TW201250804A - Method for fabricating semiconductor device with gate stack structure - Google Patents

Method for fabricating semiconductor device with gate stack structure Download PDF

Info

Publication number
TW201250804A
TW201250804A TW101107806A TW101107806A TW201250804A TW 201250804 A TW201250804 A TW 201250804A TW 101107806 A TW101107806 A TW 101107806A TW 101107806 A TW101107806 A TW 101107806A TW 201250804 A TW201250804 A TW 201250804A
Authority
TW
Taiwan
Prior art keywords
layer
nitrogen
tungsten
titanium
telluride
Prior art date
Application number
TW101107806A
Other languages
Chinese (zh)
Other versions
TWI447790B (en
Inventor
Kwan-Yong Lim
Hong-Seon Yang
Heung-Jae Cho
Tae-Kyung Kim
Yong-Soo Kim
Min-Gyu Sung
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW201250804A publication Critical patent/TW201250804A/en
Application granted granted Critical
Publication of TWI447790B publication Critical patent/TWI447790B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method for fabricating a semiconductor device includes forming a first conductive layer over a substrate, forming an intermediate structure over the first conductive layer, the intermediate structure formed in a stack structure comprising at least a first metal layer and a nitrogen containing metal silicide layer, and forming a second conductive layer over the intermediate structure.

Description

201250804 六、發明說明: [相關申請案之對照參考資料] 本發明主張2006年12曰 月日及2007年4月27日 所提出之韓國專利申請案塗,Λ 10-2006-0134326 號及第 10-2007-0041288 號之優弁描 ^ 萑,以提及方式併入該等韓國 專利申請案之全部。 @ 【發明所屬之技術領域】 本發明係有關於一種丰道 亍導體元件的製造方法, 更特別地,是有關於一種且古 、哥一閘極堆疊結構之丰装辦 元件的製造方法。 彳再&千導體 本發明係有關於一種半導 及更特別地,是有關於一種 & -製造方法’以 【先前技術】 #間極堆叠及其製造方法。 藉由堆疊多晶矽及鎢所 开^成之鶴多晶石夕關}Τς + 具有非常低電阻’該非常你步 夕閘極電極 鎢矽化物所形成之多晶石夕/ 隹且多日日矽及 / ’瑪矽化物(ρ丨 電極的電阻之1/5至1/1〇。A β ybl/WSlx)閘極 係製造次-6 0 η m記憶體元杜 Θ極電極 肢几件所必需的。 第1Α至1C圖描述典型錄夕曰访叫』 生鎢夕日日石夕閘極堆疊6士 第1Α圖所示,藉由連蜻砧格田# η 立〜構。如 (WN)層12及鎢(W)層13 s 鎢氮化物 3以形成该鎢多晶矽閘極堆疊社 構。該WN層12做為擴散阻障。 隹且、-口 在隨後退火製程或閘極再氧化製程期間,使該WN 層12中之氮在該鎢層13與該多晶矽層丨丨間分解成一像 SiNx及Si0xNy之非均勻絕緣層。該非均勻絕緣層具有 .201250804 一約至3nm範圍之厚度。於是,在數百兆赫(MHz) 之操作頻率及1 · 5 V或更小之操作電壓下可能導致一像 信號延遲之元件誤差。最近,已在該多晶矽層1 1與該 WN層12間形成一做為一擴散阻障層之薄鎢矽化物 (WSix)或鈦(Ti)層,以防止在該鎢層13與該多晶矽層j 1 間形成Si-N鍵。 如第1B圖所示,如果在該多晶矽層1 1與該WN層 12間形成一鎢矽化物(wSix;^ 14,則藉由在該WN層 12之形成期間所使用之氮氣電漿在該wsix層14上方形 成W-Si-N鍵。熟知W-Si-N係一具有金屬特性之良好擴 散阻障層。 如第1C圖所示,如果在該多晶矽層1 1與該WN層 12間形成鈦(Ti)層15,則在該WN層12之形成期間的 反應式濺鍍製程中該氮氣電漿將該鈦層1 5之Ti變換成 鈦氮化物(TiN)。該TiN層做為擴散障壁層。結果,雖然 在隨後熱製程期間使該WN層12分解,但是該TiN防 止氣朝έ亥多晶石夕1 1擴散出來,因此,可有效地降低s丨_N 之形成。 然而,若將該鎢多晶石夕閘極應用至雙多晶石夕閘極[亦 即’ N-型金氧半導體場效電晶體(NM〇SFET)之N + -型多 晶石夕閘極及P·型金氧半導體場效電晶體(PM0SFET)之 P + -型多晶矽閘極],如果在該鎢多晶矽閘極中使用該 WSix/WN擴散障壁結構,則可以大大地增加該鎢層與該 P _型多晶矽層間之接觸電阻。相反地,如果在該鎢多晶 矽閘極中使用該Ti/WN擴散障壁結構,則該鎢層與該p + _ 201250804 型多晶石夕層間之接觸電阻較低而與該多晶石夕換雜種類無 關。 在該PMOSFET之型多晶矽的情況中,在實際操 作模式之反轉狀態中可能產生多晶石夕空乏效應。該多晶 石夕空乏效應之產生可能相依於在p +型多晶石夕内所保留 之硼的數量。 在該WSix/WN擴散障壁結構中比在該Ti/WN擴散 障壁結構中可能產生更大的多晶矽空乏效應。因此,該 WSix/WN擴散障壁結構可能降低電晶體特性。結果,因 為該Ti/WN擴散阻障結構可在該鎢層與該多晶矽層間提 供低接觸電阻及防止P_型多晶矽空乏之產生,所以建議 使用該Ti/WN擴散障壁結構。 然而,如果使用Ti/WN擴散障壁結構,則可能使在 “ Ti/WN擴政障壁結構上方所直接形成之鎢的片電阻 (s)i曰加❸Μ至2倍。因此’該片電阻(Rs)之增加在未 來可月b影響鶴多晶石夕閘極之發展。 【發明内容】 件的閘^ ^貫施例係有關於包括中間結構之半導體元 阻及 ^其令該中間結構具有低片電阻及接觸電 造該閘極堆疊之方:W卜擴散’以及有關於-種製 依據本發明之—兹目w 觀點k彳,、一種製造半導體元件之 二含形成於基板上形成第-導電層;於該 :構22第:中間結構,形成堆疊結構之該中間 /第—金屬層與含氮金屬石夕化物層之氮;及 -5- 201250804 於該中間結構上方形成第二導電層。 及第三金屬層;及於該中間結構上方形成第二 【實施方式】 a 依據本發明之另一觀點 之方法。