBCKI-UHFFFAOYSA-N 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 6
- 238000007747 plating Methods 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 16
- 238000003776 cleavage reaction Methods 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 150000002736 metal compounds Chemical class 0.000 claims 1
- 238000001465 metallisation Methods 0.000 claims 1
- 230000007017 scission Effects 0.000 claims 1
- 229910052727 yttrium Inorganic materials 0.000 claims 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- 229910021332 silicide Inorganic materials 0.000 abstract description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract description 3
- HHIQWSQEUZDONT-UHFFFAOYSA-N tungsten Chemical compound [W].[W].[W] HHIQWSQEUZDONT-UHFFFAOYSA-N 0.000 description 482
- 238000000034 method Methods 0.000 description 178
- 238000005240 physical vapour deposition Methods 0.000 description 89
- 238000004544 sputter deposition Methods 0.000 description 62
- 238000005229 chemical vapour deposition Methods 0.000 description 46
- 238000000137 annealing Methods 0.000 description 35
- 238000000231 atomic layer deposition Methods 0.000 description 35
- 230000008569 process Effects 0.000 description 31
- 229910052715 tantalum Inorganic materials 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 28
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 26
- 229910052796 boron Inorganic materials 0.000 description 26
- 238000009792 diffusion process Methods 0.000 description 23
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 19
- 230000004888 barrier function Effects 0.000 description 19
- 229910010421 TiNx Inorganic materials 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 17
- 239000011651 chromium Substances 0.000 description 17
- 229910052698 phosphorus Inorganic materials 0.000 description 17
- 239000011574 phosphorus Substances 0.000 description 17
- 229910052804 chromium Inorganic materials 0.000 description 16
- 229910052735 hafnium Inorganic materials 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 16
- 229910052697 platinum Inorganic materials 0.000 description 15
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 15
- 229910052726 zirconium Inorganic materials 0.000 description 15
- 238000000059 patterning Methods 0.000 description 13
- 125000006850 spacer group Chemical group 0.000 description 13
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 229910052703 rhodium Inorganic materials 0.000 description 11
- 239000010948 rhodium Substances 0.000 description 11
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 11
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 10
- WIGAYVXYNSVZAV-UHFFFAOYSA-N ac1lavbc Chemical compound [W].[W] WIGAYVXYNSVZAV-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229910052758 niobium Inorganic materials 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 8
- 238000002679 ablation Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- ZGHDMISTQPRNRG-UHFFFAOYSA-N dimolybdenum Chemical compound [Mo]#[Mo] ZGHDMISTQPRNRG-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910008486 TiSix Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910007991 Si-N Inorganic materials 0.000 description 4
- 229910006294 Si—N Inorganic materials 0.000 description 4
- 229910004156 TaNx Inorganic materials 0.000 description 4
- MRPWWVMHWSDJEH-UHFFFAOYSA-N antimony telluride Chemical compound [SbH3+3].[SbH3+3].[TeH2-2].[TeH2-2].[TeH2-2] MRPWWVMHWSDJEH-UHFFFAOYSA-N 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- BYUANIDVEAKBHT-UHFFFAOYSA-N [Mo].[Bi] Chemical compound [Mo].[Bi] BYUANIDVEAKBHT-UHFFFAOYSA-N 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- 229910000048 titanium hydride Inorganic materials 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- HITXEXPSQXNMAN-UHFFFAOYSA-N bis(tellanylidene)molybdenum Chemical compound [Te]=[Mo]=[Te] HITXEXPSQXNMAN-UHFFFAOYSA-N 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- CWGBFIRHYJNILV-UHFFFAOYSA-N (1,4-diphenyl-1,2,4-triazol-4-ium-3-yl)-phenylazanide Chemical compound C=1C=CC=CC=1[N-]C1=NN(C=2C=CC=CC=2)C=[N+]1C1=CC=CC=C1 CWGBFIRHYJNILV-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004339 Ti-Si Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910010978 Ti—Si Inorganic materials 0.000 description 1
- 229910008807 WSiN Inorganic materials 0.000 description 1
- WFVQLGPHCVXCRN-UHFFFAOYSA-N [N].[Nb].[W] Chemical compound [N].[Nb].[W] WFVQLGPHCVXCRN-UHFFFAOYSA-N 0.000 description 1
- WMLOOYUARVGOPC-UHFFFAOYSA-N [Ta].[Sn] Chemical compound [Ta].[Sn] WMLOOYUARVGOPC-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- XGZGDYQRJKMWNM-UHFFFAOYSA-N tantalum tungsten Chemical compound [Ta][W][Ta] XGZGDYQRJKMWNM-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- NMJKIRUDPFBRHW-UHFFFAOYSA-N titanium Chemical compound [Ti].[Ti] NMJKIRUDPFBRHW-UHFFFAOYSA-N 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- CGZLUZNJEQKHBX-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti][Ti][W] CGZLUZNJEQKHBX-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
- H01L29/4925—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
- H01L29/4941—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28035—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
- H01L21/28044—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
- H01L21/28061—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
200828424 九、發明說明: 【相關申請案之對照參考資料】 本發明主張2006年12月27日及2007年4月27日所 提出之韓國專利申請案第 10-2006-0134326號及第 1 0 - 2 0 0 7 - 0 0 4 1 2 8 8號之優先權,參照倂入該等韓國專利申請 案之全部。 【發明所屬之技術領域】 | 本發明係有關於一種半導體元件,以及更特別地,是 有關於一種具有閘極堆疊結構之半導體元件。 【先前技術】 藉由堆疊多晶矽及鎢所形成之鎢多晶矽閘極電極具有 非常低電阻,該非常低電阻約爲一藉由堆疊多晶矽及矽化 鎢所形成之多晶矽/矽化鎢(Poly-Si/WSix)閘極電極的電阻 之1/5至1/10。於是,該鎢多晶矽閘極電極係製造次- 60nm 記憶體裝置所必需的。 φ 第1 A至1 C圖描述典型鎢多晶矽閘極堆疊結構。如第 1A圖所示,藉由連續地堆疊多晶矽層11、氮化鎢(WN)層 12及鎢(W)層13以形成該鎢多晶矽閘極堆疊結構。該WN 層1 2做爲擴散阻障。 在隨後退火製程或閘極再氧化製程期間’使該WN層 12中之氮在該鎢層13與該多晶矽層11間分解成像SiNx及 Si〇xNy之非均勻絕緣層。該非均勻絕緣層具有約2nm至3nm 範圍之厚度。於是,在數百萬赫茲(MHz)之操作頻率及1.5V 或更小之操作電壓下可能導致像信號延遲之裝置誤差。最 5- 200828424 近,已在該多晶矽層1 1與該WN層1 2間形成做爲擴散阻 障層之薄矽化鎢(WSlx)或鈦(Ti)層,以防止在該鎢層13與 該多晶矽層1 1間形成Si-N鍵。 如第1 B圖所示,如果在該多晶矽層1 1與該WN層12 間形成矽化鎢(WSix)層14,則藉由在該WN層12之形成期 間所使用之氮氣電漿在該WSix層14上方形成W-Si-N鍵。 熟知之W-Si-N係一具有金屬特性之良好擴散阻障層。 如第1C圖所示,如果在該多晶矽層11與該WN層12 ® 間形成鈦(Ti)層15,則在該WN層12之形成期間的反應式 濺鍍製程中該氮氣電漿將該鈦層1 5之鈦變換成氮化鈦 (TiN)。該TiN層做爲一擴散阻障層。結果,雖然在隨後熱 製程期間使該WN層12分解,但是該TiN防止氮朝該多晶 矽11擴散出來,以及因此,可有效地降低Si-N之形成。 然而,在將該鎢多晶矽閘極應用至雙多晶矽閘極[亦 即,N-型金氧半導體場效電晶體(NMOSFET)之N + -型多晶矽 閘極及P-型金氧半導體場效電晶體(PMOSFET)之P + -型多晶 ^ 矽閘極]之情況下,如果在該鎢多晶矽閘極中使用該 WSu/WN擴散阻障結構,則可以大大地增加該鎢層與該P + -型多晶矽層間之接觸電阻。相反地,如果在該鎢多晶矽閘 極中使用該Ti/WN擴散阻障結構,則該鎢層與該P +型多晶 矽層間之接觸電阻較低而無關於該多晶矽摻雜種類。 在該PMOSFET之P +型多晶矽的情況中,可能在爲實際 操作模式之反相狀態中產生多晶矽空乏效應。該多晶矽空 乏效應之產生可能取決於在P +型多晶矽內所保留之硼的數 -6- 200828424 量。 在該WSh/WN擴散阻障結構中比在該TWWN擴散阻障 結構中可能產生更大的多晶矽空乏效應。因此,該WSu/WN 擴散阻障結構可能降低電晶體特性。結果,因爲該Ti/WN 擴散阻障結構可在該鎢層與該多晶矽層間提供低接觸電阻 及防止P型多晶矽空乏之產生,所以建議使用該Ti/WN擴 散阻障結構。 然而,如果使用Ti/WN擴散阻障結構,則可能使在該 ® Ti/WN擴散阻障結構上方所直接形成之鎢的片電阻(Rs)增 加約1.5至2倍。於是,該片電阻(Rs)之增加在未來可能影 響鎢多晶矽閘極之發展。 【發明内容】 本發明之具體例係有關於包括中間結構之半導體元件 的閘極堆疊,其中該中間結構具有低片電阻及接觸電阻及 可有效地防止雜質之向外擴散,以及有關於一種製造該閘 極堆疊之方法。 ^ 依據本發明之一觀點,提供一種半導體元件,該半導 體元件包括··第一導電層;第一中間結構,位於該第一導 電層上方,該第一中間結構包括金屬矽化層及含氮金屬層; 第二中間結構,位於該第一中間結構上方,該第二中間結 構包括至少含氮金屬矽化物層;以及第二導電層,位於該第 一中間結構上方。 依據本發明之另一觀點,提供一種半導體元件。該半 導體元件包括:第一導電層;中間結構,形成於該第一導電層 上方及包括至少第一金屬層及含氮金屬矽化物層;以及第 200828424 一導電層’形成於該中間結構上方。 依據本發明之另一觀點,提供一種半導體元件。該半 導體元件包括:第一導電層;中間結構,位於該第一導電層上 及包括第一金屬層、第二金屬層及一金屬矽化層;以及第二 導電層’位於該中間結構上。 【實施方式】 第2A圖係描述每一型態之做爲擴散阻障的結構在鎢 與多晶矽間之接觸電阻的曲線圖。可觀察到當使用矽化鎢 (WSix)/氮化鎢(WN)或鈦(Ti)/WN結構以取代氮化鎢(WN)結 構時,可大大地改善在摻雜有 N型雜質之多晶矽(N + POLY-SO與鎢(W)間標示爲Rc的接觸電阻。 然而,在將該鎢多晶矽閘極應用至雙多晶矽閘極[亦 即,N型金氧半導體場效電晶體(NMOSFET)之N +型多晶矽 閘極及P型金氧半導體場效電晶體(PMOSFET)之P +型多晶 矽閘極]之情況下,如果在該鎢多晶矽閘極中使用該 WSh/WN結構,則大大地增力□該 W與 P+型多晶矽(P + POLY-Si)間之接觸電阻。相反地,如果在該鎢多晶矽閘極 中使用該Ti/WN結構,則該W與P+型多晶矽間之接觸電阻 顯示低的位準而無關於該多晶矽摻雜種類。 在該PMOSFET之P +型多晶矽的情況中,可在爲實際操 作模式之反相狀態中產生多晶矽空乏效應。該多晶矽空乏 效應之產生取決於該P +型多晶矽內所保留之硼的數量。 第2B圖係描述每一型態之閘極堆疊的硼濃度之深度 輸廓的曲線圖。如在WSh/WN結構中所述,該硼濃度在閘 -8- 200828424 極絕緣層(例如:氧化層)與多晶矽間之界面表面上低至約5 xlO19原子/公分3。使用Ti/WN結構時,在相同位置上所測 量之硼濃度大於約8xl019原子/公分3。結果,在該WSix/WN 結構中比在該Ti/WN結構中使該多晶矽之空乏更多,以及 因此,該WSh/WN結構降低該等電晶體特性。 於是,較佳使用該ΤΊ/WN結構,該Ti/WN結構提供在 該W與該多晶矽間之低接觸電阻及防止P型多晶矽空乏。 然而,該Ti/WN結構之應用係有限制的。在該Ti/WN結構 ® 上方所形成之W的片電阻(Rs)增加約1.5至2倍。將在第 2C圖.中更詳細描述此限制。 第2C圖係描述每一型態之做爲擴散阻障的結構之片 電阻的曲線圖。將W之片電阻標示爲Rs。通常,可在多晶 矽層、氧化矽(Si〇2)層、氮化矽(Si3N4)層及 WSix層上方形 成非晶含氮鎢(WNX)層,以及因此,可在其上形成具有低比 電阻(亦即,在約15μ Ω-cm至20μ Ω-cm之範圍中)之W。 然而,在多晶純金屬鈦(Τι)、鎢(W)及鉅(Ta)及金屬氮化物 ^ 材料之氮化鈦(TiN)及氮化鉅(TaN)上方形成具有相對小晶 粒尺寸之W。因此,在其上形成具有約30μ Ω-cm之高比電 阻的W。該Ti/WN結構之應用所造成之W的片電阻的增加 可能對該鎢多晶矽閘極未來之發展產生限制。 依據下面所要描述之本發明的各種實施例’不同形態 之閘極堆疊的中間結構係形成有包含Ti、w、矽(Si)或氮(N) 之多個薄層或每一層包含N之多個薄層。該等中間結構做 爲擴散阻障,該擴散阻障可減少該接觸電阻及該片電阻, -9- 200828424 以及防止雜質之穿透及向外擴散。 在下面實施例中,術語”含氮之層/結構或含氮層/結構 (layer/structure containing nitrogen or nitrogen containing layer/structure)”表示氮化金屬層/結構及含某含量/重量比 之氮的金屬層/結構。並且,WShNy中之X表示矽對鎢之比 率,其範圍從約0.5至3.0,以及y表示氮對矽化鎢之比率, 其範圍從約0.01至10.00。 第3A圖描述依據本發明之第一實施例的閘極堆疊結 ^ 構。該閘極堆疊結構包括依序所形成之第一導電層2 1、中 間結構22及第二導電層23。該第一導電層21包括高摻雜 有P型雜質(例如:硼)或N型雜質(例如:磷)之多晶矽層。該 第一導電層21亦可包括多晶矽鍺層(Sh〃Gex,其中X係在 約0.01與1.0間之範圍內)或矽化物層。例如:該矽化物層 包括選自一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr 及 Pt 所組 成之群組中之一。 該第二導電層23包括鎢層。該鎢層係約ΙΟΟΑ至2,000A ^ 厚及藉由實施物理氣相沉積(PVD)法、一化學氣相沉積 (CVD)法或原子層沉積(ALD)法所形成。該PVD法包括使用 鎢濺鍍靶之濺鍍沉積法。 該中間結構22包括鈦層22A、含氮鎢(WNX)層22B及 含氮矽化鎢(WSuNO層22C。詳而言之,該鈦層22A之厚度 係在約10A至約80A之範圍內。如以上所述,在該含氮鎢 層2 2 B中之氮對鎢的比率係在約0.3至1 · 5之範圍內。該含 氮鎢層視同氮化鎢層或含某一含量/重量比之氮的鎢層。雖 10- 200828424 然將於下面第三實施例中描述,但是知道該含 供應氮至該含氮矽化鎢層22C。該含氮鎢層22B 至200A之厚度。由於對該含氮矽化鎢層22C之 在隨後退火處理後,該含氮鎢層22B變成純鎢 氮之鎢層。 在含氮矽化鎢層22C中之矽對鎢的比率係 3.0之範圍內,以及該含氮矽化鎢層22C之氮 10%至約60%之範圍內。該含氮矽化鎢層22C表 ® 鎢層(亦即,鎢矽氮化物層)或含某一含量/重量 化鎢層。該含氮矽化鎢層22C所形成之厚度係 約200A之範圍內。200828424 IX. Inventive Note: [Comparative References for Related Applications] The present invention claims Korean Patent Application No. 10-2006-0134326 and No. 10 - submitted on December 27, 2006 and April 27, 2007. Priority of 2 0 0 7 - 0 0 4 1 2 8 8 refers to all of the Korean patent applications. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a semiconductor device and, more particularly, to a semiconductor device having a gate stack structure. [Prior Art] A tungsten polysilicon gate electrode formed by stacking polycrystalline germanium and tungsten has a very low resistance, which is about a polycrystalline germanium/tamarium tungsten formed by stacking polycrystalline germanium and tungsten germanium (Poly-Si/WSix) The resistance of the gate electrode is 1/5 to 1/10. Thus, the tungsten polysilicon gate electrode is required for the fabrication of a sub-60 nm memory device. φ 1A to 1 C depict a typical tungsten polysilicon gate stack structure. As shown in Fig. 1A, the tungsten polysilicon gate stack structure is formed by continuously stacking a polysilicon layer 11, a tungsten nitride (WN) layer 12, and a tungsten (W) layer 13. The WN layer 12 is used as a diffusion barrier. The nitrogen in the WN layer 12 is decomposed between the tungsten layer 13 and the polysilicon layer 11 to form a non-uniform insulating layer of SiNx and Si〇xNy during the subsequent annealing process or gate reoxidation process. The non-uniform insulating layer has a thickness ranging from about 2 nm to 3 nm. Thus, device errors of signal delay may result at operating frequencies of millions of Hertz (MHz) and operating voltages of 1.5V or less. Most 5-200828424 Recently, a thin tantalum tungsten (WSlx) or titanium (Ti) layer as a diffusion barrier layer has been formed between the polysilicon layer 11 and the WN layer 12 to prevent the tungsten layer 13 from being A Si-N bond is formed between the polycrystalline germanium layers 11. As shown in FIG. 1B, if a tungsten germanium (WSix) layer 14 is formed between the polysilicon layer 1 1 and the WN layer 12, the nitrogen plasma used during the formation of the WN layer 12 is in the WSix. A W-Si-N bond is formed over layer 14. The well-known W-Si-N is a good diffusion barrier layer with metallic properties. As shown in FIG. 1C, if a titanium (Ti) layer 15 is formed between the polysilicon layer 11 and the WN layer 12 ® , the nitrogen plasma will be used in the reactive sputtering process during formation of the WN layer 12 . The titanium of the titanium layer 15 is converted into titanium nitride (TiN). The TiN layer acts as a diffusion barrier layer. As a result, although the WN layer 12 is decomposed during the subsequent thermal process, the TiN prevents nitrogen from diffusing toward the polycrystalline silicon 11, and therefore, the formation of Si-N can be effectively reduced. However, the tungsten polysilicon gate is applied to the double polysilicon gate [ie, the N + -type polysilicon gate of the N-type metal oxide semiconductor field effect transistor (NMOSFET) and the P-type metal oxide semiconductor field effect electricity. In the case of a P + -type polysilicon gate of a crystal (PMOSFET), if the WSu/WN diffusion barrier structure is used in the tungsten polysilicon gate, the tungsten layer and the P + can be greatly increased. The contact resistance between the polysilicon layers. Conversely, if the Ti/WN diffusion barrier structure is used in the tungsten polysilicon gate, the contact resistance between the tungsten layer and the P + -type polysilicon layer is low irrespective of the polysilicon doping species. In the case of the P + -type polysilicon of the PMOSFET, it is possible to generate a polysilicon vacancy effect in the inverted state of the actual operation mode. The polysilicon enthalpy effect may depend on the amount of boron retained in the P + -type polysilicon -6 - 200828424. A larger polysilicon vacancy effect may be produced in the WSH/WN diffusion barrier structure than in the TWWN diffusion barrier structure. Therefore, the WSu/WN diffusion barrier structure may degrade the transistor characteristics. As a result, since the Ti/WN diffusion barrier structure can provide low contact resistance between the tungsten layer and the polysilicon layer and prevent P-type polysilicon from being depleted, it is recommended to use the Ti/WN diffusion barrier structure. However, if a Ti/WN diffusion barrier structure is used, it is possible to increase the sheet resistance (Rs) of tungsten directly formed over the ® Ti/WN diffusion barrier structure by about 1.5 to 2 times. Thus, the increase in the sheet resistance (Rs) may affect the development of the tungsten polysilicon gate in the future. SUMMARY OF THE INVENTION A specific example of the present invention relates to a gate stack including a semiconductor device of an intermediate structure, wherein the intermediate structure has low sheet resistance and contact resistance and can effectively prevent outward diffusion of impurities, and relates to a fabrication The method of stacking the gates. According to one aspect of the present invention, a semiconductor device includes: a first conductive layer; a first intermediate structure over the first conductive layer, the first intermediate structure including a metal germanide layer and a nitrogen-containing metal a second intermediate structure over the first intermediate structure, the second intermediate structure comprising at least a nitrogen-containing metal telluride layer; and a second conductive layer over the first intermediate structure. According to another aspect of the present invention, a semiconductor device is provided. The semiconductor component includes: a first conductive layer; an intermediate structure formed over the first conductive layer and including at least a first metal layer and a nitrogen-containing metal telluride layer; and a 200828424 conductive layer formed over the intermediate structure. According to another aspect of the present invention, a semiconductor device is provided. The semiconductor component includes: a first conductive layer; an intermediate structure on the first conductive layer and including a first metal layer, a second metal layer, and a metal germanide layer; and a second conductive layer </ RTI> disposed on the intermediate structure. [Embodiment] Fig. 2A is a graph showing the contact resistance between a tungsten and a polysilicon in a structure in which each type is a diffusion barrier. It can be observed that when a tungsten germanium (Wix)/tungsten nitride (WN) or titanium (Ti)/WN structure is used in place of the tungsten nitride (WN) structure, the polysilicon doped with the N-type impurity can be greatly improved ( The contact resistance between N + POLY-SO and tungsten (W) is denoted as Rc. However, the tungsten polysilicon gate is applied to the double poly gate (ie, N-type MOSFET) In the case of an N + -type polysilicon gate and a P + -type polysilicon gate of a P-type MOSFET, if the WSH/WN structure is used in the tungsten polysilicon gate, it is greatly increased. The contact resistance between the W and the P+ type polysilicon (P + POLY-Si). Conversely, if the Ti/WN structure is used in the tungsten polysilicon gate, the contact resistance between the W and the P+ type polysilicon is shown. The low level is irrelevant to the polysilicon doping type. In the case of the P + -type polysilicon of the PMOSFET, a polycrystalline germanium depletion effect can be generated in an inverted state of the actual operation mode. The polycrystalline germanium depletion effect is generated depending on the The amount of boron retained in the P + -type polysilicon. Figure 2B depicts each A plot of the depth profile of the boron concentration of the gate stack of the type. As described in the WSH/WN structure, the boron concentration is at the interface between the gate insulating layer (eg, oxide layer) and the polysilicon layer of the gate-8-200828424 The surface is as low as about 5 x 1019 atoms/cm 3. When the Ti/WN structure is used, the boron concentration measured at the same position is greater than about 8 x 019 atoms/cm 3 . As a result, in the WSix/WN structure than in the Ti/ The WN structure makes the polycrystalline germanium more depleted, and therefore, the WSH/WN structure reduces the characteristics of the transistor. Thus, the germanium/WN structure is preferably used, and the Ti/WN structure is provided between the W and the polycrystalline germanium. The low contact resistance and the prevention of P-type polysilicon depletion. However, the application of the Ti/WN structure is limited. The sheet resistance (Rs) of W formed over the Ti/WN structure® is increased by about 1.5 to 2 times. This limitation will be described in more detail in Figure 2C. Figure 2C is a graph depicting the sheet resistance of each type of structure as a diffusion barrier. The sheet resistance of W is labeled Rs. Polycrystalline germanium layer, yttrium oxide (Si〇2) layer, tantalum nitride (Si3N4) layer and WSix layer Forming an amorphous nitrogen-containing tungsten (WNX) layer, and thus, W can be formed thereon having a low specific resistance (that is, in the range of about 15 μ Ω-cm to 20 μ Ω-cm). However, in polycrystalline Pure titanium (Τι), tungsten (W) and giant (Ta) and metal nitrides (TiN) and tantalum (TaN) form a relatively small grain size W. Therefore, An W having a high specific resistance of about 30 μΩ-cm is formed thereon. The increase in sheet resistance of W caused by the application of the Ti/WN structure may limit the future development of the tungsten polysilicon gate. According to various embodiments of the present invention to be described below, the intermediate structure of the gate stack of different forms is formed with a plurality of thin layers including Ti, w, bismuth (Si) or nitrogen (N) or each layer containing N Thin layer. The intermediate structure acts as a diffusion barrier which reduces the contact resistance and the sheet resistance, -9-200828424 and prevents penetration and outward diffusion of impurities. In the following examples, the term "layer/structure containing nitrogen or nitrogen containing layer/structure" means a metal nitride layer/structure and a nitrogen content/weight ratio. Metal layer/structure. Also, X in WShNy represents the ratio of rhenium to tungsten, which ranges from about 0.5 to 3.0, and y represents the ratio of nitrogen to tungsten trioxide, which ranges from about 0.01 to 10.00. Fig. 3A depicts a gate stack structure in accordance with a first embodiment of the present invention. The gate stack structure includes a first conductive layer 21, an intermediate structure 22, and a second conductive layer 23 formed in sequence. The first conductive layer 21 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 21 may also include a polysilicon layer (Sh〃Gex, wherein X is in the range of between about 0.01 and 1.0) or a germanide layer. For example, the telluride layer includes one selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt. The second conductive layer 23 includes a tungsten layer. The tungsten layer is about 2,000 Å thick and formed by physical vapor deposition (PVD), chemical vapor deposition (CVD) or atomic layer deposition (ALD). The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 22 includes a titanium layer 22A, a nitrogen-containing tungsten (WNX) layer 22B, and a nitrogen-containing tungsten telluride (WSuNO layer 22C. In detail, the thickness of the titanium layer 22A is in the range of about 10 A to about 80 A. As described above, the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 2 2 B is in the range of about 0.3 to 1.5. The nitrogen-containing tungsten layer is regarded as a tungsten nitride layer or contains a certain content/weight. A tungsten layer than nitrogen. Although 10-200828424 will be described in the following third embodiment, it is known to supply nitrogen to the nitrogen-containing tungsten-deposited tungsten layer 22C. The thickness of the nitrogen-containing tungsten layer 22B to 200A. After the subsequent annealing treatment, the nitrogen-containing tungsten-tungsten layer 22C becomes a tungsten layer of pure tungsten nitrogen. The ratio of germanium to tungsten in the nitrogen-containing tungsten-tellide layer 22C is within a range of 3.0, and The nitrogen-containing tungsten telluride layer 22C has a nitrogen content ranging from 10% to about 60%. The nitrogen-containing tungsten telluride layer 22C is a tungsten layer (i.e., a tungsten-rhenium nitride layer) or a tungsten/nitride layer. The thickness of the nitrogen-containing tungsten telluride layer 22C is in the range of about 200 Å.