該方法包含形成於 該第一導電層上方形成中間 間結構包含第一金屬層、第 ’提供一種製造半導體元件 基板上形成第一導電層;於 結構’形成堆疊結構之該中 二金屬層、金屬矽化物層、 第2A圖係描述用於每一型態之做為擴散障壁的結 構在鎢與多晶矽間之接觸電阻的曲線圖。可觀察到當使 用鎢矽化物(wsix)/鎢氮化物(WN)或鈦(Ti)/WN結構以取 代鎢氮化物(WN)結構時,可大大地改善在摻雜有N_型雜 質之多晶矽(N+ P〇LY-Si)與鎢(W)間之以Rc標示的接觸 電阻。 然而,若將s亥鶴多晶石夕閘極應用至雙多晶石夕閘極[亦 即’ N-型金氧半導體場效電晶體(Nm〇sfeT)之N + -型多 晶石夕閘極及p-型金氧半導體場效電晶體(pM0SFET)之 P + -型多晶石夕閘極],如果在該鎢多晶矽閘極中使用該 WSix/WN結構,則大大地增加該嫣與p + _型多晶石夕(p + POLY-Si)間之接觸電阻。相反地,如果在該鎢多晶矽閘 極中使用該Ti/WN結構,則該鎢與卩+ _型多晶矽間之接 觸電阻顯示低的位準而與該多晶矽摻雜種類無關。 在該PMOSFET之P + -型多晶矽的情況中,可在為實 際操作模式之反轉狀態中產生多晶矽空乏效應。該多晶 矽空乏效應之產生相依於該p + _型多晶矽内所保留之硼 的數量。 -6- 201250804 第2B圖係描述母一型態之閘極堆疊的蝴濃度之深 度輸廓的曲線圖。如在W S i x / W N結構中所述,該棚濃度 在閘極絕緣層(例如:氧化物層)與多晶石夕間之接面表面 上低至約5χ 1〇19原子/cm3。使用Ti/WN結構時,在相同 位置上所測量之硼濃度大於約8x1 〇19原子/cm3 ^結果, 在該WSix/WN結構中比在該Ti/WN結構中使該多晶石夕 之空乏更多’因此’該Wsix,/WN結構降低該等電晶體特 性。 因此’最好使用該Ti/WN結構,該Ti/WN結構提供 在該W與該多晶矽間之低接觸電阻及防止p _型多晶石夕 空乏。然而,該Ti/WN結構之應用係有限制的。在該 Ti/WN結構上方所形成之w的片電阻(rs)增加約丨5至 2倍°將在第2C圖中更詳細描述此限制。 第2C圖係描述用於每一型態之做為擴散障壁的結 構之片電阻的曲線圖。將W之片電阻標示為RS。通常, 可在多晶石夕層、氮化矽(Si〇2)層、氮化矽(Si3N4)層及wSi, 層上方形成非晶含氮鎢(WNX)層’因此,可在其上形成 具有低特定電阻(亦即,在約15μ Q_cm至〇_cin之 範圍中)之W。然而,在多晶純金屬鈦(Ti)、鎢(w)及鈕 (Ta)及金屬氮化物材料之鈦氮化物(TiN)及钽氮化物 (TaN)上方形成具有相對小晶粒尺寸之w。因此,在其上 形成具有約30μ Ω-cm之高特定電阻的W。該Ti/WN結 構之應用所造成之片電阻的增加可能對該鎢多晶矽閘極 未來之發展產生限制。 依據下面所要描述之本發明的各種實施例,不同形 201250804 心之閘極堆疊的中間結構係形成有包含τ丨、w、矽(i) 或氮(N)之多個薄層或每一層包含氮之多個薄層。該等中 門、’。構做為擴散JI早壁,该擴散障壁可減少該接觸電阻及 該片電阻,以及防止雜質之穿透及向外擴散。 在下面實施例中’術語”含氮層/結構(layer/structure containing nitr〇gen)或者含有氮之層 / 結構(nitr〇gen containing layer/structure)”表示氮化金屬層/結構及含 某一含量/重量比之氮的金屬層/結構。並且,wsixNy中 之X表示矽對鎢之比例’其範圍從約〇 5至IQ,以及y 表示氣對鎢石夕化物之比例,其範圍從約〇 . 〇 1至1 〇 . 〇 〇。 第3 A圖描述依據本發明之第一實施例的閘極堆疊 結構。該閘極堆疊結構包括依序所形成之第一導電層 21、中間結構22及一第二導電層23。該第一導電層21 包括向換雜有P -塑雜質(例如:硼)或N -型雜質(例如: 填)之多晶石夕層。該第一導電層2 1亦可包括多晶矽鍺層 (Si〗-xGex,其中x係在約〇.〇1與ι·0間之範圍内)或矽化 物層。例如:該矽化物層包括選自由鎳(Ni)、鉻(Cr)、鈷 (Co)、鈦(Ti)、鎢(W)、组(Ta)、铪(Hf)、鍅(Zr)及銘(Pt) 所組成之群組中之一。 該第二導電層23包括鎢層。該鎢層係約1 〇〇A至 200〇A厚及藉由實施物理氣相沉積(pvd)法、化學氣相沉 積(CVD)法或原子層沉積(ALD)法所形成。該pvD法包 括使用鎢濺鍍靶之濺鍍沉積法。201250804 VI. Description of the invention: [Reference reference material of related application] The present invention claims the Korean patent application filed on December 12, 2006 and April 27, 2007, Λ 10-2006-0134326 and 10 The above-mentioned Korean Patent Application No. 2007-0041288 is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a Feng Dao 亍 conductor element, and more particularly to a method of manufacturing a Feng Shou office component of an ancient and a gate stack structure. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a semiconductor and, more particularly, to a & manufacturing method' By stacking polycrystalline germanium and tungsten, the crane is made of polycrystalline stone 夕 Τς Τς Τς 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有And / 'Ma 矽 ( (1/5 to 1 / 1 电阻 of the 丨 electrode) A β ybl / WSlx) gate system manufacturing -6 0 η m memory element Du Fu pole electrode several pieces required of. Figures 1 to 1C depict a typical recording of a visit to the 叫 』 生 生 钨 夕 夕 石 石 夕 夕 夕 夕 夕 夕 夕 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第A (WN) layer 12 and a tungsten (W) layer 13 s tungsten nitride 3 are formed to form the tungsten polysilicon gate stack structure. The WN layer 12 acts as a diffusion barrier. And, during the subsequent annealing process or the gate re-oxidation process, the nitrogen in the WN layer 12 is decomposed between the tungsten layer 13 and the polysilicon layer into a non-uniform insulating layer of SiNx and Si0xNy. The non-uniform insulating layer has a thickness of .201250804 ranging from about 3 nm to about 3 nm. Thus, a component error of an image signal delay may occur at an operating frequency of several hundred megahertz (MHz) and an operating voltage of 1.5 V or less. Recently, a thin tungsten germanide (WSix) or titanium (Ti) layer as a diffusion barrier layer has been formed between the polysilicon layer 11 and the WN layer 12 to prevent the tungsten layer 13 and the polysilicon layer. A Si-N bond is formed between j 1 . As shown in FIG. 1B, if a tungsten germanide is formed between the polysilicon layer 1 1 and the WN layer 12, the nitrogen plasma used during the formation of the WN layer 12 is A W-Si-N bond is formed over the wsix layer 14. A well-diffused barrier layer having a metal property is well known as W-Si-N. As shown in FIG. 1C, if between the polysilicon layer 11 and the WN layer 12 Forming the titanium (Ti) layer 15, the nitrogen plasma transforms the Ti of the titanium layer 15 into titanium nitride (TiN) during the reactive sputtering process during formation of the WN layer 12. The TiN layer serves as The barrier layer is diffused. As a result, although the WN layer 12 is decomposed during the subsequent thermal process, the TiN prevents the gas from diffusing toward the polycrystalline spine 11. Therefore, the formation of s丨_N can be effectively reduced. If the tungsten polycrystalline slab gate is applied to the double polycrystalline slab gate [ie, the N + -type polycrystalline slab gate of the N-type MOS field effect transistor (NM 〇 SFET) And a P + -type polysilicon gate of a P-type MOS field effect transistor (PM0SFET), if the WSix/WN diffusion barrier structure is used in the tungsten polysilicon gate, To greatly increase the contact resistance between the tungsten layer and the P-type polysilicon layer. Conversely, if the Ti/WN diffusion barrier structure is used in the tungsten polysilicon gate, the tungsten layer is more than the p + _ 201250804 type The contact resistance between the layers of the spar is low and is independent of the type of the polycrystalline doped. In the case of the polysilicon of the PMOSFET type, a polycrystalline lithoration effect may occur in the inverted state of the actual operation mode. The generation of the polycrystalline lithotripsy effect may be dependent on the amount of boron retained in the p + -type polycrystalline spine. It may be greater in the WSix/WN diffusion barrier structure than in the Ti/WN diffusion barrier structure. Therefore, the WSix/WN diffusion barrier structure may reduce the transistor characteristics. As a result, the Ti/WN diffusion barrier structure can provide low contact resistance between the tungsten layer and the polysilicon layer and prevent P-type polysilicon. Depletion occurs, so it is recommended to use the Ti/WN diffusion barrier structure. However, if a Ti/WN diffusion barrier structure is used, it is possible to make a piece of tungsten directly formed above the Ti/WN expansion barrier structure. The resistance (s) i曰 is increased by a factor of 2. Therefore, the increase of the sheet resistance (Rs) may affect