藉由實施PVD法、CVD法或ALD法形成 及該含氮鎢層22B。藉由實施PVD法形成該含 22C。該PVD法進行濺鍍沉積法或反應式濺鍍 如:藉由以鈦濺鍍靶實施濺鍍沉積法來形成該欽 由在氮氣環境中以鎢濺鍍靶實施反應式濺鍍沉 ^ 該含氮鎢層22B。藉由在氮氣環境中以矽化鎢 反應式濺鍍沉積法來形成該含氮矽化鎢層22C 特別地,因爲在該含氮鎢層22B上方不易 矽化鎢層22C,所以使用該PVD法(例如:反應 法)以形成該含氮矽化鎢層22C。如果藉由實施 該含氮矽化鎢層22C,則在該含氮鎢層22B上 地成長該含氮矽化鎢層22C,因而使其結塊。 氮鎢層2 2 B上方存有氧化鎢(W Ο x)層,此減弱The nitrogen-containing tungsten layer 22B is formed by a PVD method, a CVD method, or an ALD method. The 22C was formed by performing a PVD method. The PVD method performs a sputtering deposition method or a reactive sputtering method, such as: performing a sputtering deposition method by using a titanium sputtering target to perform a reactive sputtering method in a nitrogen atmosphere with a tungsten sputtering target. Nitrogen tungsten layer 22B. The formation of the nitrogen-containing tungsten telluride layer 22C by a tungsten-on-situ reactive sputtering method in a nitrogen atmosphere, in particular, because the tungsten layer 22C is not easily deuterated over the nitrogen-containing tungsten layer 22B, the PVD method is used (for example: The reaction method) forms the nitrogen-containing tungsten telluride layer 22C. When the nitrogen-containing tungsten-tungstate layer 22C is applied, the nitrogen-containing tungsten-destrogened tungsten layer 22C is grown on the nitrogen-containing tungsten layer 22B, thereby agglomerating. A tungsten oxide (W Ο x) layer exists above the nitrogen and tungsten layer 2 2 B, which is weakened
氮鎢層22B 具有約20A 氮的供應, 層或含微量 在約0.5至 含量係在約 示氮化砍化 比之氮的矽 在約20A至 該鈦層22A 氮矽化鎢層 沉積法。例 :層22A。藉 積法來形成 濺鍍靶實施 〇 成長該含氮 式濺鍍沉積 CVD法形成 方無法均句 因爲在該含 藉由該 CVD -11- 200828424 法所形成之含氮矽化鎢層22C的附著力,所以導致此結 塊。然而,在該氮氣環境中以該矽化鎢灑鍍靶實施該反應 式濺鍍沉積法以允許該含氮矽化鎢層22C之均勻形成而無 關下層型態。 第3B圖描述在藉由PVD法在含氮鎢層上方形成含氮 矽化鎢層後所獲得之影像。使用反應式濺鍍沉積法做爲該 PVD方法,以在該含氮鎢層上方均勻地形成該含氮矽化鎢 層。參考字母WSiN及WN分別表示該含氮矽化鎢層及該含 鲁氮鎢層。 依據本發明之第一具體例,該閘極堆疊結構包括該第 一導電層21、該Ti/WNx/WSixNy中間結構及該第二導電層 23。該第一導電層21包括多晶矽及該第二導電層23包括 鎢,藉以形成鎢多晶矽閘極堆疊結構。 特別地,該Ti/WNx/WSixNy中間結構包括第一金屬層、 第二金屬層及含氮金屬矽化物層之堆疊結構。更特別地, 該第一金屬層、該第二金屬層及該含氮金屬矽化物層分別 包括純金屬層、含氮金屬層及含氮金屬矽化物層。例如:該 第一金屬層、該第二金屬層及該含氮金屬矽化物層分別係 該鈦層22A、該含氮鎢(WNX)層22B及該含氮矽化鎢(WSixNy) 層 22C。 亦可以其它不同結構形成包括上述多層之中間結構。 例如J余該鈦層之外,該第一金屬層還包括鉅(Ta)層,以及 除該含氮鎢層之外,該第二金屬層還包括含氮鈦鎢層。除 該含氮矽化鎢層之外,該含氮金屬矽化物層還包括含氮矽 -12- 200828424 化鈦層或含氮矽化鉅層。藉由實施包括濺鍍之PVD法、CVD 法或ALD法形成該Ta層。藉由在氮氣環境中以鈦鎢濺鍍 靶實施反應式灑鍍沉積法來形成該含氮鈦鎢層。藉由在氮 氣環境中以個別矽化鈦及矽化鉅濺鍍靶實施反應式濺鍍沉 積法來形成該含氮矽化鈦層及該含氮矽化鉅層。該Ta層所 形成之厚度係約10人至80人。該含氮鈦鎢層、該含氮矽化 鈦層及該含氮矽化鉅層之每一層所形成之厚度係約20A至 2 00A及且每一層具有在約1〇%與60%間之範圍的氮含量。 ^ 在該含氮鈦鎢層中,鈦對鎢之比率係約0.5至3.0之範圍 內。在該含氮矽化鈦層中,矽對鈦之比率係在約〇. 5至3.0 之範圍內。在該含氮矽化鉅層中,矽對鉅之比率係在約〇. 5 至3.0之範圍內。 第3 C圖描述依據本發明之第二實施例的閘極堆疊結 構。特別地,該閘極堆疊結構係從依據本發明之第一實施 例的閘極堆疊結構所修改之示範性閘極堆疊結構。換句話 說,該閘極堆疊結構包括含氮鈦層以取代第3 A圖所述之鈦 層2 2 A,該含氮鈦層被識別爲T i N X,其中X爲約小於1。 依據第二實施例之閘極堆疊結構包括第一導電層 201、中間結構202及第一導電層203。該第一^導電層201 包括高摻雜有P型雜質(例如:硼(B))或n型雜質(例如:磷(p)) 之多晶矽層。除該多晶矽層之外,該第一導電層201亦可 包括多晶矽鍺(S i 1 - X G e x)層,其中X係在約〇 · 〇 1至〗.〇之範 圍內,或者包括矽化物層。該矽化物層包括選自由鎳(Ni)、 鉻(Cr)、鈷(Co)、欽(Ti)、鶴(W)、_(Ta)、給(Hf)、銷(Zr) -13- 200828424 及鉑(Pt)所組成之群組中之一。 該第二導電層203包括鎢層。實施PVD法、CVD法及 ALD法中之一以形成約100A至2,00〇A厚之鎢層。該PVD 法包括使用鎢濺鑪靶之濺鑛沉積法。 該中間結構202包括含氮鈦(TiNx)層202A、含氮鎢(WNX) 層202B及含氮矽化鎢(WSuNO層202C。更詳而言之,該含 氮欽層202A之氮對駄具有某一比率,例如:約0.2至0.8之 範圍。不同於第3A圖所述之鈦層22A,該含氮鈦層202A ® 所形成之厚度係約10A至150A。該含氮鈦層202A表示氮 化鈦層或含某一含量/重量比之氮的鈦層。 該含氮鎢層202B之氮對鎢具有某一比率,例如:在約 0.3至1.5之範圍內。該含氮鎢層202B表示氮化鎢層或含 某一含量/重量比之氮的鎢層。雖然於之後說明,但是該含 氮鎢層202B供應氮至該含氮矽化鎢層202C。該含氮鎢層 j〇2B所形成之厚度係約20人至200A。由於氮之供應,該 含氮鎢層202B在退火後變成純鎢層或含微量氮之鎢層。 0 在該含氮矽化鎢層202C中之矽對鎢的比率係在約0.5 與3.0間之範圍內,以及該含氮矽化鎢層202C之氮含量係 在約10%至約60%之範圍內。該含氮矽化鎢層202C表示鎢 矽氮化物層或含某一含量/重量比之氮的矽化鎢層。 藉由實施PVD法、CVD法或ALD法形成該含氮鎢層 202B。藉由實施PVD法形成該含氮鈦層202A及該含氮矽 化鎢層202C。該PVD法進行濺鍍沉積法或反應式濺鍍沉積 法。例如:藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積法來 -14- 200828424 形成該含氮鈦層202 A °藉由在氮氣環境中以鎢濺鍍耙 反應式濺鍍沉積法來形成該含氮鎢層202B。藉由在氮 境中以矽化鎢濺鍍靶實施反應式濺鍍沉積法來形成該 矽化鎢層202C。 特別地,因爲在該含氮鎢層2 0 2 B上方不易成長該 矽化鎢層202C,所以使用該PVD法(例如:反應式濺鍍 法)以形成該含氮砂化鎢層2 0 2 C。如果藉由實施C V D 成該含氮矽化鎢層22C,則在該含氮鎢層202B上方無 ® 勻地成長該含氮矽化鎢層202C,因而使其結塊。因爲 含氮鎢層202B上方存有氧化鎢(W〇x)層’此減弱藉由該 法所形成之含氮矽化鎢層202C的附著力’所以導致 塊。然而,在該氮氣環境中以該矽化鎢濺鍍靶實施該 式濺鍍沉積法以允許該含氮矽化鎢層202C之均勻形 無關下層型態。 當使用相似於第一實施例中之鈦層22A的第二實 中之含氮鈦層202A時,可獲得低接觸電阻。該低接觸 ^ 之理由是因爲該形成之含氮鎢層202B供應氮至該含 層202A,藉此使該含氮鈦層202A之上部分強健及同 止Ti-Si鍵之結塊。 依據本發明之第二具體例的閘極堆疊結構包括該 導電層201、該TiNx/WNx/WSixNy中間結構202及該第 電層203。該第一導電層201包括多晶矽及該第二導 203包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,該TiNx/WNx/WSixNy中間結構202係以包 實施 氣環 含氮 含氮 沉積 法形 法均 在該 CVD 此結 反應 成而 施例 電阻 氮鈦 時防 第一 二導 電層 括第 -15- 200828424 一金層層、第二金屬層及含氮金屬矽化物層之堆疊結構所 形成。該第一及第二金屬層係含某一含量/重量比之氮的金 屬層,以及該含氮金屬砂化物層包含某一含量/重量比之 氮。例如:該第一金屬層係該含氮鈦層202A。該第二金屬層 係該含氮鎢層202B。該金屬矽化物層係該含氮矽化鎢層 202C。 上述多層中間結構亦可以其它不同結構來形成。例如: 除該含氮鈦層之外,該第一含氮金屬層還包括含氮鉅層 (TaNx)層,以及除該含氮鎢層之外,該第二含氮金屬層還包 括含氮鈦鎢(TiWNO層。除該含氮矽化鎢層之外,該含氮金 屬矽化物層還包括含氮矽化鈦(TlShNy)層或含氮矽化钽 (TaShNy)層。藉由實施包括濺鍍之PVD法' CVD法或ALD 法形成該含氮鉅層。藉由在氮氣環境中以鈦鎢濺鍍靶實施 反應式濺鍍沉積法來形成該含氮鈦鎢層。藉由在氮氣環境 中以個別矽化鈦及矽化鉅濺鍍靶實施反應式濺鍍沉積法來 形成該含氮矽化鈦層及該含氮矽化鉅層。該含氮鉅層所形 成之厚度係約10人至80A。該含氮鈦鎢層、該含氮矽化鈦 層及該含氮矽化鉅層之每一層所形成之厚度係約20A至 200A,及每一層具有在約10%與60%間之範圍內的氮含量。 在該含氮鈦鎢層中,鈦對鎢之比率係在約0.5至3.0之範圍 內。在該含氮矽化鈦層中,矽對鈦之比率係在約0.5至3.0 之範圍內。在該含氮矽化鉬層中,矽對鉬之比率係在約0.5 至3.0之範圍內。 相似於該TiNx/WNx/WSixNy中間結構,包括該含氮鉅層 -16- 200828424 以取代該含氮鈦層之中間結構可具有低接觸電阻及片電阻 以及同時防止多晶砂空乏。雖然以3層形成依據第二實施 例之中間結構,但是該中間結構可以進一'步在該3砍化鶴 層上方包括含氮鎢(WNx)層。該額外所提供含氮鎢層具有大 致相同於首先提供之含氮鎢層之厚度及氮含量。依據第二 實施例之TiNx/WNx/WSixNy中間結構的複數層包含氮。結 果,該TiNx/WNx/WSixNy中間結構可具有低片電阻及接觸電 阻以及減少該閘極堆疊結構之高度。並且,該 • TiNx/WNx/WSixNy中間結構可減少因在該第一導電層201中 所摻雜之雜質(例如:硼)的向外擴散所造成之多晶矽空乏。 第3D圖描述依據本發明之第三實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層2 1 1、中間結構2 1 2 及第二導電層213。該第一導電層211包括高摻雜有P型雜 質(例如:硼(B))或N型雜質(例如:磷(P))之多晶矽層。除該 多晶矽之外,該第一導電層211亦可包括多晶矽鍺(Sn〃Gex) ^ 層,其中X係在約0.01至1.0之範圍內。該矽化層包括選 自一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr 及 Pt 所組成之群 組中之一‘。 該第二導電層213包括鎢層。實施PVD法、CVD法及 ALD法中之一以形成約ιοοΑ至2,000A厚度之鎢層。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構2 1 2包括砂化鈦(T i S i X)層2 1 2 A、含氮欽 (TiN〇層212B、含氮鎢(WNX)層212C及含氮矽化鎢(WSixN〇 層2 1 2D。依據在個別第一及第二實施例中所述之中間結構 -17- 200828424 22及202,除該矽化鈦層、該含氮鈦層及該含氮鎢層之外’ 亦可分別形成矽化鉅層、含氮鉅層及含氮鈦鎢層。並且’ 除該含氮矽化鎢層之外,亦可形成含氮矽化鈦層或含氮砂 化鉅層。 依據第三實施例之閘極堆疊結構係在對依據本發明之 第一及第二實施例的閘極堆疊結構實施退火處理後所造成 之結構。該退火包括在形成該等閘極堆疊結構後所實施之 ^ 各種製程(例如:間隔物形成及內層絕緣層形成)期間所伴隨 之熱處理。 參考第3 A及3 D圖以比較該中間結構2 1 2與該中間結 構22。當該鈦層22A與來自該第一導電層21之多晶矽反 應時,形成具有約1A至30A厚度之矽化鈦層212A。該矽 化鈦層212A中之矽對鈦的比率係在約0.5與3.0間之範圍 內。 當從該含氮鎢層22B供應氮至該鈦層22A時,造成該 ^ 含氮鈦層212B。該含氮鈦層212B之厚度係約10A至ιοοΑ 且具有約〇·7至1·3範圍之氮對鈦的比率。相較於在該鈦層 22Α中之氮對鈦的比率,在該含氮鈦層212Β中之氮對鈦的 比率從約0增加至約0.7至1.3。 · 在該退火後,該含氮鎢層212C因剝触(denudation)而 具有降至約10 %或更少之氮含量。元件符號WNx(D)表示該 經剝蝕含氮鎢層。該含氮鎢層212C係約20A至20〇A厚。 在該含氮鎢層21 2C中之氮對鎢的比率係在約0.01與n 5 間之範圍內。相較於在第3A圖中所述之含氮鎢層22C中之 -18- 200828424 氮對鎢的比率,在該含氮鎢層2 1 2C中之氮對鎢的比率從約 0.3與1.5間之範圍減少至約0.01至0.15間之範圍。 該含氮矽化鎢層2 1 2D具有大致相同於該含氮矽化鎢 層22C之厚度及成分。詳而言之,該含氮矽化鎢層212D具 有約0.5至3.0範圍之矽對鎢的比率及約10%與60%間之範 圍的氮含量。該含氮矽化鎢層21 2D之厚度係在約2 0A與 200A間之範圍內。 參考第3D及3C圖以比較該中間結構212與該中間結 # 構202。在該退火處理期間,從該含氮鎢層202B將氮供應 至該含氮鈦層202A。結果,使該含氮鈦層202A變換成爲 與該矽化鈦層212A有最小反應之含氮鈦層212B。該矽化 鈦層212A之厚度係在約1人至30A之範圍內,以及該含氮 鈦層21 2B之厚度係在約10人至100A之範圍內。 在該含氮鈦層212B中之氮對鈦的比率係在約0.7與 1.3間之範圍內。相較於在該含氮鈦層202B中之氮對鈦比 率,在該含氮鈦層2 1 2 B中之氮對鈦比率從約0 · 2至0 · 8間 ® 之範圍增加至約0.7與1. 3間之範圍。 在該退火後,該含氮鎢層2 1 2C因剝蝕而具有降至約 10%或更少之氮含量。該含氮鎢層212〇係約20人至200入 厚。在該含氮鎢層2 1 2 C中之氮對鎢的比率係在約0 · 0 1與 0.15間之範圍內。相較於在第3C圖中所述之含氮鎢層202C 中之氮對鎢的比率,在該含氮鎢層2 1 2C中之氮對鎢的比率 從約〇 . 3與1. 5間之範圍減少至約〇 · 〇 1至〇 · 1 5間之範圍。 該含氮矽化鎢層2 1 2D具有大致相同於該含氮矽化鎢 -19- 200828424 層202C之厚度及成分。詳而言之’該含氣砂化鎢層212D 具有約0.5至3 ·〇範圍之矽對鎢的比率及約1〇%與6〇%間之 範圍的氮含量。該含氮矽化鎢層212D之厚度係在約20A 與200A間之範圍內。 依據第三具體實施例之閘極堆疊結構包括第一中間結 構及第二中間結構。該第一中間結構包括第一金屬矽化物 層及第一含氮金屬層,以及該第二中間結構包括第二含氮 金屬層及第二含氮金屬矽化物層。例如:藉由堆疊該矽化鈦 ® 層212A及該含氮鈦層212B形成該第一中間結構。藉由堆 疊該含氮鎢層2 1 2C及該含氮矽化鎢層2 1 2D形成該第二中 間結構。 第3E圖描述在退火製程後之閘極堆疊結構的影像。相 同的元件符號代表相同於第一到第二實施例中所述之元 件’因此,省略其詳細敘述。 第4A圖描述依據本發明之第四實施例的閘極堆疊結 I 構。該閘極堆疊結構包括第一導電層31、中間結構32及第 二導電層33。該第一導電層31包括高摻雜有p型雜質(例 如:硼)或N型雜質(例如:磷)之多晶矽層。該第一導電層31 亦可包括多晶矽鍺層,其中X係在約〇.〇1與1.0 間之範圍內)或矽化物層。例如:該矽化物層包括選自一由 N!、Cr、Co、丁!、w、Ta、Hf ' Zr及pt所組成之群組中之 -- 〇The nitrogen-tungsten layer 22B has a supply of about 20 A of nitrogen, and the layer contains a trace amount of about 0.5 to about 系 at a ratio of about nitriding to a nitrogen ratio of about 20 Å to about 20 Å to the titanium layer 22A. Example: Layer 22A. The deposition method is used to form a sputtering target, and the formation of the nitrogen-containing sputtering deposition CVD method cannot be uniformly performed because of the adhesion of the nitrogen-containing tungsten-deposited tungsten layer 22C formed by the CVD-11-200828424 method. So caused this agglomeration. However, the reactive sputtering deposition method was carried out with the tungsten antimonide sputtering target in the nitrogen atmosphere to allow uniform formation of the nitrogen-containing tungsten-destrogened tungsten layer 22C without the underlying layer. Figure 3B depicts an image obtained after the formation of a nitrogen-containing tungsten antimonide layer over a nitrogen-containing tungsten layer by a PVD process. The reactive sputtering deposition method is employed as the PVD method to uniformly form the nitrogen-containing tungsten telluride layer over the nitrogen-containing tungsten layer. The reference letters WSiN and WN denote the nitrogen-containing tungsten telluride layer and the Lu-N-containing tungsten layer, respectively. According to a first embodiment of the present invention, the gate stack structure includes the first conductive layer 21, the Ti/WNx/WSixNy intermediate structure, and the second conductive layer 23. The first conductive layer 21 includes polysilicon and the second conductive layer 23 includes tungsten to form a tungsten polysilicon gate stack structure. In particular, the Ti/WNx/WSixNy intermediate structure includes a stacked structure of a first metal layer, a second metal layer, and a nitrogen-containing metal telluride layer. More specifically, the first metal layer, the second metal layer, and the nitrogen-containing metal telluride layer respectively comprise a pure metal layer, a nitrogen-containing metal layer, and a nitrogen-containing metal telluride layer. For example, the first metal layer, the second metal layer, and the nitrogen-containing metal telluride layer are the titanium layer 22A, the nitrogen-containing tungsten (WNX) layer 22B, and the nitrogen-containing tungsten germanium (WSixNy) layer 22C, respectively. It is also possible to form the intermediate structure including the above multiple layers in other different structures. For example, in addition to the titanium layer, the first metal layer further includes a giant (Ta) layer, and the second metal layer further includes a nitrogen-containing titanium tungsten layer in addition to the nitrogen-containing tungsten layer. In addition to the nitrogen-containing tungsten telluride layer, the nitrogen-containing metal telluride layer further includes a nitrogen-containing germanium-12-200828424 titanium nitride layer or a nitrogen-containing germanium macrolayer. The Ta layer is formed by performing a PVD method including sputtering, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputter deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer and the nitrogen-containing germanium macrolayer are formed by performing a reactive sputtering deposition method using a single titanium telluride and a germanium sputtering target in a nitrogen atmosphere. The thickness of the Ta layer is about 10 to 80 people. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer, and the nitrogen-containing germanium macrolayer has a thickness of about 20A to 200A and each layer has a range of between about 1% and 60%. Nitrogen content. ^ In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is in the range of about 0.5 to 3.0. In the nitrogen-containing deuterated macrolayer, the ratio of lanthanum to giant is in the range of about 〇. 5 to 3.0. Fig. 3C depicts a gate stack structure in accordance with a second embodiment of the present invention. In particular, the gate stack structure is an exemplary gate stack structure modified from the gate stack structure in accordance with the first embodiment of the present invention. In other words, the gate stack structure includes a nitrogen-containing titanium layer in place of the titanium layer 2 2 A described in Figure 3A, which is identified as T i N X wherein X is less than about 1. The gate stack structure according to the second embodiment includes a first conductive layer 201, an intermediate structure 202, and a first conductive layer 203. The first conductive layer 201 includes a polysilicon layer highly doped with a P-type impurity (for example, boron (B)) or an n-type impurity (for example, phosphorus (p)). In addition to the polysilicon layer, the first conductive layer 201 may also include a polysilicon (S i 1 - XG ex ) layer, wherein the X system is in the range of about 〇·〇1 to 〇.〇, or includes a telluride layer. . The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), chin (Ti), crane (W), _ (Ta), (Hf), pin (Zr) -13 - 200828424 And one of the groups consisting of platinum (Pt). The second conductive layer 203 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is performed to form a tungsten layer of about 100 A to 2,00 Å thick. The PVD method includes a splash deposition method using a tungsten sputtering furnace target. The intermediate structure 202 includes a titanium-containing titanium (TiNx) layer 202A, a nitrogen-containing tungsten (WNX) layer 202B, and a nitrogen-containing tungsten germanium (WSuNO layer 202C. More specifically, the nitrogen-containing layer 202A of nitrogen has a certain A ratio, for example, is in the range of about 0.2 to 0.8. Unlike the titanium layer 22A described in Fig. 3A, the nitrogen-containing titanium layer 202A ® is formed to have a thickness of about 10 A to 150 A. The nitrogen-containing titanium layer 202A represents nitriding. a titanium layer or a titanium layer containing nitrogen in a certain content/weight ratio. The nitrogen of the nitrogen-containing tungsten layer 202B has a certain ratio to tungsten, for example, in the range of about 0.3 to 1.5. The nitrogen-containing tungsten layer 202B represents nitrogen. a tungsten layer or a tungsten layer containing a certain content/weight ratio of nitrogen. Although described later, the nitrogen-containing tungsten layer 202B supplies nitrogen to the nitrogen-containing tungsten-deposited tungsten layer 202C. The nitrogen-containing tungsten layer j〇2B is formed. The thickness is about 20 to 200 A. Due to the supply of nitrogen, the nitrogen-containing tungsten layer 202B becomes a pure tungsten layer or a tungsten layer containing a trace of nitrogen after annealing. 0 In the nitrogen-containing tungsten-deposited tungsten layer 202C, tantalum to tungsten The ratio is in the range of between about 0.5 and 3.0, and the nitrogen content of the nitrogen-containing tungsten-deposited tungsten layer 202C is in the range of from about 10% to about 60%. The tungsten-deposited tungsten layer 202C represents a tungsten-rhenium nitride layer or a tungsten-deposited tungsten layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten layer 202B is formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 202A and the nitrogen-containing tungsten-deposited tungsten layer 202C. The PVD method performs a sputtering deposition method or a reactive sputtering deposition method, for example, by performing a sputtering deposition method using a titanium sputtering target in a nitrogen atmosphere. -14- 200828424 Forming the nitrogen-containing titanium layer 202 A ° The nitrogen-containing tungsten layer 202B is formed by a tungsten sputtering chrome-plated reactive sputtering deposition method in a nitrogen atmosphere by sputtering with tungsten telluride in a nitrogen atmosphere. The target is subjected to reactive sputtering deposition to form the tungsten-deposited tungsten layer 202C. In particular, since the tungsten-deposited tungsten layer 202C is not easily grown above the nitrogen-containing tungsten layer 2 0 2 B, the PVD method is used (for example, reactive sputtering) Plating) to form the nitrogen-containing tungsten carbide layer 2 O 2 C. If the nitrogen-containing tungsten-tungstate layer 22C is formed by performing CVD, the nitrogen-containing tungsten-tungsten is grown uniformly without the ® above the nitrogen-containing tungsten layer 202B. Layer 202C, thus agglomerating. Because of the presence of tungsten oxide (W〇x) layer above the nitrogen-containing tungsten layer 202B 'This weakens the adhesion of the nitrogen-containing tungsten-deposited tungsten layer 202C formed by the method', thus causing a block. However, the sputtering deposition method is performed with the tungsten-on-sulphur sputtering target in the nitrogen atmosphere to allow the nitrogen-containing The uniform shape of the tungsten-tungsten layer 202C is independent of the lower layer type. When a second titanium-containing titanium layer 202A similar to the titanium layer 22A in the first embodiment is used, a low contact resistance can be obtained. This is because the formed nitrogen-containing tungsten layer 202B supplies nitrogen to the containing layer 202A, whereby the upper portion of the nitrogen-containing titanium layer 202A is partially robust and agglomerates with the Ti-Si bond. A gate stack structure according to a second embodiment of the present invention includes the conductive layer 201, the TiNx/WNx/WSixNy intermediate structure 202, and the second electrical layer 203. The first conductive layer 201 includes polysilicon and the second conductive layer 203 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. In particular, the TiNx/WNx/WSixNy intermediate structure 202 is formed by applying a gas ring nitrogen-containing nitrogen-containing deposition method to the first CVD layer when the CVD reaction is performed and the resistance nitrogen and titanium are applied. 15- 200828424 A stacked structure of a gold layer, a second metal layer and a nitrogen-containing metal telluride layer. The first and second metal layers are metal layers containing a certain content/weight ratio of nitrogen, and the nitrogen-containing metal sand layer contains a certain content/weight ratio of nitrogen. For example, the first metal layer is the nitrogen-containing titanium layer 202A. The second metal layer is the nitrogen-containing tungsten layer 202B. The metal telluride layer is the nitrogen-containing tungsten telluride layer 202C. The above multilayer intermediate structure can also be formed in other different structures. For example: in addition to the nitrogen-containing titanium layer, the first nitrogen-containing metal layer further includes a nitrogen-containing giant layer (TaNx) layer, and the second nitrogen-containing metal layer further includes nitrogen in addition to the nitrogen-containing tungsten layer Titanium tungsten (TiWNO layer. In addition to the nitrogen-containing tungsten telluride layer, the nitrogen-containing metal telluride layer further includes a nitrogen-containing titanium telluride (TlShNy) layer or a nitrogen-containing germanium telluride (TaShNy) layer. The nitrogen-containing macrolayer is formed by a PVD method by a CVD method or an ALD method. The nitrogen-containing titanium tungsten layer is formed by performing a reactive sputtering deposition method using a titanium-tungsten sputtering target in a nitrogen atmosphere. The individual titanium telluride and the bismuth telluride sputtering target are subjected to a reactive sputtering deposition method to form the nitrogen-containing titanium telluride layer and the nitrogen-containing germanium macrolayer. The nitrogen-containing giant layer is formed to have a thickness of about 10 to 80 A. Each of the titanium, titanium, titanium oxide layer, and the nitrogen-containing germanium layer is formed to a thickness of about 20A to 200A, and each layer has a nitrogen content in a range between about 10% and 60%. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the nitrogen-containing titanium antimonide layer, tantalum pairs The ratio is in the range of about 0.5 to 3.0. In the nitrogen-containing molybdenum molybdenum layer, the ratio of niobium to molybdenum is in the range of about 0.5 to 3.0. Similar to the TiNx/WNx/WSixNy intermediate structure, including the Nitrogen giant layer-16-200828424 to replace the intermediate structure of the nitrogen-containing titanium layer may have low contact resistance and sheet resistance and at the same time prevent polycrystalline sand deficiency. Although the intermediate structure according to the second embodiment is formed in three layers, the middle portion The structure may further comprise a layer of nitrogen-containing tungsten (WNx) over the layer of 3 chopped cranes. The additional layer of nitrogen-containing tungsten provided has substantially the same thickness and nitrogen content as the first layer of nitrogen-containing tungsten provided. The plurality of layers of the TiNx/WNx/WSixNy intermediate structure of the embodiment contain nitrogen. As a result, the TiNx/WNx/WSixNy intermediate structure can have low sheet resistance and contact resistance and reduce the height of the gate stack structure. Moreover, the TiNx/ The WNx/WSixNy intermediate structure can reduce polycrystalline germanium caused by out-diffusion of impurities (for example, boron) doped in the first conductive layer 201. Fig. 3D depicts a gate according to a third embodiment of the present invention Polar stack The gate stack structure includes a first conductive layer 21, an intermediate structure 2 1 2, and a second conductive layer 213. The first conductive layer 211 includes a highly doped P-type impurity (for example, boron (B)). Or a polysilicon layer of an N-type impurity (for example, phosphorus (P)). In addition to the polysilicon, the first conductive layer 211 may also include a polysilicon (Sn〃Gex) layer, wherein the X system is between about 0.01 and 1.0. The deuterated layer includes one selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt. The second conductive layer 213 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is performed to form a tungsten layer having a thickness of about ιοοΑ to 2,000 Å. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 2 1 2 includes a titanium silicide (T i S i X) layer 2 1 2 A, a nitrogen-containing tin (TiN tantalum layer 212B, a nitrogen-containing tungsten (WNX) layer 212C, and a nitrogen-containing tungsten germanium (WSixN〇 layer 2). 1 2D. According to the intermediate structures -17- 200828424 22 and 202 described in the respective first and second embodiments, in addition to the titanium telluride layer, the nitrogen-containing titanium layer and the nitrogen-containing tungsten layer, Forming a giant layer of germanium, a giant layer containing nitrogen, and a layer of nitrogen-containing titanium and tungsten. And 'in addition to the nitrogen-containing tungsten-tellide layer, a nitrogen-containing titanium telluride layer or a nitrogen-containing sand-forming macro layer may be formed. According to the third embodiment The gate stack structure is a structure caused by annealing the gate stack structures according to the first and second embodiments of the present invention. The annealing includes various processes performed after forming the gate stack structures. Heat treatment accompanying (for example, spacer formation and formation of inner insulating layer). Referring to Figures 3A and 3D to compare the intermediate structure 2 1 2 with the intermediate structure 22. When the titanium layer 22A is from the first When the polysilicon of a conductive layer 21 is reacted, a titanium telluride layer 212A having a thickness of about 1 A to 30 A is formed. The ratio of tantalum to titanium in layer 212A is in the range of between about 0.5 and 3.0. When nitrogen is supplied from the nitrogen-containing tungsten layer 22B to the titanium layer 22A, the nitrogen-containing titanium layer 212B is formed. The thickness of layer 212B is about 10A to ιοο 且 and has a nitrogen to titanium ratio in the range of about 〇·7 to 1.3. Compared to the ratio of nitrogen to titanium in the titanium layer 22, in the nitrogen-containing titanium layer 212Β The ratio of nitrogen to titanium is increased from about 0 to about 0.7 to 1.3. After the annealing, the nitrogen-containing tungsten layer 212C has a nitrogen content reduced to about 10% or less due to denudation. The symbol WNx(D) denotes the ablated nitrogen-containing tungsten layer. The nitrogen-containing tungsten layer 212C is about 20 A to 20 Å thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 21 2C is about 0.01 and n. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 2 1 2C compared to the ratio of -18-200828424 nitrogen to tungsten in the nitrogen-containing tungsten layer 22C described in FIG. 3A The range is reduced from about 0.3 to about 1.5 to about 0.1 to about 0.15. The nitrogen-containing tungsten-deposited tungsten layer 2 1 2D has substantially the same thickness and composition as the nitrogen-containing tungsten-telluride layer 22C. The nitrogen-containing tungsten telluride layer 212D has a germanium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content ranging between about 10% and 60%. The thickness of the nitrogen-containing tungsten telluride layer 21 2D is between about 20A and 200A. Referring to Figures 3D and 3C, the intermediate structure 212 and the intermediate structure 202 are compared. During the annealing process, nitrogen is supplied from the nitrogen-containing tungsten layer 202B to the nitrogen-containing titanium layer 202A. As a result, the nitrogen-containing titanium layer 202A is converted into a nitrogen-containing titanium layer 212B which has a minimum reaction with the titanium telluride layer 212A. The thickness of the titanium telluride layer 212A is in the range of about 1 to 30 A, and the thickness of the titanium-containing titanium layer 21 2B is in the range of about 10 to 100 Å. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 212B is in the range of between about 0.7 and 1.3. The nitrogen to titanium ratio in the nitrogen-containing titanium layer 2 1 2 B is increased from about 0 · 2 to 0 · 8 between the range of about 0.7 to about 0.7 compared to the nitrogen to titanium ratio in the nitrogen-containing titanium layer 202B. With a range of 1.3. After the annealing, the nitrogen-containing tungsten layer 2 1 2C has a nitrogen content of about 10% or less due to ablation. The nitrogen-containing tungsten layer 212 is about 20 to 200 thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 2 1 2 C is in the range of between about 0.01 and 0.15. The ratio of the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 2 1 2C is from about 〇. 3 and 1.5, as compared with the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 202C. The range is reduced to approximately 间· 〇1 to 〇·15. The nitrogen-containing tungsten telluride layer 2 1 2D has substantially the same thickness and composition as the nitrogen-containing tungsten telluride -19-200828424 layer 202C. Specifically, the gas-containing tungsten carbide layer 212D has a rhodium to tungsten ratio of about 0.5 to 3 Å and a nitrogen content in a range between about 1% and 6%. The thickness of the nitrogen-containing tungsten telluride layer 212D is in the range of between about 20A and 200A. The gate stack structure according to the third embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a first metal halide layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal layer and a second nitrogen-containing metal halide layer. For example, the first intermediate structure is formed by stacking the titanium telluride ® layer 212A and the nitrogen-containing titanium layer 212B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten layer 2 1 2C and the nitrogen-containing tungsten-tellide layer 2 1 2D. Figure 3E depicts an image of the gate stack structure after the annealing process. The same component symbols denote the same components as those described in the first to second embodiments. Therefore, a detailed description thereof will be omitted. Fig. 4A depicts a gate stack structure in accordance with a fourth embodiment of the present invention. The gate stack structure includes a first conductive layer 31, an intermediate structure 32, and a second conductive layer 33. The first conductive layer 31 includes a polysilicon layer highly doped with a p-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 31 may also include a polysilicon layer, wherein the X system is in a range between about 〇1 and 1.0 or a vapor layer. For example: the telluride layer comprises one selected from the group consisting of N!, Cr, Co, and D! , w, Ta, Hf ' Zr and pt in the group - 〇
該第一導電層3 3包括鎢層。該鎢層係約1 ο ο Α至2,0 0 0 A 厚及藉由實施Ρ VD法、c VD法或ALD法所形成。該Ρ VD -20- 200828424 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構32包括鈦層32A及含氮矽化鎢(WShN〇層 3 2B。詳而言之,該鈦層32A之厚度係在約l〇A至約80A 之範圍內。該含氮矽化鎢層3 2 B具有約0.5至3.0範圍之矽 笑寸鶴的比率及具有約10 %至60%之氮含量。該含氮砂化鎢 層3 2B表示鎢矽氮化層或包含某一含量/重量比之氮的矽化 鎢層。該含氮矽化鎢層32B所形成之厚度係約20A至200A。 藉由PVD法、CVD法或ALD法形成該鈦層32A。藉由 ® PVD法形成該含氮矽化鎢層32B。該PVD法進行濺鍍沉積 法或反應式濺鍍沉積法。例如:藉由以鈦濺鍍靶實施濺鍍沉 積法來形成該鈦層3 2 A。藉由在氮氣環境中以矽化鎢濺鍍 靶實施反應式濺鍍沉積法來形成該含氮矽化鎢層32B。特 別地’因爲可均勻地形成該含氮矽化鎢層32B而無關下層 型態’所以使用該PVD法(例如:反應式濺鍍沉積法)以形成 該含氮砂化鎢層32B。 • 依據本發明之第四實施例的閘極堆疊結構包括該第一 導電層31、該Ti/WSixNy中間結構32及該第二導電層33。 該第一導電層31包括多晶矽及該第二導電層33包括鎢, 藉此形成鎢多晶矽閘極堆疊結構。 特別地’該Ti/WS^Ny中間結構32包括金屬層及含氮 金屬矽化物層。該金屬層包括純金屬層及該金屬矽化物層 包括含氮砂化鎢層。例如:該金屬層係該鈦層32A及該金屬 矽化物層係該含氮矽化鎢層3 2 B。 依據第四實施例之多層中間結構亦可以其它結構形 •21- 200828424 成。除該鈦層之外’該金屬層還包括鉅層,以及除該含氮 矽化鎢層之外’該含氮矽金屬矽化層還包括含氮矽化鈦 (TiSixNy)層或含氮矽化钽(TaShNy)層。藉由包括濺鍍沉積法 之PVD法、CVD法’或ALD法形成該鉅層。藉由在氮氣環境 中以矽化鈦濺鍍靶實施反應式濺鍍沉積法來形成該含氮矽 化鈦層。藉由在氮氣環境中以矽化鉅濺鍍靶實施反應式濺 鍍沉積法來實施該含氮矽化鉬層。該鉅層係約10A至80A 厚。該含氮矽化鈦層及該含氮矽化鉅層之每一層所形成之 ® 厚度係約20人至200A及每一層具有約10%至60%之氮含 量。在該含氮矽化鈦層中之矽對鈦的比率係在約0.5與3.0 間之範圍內。該含氮矽化鉅層具有約0.5至3.0之矽對鉅比 率。 第4B圖描述依據本發明之第五實施例的閘極堆疊結 構。該所述閘極堆疊結構係從依據第二實施例之閘極堆疊 結構所修改而成。換句話說,使用含氮鈦(了…^層以取代 鈦,其中X約小於1。 ® 該閘極堆疊結構包括第一導電層301、中間結構302 及第二導電層303。該第一導電層301包括高摻雜有P型雜 質(例如:硼)或N型雜質(例如:磷)之多晶矽層。該第一導電 層301亦可包括多晶矽鍺層(Si ^Gex,其中X係在約〇.〇丄 與1 · 0間之範圍內)或矽化物層。例如:該矽化物層包括選自 一由 Ni、Cir、Co、Ti、W、Ta、Hf、Zr 及 Pt 所組成之群組 中之一。The first conductive layer 33 includes a tungsten layer. The tungsten layer is formed from about 1 ο ο 2 to 2,0 0 0 A thick and formed by a ΡVD method, a c VD method, or an ALD method. The ΡVD-20-200828424 method includes a sputter deposition method using a tungsten sputtering target. The intermediate structure 32 includes a titanium layer 32A and a nitrogen-containing tungsten telluride (WShN〇 layer 3 2B. In detail, the thickness of the titanium layer 32A is in the range of about 10 A to about 80 A. The nitrogen-containing tungsten-tellide layer 3 2 B has a ratio of ridiculous cranes in the range of about 0.5 to 3.0 and has a nitrogen content of about 10% to 60%. The nitrogen-containing tungsten carbide layer 3 2B represents a tungsten nitride layer or contains a certain content/weight. The tungsten-containing tungsten-deposited tungsten layer 32B is formed to have a thickness of about 20 A to 200 A. The titanium layer 32A is formed by a PVD method, a CVD method, or an ALD method. The nitrogen-containing method is formed by the PVD method. The tungsten oxide layer 32B. The PVD method is performed by a sputtering deposition method or a reactive sputtering deposition method, for example, by performing a sputtering deposition method using a titanium sputtering target to form the titanium layer 3 2 A by using a nitrogen atmosphere. The nitrogen-containing tungsten-tungstate layer 32B is formed by performing a reactive sputtering deposition method on a tungsten-on-sulphur sputtering target. In particular, the PVD method is used because the nitrogen-containing tungsten-deposited tungsten layer 32B can be uniformly formed without depending on the underlying type. For example: reactive sputtering deposition method) to form the nitrogen-containing tungsten carbide layer 32B. According to the fourth embodiment of the present invention The pole stack structure comprises the first conductive layer 31, the Ti/WSixNy intermediate structure 32 and the second conductive layer 33. The first conductive layer 31 comprises a polysilicon and the second conductive layer 33 comprises tungsten, thereby forming a tungsten polysilicon gate In particular, the Ti/WS^Ny intermediate structure 32 comprises a metal layer and a nitrogen-containing metal telluride layer. The metal layer comprises a pure metal layer and the metal germanide layer comprises a nitrogen-containing tungsten carbide layer. For example: The metal layer is the titanium layer 32A and the metal telluride layer is the nitrogen-containing tungsten-deposited tungsten layer 3 2 B. The multilayer intermediate structure according to the fourth embodiment can also be formed by other structural forms, 21-200828424. The 'metal layer further includes a giant layer, and the nitrogen-containing lanthanum metal telluride layer includes a titanium-containing titanium telluride (TiSixNy) layer or a nitrogen-containing germanium telluride (TaShNy) layer, in addition to the nitrogen-containing tungsten-telluride layer. The macro layer is formed by a PVD method including a sputtering deposition method, a CVD method or an ALD method, and the nitrogen-containing titanium telluride layer is formed by performing a reactive sputtering deposition method using a titanium telluride sputtering target in a nitrogen atmosphere. Reactive reaction in a nitrogen atmosphere with a deuterated giant sputtering target The nitrogen-containing molybdenum molybdenum layer is deposited by sputtering deposition. The giant layer is about 10A to 80A thick. The thickness of the nitrogen-containing titanium telluride layer and the nitrogen-containing antimony layer is about 20 to 200A. And each layer has a nitrogen content of about 10% to 60%. The ratio of cerium to titanium in the nitrogen-containing titanium hydride layer is in the range of between about 0.5 and 3.0. The nitrogen-containing cerium macro layer has about 0.5 to 3.0. Then, the macro ratio is shown in Fig. 4B. The gate stack structure according to the fifth embodiment of the present invention is modified from the gate stack structure according to the second embodiment. In other words, a nitrogen-containing titanium layer is used in place of titanium, wherein X is less than about 1. The gate stack structure includes a first conductive layer 301, an intermediate structure 302, and a second conductive layer 303. The first conductive layer The layer 301 includes a polysilicon layer highly doped with a P-type impurity (for example, boron) or an N-type impurity (for example, phosphorus). The first conductive layer 301 may also include a polysilicon layer (Si ^ Gex, where the X system is about 〇.〇丄) and the telluride layer. For example, the telluride layer includes a group selected from the group consisting of Ni, Cir, Co, Ti, W, Ta, Hf, Zr, and Pt. One of the groups.
該第二導電層303包括鎢層。藉由實施PVD法、CVD -22- 200828424 法或ALD法以形成約ΙΟΟΑ至2,000A厚之鎢層。該PVD法 包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構302包括含氮鈦(ΤιΝχ)層302A及含氮矽化 鎢(WSuNy)層3 02B。該含氮鈦層302A具有約0.2至0.8範 圍之氮對鈦的比率及約10A至150A之厚度。該含氮鈦層 3 02A表示氮化鈦層或含氮之鈦層。在本實施例中,該含氮 鈦層具有金屬特性。 該含氮矽化鎢層302B具有0.5至3.0範圍之矽對鎢的 ^ 比率及約10%至約60%之氮含量。該含氮矽化鎢層302B表 示鎢矽氮化層或含某一含量/重量比之氮的矽化鎢層。 藉由PVD法形成該含氮鈦層302A及該含氮矽化鎢層 3 02B。該PVD法進行灑鍍沉積法或反應式濺鍍沉積法。例 如:藉由在氮氣環境中以鈦靶實施反應式濺鍍沉積法來形 成該含氮鈦層302A。藉由在氮氣環境中以矽化鎢濺鍍靶實 施反應式濺鍍沉積法來形成該含氮矽化鎢層302B。 0 因爲該PVD法(例如:上述反應式濺鍍沉積法)允許該含 氮矽化鎢層302B之均勻形成而無關下層型態,所以使用該 PVD法以形成該含氮矽化鎢層302B。 依據第五實施例之閘極堆疊結構包括該第一導電層 30卜該TiNx/WSixNy中間結構302及該第二導電層303。該 第一導電層301及該第二導電層3 03分別包括多晶矽層及 鶴層。結果’提供鶴多晶砂鬧極堆疊結構。 特別地,該TiNx/WSixNy中間結構包括金屬層及含氮金 屬矽化物層。該金屬層包括含某一含量/重量比之氮的金屬 -23- 200828424 層,以及該金屬矽化物層包括含某一含量/重量比之氮的金 屬矽化物層。例如:該金屬層包括該含氮鈦層302A’以及該 金屬矽化層包括該含氮矽化鎢層302B ° 依據第五實施例之多層中間結構可以其它不同結構形 成。除該含氮鈦層之外,該含氮金屬層還包括含氮鉅(TaNx) 層。除該含氮矽化鎢(WSixNy)層之外,該含氮金屬矽化物層 還包括含氮矽化鈦(TiSixNy)層或含氮矽化鉅(TaShNy)層。藉 由包括濺鍍沉積法之PVD法、CVD法或人1^0法形成該含氮 ® 鉅層。藉由在氮氣環境中以矽化鈦濺鍍靶實施反應式濺鍍 沉積法來形成該含氮矽化鈦層。藉由在氮氣環境中以矽化 鉅濺鍍靶實施反應式濺鍍沉積法來形成該含氮矽化鉬層。 該含氮钽層具有約10A至80A間範圍之厚度。該含氮矽化 鈦層及該含氮矽化鉅層之每一層所形成之厚度係約20A至 200A,以及每一層具有約10%至60%之氮含量。在該含氮 矽化鈦層中之矽對鈦的比率係在約0.5與3.0間之範圍內。 0 該含氮矽化鉬層具有約0.5至3 · 0範圍之矽對鉅的比率。 第4C圖描述依據本發明之第六實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層3 1 1、中間結構3 1 2 及第二導電層313。該第一導電層311包括高摻雜有P型雜 質(例如:硼(B))或N型雜質(例如:磷(P))之多晶矽層。除該 多晶砍層之外,該第一導電層3丨丨亦可包括多晶矽鍺 (Si^xGex)層’其中x係在約〇.〇1與1〇間之範圍內,或者 可包括砂化物層。該矽化物層包括選自一由Ni、Cr、Co、 Ti、W、Ta、Hf、Zr及Pt所組成之群組中之一。 -24- 200828424 該第二導電層313包括鎢層。藉由實施PVD法、 法及ALD法中之一以形成約100人至2,000人厚之鎢層 PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構312包括矽化鈦(TiSlx)層312A、含 (TiN,)層312B及含氮矽化鎢(WShNy)層312C。可根據 第四及第五實施例所述之材料以其它不同結構形成該 結構。 ^ 依據第六實施例之閘極堆疊結構係在對依據本發 第四及第五實施例的閘極堆疊結構實施退火處理後所 之結構。該退火包括在形成該等閘極堆疊結構後所實 各種製程(例如:間隔物形成及內層絕緣層形成)期間所 之熱處理。 在該鈦層3 2 A上方形成該含氮矽化鎢層3 2 B之情 (參照第4A圖)’在該退火後’在該欽層32A與該含氣 鎢層32B間之邊界區域中使該含氮矽化鎢層32B中之 • 氮分解。結果’如第4C圖所述’使該鈦層32A之上 變換成爲該含氮鈦層312B,以及該鈦層32A之下部分 自該第一導電層3 1之多晶矽反應,以形成該矽化 312A。 該矽化鈦層312A之厚度係在1人至3〇人間之範圍 以及該矽化鈦層312A之矽對鈦的比率係在約〇·5與3 之範圍內。該含氮鈦層312B係約1〇人至1〇〇人厚及具 0.7與1.3間範圍之氮對鈦的比率° 該含氮矽化鎢層3 1 2C具有大致相同於該含氮砂 CVD 。該 氮鈦 選自 中間 明之 造成 施之 伴隨 況中 矽化 微量 部分 與來 鈦層 內, ,.0間 有約 化鎢 -25- 200828424 層32B之厚度及成分。詳而言之,該含氮矽化鎢層312C具 有約0.5至3.0範圍之矽對鎢的比率及約10%與60%間範圍 之氮含量。該含氮矽化鎢層312C之厚度係在約20A與200A 間之範圍內。 參考第4C及4B圖以比較該中間結構3 12與該中間結 構3 02。在該退火處理期間,從該含氮矽化鎢層302B供應 氮至該含氮鈦層302A,藉此使含氮鈦層302A變換成爲與 該矽化鈦層312A有最小反應之含氮鈦層312B。該矽化鈦 ® 層312A之厚度係在約lA至30A之範圍內,以及該含氮鈦 層3 12B之厚度係在約10A至100A之範圍內。該含氮鈦層 3 12B中之氮對鈦的比率係在約0.7至1.3之範圍內。相較 於在該含氮鈦層302A中之氮對鈦比率(見第4C圖),在該 含氮鈦層312B中之氮對鈦比率從約0.2至0.8之範圍增加 至約0.7與1.3間之範圍。 該含氮矽化鎢層3 1 2C具有大致相同於該含氮矽化鎢 層3 02C之厚度及成分。詳而言之,該含氮矽化鎢層312C ® 具有約0.5至3.0範圍之矽對鎢的比率及約10%與60%間範 圍之氮含量。該含氮矽化鎢層312C之厚度係在約20A與 200A間之範圍。 依據第六實施例之閘極堆疊結構包括第一中間結構及 第二中間結構。該第一中間結構包括金屬矽化物層及含氮 金屬層,以及該第二中間結構包括含氮金屬矽化物層。例 如:藉由堆疊該矽化鈦層31 2A及該含氮鈦層312 B形成該第 一中間結構。該第二中間結構包括該含氮矽化鎢層3 1 2C。 -26- 200828424 胃5A圖描述依據本發明之第七實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層4丨、中間結構42及第 二導電:層43。該第一導電層4 1包括高摻雜有p型雜質(例 如:硼)或N型雜質(例如:磷)之多晶矽層。該第一導電層41 亦可包括多晶矽鍺層(Sil.xGex,其中X係在約〇.〇1與1.0 間之範圍內)或矽化物層。例如:該矽化物層包括選自一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr及Pt所組成之群組中之 -^ ο 該第二導電層43包括鎢層。該鎢層係約1〇〇A至2,000A 厚及藉由實施PVD法、CVD法或ALD法所形成。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構42包括鈦層42A、含氮矽化鎢(WSixNy)層 42B及含氮鎢(WNX)層42C。詳而言之,該鈦層42A之厚度 係在約10A至約80A之範圍內。該含氮矽化鎢層42B具有 約0.5至3.0範圍之矽對鎢的比率及具有約10%至60%之氮 含量。該含氮矽化鎢層42B表示鎢矽氮化層或包含某一含 量/重量比之氮的矽化鎢層。該含氮矽化鎢層42B所形成之 厚度係約20A至200A。 在該含氮鎢層42C中之氮對鎢的比率係在約0.3與1.5 間之範圍內。該含氮鎢層42C表示氮化鎢層或包含某一含 量/重量比之氮的鎢層。該含氮鎢層42C之厚度係在約20A 至200人之範圍內。雖然將於之後說明’但是知道該含氮鎢 層42C供應氮至該含氮砂化鎢層42B。因此’在該退火後’ 該含氮鎢層42C變成不具有氮之純鎢層或含微量氮之鎢 -27- 200828424 層。 藉由實施PVD法、CVD法或ALD法形成該鈦層42A 及該含氮鎢層42C。藉由實施PVD法形成該含氮矽化鎢層 42B。 該PVD法進行濺鍍沉積法或反應式濺鍍沉積法。例如: 藉由以鈦濺鍍靶實施濺鍍沉積法來形成該鈦層42A。藉由 在氮氣環境中以鎢濺鍍靶實施反應式濺鍍沉積法來形成該 含氮鎢層42C。藉由在氮氣環境中以矽化鎢濺鍍靶實施反 ^ 應式濺鍍沉積法來形成該含氮矽化鎢層42B。特別地,因 爲在該氮氣環境中以該矽化鎢濺鍍靶實施上述反應式濺鍍 沉積法以允許該含氮矽化鎢層42B之均勻形成而無關下層 型態,所以使用該PVD法(例如:反應式濺鍍沉積法)形成該 含氮矽化鎢層42B。 依據本發明之第七實施例的閘極堆疊結構包括該第一 導電層41、該Ti/WSixNy/WNx中間結構42及該第二導電層 43。該第一導電層41包括多晶矽及該第二導電層43包括 鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,該Ti/WSixNy/WNx中間結構包括第一金屬層、 含氮金屬矽化物層及第二金屬層。該第一金屬層包括一純 金屬層。該第二金屬層包括含氮金屬層。該金屬矽化層包 括含氮金屬矽化物層。例如:該第一金屬層係該鈦層42A。 該第二金屬層係該含氮鎢層42C。該金屬矽化層係該含氮 矽化鎢層4 2 B。 依據第七實施例之多層中間結構亦可以其它結構形 -28- 200828424 成。除該鈦層之外,該第一金屬層還包括鉅層。除該含氮 鎢層之外,該第二金屬層還包括含氮鈦鎢(TiWNx)層。除該 含氮矽化鎢層之外,該金屬矽化物層還包括含氮矽化鈦 (TiShNO層或含氮矽化鉅(TaSixNy)層。藉由包括濺鍍沉積法 之PVD法、CVD法或ALD法形成該鉅層。藉由在氮氣環境 中以鈦鎢濺鍍靶實施反應式濺鍍來形成該含氮鈦鎢層。藉 由在氮氣環境中以矽化鈦濺鍍靶實施反應式濺鍍沉積法來 形成該含氮矽化鈦層。藉由在氮氣環境中以矽化钽濺鍍靶 ® 實施反應式濺鍍沉積法來形成該含氮矽化鉅層。該鉅層係 約10A至80A厚。該含氮鈦鎢層及該含氮矽化钽層之每一 層所形成之厚度係約20人至200A及每一層具有約10%至 60%之氮含量。該含氮鈦鎢層具有約0.5與3.0間範圍之鈦 對鎢的比率。該含氮矽化鈦層中之矽對鈦的比率係在約0.5 與3.0間之範圍內。該含氮矽化鉅層具有約0.5至3.0之矽 對鈦比率。 .第5B圖描述依據本發明之第八實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層401、中間結構402 及第二導電層403。該第一導電層401包括高摻雜有P型雜 質(例如:硼)或N型雜質(例如:磷)之多晶矽層。該第一導電 層401亦可包括多晶矽鍺層(Si ^Gex,其中X係在約0.01 與1 · 0間之範圍內)或矽化物層。例如:該矽化物層包括選自 一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr 及 Pt 所組成之群組 中之一。 該第二導電層403包括鎢層。該鍚層係約100人至 -29- 200828424 2,000A厚及藉由實施PVD法、CVD法或ALD法所形成。 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構402包括含氮鈦(ΤιΝχ)層402A、含氮矽化 鎢(WSixNy)層402B及含氮鎢(WN〇層4020更詳而言之, 該含氮鈦層402A之氮對駄具有某一比率(例如:在約0·2至 0.8之範圍內)。該含氮鈦層402Α所形成之厚度係約10Α至 150Α。該含氮鈦層4〇2Α亦包括氮化鈦層。 該含氮矽化鎢層4 0 2 Β中之矽對鎢的比率係在約〇. 5與 鲁 3.0間之範圍內’以及該含氮砂化鎢層4 〇 2 Β之氮含量致在 約1 0 %至6 0 %之範圍內。該含氮矽化鎢層4 0 2 Β亦包括鎢矽 氮化層或含某一含量/重量比之氮的矽化鎢層。 該含氮鎢層402C之氮對鎢具有某一比率(例如:在約 0.3至1.5之範圍內)。該含氮鎢層402C表示氮化鎢層或含 某一'含量/重量比之氣的鶴層。雖然描述於後’但是知道該 含氮鎢層402C供應氮至該含氮矽化鎢層402Β。該含氮鎢 層402C所形成之厚度約20Α至200Α。由於氮之供應,該 m 胃 含氮鎢層402C在該退火後變成純鎢層或含微量氮之鎢層。 藉由實施PVD法、CVD法或ALD法形成該含氮鎢層 402C。藉由實施PVD法形成該含氮鈦層402A及該含氮矽 化鎢層402B。 該PVD法進行濺鍍沉積法或反應式濺鍍沉積法。例如: 藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積法來形成該含 氮鈦層402A。藉由在氮氣環境中以鎢濺鍍靶實施反應式濺 鍍沉積法來形成該含氮鎢層402 C。藉由在氮氣環境中以矽 -30- 200828424 化鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮 402B。特別地,因爲可均勻地形成該含氮矽化鎢只 無關下層型態,所以使用該PVD法(例如:反應式 法)形成該含氮矽化鎢層4 0 2 B。 依據本發明之第八實施例的閘極堆疊結構包 導電層401、該TiN JWSixNy/WNx中間結構402及 電層403。該第一導電層401包括多晶砍及該第 403包括鎢,藉此形成鶴多晶砍閘極堆疊結構。 特別地,以包括第一金屬層、含氮金屬矽化 二金屬層之堆疊結構形成該TiNx/WShNy/WNx 402。該第一及第二金屬層係含氮金屬層,以及該 物層係含氮金屬矽化物層。例如:該第一金屬層係 層402A。該第二金屬層係含氮鎢層402C。該金屬 含氮砂化鎢層402B。 也可以其它不同結構形成上述多層中間結構 該含氮鈦層之外,該第一含氮金屬層還包括含氮 該含氮鎢層之外,該第二含氮金屬層還包括含氮 除該含氮矽化鎢層之外,該含氮金屬矽化物層還 矽化鈦層或含氮矽化鉅層。藉由實施包括濺鍍之 CVD法或ALD法形成該含氮鉬層。藉由在氮氣璟 鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮釤 由在氮氣環境中以個別矽化鈦及矽化鉅濺鍍靶瀆 濺鍍沉積法來形成該含氮矽化鈦層及該含氮矽仲 含氮鉅層所形成之厚度係約10A至80A。該含· 矽化鎢層 f 402B 而 濺鍍沉積 括該第一 該第二導 二導電層 物層及第 中間結構 金屬矽化 該含氮欽 矽化層係 。例如:除 鉅層。除 欽鶴層。 包括含氮 PVD 法、 :境中以鈦 鎢層。藉 施反應式 t鉅層。該 <鈦鎢層、 -31- 200828424 該含氮矽化鈦層及該含氮矽化钽層之每一層所形成之厚度 係20A至200A,以及每一層具有約1〇%與60%間範圍之氮 含量。在該含氮鈦鎢層中,鈦對鎢之比率係在約〇. 5至3. 〇 之範圍內。在該含氮矽化鈦層中,矽對鈦之比率係在約0.5 至3.0之範圍內。在該含氮矽化钽層中,矽對鉅之比率係 在約0.5至3 · 0之範圍中。 第5C圖描述依據本發明之第九實施例的閘極堆疊結 構。該閫極堆疊結構包括第一導電層4 1 1、中間結構4 1 2 ® 及第二導電層413。該第一導電層411包括高摻雜有P型雜 •質(例如:硼(B))或N型雜質(例如:磷(P))之多晶矽層。除該 多晶矽層之外,該第一導電層 4 1 1亦可包括多晶矽鍺 (S i」· x G e x)層,其中X係在約〇 . 〇 1與1. 〇之範圍內,或者包 括矽化物層。該矽化層包括選自一由Ni、Cr、Co、Ti、W、 Ta、Hf、Zr及Pt所組成之群組中之一。 該第二導電層413包括鎢層。實施PVD法、CVD法及 ALD法中之以形成約ιοοΑ至2,000A厚之鎢層。該PVD法 ❿ 包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構412包括矽化鈦(TiSh)層412A、含氮鈦 (TiNx)層4 12B、含氮矽化鎢(WSixNy)層412C及含氮鎢(WNX) 層412D。可依據本發明之第七及第八實施例所述之選擇材 料以不同結構形成該中間結構4 1 2。 依據第九實施例之閘極堆疊結構係在對依據本發明之 第七及第八實施例的閘極堆疊結構實施退火處理後所造成 之結構。該退火包括在形成該等閘極堆疊結構後所實施之 -32- 200828424 各種製程(例如:間隔物形成及內層絕緣層形成)期間所伴隨 之熱處理。 參考第5C及5A圖以比較該中間結構412與該中間結 構42。當該欽層42A與來自該第一導電層41之多晶政反 應時,形成具有約1A至3 0A厚度之矽化鈦層412A。該砂 化鈦層2 1 2 A中之矽對鈦的比率係在約0.5與3 · 0間之範圔 內。 當從該含氮鎢層42B供應氮至該鈦層42A時,造成該 ® 含氮鈦層412B。該含氮鈦層412B具有約10人至ΙΟΟΑ範圍 之厚度且具有約0.7至1.3範圍之氮對鈦的比率。相較於在 該鈦層4 2 A中之氮對鈦的比率,在該含氮鈦層4123中之氮 對鈦的比率從約0增加至約0.7至1.3。 該含氮矽化鎢層4 1 2C具有大致相同於該含氮矽化鎢 層42C之厚度及成分。詳而言之,該含氮矽化鎢層412C具 有約0.5至3.0範圍之矽對鎢的比率及約10%與60%間範圍 之氮含量。該含氮矽化鎢層412C之厚度係在約20A與200A 間之範圍內。 在該退火後,該含氮鎢層412D具有因該剝蝕而降至約 10%或更少之氮含量。元件符號WNX(D)表示該剝蝕含氮鎢 層。該含氮鎢層412D係約20A至200A厚。在該含氮鎢層 4 1 2D中之氮對鎢的比率係在約〇.〇1與0.15間之範圍內。 相較於在第5 A圖所述之含氮鎢層42C中之氮對鎢的比率, 在該含氮鎢層4 1 2 D中之氮對鎢的比率從約〇 · 3與1 . 5間之 範圍減少至約〇 · 〇 1至〇 · 1 5之範圍。 -33- 200828424 在該鈦層42A上方形成該含氮矽化鎢層42B之情況中 (見第5A圖),在該退火後,在該鈦層42A與該含氮矽化鎢 42B間之邊界區域中使該含氮矽化鎢層42B中之微量氮分 解。結果,如第5C圖中所述,該鈦層42A之上部變換成爲 該含氮鈦層412B,以及該鈦層42A之下部與來自該第一導 電層4 1之多晶矽反應,以形成該矽化鈦層4 1 2 A。 參考第5C及5B圖以比較該中間結構412與該中間結 構402。使該含氮鈦層402A變換成爲與該矽化鈦層412A ® 有最小反應之含氮鈦層412B。該矽化鈦層412A之厚度係 在約1人至30人之範圍內,以及該含氮鈦層41 2B之厚度係 在約10人至100A之範圍內。在該含氮鈦層412B中之氮對 鈦的比率係在約0.7與1. 3間之範圍內。該含氮矽化鎢層 412C具有大致相同於該含氮矽化鎢層402B之厚度及成 分。更特別地,該含氮矽化鎢層4 1 2C中之矽對鎢的比率係 在約0.5至3.0之範圍內。該含氮矽化鎢層412C具有約10% 至60 %範圍之氮含量及形成有約20人至200人之厚度。 ® 在該退火後,該含氮鎢層41 2D具有因剝蝕而降至約 10%或更少之氮含量。該含氮鎢層412D係約20A至200A 厚。該含氮鎢層412D中之氮對鎢的比率係在約0.01與0.15 間之範圍內。The second conductive layer 303 includes a tungsten layer. A tungsten layer of about ΙΟΟΑ to 2,000 Å thick is formed by performing a PVD method, a CVD-22-200828424 method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 302 includes a nitrogen-containing titanium (ITO) layer 302A and a nitrogen-containing tungsten (WSuNy) layer 302B. The nitrogen-containing titanium layer 302A has a nitrogen to titanium ratio of about 0.2 to 0.8 and a thickness of about 10A to 150A. The nitrogen-containing titanium layer 302A represents a titanium nitride layer or a nitrogen-containing titanium layer. In this embodiment, the titanium-containing titanium layer has metallic characteristics. The nitrogen-containing tungsten telluride layer 302B has a ruthenium to tungsten ratio of from 0.5 to 3.0 and a nitrogen content of from about 10% to about 60%. The nitrogen-containing tungsten telluride layer 302B represents a tungsten-rhenium nitride layer or a tungsten-deposited tungsten layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing titanium layer 302A and the nitrogen-containing tungsten-deposited tungsten layer 302B are formed by a PVD method. The PVD method is subjected to a sputter deposition method or a reactive sputter deposition method. For example, the nitrogen-containing titanium layer 302A is formed by performing a reactive sputtering deposition method using a titanium target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 302B is formed by performing a reactive sputter deposition method with a tungsten antimonide sputtering target in a nitrogen atmosphere. Since the PVD method (e.g., the reactive sputtering deposition method described above) allows uniform formation of the nitrogen-containing tungsten-tungstate layer 302B irrespective of the underlying type, the PVD method is used to form the nitrogen-containing tungsten-deposited tungsten layer 302B. The gate stack structure according to the fifth embodiment includes the first conductive layer 30, the TiNx/WSixNy intermediate structure 302, and the second conductive layer 303. The first conductive layer 301 and the second conductive layer 303 respectively include a polysilicon layer and a crane layer. The result 'provides a stacked structure of crane polycrystalline sand. In particular, the TiNx/WSixNy intermediate structure comprises a metal layer and a nitrogen-containing metal telluride layer. The metal layer comprises a layer of metal -23-200828424 containing nitrogen in a certain amount/weight ratio, and the metal halide layer comprises a metal halide layer containing nitrogen in a certain amount/weight ratio. For example, the metal layer includes the nitrogen-containing titanium layer 302A' and the metal vaporization layer includes the nitrogen-containing tungsten telluride layer 302B. The multilayer intermediate structure according to the fifth embodiment can be formed in other different structures. In addition to the nitrogen-containing titanium layer, the nitrogen-containing metal layer further includes a nitrogen-containing giant (TaNx) layer. In addition to the nitrogen-containing tungsten telluride (WSixNy) layer, the nitrogen-containing metal telluride layer further includes a nitrogen-containing titanium telluride (TiSixNy) layer or a nitrogen-containing tantalum (TaShNy) layer. The nitrogen-containing ® macrolayer is formed by a PVD method including a sputtering deposition method, a CVD method, or a human method. The nitrogen-containing titanium telluride layer was formed by performing a reactive sputtering deposition method with a titanium telluride sputtering target in a nitrogen atmosphere. The nitrogen-containing molybdenum molybdenum layer is formed by performing a reactive sputter deposition method in a nitrogen atmosphere with a deuterated giant sputtering target. The nitrogen-containing tantalum layer has a thickness ranging between about 10A and 80A. Each of the nitrogen-containing titanium telluride layer and the nitrogen-containing germanium macrolayer has a thickness of about 20A to 200A, and each layer has a nitrogen content of about 10% to 60%. The ratio of niobium to titanium in the nitrogen-containing titanium antimonide layer is in the range of between about 0.5 and 3.0. The nitrogen-containing molybdenum telluride layer has a ratio of 矽 to mega in the range of about 0.5 to 3.0 Å. Fig. 4C depicts a gate stack structure in accordance with a sixth embodiment of the present invention. The gate stack structure includes a first conductive layer 31, an intermediate structure 3 1 2, and a second conductive layer 313. The first conductive layer 311 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron (B)) or an N-type impurity (e.g., phosphorus (P)). In addition to the polycrystalline chopping layer, the first conductive layer 3丨丨 may also include a polycrystalline germanium (Si^xGex) layer where x is in a range between about 〇1〇1 and 1〇, or may include sand Chemical layer. The telluride layer includes one selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt. -24- 200828424 The second conductive layer 313 includes a tungsten layer. A tungsten layer of about 100 to 2,000 thick is formed by performing one of the PVD method, the ALD method, and the ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 312 includes a titanium telluride (TiSlx) layer 312A, a (TiN, containing) layer 312B, and a nitrogen-containing tungsten telluride (WShNy) layer 312C. The structure can be formed in other different structures according to the materials described in the fourth and fifth embodiments. The gate stack structure according to the sixth embodiment is a structure after annealing the gate stack structure according to the fourth and fifth embodiments of the present invention. The annealing includes heat treatment during various processes (e.g., spacer formation and formation of an inner insulating layer) after forming the gate stack structures. Forming the nitrogen-containing tungsten telluride layer 3 2 B over the titanium layer 3 2 A (refer to FIG. 4A) 'after the annealing' is made in a boundary region between the seed layer 32A and the gas-containing tungsten layer 32B. The nitrogen in the nitrogen-containing tungsten-destrogened tungsten layer 32B is decomposed. The result 'transforms the titanium layer 32A into the nitrogen-containing titanium layer 312B as described in FIG. 4C, and the portion of the titanium layer 32A from the polycrystalline germanium of the first conductive layer 31 to react to form the deuterated 312A. . The thickness of the titanium telluride layer 312A ranges from 1 person to 3 inches, and the ratio of tantalum to titanium of the titanium telluride layer 312A is in the range of about 〇·5 and 3. The nitrogen-containing titanium layer 312B is about 1 to 1 liter thick and has a ratio of nitrogen to titanium in the range of 0.7 to 1.3. The nitrogen-containing tungsten-deposited tungsten layer 3 1 2C has substantially the same CVD as the nitrogen-containing sand. The titanium-titanium is selected from the middle portion to cause a trace amount of the deuterated portion and the titanium layer, and the thickness and composition of the layer 32B of the tungsten-25-200828424 layer. In detail, the nitrogen-containing tungsten telluride layer 312C has a rhodium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content ranging between about 10% and 60%. The thickness of the nitrogen-containing tungsten telluride layer 312C is in the range of between about 20A and 200A. Referring to Figures 4C and 4B, the intermediate structure 3 12 and the intermediate structure 302 are compared. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten telluride layer 302B to the nitrogen-containing titanium layer 302A, whereby the nitrogen-containing titanium layer 302A is converted into a nitrogen-containing titanium layer 312B having a minimum reaction with the titanium-tellide layer 312A. The thickness of the titanium telluride ® layer 312A is in the range of about 1A to 30A, and the thickness of the nitrogen-containing titanium layer 3 12B is in the range of about 10A to 100A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 3 12B is in the range of about 0.7 to 1.3. The nitrogen to titanium ratio in the nitrogen-containing titanium layer 312B is increased from about 0.2 to 0.8 to about 0.7 and 1.3 as compared to the nitrogen to titanium ratio in the nitrogen-containing titanium layer 302A (see FIG. 4C). The scope. The nitrogen-containing tungsten telluride layer 3 1 2C has a thickness and composition substantially the same as that of the nitrogen-containing tungsten-deposited tungsten layer 302C. In detail, the nitrogen-containing tungsten telluride layer 312C ® has a rhodium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content of between about 10% and 60%. The thickness of the nitrogen-containing tungsten telluride layer 312C is in the range of between about 20A and 200A. The gate stack structure according to the sixth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a nitrogen-containing metal layer, and the second intermediate structure includes a nitrogen-containing metal halide layer. For example, the first intermediate structure is formed by stacking the titanium telluride layer 31 2A and the nitrogen-containing titanium layer 312 B. The second intermediate structure includes the nitrogen-containing tungsten telluride layer 3 1 2C. -26- 200828424 Stomach 5A depicts a gate stack structure in accordance with a seventh embodiment of the present invention. The gate stack structure includes a first conductive layer 4, an intermediate structure 42, and a second conductive: layer 43. The first conductive layer 41 includes a polysilicon layer highly doped with a p-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 41 may also include a polycrystalline germanium layer (Sil. xGex, wherein the X system is in a range between about 〇1 and 1.0) or a germanide layer. For example, the telluride layer includes a group selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt. The second conductive layer 43 includes a tungsten layer. The tungsten layer is about 1 Å to 2,000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 42 includes a titanium layer 42A, a nitrogen-containing tungsten telluride (WSixNy) layer 42B, and a nitrogen-containing tungsten (WNX) layer 42C. In detail, the thickness of the titanium layer 42A is in the range of from about 10A to about 80A. The nitrogen-containing tungsten telluride layer 42B has a rhodium to tungsten ratio of from about 0.5 to 3.0 and a nitrogen content of from about 10% to 60%. The nitrogen-containing tungsten telluride layer 42B represents a tungsten-rhenium nitride layer or a tungsten-deposited tungsten layer containing a certain amount/weight ratio of nitrogen. The nitrogen-containing tungsten telluride layer 42B is formed to have a thickness of about 20A to 200A. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 42C is in the range of between about 0.3 and 1.5. The nitrogen-containing tungsten layer 42C represents a tungsten nitride layer or a tungsten layer containing a certain content/weight ratio of nitrogen. The thickness of the nitrogen-containing tungsten layer 42C is in the range of about 20A to 200 people. Although it will be explained later, it is known that the nitrogen-containing tungsten layer 42C supplies nitrogen to the nitrogen-containing tungsten carbide layer 42B. Therefore, after the annealing, the nitrogen-containing tungsten layer 42C becomes a pure tungsten layer having no nitrogen or a tungsten-containing tungsten -27-200828424 layer. The titanium layer 42A and the nitrogen-containing tungsten layer 42C are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten telluride layer 42B is formed by performing a PVD method. The PVD method performs a sputtering deposition method or a reactive sputtering deposition method. For example, the titanium layer 42A is formed by performing a sputtering deposition method on a titanium sputtering target. The nitrogen-containing tungsten layer 42C is formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 42B is formed by performing a reverse sputtering deposition method with a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the reactive sputtering deposition method described above is carried out with the tungsten telluride sputtering target in the nitrogen atmosphere to allow uniform formation of the nitrogen-containing tungsten-telluride layer 42B irrespective of the underlying type, the PVD method is used (for example: The reactive sputter deposition method forms the nitrogen-containing tungsten telluride layer 42B. A gate stack structure according to a seventh embodiment of the present invention includes the first conductive layer 41, the Ti/WSixNy/WNx intermediate structure 42 and the second conductive layer 43. The first conductive layer 41 includes polysilicon and the second conductive layer 43 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. In particular, the Ti/WSixNy/WNx intermediate structure includes a first metal layer, a nitrogen-containing metal telluride layer, and a second metal layer. The first metal layer comprises a layer of pure metal. The second metal layer comprises a nitrogen-containing metal layer. The metal deuterated layer comprises a nitrogen-containing metal telluride layer. For example, the first metal layer is the titanium layer 42A. The second metal layer is the nitrogen-containing tungsten layer 42C. The metal deuterated layer is the nitrogen-containing tungsten antimonide layer 4 2 B. The multilayer intermediate structure according to the seventh embodiment can also be formed in other structural forms -28-200828424. In addition to the titanium layer, the first metal layer further includes a macro layer. In addition to the nitrogen-containing tungsten layer, the second metal layer further includes a nitrogen-containing titanium tungsten (TiWNx) layer. In addition to the nitrogen-containing tungsten telluride layer, the metal telluride layer further includes a nitrogen-containing titanium telluride (TiShNO layer or a nitrogen-containing tantalum (TaSixNy) layer. By PVD method including CVD deposition method, CVD method or ALD method Forming the giant layer. The nitrogen-containing titanium tungsten layer is formed by reactive sputtering using a titanium tungsten sputtering target in a nitrogen atmosphere. Reactive sputtering deposition method is performed by using a titanium telluride sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer is formed by forming a nitrogen-containing germanium macrolayer by performing a reactive sputtering deposition method using a germanium telluride sputtering target in a nitrogen atmosphere. The macro layer is about 10 A to 80 A thick. Each of the titanium titanium tungsten layer and the nitrogen-containing antimony telluride layer has a thickness of about 20 to 200 A and each layer has a nitrogen content of about 10% to 60%. The nitrogen-containing titanium tungsten layer has between about 0.5 and 3.0. The ratio of titanium to tungsten in the range of titanium to titanium is in the range of between about 0.5 and 3.0. The nitrogen-containing deuterated macro layer has a rhodium to titanium ratio of from about 0.5 to about 3.0. Figure 5B depicts a gate stack structure in accordance with an eighth embodiment of the present invention. The gate stack structure includes The conductive layer 401, the intermediate structure 402, and the second conductive layer 403. The first conductive layer 401 includes a polysilicon layer highly doped with a P-type impurity (for example, boron) or an N-type impurity (for example, phosphorus). Layer 401 can also include a polycrystalline germanium layer (Si ^ Gex, where X is in the range between about 0.01 and 1.0) or a germanide layer. For example, the germanide layer includes a layer selected from the group consisting of Ni, Cr, Co, One of the group consisting of Ti, W, Ta, Hf, Zr, and Pt. The second conductive layer 403 includes a tungsten layer. The germanium layer is about 100 to -29-200828424 2,000 A thick and is implemented by PVD. Formed by a method, a CVD method or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 402 includes a nitrogen-containing titanium (ITO) layer 402A, a nitrogen-containing tungsten-tellide (WSixNy) layer 402B, and Nitrogen tungsten (WN 〇 layer 4020, more specifically, the nitrogen of the nitrogen-containing titanium layer 402A has a certain ratio to ruthenium (for example, in the range of about 0.2 to 0.8). The nitrogen-containing titanium layer 402 is formed. The thickness is about 10 Α to 150 Α. The nitrogen-containing titanium layer 4 〇 2 Α also includes a titanium nitride layer. The nitrogen-containing tungsten-deposited tungsten layer 4 0 2 Β The rate is between about 〇5 and 鲁3.0 and the nitrogen content of the nitrogen-containing tungsten carbide layer 4 〇2 致 is in the range of about 10% to 60%. The nitrogen-containing tungsten-telluride layer 4 0 2 Β also includes a tungsten germanium nitride layer or a tungsten germanium layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten layer 402C has a certain ratio of nitrogen to tungsten (for example, in the range of about 0.3 to 1.5). The nitrogen-containing tungsten layer 402C represents a tungsten nitride layer or a crane layer containing a certain content/weight ratio of gas. Although described later, it is known that the nitrogen-containing tungsten layer 402C supplies nitrogen to the nitrogen-containing tungsten-deposited tungsten layer 402. The nitrogen-containing tungsten layer 402C is formed to have a thickness of about 20 Å to 200 Å. Due to the supply of nitrogen, the m-gas-containing tungsten-containing tungsten layer 402C becomes a pure tungsten layer or a tungsten-containing tungsten layer after the annealing. The nitrogen-containing tungsten layer 402C is formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 402A and the nitrogen-containing tungsten-deposited tungsten layer 402B are formed by a PVD method. The PVD method performs a sputtering deposition method or a reactive sputtering deposition method. For example: The titanium-containing titanium layer 402A is formed by sputtering deposition using a titanium sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten layer 402 C is formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing 402B was formed by performing a reactive sputter deposition method with a 矽-30-200828424 tungsten sputter target in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten telluride can be uniformly formed irrespective of the lower layer type, the nitrogen-containing tungsten-deposited tungsten layer 4 0 2 B is formed using the PVD method (for example, a reaction method). A gate stack structure according to an eighth embodiment of the present invention includes a conductive layer 401, the TiN JWSixNy/WNx intermediate structure 402, and an electrical layer 403. The first conductive layer 401 includes polycrystalline chopping and the 403th includes tungsten, thereby forming a crane polycrystalline gate stack structure. Specifically, the TiNx/WShNy/WNx 402 is formed in a stacked structure including a first metal layer and a nitrogen-containing metal deuterated two metal layer. The first and second metal layers are nitrogen-containing metal layers, and the layer is a nitrogen-containing metal halide layer. For example, the first metal layer is layered 402A. The second metal layer is a nitrogen-containing tungsten layer 402C. The metal nitrogen-containing tungsten carbide layer 402B. The first nitrogen-containing metal layer may further include nitrogen-containing nitrogen-containing tungsten layer, and the second nitrogen-containing metal layer may further include nitrogen-containing layer, in addition to forming the multi-layer intermediate structure of the nitrogen-containing titanium layer. In addition to the nitrogen-containing tungsten telluride layer, the nitrogen-containing metal telluride layer is also a titanium telluride layer or a nitrogen-containing germanium macrolayer. The nitrogen-containing molybdenum layer is formed by performing a CVD method including sputtering or an ALD method. The formation of the nitrogen-containing niobium by performing a reactive sputter deposition method on a nitrogen-niobium-tungsten sputtering target is formed by sputtering deposition of individual titanium telluride and antimony telluride in a nitrogen atmosphere. And the thickness of the nitrogen-containing niobium-containing macrolayer is about 10A to 80A. The tungsten-containing tungsten-tungsten layer f 402B is sputter-deposited to include the first second conductive layer and the intermediate structure metal to deuterize the nitrogen-containing layer. For example: except the giant layer. In addition to the Qinhe layer. Including the nitrogen-containing PVD method: a titanium tungsten layer in the environment. The reaction type t giant layer is borrowed. The <titanium tungsten layer, -31-200828424, each of the nitrogen-containing titanium telluride layer and the nitrogen-containing antimony telluride layer has a thickness system 20A to 200A, and each layer has a range of between about 1% and 60%. Nitrogen content. In the nitrogen-containing titanium-tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3. 。. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is in the range of about 0.5 to 3.0. In the nitrogen-containing antimony telluride layer, the ratio of rhodium to giant is in the range of about 0.5 to 3.0. Fig. 5C depicts a gate stack structure in accordance with a ninth embodiment of the present invention. The drain stack structure includes a first conductive layer 41 1 , an intermediate structure 4 1 2 ® , and a second conductive layer 413. The first conductive layer 411 includes a polysilicon layer highly doped with a P-type impurity (for example, boron (B)) or an N-type impurity (for example, phosphorus (P)). In addition to the polysilicon layer, the first conductive layer 411 may also include a polysilicon (S i ′· x G ex) layer, wherein the X system is within the range of approximately 〇1 and 1. 〇, or includes Telluride layer. The deuterated layer includes one selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt. The second conductive layer 413 includes a tungsten layer. The PVD method, the CVD method, and the ALD method are carried out to form a tungsten layer of about ιοοΑ to 2,000 Å thick. The PVD method 溅 includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 412 includes a titanium telluride (TiSh) layer 412A, a titanium-containing titanium (TiNx) layer 4 12B, a nitrogen-containing tungsten germanium (WSixNy) layer 412C, and a nitrogen-containing tungsten (WNX) layer 412D. The intermediate structure 42 may be formed in a different structure in accordance with the selection materials of the seventh and eighth embodiments of the present invention. The gate stack structure according to the ninth embodiment is a structure resulting from annealing treatment of the gate stack structures according to the seventh and eighth embodiments of the present invention. The annealing includes heat treatment accompanying the various processes (e.g., spacer formation and formation of the inner insulating layer) performed after the formation of the gate stack structures. Referring to Figures 5C and 5A, the intermediate structure 412 and the intermediate structure 42 are compared. When the seed layer 42A reacts with the polycrystalline layer from the first conductive layer 41, a titanium telluride layer 412A having a thickness of about 1 A to 30 A is formed. The ratio of tantalum to titanium in the titanium oxide layer 2 1 2 A is within a range of between about 0.5 and 3.0. When nitrogen is supplied from the nitrogen-containing tungsten layer 42B to the titanium layer 42A, the ® nitrogen-containing titanium layer 412B is caused. The nitrogen-containing titanium layer 412B has a thickness ranging from about 10 to about 且 and has a nitrogen to titanium ratio in the range of about 0.7 to 1.3. The ratio of nitrogen to titanium in the titanium-containing titanium layer 4123 is increased from about 0 to about 0.7 to 1.3 as compared to the ratio of nitrogen to titanium in the titanium layer 4 2 A. The nitrogen-containing tungsten telluride layer 4 1 2C has substantially the same thickness and composition as the nitrogen-containing tungsten-deposited tungsten layer 42C. In detail, the nitrogen-containing tungsten telluride layer 412C has a rhodium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content ranging between about 10% and 60%. The thickness of the nitrogen-containing tungsten telluride layer 412C is in the range of between about 20A and 200A. After the annealing, the nitrogen-containing tungsten layer 412D has a nitrogen content reduced to about 10% or less due to the ablation. The component symbol WNX(D) indicates the ablation of the nitrogen-containing tungsten layer. The nitrogen-containing tungsten layer 412D is about 20A to 200A thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2D is in the range of between about 〇1 and 0.15. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2 D is from about 〇·3 to 1.5, as compared to the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 42C described in FIG. 5A. The range is reduced to approximately 〇·〇1 to 〇·1 5 . -33- 200828424 In the case where the nitrogen-containing tungsten telluride layer 42B is formed over the titanium layer 42A (see FIG. 5A), after the annealing, in a boundary region between the titanium layer 42A and the nitrogen-containing tungsten-tungsten tungsten 42B The trace amount of nitrogen in the nitrogen-containing tungsten telluride layer 42B is decomposed. As a result, as described in FIG. 5C, the titanium layer 42A is transformed into the nitrogen-containing titanium layer 412B, and the lower portion of the titanium layer 42A reacts with the polysilicon from the first conductive layer 41 to form the titanium telluride. Layer 4 1 2 A. Referring to Figures 5C and 5B, the intermediate structure 412 and the intermediate structure 402 are compared. The nitrogen-containing titanium layer 402A is transformed into a nitrogen-containing titanium layer 412B having a minimum reaction with the titanium telluride layer 412A ® . The titanium telluride layer 412A has a thickness in the range of about 1 to 30, and the nitrogen-containing titanium layer 41 2B has a thickness in the range of about 10 to 100 Å. The ratio of nitrogen to titanium in the titanium-containing titanium layer 412B is in the range of between about 0.7 and 1.3. The nitrogen-containing tungsten telluride layer 412C has substantially the same thickness and composition as the nitrogen-containing tungsten-destrogened tungsten layer 402B. More specifically, the ratio of cerium to tungsten in the nitrogen-containing tungsten-deposited tungsten layer 4 1 2C is in the range of about 0.5 to 3.0. The nitrogen-containing tungsten telluride layer 412C has a nitrogen content in the range of about 10% to 60% and a thickness of about 20 to 200 people. ® After the annealing, the nitrogen-containing tungsten layer 41 2D has a nitrogen content reduced to about 10% or less by ablation. The nitrogen-containing tungsten layer 412D is about 20A to 200A thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 412D is in the range of between about 0.01 and 0.15.