the development of the crane polycrystalline stone gate in the future. [Summary of the invention] The invention relates to a semiconductor element resistance including an intermediate structure, and a method for making the intermediate structure have a low sheet resistance and a contact electric circuit to form the gate stack: a W-diffusion 'and a related method according to the present invention- In a viewpoint, a second semiconductor element is formed on a substrate to form a first conductive layer; and the intermediate structure comprises a middle/first metal layer and a nitrogen-containing metal cerium compound in a stacked structure. Nitrogen of the layer; and -5 - 201250804 Form a second conductive layer over the intermediate structure. And a third metal layer; and forming a second layer over the intermediate structure. [Ambodiment] a method according to another aspect of the present invention. The method includes forming an intermediate structure formed over the first conductive layer, including a first metal layer, providing a first conductive layer on the substrate for manufacturing a semiconductor element, and forming a second metal layer and a metal in the stacked structure. The telluride layer, Figure 2A, is a graph depicting the contact resistance between tungsten and polycrystalline germanium for each type of diffusion barrier. It can be observed that when a tungsten germanium (wsix)/tungsten nitride (WN) or titanium (Ti)/WN structure is used in place of the tungsten nitride (WN) structure, the doping of N_type impurities can be greatly improved. The contact resistance indicated by Rc between polycrystalline germanium (N+ P〇LY-Si) and tungsten (W). However, if the shohe polycrystalline shovel gate is applied to the double polycrystalline shoal gate [ie, the N + -type polycrystalline stone of the N-type MOS field effect transistor (Nm〇sfeT) Gate and p-type MOS field effect transistor (pM0SFET) P + -type polycrystalline slab gate], if the WSix/WN structure is used in the tungsten polysilicon gate, the 嫣 is greatly increased Contact resistance with p + _ type polycrystalline (p + POLY-Si). Conversely, if the Ti/WN structure is used in the tungsten polysilicon gate, the contact resistance between the tungsten and the 卩+ _ type polysilicon shows a low level regardless of the polysilicon doping type. In the case of the P + -type polysilicon of the PMOSFET, the polysilicon vacancy effect can be generated in the inverted state of the actual operation mode. The polysilicon enthalpy effect is dependent on the amount of boron retained in the p + _ type polysilicon. -6- 201250804 Figure 2B is a graph depicting the depth profile of the butterfly concentration of the gate stack of the parent type. As described in the W S i x / W N structure, the concentration of the shed is as low as about 5 χ 1 〇 19 atoms/cm 3 on the junction surface of the gate insulating layer (e.g., oxide layer) and the polycrystalline stone. When the Ti/WN structure is used, the boron concentration measured at the same position is greater than about 8 x 1 〇 19 atoms/cm 3 ^, and the polycrystalline stone is depleted in the WSix/WN structure than in the Ti/WN structure. More 'so' the Wsix, /WN structure reduces these transistor characteristics. Therefore, it