依據第九實施例之閘極堆疊結構包括第一中間結構及 第二中間結構。該第一中間結構包括第一金屬矽化物層及 第一含氮金屬層,以及該第二中間結構包括第二含氮金屬 層及含氮金屬矽化物層。例如:藉由堆疊該矽化鈦層4 1 2 A -34- 200828424 及該含氮鈦層41 2B形成該第一中間結構。藉由堆疊該含氮 矽化鎢層41 2C及該含氮鎢層41 2C形成該第二中間結構。 第6A圖描述依據本發明之第十實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層5 1、中間結構5 2及第 二導電層5 3。該第一導電層5 1包括高摻雜有P型雜質(例 如:硼)或N型雜質(例如:磷)之多晶矽層。該第一導電層51 亦可包括多晶矽鍺層(SihGex,其中X係在約0.01與1.0 間之範圍內)或矽化物層。例如:該矽化物層包括選自一由 ® Ni、Cr、Co、Ti、W、Ta、Hf、Ζι*及Pt所組成之群組中之 - ο 該第二導電層53包括鎢層。該鎢層係約100Α至2,000Α 厚及藉由實施PVD法、CVD法或ALD法所形成。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構52包括鈦(Ti)層52Α、第一含氮鎢(,仏)層 52B、含氮矽化鎢52C以及第二含氮鎢(WNX;^ 5 2D。詳而言之,該鈦層52A之厚度係在約1〇Α至約80A ^ 之範圍內。在該第一及第二含氮鎢層52B及5 2D中之每一 層的氮對鶴之比率係在約0.3與1.5間之範圍內。該第一*及 第二含氮鎢層之每一層視爲氮化鎢層或含某一含量/重量 比之氮的鎢層。雖然將描述於後,但是知道該第一及第二 含氮鎢層52B及52D供應氮至該含氮矽化鎢層52C。該第 一及第二含氮鎢層52B及52D之每一層具有約20A至200A 之厚度。由於供應氮至該含氮矽化鎢層52C,在隨後退火 處理後,該第一及第二含氮鎢層52B及52D之每一層變成 -35- 200828424 純鎢層或含微量氮之鎢層。 在該含氮矽化鎢層52C中之矽對鎢的比率係在約〇·5 與3.0間之範圍內,以及該含氮矽化鎢層52C之氮含量係 在約10%至約60%之範圍內。該含氮矽化鎢層52C表示鎢 砂氮化層或含某一含量/重量比之氮的砂化鎢層。該含氣政 化鎢層52C所形成之厚度係在約20人至約200A之範圍內。 藉由實施PVD法、CVD或ALD法形成該鈦層52A及該 第一及第二含氮鎢層52B及52D。藉由執行PVD法形成該 ® 含氮矽化鎢層52C。該PVD法進行濺鍍沉積法或反應式濺 鍍沉積法。例如:藉由以鈦濺鍍·耙實施濺鍍沉積法來形成該 鈦層5 2 A。藉由在氮氣環境中以鎢濺鍍靶實施反應式濺鍍 沉積法來形成該第一及第二含氮鎢層52B及5 2D。藉由在 氮氣環境中以矽化鎢濺鍍靶實施反應式濺鍍沉積法來形成 該含氮矽化鎢層5 2C。特別地,因爲可均勻地形成該含氮 矽化鎢層502C而無關下層型態,所以可使用該PVD法(例 如:反應式濺鍍沉積法),以形成該含氮矽化鎢層502C。 ^ 依據第十實施例之閘極堆疊結構包括該第一導電層 51、該Ti/WNx/WSixNy/WNx中間結構52及該第二導電層53。 該第一導電層51及該第二導電層53分別包括多晶矽層及 鎢層,藉此形成鎢多晶矽閘極堆疊結構。 特別地,該Ti/WNx/WSixNy/WNx中間結構52包括第一 金屬層、第二金屬層、含氮金屬矽化物層及第三金屬層。 該第一金屬層包括純金屬層,同時該第二及第三金屬層包 括含氮金屬層。該含氮金屬矽化物層包括含某一含量/重量 -36- 200828424 比之氣體的金屬矽化物層。例如:該第一金屬層係該鈦層 52A’以及該第二及第三金屬層分別係該第一及第二含氮鎢 層5 2B及5 2D。該金屬矽化物層係該含氮矽化鎢層52C。 亦可以其它不同結構形成上述多層中間結構。例如:除 該鈦層之外’該第一金屬層還包括鉬層。除該含氮鎢層之 外,該第一及第二金屬層還包括例如含氮鈦鎢層之大致相 同材料。除該含氮矽化鎢層之外,該含氮金屬矽化物層還 包括含氮化鈦層或含氮矽化鉅層。藉由實施包括濺鍍之 ® PVD法、CVD法或ALD法形成該鉅層。藉由在氮氣環境中 以鈦鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮鈦鎢 層。藉由在氮氣環境中以個別矽化鈦及矽化鉅濺鍍靶實施 反應式濺鍍沉積法來形成該含氮矽化鈦層及該含氮矽化鉅 層。該組層所形成之厚度係約1 〇 A至8 0 A。該含氮欽鶴層、 該含氮矽化鈦層及該含氮矽化鉬層之每一層所形成之厚度 係約20A至200A,以及每一層具有約1〇%與60%間範圍之 氮含量。在該含氮鈦鎢層中,鈦對鎢之比率係在約0.5至 ^ 3.0之範圍內。在該含氮矽化鈦層中,矽對鈦之比率係在約 0.5至3.0之範圍內。在該含氮矽化鉅層中,矽對鉅之比率 係在約〇 · 5至3.0之範圍內。 第6B圖描述依據本發明之第十一實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層501、中間結構502 及一第二導電層503。該第一導電層501包括高摻雜有P 型雜質(例如:硼)或N型雜質(例如:磷)之多晶矽層。該第一 導電層501亦可包括多晶矽鍺層(Si,其中X係在約 -37- 200828424 0.0 1與1.0間之範圍內)或矽化物層。例如:該矽化物層包括 選自一由 Ni、Cr、Co、Ti ' W、Ta、Hf、Zr 及 Pt 所組成之 群組中之一。 該弟一導电層503包括鶴層。該鶴層係約ι〇〇Α至 2,000A厚及藉由實施PVD法、CVD法或ALD法所形成。 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構502包括含氮鈦(TiNx)層5 02A、第一含氮 鎢(WNX)層502B、含氮矽化鎢(WSixNy)層5 02C及第二含氮 ® 鎢(WNX)層502D。更詳而言之,該含氮鈦層502A之氮對鈦 具有某一比率(例如:在約0.2至0,8之範圍內)及形成有約 10A至150人之厚度。該含氮鈦層502A表示氮化鈦層或含 某一含量/重量比之氮的欽層。 該第一及第二含氮鎢層5 02B及502D之每一層的氮對 鎢具有某一比率(例如:在約0.3至1.5之範圍內)。該第一及 第二含氮鎢層502B及502D之每一層亦包括一氮化鎢層。 雖然描述於後,但是知道該第一及第二含氮鎢層502 B及 ^ 502D供應氮至該含氮鈦層502A及該含氮矽化鎢層502C。 該第一及第二含氮鎢層5 02B及502D之每一層形成有約 2〇人至20 0人之厚度。由於氮之供應,該第一及第二含氮鎢 層5 0 2 B及5‘0 2 D在該退火後變成純鎢層或含微量氮之鎢層。 在該含氮矽化鎢層5 02C中之矽對鎢的比率係在約〇·5 與3.0間之範圍內,以及該含氮矽化鎢層502C之氮含量係 在約1 0 %至約6 0 %之範圍內。該含氮矽化鎢層5 0 2 c亦包括 鎢矽氮化物層。該含氮矽化鎢層502C具有約20人至200人 •38- 200828424 之厚度。 藉由實施PVD法、CVD法或ALD法形成該第一及第二 含氮鶴層5 02B及502D。藉由實施PVD法形成該含氮鈦層 502A及該含氮矽化鎢層502C。 該PVD法進行濺鍍沉積法或反應式濺鍍沉積法。例如: 藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積法來形成該含 氮鈦層502A。藉由在氮氣環境中以鎢濺鍍靶實施反應式濺 鍍沉積法來形成該第一及第二含氮鎢層502B及502D。藉 ® 由在氮氣環境中以矽化鎢濺鍍粑實施反應式濺鍍沉積法來 形成該含氮矽化鎢層5 0 2 C。特別地,因爲可均勻地形成該 含氮矽化鎢層502C而無關下層型態,所以使用該PVD法(例 如:反應式濺鍍沉積法)以形成該含氮矽化鎢層502C。 依據本發明之第十一實施例的閘極堆疊結構包括該第 一導電層501、該TiNx/WNx/WSixNy/WNx中間結構502及該 第二導電層503。該第一導電層501包括多晶矽及該第二導 電層5 03包括鎢,藉以形成鎢多晶矽閘極堆疊結構。 ^ 特別地,以包括第一金屬層、第二金屬層、含氮金屬 矽化物層及第三金屬層之堆疊結構形成該 TiNx/WNx/WSixNy/WNx中間結構502。該第一、第二及第三 金屬層係含氮金屬層,以及該含氮金屬矽化物層包含某一 含量/重量比之氮。例如:該第一金屬層係該含氮鈦層 502A,以及該第二及第三金屬層分別係該第一及第二含® 鎢層502B及502D。該金屬矽化物層係該含氮砂化鶴層 502C。 -39- 200828424 亦可以其它不同結構形成上述多層中間結構。例如··除 該含氮鈦層之外,該第一金屬層還包括含氮鉅(TaNx)層。除 該含氮鎢層之外,該第二及第三金屬層還包括例如含氮鈦 鎢(TiWN〇層之大致相同材料。除該含氮矽化鎢層之外,該 含氮金屬矽化物層還包括含氮矽化鈦(TiS:uNy)層或含氮矽 化鉅(TaSixNy)層。藉由實施包括濺鍍之PVD法、CVD法或 ALD法形成該含氮鉬層。藉由在氮氣環境中以鈦鎢濺鍍靶 實施反應式濺鍍沉積法來形成該含氮鈦鎢層。藉由在氮氣 ® 環境中以個別矽化鈦及矽化鉅濺鍍靶實施反應式濺鍍沉積 法來形成該含氮矽化鈦層及該含氮矽化鉅層。該含氮鉅層 形成有約10A至80A之厚度。該含氮鈦鎢層、該含氮矽化 鈦層及該含氮矽化鉬層之每一層形成有約20A至200A之 厚度,以及每一層具有約1 0 %與6 0 %間範圍之氮含量。在 該含氮鈦鎢層中’鈦對鎢之比率係在約〇 . 5至3.0之範圍 內。在該含氮矽化鈦層中,矽對鈦之比率係在約〇. 5至3. 〇 φ 之範圍內。在該含氮矽化鉬層中,矽對鉅之比率係在約0.5 至3 · 0之範圍內。 第6 C圖描述依據.本發明之第十二實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層5丨〗 '中間結構5 i 2 及第一導電層513。該第一導電層511包括高摻雜有p型雜 貝(例如.棚(B))或N型雜質(例如:磷(p))之多晶矽層。除該 多晶砂層之外’該第一導電層511亦可包括多晶矽鍺 (Sn〃Gex)層’其中x係在約〇〇1與I』之範圍內,或者包 括砂化物層。該矽化物層包括選自—由Ni、Cr、co、Tl、 -40- 200828424 w、Ta、Hf、Zr及Pt所組成之群組中之一。 該第二導電層513包括鎢層。實施pvd法、CVD法及 ALD法中之一以形成約100A至2,000A厚之鎢層。該pvD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構512包括矽化鈦(TiSix)層512A、含氮鈦 (TiN〇層212B、第一含氮鎢(WNX)層512C、含氮矽化鎢 (WSixNy)層512D及第二含氮鎢層512E。可依據本發明之第 十及第i--實施例所述之選擇材料以不同結構形成該中間 籲結構512。 依據第十二實施例之聞極堆疊結構係在對依據本發明 之第十及第十一實施例的閘極堆疊結構實施退火處理後所 造成之結構。該退火包括在形成該等閘極堆疊結構後所實 施之各種製程(例如:間隔物形成及內層絕緣層形成)期間所 伴隨之熱處理。 參考第6C及6A圖以比較該中間結構5 1 2與該中間結 構52。當該鈦層512A與來自該第一導電層51之多晶矽反 ^ 應時,形成具有約lA至3〇A厚度之矽化鈦層512A。該矽 化鈦層5 1 2 A中之矽對鈦的比率係在約0.5與3.0間之範圔 內。 當從該第一含氮鎢層52B供應氯至該鈦層52A時,造 成該含氮鈦層512B。該含氮鈦層512B具有約10人至1〇〇Α 範圍之厚度且具有約0.7至1.3範圍之氮對鈦的比率。 在該退火後,該第一及第二含氮鎢層512C及512E之 每一層具有因該剝蝕而降至約10%或更少之氮含量。元件 •41- 200828424 符號WNX(D)表示該剝蝕含氮鎢層。該第一及第二含氮鎢層 512C及512E之每一層係約20A至200A厚。在該第一及第 二含氮鶴層5 1 2 C及5 1 2 E之每一層中的氮對鎢之比率係在 約〇. 〇 1與〇 · 1 5間之範圍內。 該含氮矽化鎢層512D具有大致相同於該含氮矽化鎢 層52 C之厚度及成分。詳而言之,該含氮矽化鎢層512D具 有約0.5至3.0範圍之矽對鎢的比率及約1 〇 %至6 0 %之氮含 量。該含氮矽化鎢層512D之厚度係在約20人與200A間之 _範圍內。 參考第6C及6B圖以比較該中間結構512與該中間結 構5 02。在該退火處理期間,從該含氮鎢層5 02B供應氮至 該含氮鈦層502A。結果,使該含氮鈦層502A變換成爲與 該矽化鈦層512A有最小反應之含氮鈦層512B。該矽化鈦 層5 12A之厚度係在約1A至30A之範圍內,以及該含氮鈦 層5 12B之厚度係在約10A至100A之範圍內。在該含氮鈦 層5 12B中之氮對鈦的比率係在約0.7與1.3間之範圍內。 在該退火後,當剝飩該第一及第二含氮鎢層502B及 502D時,該第一及第二含氮鎢層512C及512E之每一層具 有降至約10%或更少之氮含量。該第一及第二含氮鎢層 512(:及512£之每一層係約20人至20 0入厚。在該第一及第 二含氮鎢層5 1 2C及5 1 2E之每一層中的氮對鎢之比率係在 約0.0 1與0.1 5間之範圍內。The gate stack structure according to the ninth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a first metal telluride layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal layer and a nitrogen-containing metal halide layer. For example, the first intermediate structure is formed by stacking the titanium telluride layer 4 1 2 A -34- 200828424 and the nitrogen-containing titanium layer 41 2B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten telluride layer 41 2C and the nitrogen-containing tungsten layer 41 2C. Fig. 6A depicts a gate stack structure in accordance with a tenth embodiment of the present invention. The gate stack structure includes a first conductive layer 51, an intermediate structure 52, and a second conductive layer 53. The first conductive layer 51 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 51 may also include a polycrystalline germanium layer (SihGex, wherein the X system is in a range between about 0.01 and 1.0) or a germanide layer. For example, the telluride layer includes a group selected from the group consisting of: Ni, Cr, Co, Ti, W, Ta, Hf, Ζι*, and Pt. ο The second conductive layer 53 includes a tungsten layer. The tungsten layer is about 100 Å to 2,000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 52 includes a titanium (Ti) layer 52, a first nitrogen-containing tungsten (W) layer 52B, a nitrogen-containing tungsten tungsten 52C, and a second nitrogen-containing tungsten (WNX; ^ 5 2D. In detail, the titanium layer The thickness of 52A is in the range of about 1 Torr to about 80 A. The ratio of nitrogen to crane in each of the first and second nitrogen-containing tungsten layers 52B and 52D is between about 0.3 and 1.5. In the range, each of the first* and second nitrogen-containing tungsten layers is regarded as a tungsten nitride layer or a tungsten layer containing a certain content/weight ratio of nitrogen. Although will be described later, the first and the first are known. The two nitrogen-containing tungsten layers 52B and 52D supply nitrogen to the nitrogen-containing tungsten-deposited tungsten layer 52C. Each of the first and second nitrogen-containing tungsten layers 52B and 52D has a thickness of about 20 A to 200 A. Since nitrogen is supplied to the nitrogen-containing layer The tungsten-deposited tungsten layer 52C, after the subsequent annealing treatment, each of the first and second nitrogen-containing tungsten layers 52B and 52D becomes a -35-200828424 pure tungsten layer or a tungsten-containing tungsten layer. The ratio of rhodium to tungsten in 52C is in the range of about 〇·5 and 3.0, and the nitrogen content of the nitrogen-containing tungsten-tungstate layer 52C is in the range of about 10% to about 60%. The tungsten-deposited tungsten layer 52C represents a tungsten sand nitride layer or a tungsten carbide layer containing a certain content/weight ratio of nitrogen. The gas-containing vaporized tungsten layer 52C is formed to have a thickness ranging from about 20 to about 200 Å. The titanium layer 52A and the first and second nitrogen-containing tungsten layers 52B and 52D are formed by performing a PVD method, a CVD method, or an ALD method. The ® nitrogen-containing tungsten-deposited tungsten layer 52C is formed by performing a PVD method. Plating deposition or reactive sputtering deposition. For example, the titanium layer 5 2 A is formed by sputtering deposition using titanium sputtering. The reaction is sputtered by a tungsten sputtering target in a nitrogen atmosphere. The first and second nitrogen-containing tungsten layers 52B and 52D are formed by a plating deposition method. The nitrogen-containing tungsten telluride layer 5 2C is formed by performing a reactive sputtering deposition method using a tungsten-on-spot sputtering target in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten telluride layer 502C can be uniformly formed regardless of the underlying type, the PVD method (for example, reactive sputtering deposition method) can be used to form the nitrogen-containing tungsten-deposited tungsten layer 502C. The gate stack structure of the tenth embodiment includes the first conductive layer 51, the Ti/WNx/WSixNy/WNx intermediate structure 52 And the second conductive layer 53. The first conductive layer 51 and the second conductive layer 53 respectively comprise a polysilicon layer and a tungsten layer, thereby forming a tungsten polysilicon gate stack structure. In particular, the Ti/WNx/WSixNy/WNx The intermediate structure 52 includes a first metal layer, a second metal layer, a nitrogen-containing metal telluride layer, and a third metal layer. The first metal layer includes a pure metal layer, and the second and third metal layers include a nitrogen-containing metal layer. The nitrogen-containing metal telluride layer comprises a metal halide layer containing a gas in a certain amount/weight of -36 to 200828424. For example, the first metal layer is the titanium layer 52A' and the second and third metal layers are the first and second nitrogen-containing tungsten layers 5 2B and 5 2D, respectively. The metal telluride layer is the nitrogen-containing tungsten telluride layer 52C. The above multilayer intermediate structure may also be formed by other different structures. For example, in addition to the titanium layer, the first metal layer further includes a molybdenum layer. In addition to the nitrogen-containing tungsten layer, the first and second metal layers further comprise substantially the same material as the nitrogen-containing titanium tungsten layer. In addition to the nitrogen-containing tungsten telluride layer, the nitrogen-containing metal telluride layer further includes a titanium nitride-containing layer or a nitrogen-containing germanium macrolayer. The macrolayer is formed by performing a sputtering process including PVD, CVD or ALD. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method using a titanium tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer and the nitrogen-containing germanium macrolayer are formed by performing a reactive sputtering deposition method using a single titanium telluride and a germanium sputtering target in a nitrogen atmosphere. The thickness of the layer is about 1 〇 A to 80 A. Each of the nitrogen-containing qinghe layer, the nitrogen-containing titanium hydride layer and the nitrogen-containing bismuth molybdenum layer has a thickness of about 20A to 200A, and each layer has a nitrogen content ranging between about 1% and 60%. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is in the range of about 0.5 to 3.0. In the nitrogen-containing deuterated macrolayer, the ratio of lanthanum to giant is in the range of about 〇·5 to 3.0. Fig. 6B depicts a gate stack structure in accordance with an eleventh embodiment of the present invention. The gate stack structure includes a first conductive layer 501, an intermediate structure 502, and a second conductive layer 503. The first conductive layer 501 includes a polysilicon layer highly doped with a P-type impurity (for example, boron) or an N-type impurity (for example, phosphorus). The first conductive layer 501 may also include a polysilicon layer (Si, wherein the X system is in the range of about -37 to 200828424 between 0.01 and 1.0) or a vaporized layer. For example, the telluride layer includes one selected from the group consisting of Ni, Cr, Co, Ti'W, Ta, Hf, Zr, and Pt. The conductive layer 503 includes a crane layer. The crane layer is about ι to 2,000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 502 includes a nitrogen-containing titanium (TiNx) layer 052A, a first nitrogen-containing tungsten (WNX) layer 502B, a nitrogen-containing tungsten-tellide (WSixNy) layer 052C, and a second nitrogen-containing tungsten (WNX) layer 502D. More specifically, the nitrogen-containing titanium layer 502A has a ratio of nitrogen to titanium (e.g., in the range of about 0.2 to 0, 8) and a thickness of about 10 to 150 people. The nitrogen-containing titanium layer 502A represents a titanium nitride layer or a layer containing a certain content/weight ratio of nitrogen. Each of the first and second nitrogen-containing tungsten layers 052B and 502D has a certain ratio of nitrogen to tungsten (e.g., in the range of about 0.3 to 1.5). Each of the first and second nitrogen-containing tungsten layers 502B and 502D also includes a tungsten nitride layer. Although described later, it is known that the first and second nitrogen-containing tungsten layers 502 B and 502D supply nitrogen to the nitrogen-containing titanium layer 502A and the nitrogen-containing tungsten-tellide layer 502C. Each of the first and second nitrogen-containing tungsten layers 052B and 502D is formed to have a thickness of about 2 to 20 people. Due to the supply of nitrogen, the first and second nitrogen-containing tungsten layers 5 0 2 B and 5 '0 2 D become a pure tungsten layer or a tungsten layer containing a trace of nitrogen after the annealing. The ratio of germanium to tungsten in the nitrogen-containing tungsten-tellide layer 052C is in a range between about 〇·5 and 3.0, and the nitrogen content of the nitrogen-containing tungsten-telluride layer 502C is from about 10% to about 60. Within the range of %. The nitrogen-containing tungsten telluride layer 5 0 2 c also includes a tungsten-rhenium nitride layer. The nitrogen-containing tungsten telluride layer 502C has a thickness of from about 20 to 200 people • 38 to 200828424. The first and second nitrogen-containing heddle layers 052B and 502D are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 502A and the nitrogen-containing tungsten-deposited tungsten layer 502C are formed by a PVD method. The PVD method performs a sputtering deposition method or a reactive sputtering deposition method. For example: The titanium-containing titanium layer 502A is formed by a sputtering deposition method using a titanium sputtering target in a nitrogen atmosphere. The first and second nitrogen-containing tungsten layers 502B and 502D are formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten-deposited tungsten layer 5 0 2 C was formed by reactive sputtering deposition in a nitrogen atmosphere with a tungsten-rhenium sputter. In particular, since the nitrogen-containing tungsten telluride layer 502C can be uniformly formed regardless of the underlying type, the PVD method (e.g., reactive sputtering deposition method) is used to form the nitrogen-containing tungsten-deposited tungsten layer 502C. A gate stack structure according to an eleventh embodiment of the present invention includes the first conductive layer 501, the TiNx/WNx/WSixNy/WNx intermediate structure 502, and the second conductive layer 503. The first conductive layer 501 includes a polysilicon and the second conductive layer 503 includes tungsten to form a tungsten polysilicon gate stack structure. Specifically, the TiNx/WNx/WSixNy/WNx intermediate structure 502 is formed in a stacked structure including a first metal layer, a second metal layer, a nitrogen-containing metal telluride layer, and a third metal layer. The first, second and third metal layers are nitrogen-containing metal layers, and the nitrogen-containing metal telluride layer contains nitrogen in a certain content/weight ratio. For example, the first metal layer is the nitrogen-containing titanium layer 502A, and the second and third metal layers are the first and second tungsten-containing layers 502B and 502D, respectively. The metal telluride layer is the nitrogen-containing sand layer 502C. -39- 200828424 The above multilayer intermediate structure can also be formed by other different structures. For example, in addition to the nitrogen-containing titanium layer, the first metal layer further includes a nitrogen-containing giant (TaNx) layer. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further comprise, for example, nitrogen-containing titanium tungsten (a substantially identical material of the TiWN layer). In addition to the nitrogen-containing tungsten-telluride layer, the nitrogen-containing metal halide layer Also included is a nitrogen-containing titanium telluride (TiS:uNy) layer or a nitrogen-containing tantalum (TaSixNy) layer. The nitrogen-containing molybdenum layer is formed by performing a PVD method including sputtering, a CVD method or an ALD method, in a nitrogen atmosphere. The nitrogen-containing titanium tungsten layer is formed by a reactive sputtering deposition method using a titanium-tungsten sputtering target. The reaction is formed by performing a reactive sputtering deposition method using individual titanium telluride and a bismuth sputtering target in a nitrogen® environment. a titanium arsenide layer and the nitrogen-containing bismuth layer. The nitrogen-containing giant layer is formed to have a thickness of about 10 A to 80 A. The nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium hydride layer, and the nitrogen-containing bismuth molybdenum layer are each formed. a thickness of about 20 A to 200 A, and each layer having a nitrogen content ranging between about 10% and 60%. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 〇. 5 to 3.0. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is in the range of about 0.5 to 3. 〇φ. In the molybdenum molybdenum layer, the ratio of lanthanum to giant is in the range of about 0.5 to 3.0. Figure 6C depicts a gate stack structure according to the twelfth embodiment of the present invention. a conductive layer 5' intermediate structure 5 i 2 and a first conductive layer 513. The first conductive layer 511 comprises a highly doped p-type impurity (for example, shed (B)) or an N-type impurity (for example: phosphorus (p)) a polysilicon layer. In addition to the polycrystalline sand layer, the first conductive layer 511 may also include a polycrystalline germanium (Sn〃Gex) layer where x is in the range of about 〇〇1 and I, or A silicide layer is included. The vaporized layer includes one selected from the group consisting of Ni, Cr, co, Tl, -40-200828424 w, Ta, Hf, Zr, and Pt. A tungsten layer is included. One of the pvd method, the CVD method, and the ALD method is performed to form a tungsten layer of about 100 A to 2,000 A. The pvD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 512 includes titanium telluride. (TiSix) layer 512A, nitrogen-containing titanium (TiN layer 212B, first nitrogen-containing tungsten (WNX) layer 512C, nitrogen-containing tungsten-tellide (WSixNy) layer 512D, and second nitrogen-containing tungsten layer 512E. The selection material described in the tenth and i-th embodiments of the present invention forms the intermediate call structure 512 in a different structure. The sound electrode stack structure according to the twelfth embodiment is in the tenth and tenth aspects according to the present invention. The gate stack structure of an embodiment is subjected to an annealing process. The annealing includes the various processes (eg, spacer formation and formation of the inner insulating layer) performed after forming the gate stack structures. Heat treatment. Refer to Figures 6C and 6A to compare the intermediate structure 51 to the intermediate structure 52. When the titanium layer 512A is reversely reacted with the polysilicon from the first conductive layer 51, a titanium telluride layer 512A having a thickness of about 1A to 3 Å is formed. The ratio of bismuth to titanium in the titanium oxide layer 5 1 2 A is within a range of between about 0.5 and 3.0. When nitrogen is supplied from the first nitrogen-containing tungsten layer 52B to the titanium layer 52A, the nitrogen-containing titanium layer 512B is formed. The nitrogen-containing titanium layer 512B has a thickness in the range of about 10 to 1 Å and has a nitrogen to titanium ratio in the range of about 0.7 to 1.3. After the annealing, each of the first and second nitrogen-containing tungsten layers 512C and 512E has a nitrogen content reduced to about 10% or less by the ablation. Components • 41- 200828424 The symbol WNX(D) indicates the ablation of the nitrogen-containing tungsten layer. Each of the first and second nitrogen-containing tungsten layers 512C and 512E is about 20A to 200A thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing heddle layers 5 1 2 C and 5 1 2 E is in the range of about 〇 1 and 〇 · 15 . The nitrogen-containing tungsten telluride layer 512D has substantially the same thickness and composition as the nitrogen-containing tungsten telluride layer 52C. In detail, the nitrogen-containing tungsten telluride layer 512D has a rhodium to tungsten ratio of from about 0.5 to 3.0 and a nitrogen content of from about 1% to about 60%. The thickness of the nitrogen-containing tungsten telluride layer 512D is in the range of between about 20 and 200 Å. Referring to Figures 6C and 6B, the intermediate structure 512 and the intermediate structure 502 are compared. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten layer 205B to the nitrogen-containing titanium layer 502A. As a result, the nitrogen-containing titanium layer 502A is converted into a nitrogen-containing titanium layer 512B which has a minimum reaction with the titanium telluride layer 512A. The thickness of the titanium telluride layer 5 12A is in the range of about 1A to 30A, and the thickness of the nitrogen-containing titanium layer 5 12B is in the range of about 10A to 100A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 5 12B is in the range of between about 0.7 and 1.3. After the annealing, when the first and second nitrogen-containing tungsten layers 502B and 502D are stripped, each of the first and second nitrogen-containing tungsten layers 512C and 512E has a nitrogen reduced to about 10% or less. content. Each of the first and second nitrogen-containing tungsten layers 512 (and 512 £) is about 20 to 20 Å thick. In each of the first and second nitrogen-containing tungsten layers 5 1 2 C and 5 1 2 E The ratio of nitrogen to tungsten is in the range of between about 0.01 and 0.15.
該含氮矽化鎢層5 1 2D具有大致相同於該含氮矽化鎢 層5 02C之厚度及成分。詳而言之,該含氮矽化鎢層512D -42- 200828424 具有約0.5至3.0範圍之矽對鎢的比率及約1 0 %至6 0 %之氮 含量。該含氮矽化鎢層512D之厚度係在約20Α與200Α間 之範圍內。 依據第十二實施例之閘極堆疊結構包括第一中間結構 及第二中間結構。該第一中間結構包括金屬矽化物層及第 一含氮金屬層,以及該第二中間結構包括第二含氮金屬 層、含氮金屬矽化物層及第三含氮金屬層。例如:藉由堆疊 該矽化鈦層512A及該含氮鈦層512B形成該第一中間結 ® 構。藉由堆疊該含氮鎢層512C、該含氮矽化鎢層512D及 該含氮鎢層51 2E形成該第二中間結構。 依據本發明之第一至第十二實施例的每一中間結構包 括含氮金屬矽化物層(例如:含氮矽化鎢層)及亦包括多個薄 層(包含鈦、矽、鎢及氮)。藉由在氮氣環境中以矽化鎢濺 鍍靶實施反應式濺鍍沉積法來形成該含氮矽化鎢層。當沉 積該含氮矽化鎢層時,該反應式濺鍍沉積法之實施使該鈦 層變換成爲該氮化鈦層。在該鈦層上方形成該含氮鎢層之 ^ 情況中,使該鈦層變換成爲該氮化鈦層。 因爲該含氮矽化鎢層當做非晶擴散阻障,所以當形成 該鎢層時,該鎢層具有約15 μ Q_cm之小範圍特定電阻及大 晶粒尺寸。因此,因爲可形成該具有低特定電阻之鎢層, 所以該鶴層具有低片電阻。 因爲當形成該含氮鎢層或該含氮矽化鎢層時,使該鈦 層或該含氮鈦層變換成爲該氮化鈦層,所以依據本發明之 第一至第十二實施例的閘極堆疊結構具有低接觸電阻及可 -43- 200828424 減少多晶砂空乏。並且,因爲在每一中間結構中包括該含 氮矽化鎢層,所以該閘極堆疊結構具有低片電阻。 由於上述該鈦層或含氮鈦層至該氮化鈦層之變換,在 該等中間結構中所包括之複數層的每一層包含氮。結果, 該接觸電阻及該片電阻是低的,以及可減少每一閘極堆疊 結構之高度。此外’可允許減少因在該第一導電層中所摻 雜之雜質(例如:硼)向外擴散所造成之多晶矽空乏效應。 第7A圖描述依據本發明之第十三實施例的閘極堆疊 ® 結構。該閘極堆疊結構包括第一導電層61、中間結構62 及第二導電層63。該第一導電層61包括高摻雜有P型雜質 (例如:硼)或N型雜質(例如:磷)之多晶矽層。該第一導電層 61亦可包括多晶矽鍺層(SinGex,其中X係在約0.01與1.0 間之範圍內)或矽化物層。例如:該矽化物層包括選自一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr及Pt所組成之群組中之 --Ο 該第二導電層63包括鎢層。該鎢層係約ΙΟΟΑ至2,000Α ^ 厚及藉由實施PVD法、CVD法或ALD法所形成。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構62包括鈦(Τι)層62A、第一含氮鎢(WN〇層 62Β、矽化鎢(WSix)層62C(其中X係在約1.5與10間之範圍 內)以及第二含氮鎢(W1SU)層6 2 D。更特別地,該欽層6 2 A 形成有約10A至80A範圍之厚度。 該第一及第二含氮鎢層62B及62D之每一層的氮對鎢 具有某一比率(例如:在約0.3至1.5之範圍內)。該第一及第 -44- 200828424 二含氮鎢層62B及62D之每一層亦包括氮化鎢層。雖然描 述於後,但是知道該第一及第二含氮鎢層62B及62D具有 一金屬特性。該第一及第二含氮鎢層62B及62D供應氮至 該矽化鎢層62C。該含氮鎢層62B及62D之每一層形成有 約20A至200A之厚度。由於氮之供應,該第一及第二含氮 鎢層62B及62D在該退火後變成純鎢層或含微量氮之鎢層。 在該矽化鎢層62C中之矽對鎢的比率係在約0.5與3.0 間之範圍內。該矽化鎢層62C形成有約20A至100A之厚 β度。 藉由實施PVD法、CVD法或ALD法形成該鈦層62Α、 該第一及第二含氮鎢層62Β及62D及該鎢層63。藉由實施 PVD法形成該矽化鎢層62C。 該PVD法進行濺鍍沉積法或反應式濺鍍沉積法。例如: 藉由以鈦濺鍍靶實施濺鍍沉積法來形成該鈦層62Α。藉由 在氮氣環境中以鎢濺鍍靶實施反應式濺鍍沉積法來形成該 第一及第二含氮鎢層62Β及62D之每一層。藉由以矽化鎢 ® 濺鍍靶實施反應式濺鍍沉積法來形成該含氮矽化鎢層 62C。藉由以鎢濺鍍靶實施濺鍍沉積法來形成該鎢層63。 依據本發明之第十三實施例的閘極堆疊結構包括該第 一導電層61、該Ti/WNx/WSh/WNx中間結構62及該第二導 電層63。該第一導電層61包括多晶砂及該第二導電層63 包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,以包括第一金屬層、第二金屬層、金屬矽化 物層及第三金屬層之堆疊結構形成該Ti/WNx/WSh/WNx中 -45· 200828424 間結構62。該第一金屬層包括純金屬層。該第二及第三金 屬層包括含氮金屬層,以及該金屬矽化物層包括純矽化鎢 層。例如:該第一金屬層係該鈦層62A,以及該第二及第三 金屬層分別係該第一及第二含氮鎢層62 B及62D。該金屬 矽化物層係該矽化鎢層6 2 C。 亦可以其它不同結構形成上述多層中間結構。例如:除 該鈦層之外,該第一金屬層還包括鉅層。除該矽化鎢層之 外,該金屬矽化物層還包括矽化鈦(TiSix)層,其中X係在 ® 1 · 5與1 0間之範圍內,或矽化鉅(T a S i x)層,其中X係在1. 5 與1 0間之範圍內。除該含氮鎢層之外,該第二及第三金屬 層還包括含氮鈦鎢(TiWNx)層。藉由實施包括濺鍍之 PVD 法、C V D法或A L D法形成該鉬層。藉由在氮氣環境中以欽 鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮鈦鎢層。藉 由以個別矽化鈦及矽化鉅濺鍍靶實施反應式濺鍍沉積法來 形成該矽化鈦層及該矽化鉬層。該鉬層形成有約1 0 A至8 0 A 之厚度。該含氮鈦鎢層係約20A至200A厚。該矽化鈦層及 ® 該矽化鉬層之每一層形成有約20A至200A之厚度。該含氮 鈦鎢層具有約10%與60%間範圍之氮含量。在該含氮鈦鎢 層中,鈦對鎢之比率係在約〇. 5至3.0之範圍內。在該矽化 鈦層中,矽對鈦之比率係在約〇.5至3.0之範圍內。在該矽 化鉬層中’矽對鉬之比率係在約〇. 5至3.0之範圍內。 藉由實施PVD法(例如:濺鍍沉積法)在該第一含氮鎢層 62B上方形成該矽化鎢層62C。以該矽化鎢濺鍍靶實施該濺 鍍沉積法以允許該矽化鎢層62C之均勻形成而無關下層型 -46- 200828424 態。 第7B圖描述在藉由實施個別化學氣相沉積(CVD)及物 理氣相沉積(PVD)法在含氮鎢層上方形成矽化鎢層後所提 供之結構的影像。雖然藉由該CVD法沒有在該氮化鎢層 WN上方適當地形成該矽化鎢層CVD-WSix,但是藉由該PVD 法可在該氮化鎢層 WN上方均勻地形成該矽化鎢層 PVD-WSix。因此,因爲可在該矽化鎢層上方形成該具有低 特定電阻之鎢層’所以可減少該鎢層之片電阻。 • 對於依據本發明之第十三實施例的閘極堆疊結構,當 在該鈦層上方形成該含氮鎢層62B時,使該鈦層變換成爲 氮化鈦層。 依據本發明之第十三實施例,因爲在該含氮層之形成 期間使該中間結構之鈦層變換成爲該氮化鈦層,所以該閘 極堆疊結構可獲得低接觸電阻及減少該多晶矽空乏效應。 再者,因爲該中間結構包括該矽化鎢層,所以該閘極堆疊 結構亦可獲得低片電阻。 ® 第7C圖描述依據本發明之第十四實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層601、中間結構602 及第二導電層603。該第一導電層601包括高摻雜有P型雜 質(例如:硼)或N型雜質(例如:磷)之多晶矽層。該第一導電 層601亦可包括多晶矽鍺層(Si ,其中X係在約0.01 與1.0間之範圍內)或一砂化層。例如:該砂化物層包括選自 一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr 及 Pt 所組成之群組 中之一。 -47- 200828424 該第二導電層603包括鎢層。該鎢層係約100A至 2,000A厚及藉由實施PVD法、CVD法或ALD法所形成。 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構602包括含氮鈦(TiNd層602A、第一含氮 鎢(WNX)層602B、矽化鎢(WSix)層602C及第二含氮鎢(WNX) 層602D。更詳而言之,該含氮鈦層602A之氮對鈦具有某 一比率(例如:在約0.2至0.8之範圍內)及形成有約10A至 15 0A之厚度。該含氮鈦層602A亦包括氮化鈦層。 該第一及第二含氮鎢層602 B及602D之每一層的氮對 鎢具有某一比率(例如:在約0.3至1.5之範圍內)。該第一及 第二含氮鎢層602B及602D之每一層亦包括氮化鎢層。該 第一及第二含氮鎢層602B及602D供應氮至該矽化鎢層 602C。該第一及第二含氮鎢層602B及602D之每一層形成 有約20 A至200 A之厚度。由於氮之供應,該第一及第二含 氮鎢層602B及602D在該退火後變成純鎢層或含微量氮之 鎢層。 在砂化鎢層6 0 2 C中之矽對鎢之比率在約〇 . 5與3.0之 間。該矽化鎢層602C具有約20A至200A的厚度。 藉由實施PVD法、CVD法或ALD法形成該第一及第二 含氮鎢層602B及602D。藉由實施PVD法形成該含氮鈦層 602A及該矽化鎢層602C。 該PVD法進行濺鍍沉積法或反應式濺鍍沉積法。例如: 賴由在氣氣環境中以欽濺鍍IG實施濺鍍沉積法來形成該含 氮鈦層602A。藉由在氮氣環境中以鎢濺鍍靶實施反應式濺 -48- 200828424 鍍沉積法來形成該第一及第二含氮鎢層602B及602D。藉 由以矽化鎢濺鍍靶實施反應式濺鍍沉積法來形成該矽化鎢 層5 02C。藉由以鎢濺鍍靶實施濺鍍沉積法來形成該鎢層 603。依據本發明之第十四實施例的閘極堆疊結構包括該第 一導電層601、該TiNx/WNx/WSh/WNx中間結構602及該第 二導電層603。該第一導電層601包括多晶矽及該第二導電 層603包括鎢,藉以形成鎢多晶矽閘極堆疊結構。 特別地,以包括第一金屬層、第二金屬層、金屬矽化 ® 物層及第三金屬層之堆疊結構形成該TiNx/WNx/WSh/WNx 中間結構602。該第一、第二及第三金屬層係含氮金屬層, 以及該金屬矽化物層係純金屬矽化物層。例如:該第一金屬 層係該含氮鈦層602A,以及該第二及第三金屬層分別係該 第一及第二含氮鎢層602B及602D。該金屬矽化物層係該 砍化鶴層602C。 亦可以其它不同結構形成上述多層中間結構。例如:除 該含氮鈦層之外,該第一金屬層還包括含氮鉅(TaNx)層。除 ❿ 該矽化鎢層之外,該金屬矽化層還包括矽化鈦(TiSix),其 中x係在約1 ·5與10間之範圍內,或矽化鉅(TaSh),其中 X係在約1.5與1 0間之範圍內。除該含氮鎢層之外,該第 二及第三金屬層還包括含氮鈦鎢(TiWNx)層。藉由在氮氣環 境中以鉅濺鍍靶實施反應式濺鍍法來形成該含氮鉅層。藉 由在氮氣環境中以鈦鎢濺鍍靶實施反應式濺鍍沉積法來形 成該含氮鈦鎢層。藉由以個別矽化鈦及矽化鉅濺鍍靶實施 反應式濺鍍沉積法來形成該砂化欽層及該砂化鉬層。該含 -49· 200828424 氮鉅層形成有約10A至150A之厚度。該含氮鈦鎢層、該矽 化鈦層及該矽化鉅層之每一層形成有約20A至200A之厚 度。該含氮鈦鶴層中之氮含量係在約10%與60 %間之範圍 內。在該含氮鈦鎢層中,鈦對鎢之比率係在約〇. 5至3.0 之範圍內。在該矽化鈦層中,矽對鈦之比率係在約0.5至 3.0之範圍內。在該矽化鉅層中,矽對鉅之比率係在約〇.5 至3.0之範圍內。 在上述中間結構602中,藉由PVD法(例如:濺鑛沉積 ® 法)在該第一含氮鎢層602B上方形成該矽化鎢層602C。以 該矽化鎢濺鍍靶實施該濺鍍沉積法以允許該矽化鎢層6〇2C 之均勻形成而無關下層型態。 第7D圖描述依據本發明之第十五實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層6 1 1、中間結構6 1 2 及第二導電層613。該第一導電層611包括高摻雜有p型雜 質(例如:硼(B))或N型雜質(例如:磷(P))之多晶矽層。除該 多晶砂層之外,該第一導電層 611亦可包括多晶砂鍺 (SinGex)層,其中X係在約〇·〇ι與ΐ·〇之範圍內,或者包 括矽化物層。該矽化物層包括選自一由Ni、Cr、Co、Ti、 W、Ta、Hf、Zr及Pt所組成之群組中之一。 該第二導電層613包括鎢層。實施PVD法、CVD法及 ALD法中之以形成約100A至2,000A厚之鎢層。該PVD法 包括使用一鎢濺鍍靶之一濺鍍沉積法。 該中間結構612包括矽化鈦(TiSix)層612A、含氮欽 (TiNx)層612B、第一含氮鎢(WNO層612C、含氮矽化鶴 -50- 200828424 (WSuNy)層612D及第二含氮鎢層612E。可依據本發明之第 十三及第十四實施例所述之選擇材料以不同結構形成該中 間結構6 1 2。 依據本發明之第十五實施例之閘極堆疊結構係在對依 據本發明之第十三及第十四實施例的閘極堆疊結構實施退 火處理後所造成之結構。該退火包括在形成該等閘極堆疊 結構後所實施之各種製程(例如:間隔物形成及內層絕緣層 形成)期間所伴隨之熱處理。 ® 參考第7D及7A圖以比較該中間結構612與該中間結 構62。當該鈦層62 A與來自該第一導電層61之多晶矽反 應時,形成具有約1A至30A厚度之矽化鈦層612A。該矽 化鈦層612A中之矽對鈦的比率係在約0.5與3.0間之範圍 內。 當從該第一含氮鎢層62B供應氮至該鈦層62A時,造 成該含氮鈦層612B。該含氮鈦層612B具有約10A至100A 範圍之厚度且具有約0.6至1.2範圍之氮對鈦的比率。 W 在該退火後,該第一及第二含氮鎢層612C及612E之 每一層具有因該剝蝕而降至約10%或更少之氮含量。元件 符號WNX(D)表示該剝蝕含氮鎢層。該第一及第二含氮鎢層 612C及612E之每一層係約20A至200A厚。在該第一及第 二含氮鎢層612C及612E之每一層中的氮對鎢之比率係在 約0.0 1與0.1 5間之範圍內。 當分解來自該第一及第二含氮鎢層602B及602D之氮 時,使該矽化鎢層602C變換成爲該含氮矽化鎢層61 2D ° -51- 200828424 在該含氮矽化鎢層612D中之矽對鎢的比率係在約0.5至 3.0之範圍內。該含氮矽化鎢層61 2D具有約10%至60%之 氮含量及約20A至200A之厚度。 參考第7D及7C圖以比較該中間結構612與該中間結 構6 02。在該退火處理期間,從該含氮鎢層602B供應氮至 該含氮駄層602A。結果,使該含氮欽層602A變換成爲與 該矽化鈦層612A有最小反應之含氮鈦層612B。該矽化鈦 層612A之厚度係在約1A至30A之範圍內,以及該含氮鈦 ® 層612B之厚度係在約10A至100A之範圍內。在該含氮鈦 層612B中之氮對鈦的比率係在約0.7與1.3間之範圍內。 在該退火後,當剝蝕該第一及第二含氮鎢層6 02B及 602D時,該第一及第二含氮鎢層612C及6 12E之每一層具 有降至約10 %或更少之氮含量。該第一及第二含氮鎢層 612C及612E之每一層係約20A至200A厚。在該第一及第 二含氮鎢層612C及612E之每一層中的氮對鎢之比率係在 約0.0 1與0 · 1 5間之範圍內。 ^ 當剝蝕來自該第一及第二含氮鎢層602B及602D之氮 時,使該矽化鎢層602C變換成爲該含氮矽化鎢層612D。 該含氮矽化鎢層612D具有約0.5至3.0之矽對鎢的比率及 約10 %至60%之氮含量。該含氮矽化鎢層61 2D之厚度係在 約20A與200A間之範圍內。 依據第十五實施例之閘極堆疊結構包括第一中間結構 及第二中間結構。該第一中間結構包括金屬矽化物層及第 一含氮金屬層,以及該第二中間結構包括第二含氮金屬 -52- 200828424 層、含氮金屬矽化物層及第三含氮金屬層。例如:藉由堆疊 該矽化鈦層612A及該含氮鈦層61 2B形成該第一中間結 構。藉由堆疊該含氮鎢層612C、該含氮矽化鎢層612D及 該含氮鎢層6 1 2E形成該第二中間結構。 可實施依據本發明之第一至第十五實施例的中間結 構,以除了控制動態隨機存取記憶體(DRAM)裝置之閘極電 極之外,還可控制快閃記憶體裝置之閘極電極及許多邏輯 裝置之閘極電極。 ® 第8圖描述依據本發明之第十六實施例的快閃記憶體 裝置之閘極堆疊結構。在基板7 0 1上方形成對應於閘極絕 緣層之穿隧氧化物層702。在該穿隧氧化物層702上方形成 用於浮動閘極FG之第一多晶矽電極703。 在該第一多晶矽電極703上方形成介電層7 04,以及在 該介電層704上方形成用於控制閘極CG之第二多晶矽電極 705 ° 在該第二多晶矽電極705上方形成選自由本發明之第 ® —至第十五實施例所述之各種型態的中間結構所構成之群 組中的中間結構706。該中間結構706包括依據本發明之第 一實施例的Ti/WNx/WSixNy中間結構。因此,藉由連續地堆 疊鈦層706A、含氮鎢層706B及含氮矽化鎢層706C以形成 該中間結構706。 在該中間結構706上方形成一鎢電極707及硬罩208。 元件符號W及Η/M分別表示該鎢電極707及該硬罩208。 第8圖所示之具有中間結構706的快閃記憶體裝置之 -53- 200828424 閘極堆疊結構具有低片電阻及接觸電阻。除該閘極電極之 外’本發明之實施例可應用至各種金屬內連線(例如:包括 中間結構之位元線、金屬線及電容器電極)。再者,本發明 之實施例可應用至半導體元件之構成雙多晶矽閘極之閘極 堆疊結構,其中該雙多晶矽閘極係由第广閘極堆疊結構(包 括在中間結構下面所形成之摻雜有N型雜質的多晶矽電極 及在該中間結構上方所形成之鎢電極)與第二閘堆疊結構 (包括摻雜有P型雜質之多晶矽電極及在該中間結構上方所 ® 形成之鎢電極)所組成。 第9圖係描述依據本發明之第一至第十五實施例所形 成之每一型態的中間結構之鎢層的片電阻(Rs)之曲線圖。 該鎢層具有約40nm之厚度。 可觀察到在Ti/WNX中間結構上方藉由CVD法及PVD 法額外地施力日 WSix/WNx 中間結構(亦即 ,The nitrogen-containing tungsten telluride layer 5 1 2D has substantially the same thickness and composition as the nitrogen-containing tungsten-deposited tungsten layer 502C. In detail, the nitrogen-containing tungsten telluride layer 512D-42-200828424 has a rhodium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content of about 10% to 60%. The thickness of the nitrogen-containing tungsten telluride layer 512D is in the range of between about 20 Å and 200 Å. The gate stack structure according to the twelfth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal layer, a nitrogen-containing metal telluride layer, and a third nitrogen-containing metal layer. For example, the first intermediate junction structure is formed by stacking the titanium telluride layer 512A and the nitrogen-containing titanium layer 512B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten layer 512C, the nitrogen-containing tungsten-deposited tungsten layer 512D, and the nitrogen-containing tungsten layer 51 2E. Each of the intermediate structures according to the first to twelfth embodiments of the present invention includes a nitrogen-containing metal telluride layer (for example, a nitrogen-containing tungsten-telluride layer) and also includes a plurality of thin layers (including titanium, tantalum, tungsten, and nitrogen). . The nitrogen-containing tungsten telluride layer is formed by performing a reactive sputtering deposition method with a tungsten antimonide sputtering target in a nitrogen atmosphere. When the nitrogen-containing tungsten telluride layer is deposited, the reactive sputtering deposition method converts the titanium layer into the titanium nitride layer. In the case where the nitrogen-containing tungsten layer is formed over the titanium layer, the titanium layer is transformed into the titanium nitride layer. Since the nitrogen-containing tungsten telluride layer acts as an amorphous diffusion barrier, when the tungsten layer is formed, the tungsten layer has a small specific resistance and a large grain size of about 15 μ Q_cm. Therefore, since the tungsten layer having a low specific resistance can be formed, the crane layer has a low sheet resistance. Since the titanium layer or the nitrogen-containing titanium layer is transformed into the titanium nitride layer when the nitrogen-containing tungsten layer or the nitrogen-containing tungsten-tellide layer is formed, the gates according to the first to twelfth embodiments of the present invention The pole stack structure has low contact resistance and can reduce the polycrystalline sand depletion by -43- 200828424. Also, since the nitrogen-containing tungsten telluride layer is included in each of the intermediate structures, the gate stack structure has a low sheet resistance. Due to the above-described transformation of the titanium layer or the nitrogen-containing titanium layer to the titanium nitride layer, each of the plurality of layers included in the intermediate structures contains nitrogen. As a result, the contact resistance and the sheet resistance are low, and the height of each gate stack structure can be reduced. Furthermore, it is allowed to reduce the polysilicon vacancy effect caused by the outward diffusion of impurities (e.g., boron) doped in the first conductive layer. Fig. 7A depicts a gate stack ® structure in accordance with a thirteenth embodiment of the present invention. The gate stack structure includes a first conductive layer 61, an intermediate structure 62, and a second conductive layer 63. The first conductive layer 61 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 61 may also include a polycrystalline germanium layer (SinGex, wherein the X system is in the range of between about 0.01 and 1.0) or a germanide layer. For example, the telluride layer comprises a group selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt -- Ο The second conductive layer 63 includes a tungsten layer. The tungsten layer is formed to a thickness of about 2,000 Å and formed by a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 62 includes a titanium (Ge) layer 62A, a first nitrogen-containing tungsten (WN layer 62, a tungsten germanium (WSix) layer 62C (where X is in the range of between about 1.5 and 10), and a second nitrogen-containing tungsten (W1SU) layer 6 2 D. More specifically, the seed layer 6 2 A is formed to have a thickness ranging from about 10 A to 80 A. Each of the first and second nitrogen-containing tungsten layers 62B and 62D has a certain tungsten to tungsten a ratio (eg, in the range of about 0.3 to 1.5). Each of the first and fourth -44-200828424 two nitrogen-containing tungsten layers 62B and 62D also includes a tungsten nitride layer. Although described later, it is known The first and second nitrogen-containing tungsten layers 62B and 62D have a metal characteristic. The first and second nitrogen-containing tungsten layers 62B and 62D supply nitrogen to the tungsten-deposited tungsten layer 62C. Each of the nitrogen-containing tungsten layers 62B and 62D A thickness of about 20 A to 200 A is formed. The first and second nitrogen-containing tungsten layers 62B and 62D become a pure tungsten layer or a tungsten-containing tungsten layer after the annealing due to the supply of nitrogen. In the tungsten-deposited tungsten layer 62C The ratio of tungsten to tungsten is in the range of about 0.5 to 3.0. The tungsten-deposited tungsten layer 62C is formed to have a thickness of about 20 A to 100 A. By performing PVD method, CVD method The titanium layer 62 is formed by the ALD method, the first and second nitrogen-containing tungsten layers 62 and 62D, and the tungsten layer 63. The tungsten-deposited tungsten layer 62C is formed by performing a PVD method. The PVD method is performed by a sputtering deposition method or a reactive method. Sputter deposition method, for example: forming the titanium layer 62 by sputtering deposition using a titanium sputtering target. The first sputtering is performed by performing a reactive sputtering deposition method using a tungsten sputtering target in a nitrogen atmosphere. Each of the second nitrogen-containing tungsten layers 62 and 62D is formed by reactive sputtering deposition using a tungsten antimonide® sputtering target to form a nitrogen-containing tungsten-telluride layer 62C. Sputter deposition is performed by sputtering a tungsten target. The tungsten layer 63 is formed by the method. The gate stack structure according to the thirteenth embodiment of the present invention includes the first conductive layer 61, the Ti/WNx/WSh/WNx intermediate structure 62, and the second conductive layer 63. The first conductive layer 61 includes polycrystalline sand and the second conductive layer 63 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. Specifically, the first metal layer, the second metal layer, the metal germanide layer, and the The stacked structure of the three metal layers forms the structure 62 of -45·200828424 in the Ti/WNx/WSh/WNx. The first metal layer comprises a pure metal layer, the second and third metal layers comprise a nitrogen-containing metal layer, and the metal telluride layer comprises a pure tungsten germanium layer. For example, the first metal layer is the titanium layer 62A, and the The second and third metal layers are respectively the first and second nitrogen-containing tungsten layers 62 B and 62D. The metal telluride layer is the tungsten telluride layer 6 2 C. The above-mentioned multilayer intermediate structure may also be formed by other different structures. The first metal layer further includes a giant layer in addition to the titanium layer. In addition to the tungsten germanium layer, the metal telluride layer further includes a layer of titanium telluride (TiSix), wherein the X system is in the range of between 1.7 and 10, or a layer of tantalum (T a S ix ), wherein The X system is in the range of between 1.5 and 10. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further comprise a nitrogen-containing titanium tungsten (TiWNx) layer. The molybdenum layer is formed by performing a PVD method including sputtering, a C V D method, or an A L D method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The titanium telluride layer and the molybdenum telluride layer are formed by reactive sputtering deposition using individual titanium telluride and germanium sputtering targets. The molybdenum layer is formed to a thickness of about 10 A to 80 A. The nitrogen-containing titanium tungsten layer is about 20A to 200A thick. Each of the titanium telluride layer and the layer of the molybdenum molybdenum layer is formed to have a thickness of about 20 A to 200 Å. The nitrogen-containing titanium tungsten layer has a nitrogen content ranging between about 10% and 60%. In the nitrogen-containing titanium-tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the titanium telluride layer, the ratio of bismuth to titanium is in the range of about 〇.5 to 3.0. The ratio of 矽 to molybdenum in the bismuth molybdenum layer is in the range of about 〇. 5 to 3.0. The tungsten germanium layer 62C is formed over the first nitrogen-containing tungsten layer 62B by performing a PVD method (for example, sputtering deposition). The sputtering deposition method is carried out with the tungsten-tungsten sputtering target to allow uniform formation of the tungsten-tungsten layer 62C regardless of the under-layer type -46-200828424. Figure 7B depicts an image of the structure provided after the formation of a tungsten telluride layer over a nitrogen-containing tungsten layer by performing a separate chemical vapor deposition (CVD) and physical vapor deposition (PVD) process. Although the tungsten-deposited tungsten layer CVD-WSix is not formed properly over the tungsten nitride layer WN by the CVD method, the tungsten-deposited tungsten layer PVD may be uniformly formed over the tungsten nitride layer WN by the PVD method. WSix. Therefore, since the tungsten layer having a low specific resistance can be formed over the tungsten germanium layer, the sheet resistance of the tungsten layer can be reduced. • For the gate stack structure according to the thirteenth embodiment of the present invention, when the nitrogen-containing tungsten layer 62B is formed over the titanium layer, the titanium layer is transformed into a titanium nitride layer. According to the thirteenth embodiment of the present invention, since the titanium layer of the intermediate structure is transformed into the titanium nitride layer during formation of the nitrogen-containing layer, the gate stack structure can obtain low contact resistance and reduce the polysilicon enthalpy effect. Moreover, since the intermediate structure includes the tungsten telluride layer, the gate stack structure can also obtain a low sheet resistance. ® Figure 7C depicts a gate stack structure in accordance with a fourteenth embodiment of the present invention. The gate stack structure includes a first conductive layer 601, an intermediate structure 602, and a second conductive layer 603. The first conductive layer 601 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 601 may also include a polysilicon layer (Si, wherein the X system is in a range between about 0.01 and 1.0) or a sanding layer. For example, the sand layer includes one selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt. -47- 200828424 The second conductive layer 603 comprises a tungsten layer. The tungsten layer is about 100 Å to 2,000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 602 includes a nitrogen-containing titanium (TiNd layer 602A, a first nitrogen-containing tungsten (WNX) layer 602B, a tungsten telluride (WSix) layer 602C, and a second nitrogen-containing tungsten (WNX) layer 602D. More specifically, the The nitrogen-containing titanium layer 602A has a ratio of nitrogen to titanium (e.g., in the range of about 0.2 to 0.8) and a thickness of about 10 A to 150 A. The nitrogen-containing titanium layer 602A also includes a titanium nitride layer. Each of the first and second nitrogen-containing tungsten layers 602 B and 602D has a certain ratio of nitrogen to tungsten (eg, in the range of about 0.3 to 1.5). The first and second nitrogen-containing tungsten layers 602B and 602D Each of the layers also includes a tungsten nitride layer. The first and second nitrogen-containing tungsten layers 602B and 602D supply nitrogen to the tungsten-deposited tungsten layer 602C. Each of the first and second nitrogen-containing tungsten layers 602B and 602D is formed with The thickness of about 20 A to 200 A. The first and second nitrogen-containing tungsten layers 602B and 602D become a pure tungsten layer or a tungsten layer containing a trace of nitrogen after the annealing due to the supply of nitrogen. The ratio of germanium to tungsten in 2 C is between about 0.5 and 3.0. The tungsten germanium layer 602C has a thickness of about 20 A to 200 A. By performing PVD, CVD or ALD The first and second nitrogen-containing tungsten layers 602B and 602D are formed by performing a PVD method to form the nitrogen-containing titanium layer 602A and the tungsten-deposited tungsten layer 602C. The PVD method performs a sputtering deposition method or a reactive sputtering deposition method. : The Nitrogen-containing Titanium Layer 602A is formed by sputtering deposition in an air-conditioned environment by sputtering IG. The reactive sputtering is performed by using a tungsten sputtering target in a nitrogen atmosphere - 48-200828424 plating deposition method. The first and second nitrogen-containing tungsten layers 602B and 602D are formed. The tungsten-deposited tungsten layer 052C is formed by reactive sputtering deposition using a tungsten-tungsten sputtering target. Sputter deposition is performed by using a tungsten sputtering target. The tungsten layer 603 is formed by the method. The gate stack structure according to the fourteenth embodiment of the present invention includes the first conductive layer 601, the TiNx/WNx/WSh/WNx intermediate structure 602, and the second conductive layer 603. The first conductive layer 601 includes a polysilicon and the second conductive layer 603 includes tungsten to form a tungsten polysilicon gate stack structure. Specifically, the first metal layer, the second metal layer, the metal germanium layer, and the third metal are included. The stacked structure of layers forms the TiNx/WNx/WSh/WNx intermediate structure 602. The first, second and third metal layers are a nitrogen-containing metal layer, and the metal telluride layer is a pure metal telluride layer. For example, the first metal layer is the nitrogen-containing titanium layer 602A, and the second and the second The three metal layers are respectively the first and second nitrogen-containing tungsten layers 602B and 602D. The metal telluride layer is the chopped crane layer 602C. The above-mentioned multilayer intermediate structure may also be formed by other different structures. For example: in addition to the nitrogen-containing titanium In addition to the layer, the first metal layer further includes a nitrogen-containing giant (TaNx) layer. In addition to the germanium telluride layer, the metal germanide layer further includes titanium telluride (TiSix), wherein the x series is in the range of about 1-5 and 10, or the tantalum giant (TaSh), wherein the X system is at about 1.5. Within the range of 10 rooms. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further comprise a nitrogen-containing titanium tungsten (TiWNx) layer. The nitrogen-containing macrolayer was formed by performing a reactive sputtering method with a giant sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method using a titanium tungsten sputtering target in a nitrogen atmosphere. The sanding layer and the molybdenum molybdenum layer are formed by performing a reactive sputter deposition method using individual titanium telluride and a deuterated giant sputtering target. The nitrogen-containing macrolayer is formed to have a thickness of about 10A to 150A. Each of the nitrogen-containing titanium tungsten layer, the titanium telluride layer, and the germanium telluride layer is formed to have a thickness of about 20 Å to 200 Å. The nitrogen content of the nitrogen-containing titanium layer is in the range of between about 10% and 60%. In the nitrogen-containing titanium-tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the titanium telluride layer, the ratio of tantalum to titanium is in the range of about 0.5 to 3.0. In the deuterated giant layer, the ratio of 矽 to 巨 is in the range of about 〇.5 to 3.0. In the intermediate structure 602 described above, the tungsten germanium layer 602C is formed over the first nitrogen-containing tungsten layer 602B by a PVD method (eg, sputtering deposition ® method). The sputtering deposition method is carried out with the tungsten-tungsten sputtering target to allow uniform formation of the tungsten-deposited tungsten layer 6〇2C irrespective of the underlying type. Fig. 7D depicts a gate stack structure in accordance with a fifteenth embodiment of the present invention. The gate stack structure includes a first conductive layer 61, an intermediate structure 61 and a second conductive layer 613. The first conductive layer 611 includes a polysilicon layer highly doped with a p-type impurity (e.g., boron (B)) or an N-type impurity (e.g., phosphorus (P)). In addition to the polycrystalline sand layer, the first conductive layer 611 may also include a polycrystalline silicon (SinGex) layer, wherein the X system is in the range of about 〇·〇ι and ΐ·〇, or includes a vaporized layer. The telluride layer includes one selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt. The second conductive layer 613 includes a tungsten layer. The PVD method, the CVD method, and the ALD method are carried out to form a tungsten layer of about 100 A to 2,000 Å thick. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 612 includes a titanium telluride (TiSix) layer 612A, a nitrogen-containing (TiNx) layer 612B, a first nitrogen-containing tungsten (WNO layer 612C, a nitrogen-containing germanized crane-50-200828424 (WSuNy) layer 612D, and a second nitrogen-containing layer). Tungsten layer 612E. The intermediate structure 61 may be formed in a different structure according to the selection materials described in the thirteenth and fourteenth embodiments of the present invention. The gate stack structure according to the fifteenth embodiment of the present invention is The structure resulting from the annealing treatment of the gate stack structure according to the thirteenth and fourteenth embodiments of the present invention. The annealing includes various processes (for example, spacers) performed after forming the gate stack structures. Heat treatment accompanying formation and formation of the inner insulating layer. Ref. 7D and 7A to compare the intermediate structure 612 with the intermediate structure 62. When the titanium layer 62 A reacts with the polysilicon from the first conductive layer 61 At that time, a titanium telluride layer 612A having a thickness of about 1 A to 30 A is formed. The ratio of germanium to titanium in the titanium telluride layer 612A is in the range of between about 0.5 and 3.0. When nitrogen is supplied from the first nitrogen-containing tungsten layer 62B When the titanium layer 62A is formed, the nitrogen-containing titanium layer is caused 612B. The nitrogen-containing titanium layer 612B has a thickness in the range of about 10A to 100A and a ratio of nitrogen to titanium in the range of about 0.6 to 1.2. W. After the annealing, the first and second nitrogen-containing tungsten layers 612C and 612E Each layer has a nitrogen content reduced to about 10% or less by the ablation. The symbol WNX (D) indicates the ablated nitrogen-containing tungsten layer. Each of the first and second nitrogen-containing tungsten layers 612C and 612E is A thickness of about 20 A to 200 A. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 612C and 612E is in the range of between about 0.01 and 0.15. When the nitrogen of the second nitrogen-containing tungsten layers 602B and 602D is used, the tungsten-deposited tungsten layer 602C is transformed into the nitrogen-containing tungsten-telluride layer 61 2D ° -51 - 200828424. The ratio of germanium to tungsten in the nitrogen-containing tungsten-telluride layer 612D is The nitrogen-containing tungsten telluride layer 61 2D has a nitrogen content of about 10% to 60% and a thickness of about 20 A to 200 A. Referring to Figures 7D and 7C to compare the intermediate structure 612 with the intermediate portion. Structure 6 02. During the annealing process, nitrogen is supplied from the nitrogen-containing tungsten layer 602B to the nitrogen-containing germanium layer 602A. As a result, the nitrogen-containing layer 602A is caused. The titanium-containing titanium layer 612B has a minimum reaction with the titanium-tellide layer 612A. The thickness of the titanium-tellide layer 612A is in the range of about 1A to 30A, and the thickness of the nitrogen-containing titanium layer 612B is about 10A. Within the range of 100 A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 612B is in the range of between about 0.7 and 1.3. After the annealing, the first and second nitrogen-containing tungsten layers 106 2B are ablated At 602D, each of the first and second nitrogen-containing tungsten layers 612C and 612E has a nitrogen content reduced to about 10% or less. Each of the first and second nitrogen-containing tungsten layers 612C and 612E is about 20A to 200A thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 612C and 612E is in the range of about 0.01 and 0.15. When the nitrogen from the first and second nitrogen-containing tungsten layers 602B and 602D is ablated, the tungsten-deposited tungsten layer 602C is transformed into the nitrogen-containing tungsten-deposited tungsten layer 612D. The nitrogen-containing tungsten telluride layer 612D has a rhodium to tungsten ratio of from about 0.5 to 3.0 and a nitrogen content of from about 10% to about 60%. The thickness of the nitrogen-containing tungsten telluride layer 61 2D is in the range of between about 20A and 200A. The gate stack structure according to the fifteenth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal -52-200828424 layer, a nitrogen-containing metal telluride layer, and a third nitrogen-containing metal layer. For example, the first intermediate structure is formed by stacking the titanium telluride layer 612A and the nitrogen-containing titanium layer 61 2B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten layer 612C, the nitrogen-containing tungsten-tellide layer 612D, and the nitrogen-containing tungsten layer 6 1 2E. The intermediate structure according to the first to fifteenth embodiments of the present invention can be implemented to control the gate electrode of the flash memory device in addition to the gate electrode of the dynamic random access memory (DRAM) device And the gate electrode of many logic devices. ® Fig. 8 depicts a gate stack structure of a flash memory device in accordance with a sixteenth embodiment of the present invention. A tunnel oxide layer 702 corresponding to the gate insulating layer is formed over the substrate 707. A first polysilicon electrode 703 for a floating gate FG is formed over the tunnel oxide layer 702. A dielectric layer 704 is formed over the first polysilicon electrode 703, and a second polysilicon electrode 705 for controlling the gate CG is formed over the dielectric layer 704. The second polysilicon electrode 705 is formed over the dielectric layer 704. The intermediate structure 706 selected from the group consisting of the intermediate structures of the various types described in the first to the fifteenth embodiments of the present invention is formed above. The intermediate structure 706 includes a Ti/WNx/WSixNy intermediate structure in accordance with a first embodiment of the present invention. Therefore, the intermediate structure 706 is formed by continuously stacking the titanium layer 706A, the nitrogen-containing tungsten layer 706B, and the nitrogen-containing tungsten-deposited tungsten layer 706C. A tungsten electrode 707 and a hard mask 208 are formed over the intermediate structure 706. The component symbols W and Η/M represent the tungsten electrode 707 and the hard mask 208, respectively. The -53-200828424 gate stack structure of the flash memory device having the intermediate structure 706 shown in Fig. 8 has a low sheet resistance and a contact resistance. In addition to the gate electrode, embodiments of the present invention can be applied to various metal interconnects (e.g., bit lines including intermediate structures, metal lines, and capacitor electrodes). Furthermore, embodiments of the present invention are applicable to a gate stack structure of a semiconductor device that constitutes a dual polysilicon gate, wherein the double poly gate is formed by a broad gate stack structure (including doping formed under the intermediate structure) a polycrystalline germanium electrode having an N-type impurity and a tungsten electrode formed over the intermediate structure) and a second gate stack structure (including a polycrystalline germanium electrode doped with a P-type impurity and a tungsten electrode formed over the intermediate structure) composition. Fig. 9 is a graph showing the sheet resistance (Rs) of the tungsten layer of each type of intermediate structure formed in accordance with the first to fifteenth embodiments of the present invention. The tungsten layer has a thickness of about 40 nm. It can be observed that the WSix/WNx intermediate structure is additionally applied by the CVD method and the PVD method above the Ti/WNX intermediate structure (ie,
Ti/WNx/CVD-WSix/WNx 結構及 Ti/WNX/P VD - WS h/WNx 結構) '及施加WSixNy層(亦即,Ti/WNx/WSixNy結構)之情況中減少 該鶴電極之片電阻。然而,因爲藉由CVD法無法在WNx層 上方適當地成長WSix層,所以需要藉由PVD法(例如:濺鍍 沉積法)在WNX層上方形成該WS ix層。藉由使用矽化鎢濺 鍍靶及氮之反應式濺鍍沉積法實施該WSlxNy層之形成。 將比較該 Ti/WNx/CVD-WSix/WNx中間結構、該 Ti/WNx/PVD-WSix/WNx 中間結構及該 Ti/WNx/WSixNy 中間結 構之鎢電極的片電阻。該鎢電極之片電阻只在應用該 Ti/WNx/PVD-WSix/WNx中間結構之情況中較低,以及該 -54- 200828424Ti/WNx/CVD-WSix/WNx structure and Ti/WNX/P VD - WS h/WNx structure) 'Reducing the sheet resistance of the crane electrode in the case of applying the WSixNy layer (ie, Ti/WNx/WSixNy structure) . However, since the WSix layer cannot be properly grown over the WNx layer by the CVD method, it is necessary to form the WS ix layer over the WNX layer by a PVD method (e.g., sputtering deposition method). The formation of the WSlxNy layer was carried out by a reactive sputtering deposition method using a tungsten telluride sputtering target and nitrogen. The sheet resistance of the Ti/WNx/CVD-WSix/WNx intermediate structure, the Ti/WNx/PVD-WSix/WNx intermediate structure, and the tungsten electrode of the Ti/WNx/WSixNy intermediate structure will be compared. The sheet resistance of the tungsten electrode is only lower in the case of applying the Ti/WNx/PVD-WSix/WNx intermediate structure, and the -54- 200828424
Ti/WNWWShNy中間結構係相同於應用WSu/WNx中間結構 之情況。在藉由該CVD法施加該WSh層之情況中,無法在 該WNX層上方均勻地形成該WSix層。結果,在該WNX層上 方產生結塊,因而增加該片電阻。相反地’如果使用該利 用WSu濺鍍靶之濺鍍沉積法或該反應式濺鍍沉積法’則可 均勻地形成該WSu擴散層,藉此減少該鎢電極之片電阻。 第10A至10C圖使用第3A圖所示之閘極堆疊結構來 描述閘極圖案化製程。第3A圖中所識別之相同元件符號表 ® 示在此之相同元件。 參考第10A圖,在基板800上方形成閘極絕緣層801 ’ 其中在該基板80 1中實施離子佈植製程以形成隔離層、井 區及通道。 在該閘極絕緣層801上方形成圖案化第一導電層21。 在該圖案化第一導電層21上方形成中間結構22。在該中間 結構22上方形成圖案化第二導電層23。 該圖案化第一導電層2 1包括高摻雜有P型雜質(例如: ^ 硼)或N型雜質(例如:磷)之多晶矽層。該圖案化第一導電層 21亦可包括多晶矽鍺層(SihGe,,其中X係在約0.01與1.0 間之範圍內)或砂化物層。例如:該砂化物層包括選自一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr及Pt所組成之群組中之 -ο 該中間結構22包括圖案化鈦層(Ti)22A、圖案化含氮鎢 (WNO層22B及圖案化含氮矽化鎢(WSixNy)層22C。 該圖案化第二導電層23包括鎢層。藉由實施PVD法、 •55-The Ti/WNWWShNy intermediate structure is the same as the case where the WSu/WNx intermediate structure is applied. In the case where the WSH layer is applied by the CVD method, the WSix layer cannot be uniformly formed over the WNX layer. As a result, agglomeration is generated above the WNX layer, thereby increasing the sheet resistance. Conversely, if the sputtering deposition method using the WSu sputtering target or the reactive sputtering deposition method is used, the WSu diffusion layer can be uniformly formed, thereby reducing the sheet resistance of the tungsten electrode. Figures 10A through 10C illustrate the gate patterning process using the gate stack structure shown in Figure 3A. The same component symbol table identified in Figure 3A is shown in the same component. Referring to Fig. 10A, a gate insulating layer 801' is formed over the substrate 800. An ion implantation process is performed in the substrate 801 to form an isolation layer, a well region, and a via. A patterned first conductive layer 21 is formed over the gate insulating layer 801. An intermediate structure 22 is formed over the patterned first conductive layer 21. A patterned second conductive layer 23 is formed over the intermediate structure 22. The patterned first conductive layer 21 includes a polysilicon layer highly doped with a P-type impurity (for example: ^ boron) or an N-type impurity (for example, phosphorus). The patterned first conductive layer 21 may also include a polysilicon layer (SihGe, where X is in the range of between about 0.01 and 1.0) or a sand layer. For example, the sand layer comprises a group selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr and Pt - o The intermediate structure 22 comprises a patterned titanium layer (Ti) 22A And patterning nitrogen-containing tungsten (WNO layer 22B and patterned nitrogen-containing tungsten telluride (WSixNy) layer 22C. The patterned second conductive layer 23 includes a tungsten layer. By implementing the PVD method, • 55-
200828424 CVD法或ALD法形成該鎢層。該PVD法包括使用鎢 之濺鍍沉積法。 ’ 在該圖案化第二導電層23上方形成硬罩8 02。 該硬罩802之形成。該硬罩802包括氮化矽(ShN4) 實施一閘極圖案化製程,以形成該所述之閘極 構。特別地,雖然未顯示,但是使用由光阻層所形 刻阻障閘極罩幕(未顯示)來實施第一圖案化製程, 硬罩層、第二導電層、包括該中間結構22之鈦層、 層及含氮矽化鎢層的複數層及第一導電層之一部 果,在該閘極絕緣層801及該基板800上方形成包 罩8 02、該圖案化第二導電層23、該中間結構22及 化第一導電層2 1之結構。 參考第10B圖,移除該閘極罩幕,以及然後, 間隔物製程,以防止該圖案化第二導電層23(亦即 及該中間結構2 2之非均勻鈾刻及氧化。例如:形成 803做爲前間隔物層。 ‘ 參考第10C圖,實施第二閘極圖案化製程, ShN4層8 03及該圖案化第一導電層21之一部分。右 極圖案化製程期間,使用乾式飩刻法鈾刻該Si3N4 Μ 一部分,以在該閘極堆疊結構之側壁上形成間隔物 使用該等間隔物803Α做爲蝕刻阻障以蝕刻該圖_ 導電層2 1。元件符號2 1 Α表示電極(例如:多晶矽電 可將使用上述前間隔物層之第一及第二閘極围 程應用至依據本發明之第二至第十五實施例的閘捐 濺鍍靶 可省略 〇 堆疊結 成之蝕 以蝕刻 含氮鎢 分。結 括該硬 該圖案 實施前 ,鎢層) S i 3 N 4 層 蝕刻該 :第二閘 P 8 03 之 803A ° ;化第一 極)。 丨案化製 ί堆疊結 -56- 200828424 構。 第11圖使用第3A圖所示之閘極堆疊結構描述另一鬧 極圖案化製程。第1 0A至1 〇C圖所使用之相同元件符號表 示在此之相同元件。 在基板800上方形成閘極絕緣層801,其中在該基板 8 00中實施離子佈植製程以形成隔離層、井區及通道。在該 閙極絕緣層8 0 1上方形成圖案化第一導電層2 1 B。在該圖 案化第一導電層2 1 B上方形成中間結構22。在該中間結構 ® 22 ±方形成圖案化第二導電層23。 該圖案化第一導電層21B包括高摻雜有P型雜質(例如: 硼)或N型雜質(例如:磷)之多晶矽層。該圖案化第一導電層 21B亦可包括多晶矽鍺層(Sil_xGex,其中x係在約〇.〇1與 1 · 0間之範圍內)或砂化層。例如:該砂化物層包括選自一由 Ni、Cr、Co、Ti、W、Ta、Hf、Zr及Pt所組成之群組中之 -- ο 0 &中間結構22包括圖案化鈦層(Ti)22A、圖案化含氮鶴 (WNX)層22B及圖案化含氮矽化鎢(wShNy)層22C。 該圖案化第二導電層23包括鎢層。藉由實施PVD法、 CVD法或ALD法形成該鎢層。該Pvd法包括使用鎢濺鍍靶 之濺鍍沉積法。 在該圖案化第二導電層23上方形成硬罩802。可省略 該硬卓802之形成。該硬罩802包括氮化矽(Si3N4)。 實施閘極圖案化製程,以形成該所述之閘極堆疊結 構。特別地’雖然未顯示,但是使用由光阻層所形成之蝕 -57- 200828424 刻阻障閘極罩幕(未顯示)來同時餽刻硬罩層、第二導電 層、包括該中間結構22之鈦層、含氮鎢層及含氮矽化鎢層 的複數層及第一導電層之一部分。結果,在該閘極絕緣層 801及該基板800上方形成包括該硬罩802、該圖案化第二 導電層23、該中間結構22及該圖案化第一導電層21B之 結構°選擇立即實施飩刻而不使用前間隔物層之閘極圖案 化製程’以取代使用該前間隔物層之包含兩個步驟的閘極 圖案化製程。可將不使用該前間隔物層之閘極圖案化製程 ® 應用至依據本發明之第二至第十五實施例的閘極堆疊結 構。 依據本發明之實施例,由在鎢電極與多晶矽電極間所 配置之多個薄層(包含Ti、W、Si及N或每一層包含氮)所 構成之中間結構可允許獲得和 poly-Si/WNx/W 及 ρ ο 1 y - S i / W N X / W S i X / W中間結構一樣低之片電阻。因此,可減 少閘極堆疊結構之高度,因而可容易地獲得製程整合。 由於硼穿透或硼向外擴散之減少,可減少多晶矽空乏 ^ 效應,以及因此,可增加PMOSFET之操作電流。再者’在 該鎢電極與該多晶矽電極間可獲得非常低接觸電阻’因而 有利於高速裝置之製造。 至於形成用以製造高速/高密度及低功率記憶體裝置 之鎢多晶矽閘極的方法,可藉由實施由多個薄膜(包含T1、 W、Si及N,或每一薄膜包含N)所構成之中間結構以獲得 低接觸電阻及低多晶矽空乏效應。 雖然已參考該等特定實施例來描述本發明’但是熟習 •58- 200828424 該項技藝者將明顯易知在不脫離下面請求項所界定之本發 明的精神及範圍內可實施各種變更及修改。 【圖式簡單說明】 第1 A至1 C圖描述典型鎢多晶矽閘極之閘極堆疊結構。 第2A圖係描述每一型態之中間結構在鎢與多晶矽間 之接觸電阻的曲線圖。 第2B圖係描述每一型態之閘極堆疊結構的硼濃度之 深度輸廓的曲線圖。 © 第2C圖係描述每一型態之中間結構的片電阻之曲線 圖。 第3Α圖描述依據本發明之第一實施例的閘極堆疊結 構。 第3Β圖係在藉由物理氣相沉積(PVD)法在氮化鎢層之 上部上方形成鎢矽氮化層後所獲得之影像。 第3 C圖描述依據本發明之第二實施例的閘極堆疊結 構。 • 第3D圖描述依據本發明之第三實施例的閘極堆疊結 構。 第3E圖描述在退火製程後之閘極堆疊結構的影像。 第4A Η描述依據本發明之第四實施例的閘極堆疊結 構。 第4Β Η描述依據本發明之第五實施例的閘極堆疊結 構。 第4CB描述依據本發明之第六實施例的閘極堆疊結 構。 -59- 200828424 第5A ffl描述依據本發明之第七實施例的閘極堆疊結 構。 第5 ΒΒΙ描述依據本發明之第八實施例的閘極堆疊結 構。 第5C Η描述依據本發明之第九實施例的閘極堆疊結 構。 第6Α Η描述依據本發明之第十實施例的閘極堆疊結 構。 # 第6Β圖描述依據本發明之第十一實施例的閘極堆疊 結構。 第6C圖描述依據本發明之第十二實施例的閘極堆疊 結構。 第7Α圖描述依據本發明之第十三實施例的閘極堆疊 結構。 第7Β圖描述在藉由實施個別化學氣相沉積(CVD)及物 理氣相沉積(PVD)法在含氮鎢層上方形成矽化鎢層後所提 φ 供之結構的影像。 第7C圖描述依據本發明之第十四實施例的閘極堆疊 結構。 第7 D圖描述依據本發明之第十五實施例的閘極堆疊 結構。 第8圖描述依據本發明之第十六實施例的閘極堆疊結 構。 第9圖係描述依據本發明之實施例的每一型態之中間 結構的鎢電極之片電阻之曲線圖。 -60- 200828424 第10A至10C圖係描述依據本發明之實施例的閘極圖 案化方法以獲第3A圖所述之閘極堆疊結構的剖面圖。 第11圖係使用第3A圖所75之閘極堆暨結構描述鬧極 圖案化方法之剖面圖。 【主要元件符號說明】 11 多晶砂層 12 氮化鎢(WN)層 13 鎢(W)層 14 矽化鎢(WSh)層 21 第一導電層 21 A 電極 21B 圖案化第一導電層 22 中間結構 22A 鈦層 22B 含氮鎢(WNX)層 22C 含氮矽化鎢(WSixNy)層 23 第二導電層 31 第一導電層 32 中間結構 32A 鈦層 3 2B 含氮砂化鎢(w S i X N y)層 33 第二導電層 41 第一導電層 42 中間結構 -61- 200828424 42A 鈦層 42B 含氮矽化鎢(WSuNy)^ 42C 含氮鎢(WNX)層 43 第二導電層 51 第一導電層 52 中間結構 52A 鈦(Τι)層 5 2B 第一含氮鎢(,1^)層 52C 含氮矽化鎢(WSlxNy)層 52D 第二含氮鎢(WNX)層 5 3 第二導電層 61 第一導電層 62 中間結構 62A 鈦(Τι)層 62B 第一含氮鎢(,1)層 62C 矽化鎢(WSix)層 62D 第二含氮鎢(WNX)層 63 第二導電層 201 第一導電層 202 中間結構 202A 含氮鈦(ΤιΝχ)層 202B 含氮鎢(WNX)層 202C 含氮矽化鎢(WSuNy)層 203 第二導電層 -62- 200828424200828424 The tungsten layer is formed by a CVD method or an ALD method. The PVD method includes a sputtering deposition method using tungsten. A hard mask 802 is formed over the patterned second conductive layer 23. The formation of the hard cover 802. The hard mask 802 includes tantalum nitride (ShN4) to implement a gate patterning process to form the gate structure. In particular, although not shown, the first patterning process is performed using a resistive gate mask (not shown) formed by a photoresist layer, the hard mask layer, the second conductive layer, and the titanium including the intermediate structure 22. a plurality of layers, a layer, and a plurality of layers of the nitrogen-containing tungsten-tellide layer, and a portion of the first conductive layer, forming a mask 082 over the gate insulating layer 801 and the substrate 800, the patterned second conductive layer 23, The intermediate structure 22 and the structure of the first conductive layer 21 are formed. Referring to FIG. 10B, the gate mask is removed, and then, a spacer process is performed to prevent the patterned second conductive layer 23 (ie, and the non-uniform uranium engraving and oxidation of the intermediate structure 22). 