is preferable to use the Ti/WN structure which provides a low contact resistance between the W and the polysilicon and prevents p-type polycrystals from being depleted. However, the application of the Ti/WN structure is limited. The sheet resistance (rs) of w formed over the Ti/WN structure is increased by about 至5 to 2 times. This limitation will be described in more detail in Figure 2C. Figure 2C depicts a graph of the sheet resistance for each type of structure that acts as a diffusion barrier. Mark the W chip resistance as RS. Generally, an amorphous nitrogen-containing tungsten (WNX) layer can be formed over a polycrystalline layer, a tantalum nitride (Si〇2) layer, a tantalum nitride (Si3N4) layer, and a wSi layer, and thus can be formed thereon. W having a low specific resistance (i.e., in the range of about 15 μ Q_cm to 〇 _cin). However, a relatively small grain size is formed over the polycrystalline pure titanium (Ti), tungsten (w) and button (Ta) and the titanium nitride (TiN) and tantalum nitride (TaN) of the metal nitride material. . Therefore, W having a specific resistance of about 30 μΩ-cm is formed thereon. The increase in sheet resistance caused by the application of the Ti/WN structure may limit the future development of the tungsten polysilicon gate. According to various embodiments of the invention to be described below, the intermediate structure of the gate stack of different shapes 201250804 is formed with a plurality of thin layers comprising or consisting of τ 丨, w, 矽 (i) or nitrogen (N) or each layer comprises Multiple thin layers of nitrogen. Such a door, '. Constructed as a diffusion JI early wall, the diffusion barrier reduces the contact resistance and the sheet resistance, as well as preventing the penetration and outward diffusion of impurities. In the following examples, the term "layer/structure containing nitr〇gen" or "nitr〇gen containing layer/structure" means a nitrided metal layer/structure and contains a certain Metal layer/structure of nitrogen in content/weight ratio. Further, X in wsixNy represents the ratio of lanthanum to tungsten' ranging from about 〇5 to IQ, and y represents the ratio of gas to tungsten cerium, ranging from about 〇1 to 1 〇. 〇 〇. Fig. 3A depicts a gate stack structure in accordance with a first embodiment of the present invention. The gate stack structure includes a first conductive layer 21, an intermediate structure 22, and a second conductive layer 23 formed in sequence. The first conductive layer 21 includes a polycrystalline layer that is doped with a P-plastic impurity (for example, boron) or an N-type impurity (for example, filled). The first conductive layer 21 may also include a polysilicon layer (Si]-xGex, wherein x is in a range between about 〇1 and ι·0) or a bismuth layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), group (Ta), hafnium (Hf), niobium (Zr), and One of the groups consisting of (Pt). The second conductive layer 23 includes a tungsten layer. The tungsten layer is about 1 Å to 200 Å thick and is formed by performing a physical vapor deposition (pvd) method, a chemical vapor deposition (CVD) method, or an atomic layer deposition (ALD) method. The pvD method includes a sputtering deposition method using a tungsten sputtering target.