803 is used as the front spacer layer. Referring to FIG. 10C, a second gate patterning process, a ShN4 layer 803 and a portion of the patterned first conductive layer 21 are implemented. During the right pole patterning process, a dry engraving is used. The uranium engraves a portion of the Si3N4 , to form a spacer on the sidewall of the gate stack structure, and uses the spacer 803 as an etch barrier to etch the pattern _ conductive layer 2 1. The symbol 2 1 Α indicates the electrode ( For example, the polysilicon germanium can apply the first and second gates of the front spacer layer to the gate donation sputtering target according to the second to fifteenth embodiments of the present invention, and the etching of the germanium stack can be omitted. The tungsten-containing tungsten component is etched. Before the hard pattern is applied, the tungsten layer) is etched by the S i 3 N 4 layer: 803A ° of the second gate P 8 03; the first pole).丨 化 ί 堆叠 结 - -56- 200828424 structure. Figure 11 depicts another erroneous patterning process using the gate stack structure shown in Figure 3A. The same component symbols used in the drawings of Figs. 10A to 1C show the same components herein. A gate insulating layer 801 is formed over the substrate 800, wherein an ion implantation process is performed in the substrate 800 to form an isolation layer, a well region, and a via. A patterned first conductive layer 2 1 B is formed over the drain insulating layer 80 1 . An intermediate structure 22 is formed over the patterned first conductive layer 2 1 B. A patterned second conductive layer 23 is formed in the intermediate structure ® 22 ± square. The patterned first conductive layer 21B includes a polysilicon layer highly doped with a P-type impurity (for example, boron) or an N-type impurity (for example, phosphorus). The patterned first conductive layer 21B may also include a polysilicon layer (Sil_xGex, where x is in the range between about 〇1 and 1.00) or a sanding layer. For example, the layer of sand includes a group selected from the group consisting of Ni, Cr, Co, Ti, W, Ta, Hf, Zr, and Pt - ο 0 & intermediate structure 22 includes a patterned titanium layer ( Ti) 22A, patterned nitrogen-containing crane (WNX) layer 22B, and patterned nitrogen-containing tungsten antimonide (wShNy) layer 22C. The patterned second conductive layer 23 includes a tungsten layer. The tungsten layer is formed by performing a PVD method, a CVD method, or an ALD method. The Pvd method includes a sputtering deposition method using a tungsten sputtering target. A hard mask 802 is formed over the patterned second conductive layer 23. The formation of the hard 802 can be omitted. The hard mask 802 includes tantalum nitride (Si3N4). A gate patterning process is performed to form the gate stack structure. In particular, although not shown, an etch-57-200828424 barrier gate mask (not shown) formed by a photoresist layer is used to simultaneously feed the hard mask layer, the second conductive layer, including the intermediate structure 22 a plurality of layers of the titanium layer, the nitrogen-containing tungsten layer, and the nitrogen-containing tungsten-deposited tungsten layer, and a portion of the first conductive layer. As a result, a structure including the hard mask 802, the patterned second conductive layer 23, the intermediate structure 22, and the patterned first conductive layer 21B is formed over the gate insulating layer 801 and the substrate 800. The gate patterning process of the front spacer layer is used instead of the two-step gate patterning process using the front spacer layer. The gate patterning process ® which does not use the front spacer layer can be applied to the gate stack structure according to the second to fifteenth embodiments of the present invention. According to an embodiment of the present invention, an intermediate structure composed of a plurality of thin layers (including Ti, W, Si, and N or each layer containing nitrogen) disposed between the tungsten electrode and the polycrystalline germanium electrode allows for obtaining poly-Si/ WNx/W and ρ ο 1 y - S i / WNX / WS i X / W The same low sheet resistance. Therefore, the height of the gate stack structure can be reduced, and thus process integration can be easily obtained. Due to the reduction in boron penetration or boron out-diffusion, the polysilicon enthalpy effect can be reduced and, therefore, the operating current of the PMOSFET can be increased. Furthermore, a very low contact resistance can be obtained between the tungsten electrode and the polycrystalline germanium electrode, which is advantageous for the manufacture of high speed devices. The method for forming a tungsten polysilicon gate for fabricating a high speed/high density and low power memory device can be constructed by using a plurality of thin films (including T1, W, Si, and N, or each film containing N) The intermediate structure achieves low contact resistance and low polysilicon vacancy effects. Although the present invention has been described with reference to the specific embodiments thereof, it is to be understood by those skilled in the art that the invention may be practiced without departing from the spirit and scope of the invention. [Simple Description of the Drawings] Figures 1A to 1C depict the gate stacking structure of a typical tungsten polysilicon gate. Figure 2A is a graph depicting the contact resistance of the intermediate structure of each type between tungsten and polysilicon. Figure 2B is a graph depicting the depth profile of the boron concentration for each type of gate stack structure. © Figure 2C is a graph depicting the sheet resistance of the intermediate structure of each type. Fig. 3 is a diagram showing a gate stack structure in accordance with a first embodiment of the present invention. The third graph is an image obtained by forming a tungsten germanium nitride layer over the upper portion of the tungsten nitride layer by physical vapor deposition (PVD). Fig. 3C depicts a gate stack structure in accordance with a second embodiment of the present invention. • Fig. 3D depicts a gate stack structure in accordance with a third embodiment of the present invention. Figure 3E depicts an image of the gate stack structure after the annealing process. 4A is a description of a gate stack structure in accordance with a fourth embodiment of the present invention. The fourth embodiment describes a gate stack structure in accordance with a fifth embodiment of the present invention. The 4CB describes a gate stack structure in accordance with a sixth embodiment of the present invention. - 59- 200828424 Section 5A ffl describes a gate stack structure in accordance with a seventh embodiment of the present invention. Fig. 5 depicts a gate stack structure in accordance with an eighth embodiment of the present invention. The fifth embodiment describes a gate stack structure in accordance with a ninth embodiment of the present invention. A sixth embodiment describes a gate stack structure in accordance with a tenth embodiment of the present invention. #图图图 illustrates a gate stack structure in accordance with an eleventh embodiment of the present invention. Fig. 6C depicts a gate stack structure in accordance with a twelfth embodiment of the present invention. Fig. 7 is a view showing a gate stack structure in accordance with a thirteenth embodiment of the present invention. Figure 7 depicts an image of the structure provided by φ after forming a tungsten telluride layer over a nitrogen-containing tungsten layer by performing a separate chemical vapor deposition (CVD) and physical vapor deposition (PVD) method. Fig. 7C depicts a gate stack structure in accordance with a fourteenth embodiment of the present invention. Fig. 7D depicts a gate stack structure in accordance with a fifteenth embodiment of the present invention. Fig. 8 depicts a gate stack structure in accordance with a sixteenth embodiment of the present invention. Fig. 9 is a graph showing the sheet resistance of a tungsten electrode of an intermediate structure of each type according to an embodiment of the present invention. -60- 200828424 FIGS. 10A through 10C are cross-sectional views showing a gate patterning method according to an embodiment of the present invention to obtain a gate stack structure as shown in FIG. 3A. Figure 11 is a cross-sectional view showing the patterning method of the gate using the gate stack and structure of Figure 75 of Figure 3A. [Main component symbol description] 11 polycrystalline sand layer 12 tungsten nitride (WN) layer 13 tungsten (W) layer 14 tungsten telluride (WSh) layer 21 first conductive layer 21 A electrode 21B patterned first conductive layer 22 intermediate structure 22A Titanium layer 22B nitrogen-containing tungsten (WNX) layer 22C nitrogen-containing tungsten telluride (WSixNy) layer 23 second conductive layer 31 first conductive layer 32 intermediate structure 32A titanium layer 3 2B nitrogen-containing tungsten carbide (w S i XN y) layer 33 second conductive layer 41 first conductive layer 42 intermediate structure -61- 200828424 42A titanium layer 42B nitrogen-containing tungsten telluride (WSuNy) ^ 42C nitrogen-containing tungsten (WNX) layer 43 second conductive layer 51 first conductive layer 52 intermediate structure 52A Titanium (Τι) layer 5 2B First nitrogen-containing tungsten (1) layer 52C Nitrogen-containing tungsten telluride (WSlxNy) layer 52D Second nitrogen-containing tungsten (WNX) layer 5 3 Second conductive layer 61 First conductive layer 62 Intermediate structure 62A titanium (ITO) layer 62B first nitrogen-containing tungsten (1) layer 62C tungsten germanium (WSix) layer 62D second nitrogen-containing tungsten (WNX) layer 63 second conductive layer 201 first conductive layer 202 intermediate structure 202A Nitrogen-containing titanium (ΤιΝχ) layer 202B nitrogen-containing tungsten (WNX) layer 202C nitrogen-containing tungsten telluride (WSuNy) The second conductive layer 203 -62-200828424
第一導電層 中間結構 矽化鈦層 含氮鈦(ΤιΝχ)層 含氮鎢(,1)層 含氮矽化鎢(WSuNy)層 第二導電層 第一導電層 中間結構 302A 含氮鈦(ΤιΝχ)層 302B 含氮矽化鎢(WSixNy)層 3 03 第二導電層 311 第一導電層 312 中.間結構 312A 矽化鈦(TiSh)層 312B 含氮鈦(ΤιΝχ)層First conductive layer intermediate structure titanium telluride layer nitrogen-containing titanium (nitron) layer nitrogen-containing tungsten (1) layer nitrogen-containing tungsten germanium (WSuNy) layer second conductive layer first conductive layer intermediate structure 302A nitrogen-containing titanium (ΤιΝχ) layer 302B nitrogen-containing tungsten telluride (WSixNy) layer 3 03 second conductive layer 311 first conductive layer 312 intermediate structure 312A titanium telluride (TiSh) layer 312B nitrogen-containing titanium (ΤιΝχ) layer
211 212 212A 212B 212C 21 2D 213 ' 301 302 312C 含氮矽化鎢(WSuNy)層 313 第二導電層 401 第一導電層 4 0 2 中間結構 402A 含氮鈦(ΤιΝχ)層 402Β 含氮矽化鎢(WSixNy)層 402C 含氮鎢(WNX)層 403 第二導電層 -63- 200828424 411 412 412A 412B 412C 412D 413 501211 212 212A 212B 212C 21 2D 213 '301 302 312C nitrogen-containing tungsten-telluride (WSuNy) layer 313 second conductive layer 401 first conductive layer 4 0 2 intermediate structure 402A nitrogen-containing titanium (ΤιΝχ) layer 402Β nitrogen-containing tungsten germanium (WSixNy) Layer 402C nitrogen-containing tungsten (WNX) layer 403 second conductive layer -63- 200828424 411 412 412A 412B 412C 412D 413 501
5 02A 502B 502C 5 02D 503 5 11 5 125 02A 502B 502C 5 02D 503 5 11 5 12
512A 512B 5 12C 5 12D 5 12E 513 601 602 第一導電層 中間結構 矽化鈦(1^1.)層 含氮鈦(ΤιΝχ)層 含氮矽化鎢(WSuN〇層 含氮鎢(11)層 第二導電層 第一導電層 中間結構 含氮鈦(了1仏)層 第一含氮鎢(WNX)^ 含氮矽化鎢(WShNy)層 第二含氮鎢(WNX)層 第二導電層 第一導電層 中間結構 矽化鈦(TiSu:^ 含氮鈦(141^)層 第一含氮鎢(WNX)層 含氮矽化鎢(WSlxNy)層 第二含氮鎢層 第二導電層 第一導電層 中間結構 -64- 200828424512A 512B 5 12C 5 12D 5 12E 513 601 602 First conductive layer intermediate structure titanium telluride (1^1.) layer nitrogen-containing titanium (ΤιΝχ) layer containing nitrogen tungsten carbide (WSuN layer of nitrogen-containing tungsten (11) layer second Conductive layer first conductive layer intermediate structure nitrogen-containing titanium (1 仏) layer first nitrogen-containing tungsten (WNX) ^ nitrogen-containing tungsten-telluride (WShNy) layer second nitrogen-containing tungsten (WNX) layer second conductive layer first conductive Layer intermediate structure titanium telluride (TiSu: ^ nitrogen-containing titanium (141^) layer first nitrogen-containing tungsten (WNX) layer nitrogen-containing tungsten telluride (WSlxNy) layer second nitrogen-containing tungsten layer second conductive layer first conductive layer intermediate structure -64- 200828424
602A 602B 602C 602D 603 611 612 612A 612B 612C 612D 612E 613 701 702 703 704 705 706 706A 706B 706C 7 07 708 含氮鈦(ΤιΝχ)層 第一含氮鎢(WNX)層 矽化鎢(WSix)層 第二含氮鎢(WNx:d 第二導電層 第一導電層 中間結構 矽化鈦(TiSix)層 含氮鈦(TiNx)層 第一含氮鎢(,1)層 含氮矽化鎢(WSlxNy)層 第二含氮鎢層 第二導電層 基板. 穿隧氧化層 第一多晶矽電極 介電層 第二多晶矽電極 中間結構 鈦層 含氮鎢層 含氮矽化鎢層 鶴電極 硬罩 -65- 200828424602A 602B 602C 602D 603 611 612 612A 612B 612C 612D 612E 613 701 702 703 704 705 706 706A 706B 706C 7 07 708 Nitrogen-containing titanium (ΤιΝχ) layer first nitrogen-containing tungsten (WNX) layer tungsten germanium (WSix) layer second Nitrogen tungsten (WNx:d second conductive layer first conductive layer intermediate structure titanium telluride (TiSix) layer nitrogen-containing titanium (TiNx) layer first nitrogen-containing tungsten (1) layer nitrogen-containing tungsten telluride (WSlxNy) layer second Nitrogen-tungsten layer second conductive layer substrate. Tunneling oxide layer first polysilicon electrode dielectric layer second polysilicon electrode intermediate structure titanium layer nitrogen-containing tungsten layer nitrogen-containing tungsten-tellurium layer crane electrode hard cover-65- 200828424
800 基 板 801 閘 極 絕 緣層 802 硬 罩 803 Si t層 8 03 A 間 隔 物 CG 控 制 閘 極 FG 浮 動 閘 極 H/M 硬 罩 Rc 接 觸 電 阻 Rs 片 電 阻 W 鶴 電 極800 base plate 801 gate insulation layer 802 hard cover 803 Si t layer 8 03 A partition CG control gate FG floating gate H/M hard cover Rc contact resistance Rs piece resistance W crane electric pole
-66--66-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060134326 | 2006-12-27 | ||
KR1020070041288A KR100844940B1 (en) | 2006-12-27 | 2007-04-27 | Semiconductor device with multi layer diffusion barrier and method for fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200828424A true TW200828424A (en) | 2008-07-01 |
TWI349956B TWI349956B (en) | 2011-10-01 |
Family
ID=39611685
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096136856A TWI349956B (en) | 2006-12-27 | 2007-10-02 | Semiconductor device with gate stack structure |
TW096146218A TWI488223B (en) | 2006-12-27 | 2007-12-05 | Method for fabricating semiconductor device with gate stack structure |
TW101107806A TWI447790B (en) | 2006-12-27 | 2007-12-05 | Method for fabricating semiconductor device with gate stack structure |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096146218A TWI488223B (en) | 2006-12-27 | 2007-12-05 | Method for fabricating semiconductor device with gate stack structure |
TW101107806A TWI447790B (en) | 2006-12-27 | 2007-12-05 | Method for fabricating semiconductor device with gate stack structure |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR100844940B1 (en) |
CN (2) | CN100550306C (en) |
DE (1) | DE102007060238B4 (en) |
TW (3) | TWI349956B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI639227B (en) | 2015-01-07 | 2018-10-21 | 聯華電子股份有限公司 | Memory device and method for fabricating the same |
TWI581318B (en) * | 2015-06-03 | 2017-05-01 | 華邦電子股份有限公司 | Gate conductor and fabrication method thereof |
US9461137B1 (en) * | 2015-09-11 | 2016-10-04 | Applied Materials, Inc. | Tungsten silicide nitride films and methods of formation |
CN107845632A (en) * | 2016-09-21 | 2018-03-27 | 联华电子股份有限公司 | Dynamic random access memory |
CN107221495B (en) * | 2017-06-05 | 2018-07-20 | 睿力集成电路有限公司 | A kind of semiconductor device structure and preparation method thereof |
KR102446864B1 (en) * | 2018-03-19 | 2022-09-23 | 삼성전자주식회사 | Manufacturing method of a semiconductor device |
US11075274B2 (en) | 2019-01-18 | 2021-07-27 | Micron Technology, Inc. | Conductive line construction, memory circuitry, and method of forming a conductive line construction |
EP4199110A4 (en) | 2021-01-14 | 2024-04-10 | Changxin Memory Technologies, Inc. | Manufacturing method for semiconductor structure, and two semiconductor structures |
CN112864240B (en) * | 2021-01-14 | 2022-05-31 | 长鑫存储技术有限公司 | Method for manufacturing semiconductor structure and two semiconductor structures |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6187656B1 (en) | 1997-10-07 | 2001-02-13 | Texas Instruments Incorporated | CVD-based process for manufacturing stable low-resistivity poly-metal gate electrodes |
US6271590B1 (en) * | 1998-08-21 | 2001-08-07 | Micron Technology, Inc. | Graded layer for use in semiconductor circuits and method for making same |
JP2000091441A (en) * | 1998-09-16 | 2000-03-31 | Sony Corp | Semiconductor device and manufacture thereof |
KR20020002176A (en) * | 2000-06-29 | 2002-01-09 | 박종섭 | Method for manufacturing gate electrode of semiconductor device |
JP4651848B2 (en) * | 2000-07-21 | 2011-03-16 | ルネサスエレクトロニクス株式会社 | Semiconductor device, manufacturing method thereof, and CMOS transistor |
US6774442B2 (en) * | 2000-07-21 | 2004-08-10 | Renesas Technology Corp. | Semiconductor device and CMOS transistor |
KR100351907B1 (en) * | 2000-11-17 | 2002-09-12 | 주식회사 하이닉스반도체 | method for forming gate electrode semiconductor device |
JP3781666B2 (en) * | 2001-11-29 | 2006-05-31 | エルピーダメモリ株式会社 | Method for forming gate electrode and gate electrode structure |
JP4191000B2 (en) * | 2003-10-06 | 2008-12-03 | エルピーダメモリ株式会社 | Semiconductor device and manufacturing method thereof |
JP2005197308A (en) * | 2003-12-26 | 2005-07-21 | Toshiba Corp | Nonvolatile semiconductor storage device |
US7030012B2 (en) * | 2004-03-10 | 2006-04-18 | International Business Machines Corporation | Method for manufacturing tungsten/polysilicon word line structure in vertical DRAM |
US20060228876A1 (en) * | 2005-04-08 | 2006-10-12 | Infineon Technologies Ag | Method of manufacturing a semiconductor device |
KR100618895B1 (en) * | 2005-04-27 | 2006-09-01 | 삼성전자주식회사 | Semiconductor device having polymetal gate electrode and method for manufacturing the saem |
JP4690120B2 (en) * | 2005-06-21 | 2011-06-01 | エルピーダメモリ株式会社 | Semiconductor device and manufacturing method thereof |
KR20060134326A (en) | 2005-06-22 | 2006-12-28 | 주식회사 하이닉스반도체 | Apparatus for generating plasma and fabrication method for phase shift mask thereby |
KR100625795B1 (en) * | 2005-08-25 | 2006-09-18 | 주식회사 하이닉스반도체 | Gate of semiconductor device and method for forming the same |
JP2007109010A (en) | 2005-10-13 | 2007-04-26 | Fujitsu Ltd | Data storage device |
-
2007
- 2007-04-27 KR KR1020070041288A patent/KR100844940B1/en active IP Right Grant
- 2007-10-02 TW TW096136856A patent/TWI349956B/en active
- 2007-12-05 TW TW096146218A patent/TWI488223B/en active
- 2007-12-05 TW TW101107806A patent/TWI447790B/en active
- 2007-12-14 DE DE200710060238 patent/DE102007060238B4/en active Active
- 2007-12-26 CN CNB2007101610974A patent/CN100550306C/en active Active
- 2007-12-26 CN CN 200710305601 patent/CN101257040B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101257040B (en) | 2013-10-30 |
KR20080061224A (en) | 2008-07-02 |
TW201250804A (en) | 2012-12-16 |
KR100844940B1 (en) | 2008-07-09 |
CN101257040A (en) | 2008-09-03 |
CN101211771A (en) | 2008-07-02 |
TW200828425A (en) | 2008-07-01 |
TWI488223B (en) | 2015-06-11 |
TWI349956B (en) | 2011-10-01 |
DE102007060238B4 (en) | 2009-10-22 |
TWI447790B (en) | 2014-08-01 |
CN100550306C (en) | 2009-10-14 |
DE102007060238A1 (en) | 2009-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200828424A (en) | Semiconductor device with gate stack structure | |
US8441079B2 (en) | Semiconductor device with gate stack structure | |
US6583052B2 (en) | Method of fabricating a semiconductor device having reduced contact resistance | |
JP3851752B2 (en) | Manufacturing method of semiconductor device | |
US8889505B2 (en) | Method for manufacturing semiconductor device | |
CN101154576A (en) | Method of forming tungsten polymetal gate having low resistance | |
JP5103174B2 (en) | Manufacturing method of semiconductor device having silicide layer | |
WO2007142010A1 (en) | Semiconductor device and method for manufacturing the same | |
TW200828586A (en) | Semiconductor device with gate structure and method for fabricating the semiconductor device | |
US20090200672A1 (en) | Method for manufacturing semiconductor device | |
US20060128125A1 (en) | Gate Electrodes and the Formation Thereof | |
JP5387173B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2006165469A (en) | Semiconductor apparatus and its manufacturing method | |
JPH11102877A (en) | Conversion method of nitride metal, and manufacture of semiconductor device | |
KR100380153B1 (en) | Method of manufacturing semiconductor device | |
KR100744642B1 (en) | Metal line of semiconductor device, gate electrode of semiconductor device and method forming the gate electrode | |
JP2007324230A (en) | Semiconductor device and method for manufacturing the same | |
Sung et al. | Optimization of Tungsten Dual Poly-Metal Gates in Memory Devices with Ti/WN/WSiN Barrier Metal | |
KR20100037969A (en) | Cmos device with p type metal gate electrode and method for manufacturing the same | |
KR20080087276A (en) | Semiconductor device and method for fabricating the same |