該中間結構22包括鈦層22A、含氮鎢(WNX)層22B 及含氮鎢矽化物(WSixNy)層22C。詳而言之,該鈦層22A 201250804 之厚度係在約10人至約80人之範圍内。較佳地,該鈦層 22A具有約i〇A到約“A之厚度。該鈦層22A因為藉由 隨後之WNX沈積而將其某些上部改變為TiN,以形成含 氮鎢層22B,並且其某些下部與該第一導電層21反應, 亦即,該多晶矽層因而形成TiSix層,故具有如上述限 制之厚度。若該鈦層22A之厚度是大的,則該TiSix層 之厚度也因為其體積擴大而增加發生隆起。此外,若該 鈦層22A之厚度是大的,則該鈦層22A可吸收多晶石夕層 21之摻雜物,例如,磷或硼,因此於多晶矽層21中發 生多重空乏,導致元件性能之劣化。 如以上所述,在該含氮鎢層22B中之氮對鎢的比例 係在約0.3至1.5之範圍内。該含氮鎢層視同鎢氮化物 層或含某一含量/重量比之氮的鎢層。雖然將描述於下面 第三實施例中’但是知道該含氮鎢層22B供應氮至該含 氮鎢矽化物層22C。該含氮鎢層22B具有約20A至2〇〇人 之厚度。由於對該含氮鎢矽化物層22C之氮的供應,在 隨後退火處理後,該含氮鎢層22B變成純鎢層或含微量 氣之鶴層。 在含氮鎢矽化物層22C中之矽對鎢的比例係在約 0.5至3.0之範圍内,以及該含氮鎢矽化物層22C之氮含 量係在約1〇%至約6〇%之範圍内。在此,含氮鎢矽化物 層22C之氮含量以上述方式被適當調整。若氮含量太 低’則接面反應會因該含氮鎢矽化物層22C無法成功作 為擴散障壁而發生。另一方面,若氮含量太高,則包含 於該含氮鎢矽化物層22C中之SiN含量會是高的,並因 -9- 201250804 此讓接觸電阻變高,導致元件性能劣化。該含氮鎢矽化 物層22C表示一鎢氮化物矽化物層(亦即,鎢矽氮化物層) 或含某一含量/重量比之氮的鎢矽化物層。該含氮鎢矽化 物層22C所形成之厚度係在約20A至約2〇〇A之範圍内。The intermediate structure 22 includes a titanium layer 22A, a nitrogen-containing tungsten (WNX) layer 22B, and a nitrogen-containing tungsten germanide (WSixNy) layer 22C. In detail, the thickness of the titanium layer 22A 201250804 is in the range of about 10 to about 80 people. Preferably, the titanium layer 22A has a thickness of about i 〇 A to about "A. The titanium layer 22A is changed to TiN by some of its upper portion by subsequent WNX deposition to form a nitrogen-containing tungsten layer 22B, and Some of the lower portions thereof react with the first conductive layer 21, that is, the polysilicon layer thus forms a TiSix layer, and thus has a thickness as defined above. If the thickness of the titanium layer 22A is large, the thickness of the TiSix layer is also Further, since the volume is enlarged, the ridge is increased. Further, if the thickness of the titanium layer 22A is large, the titanium layer 22A can absorb the dopant of the polycrystalline layer 21, for example, phosphorus or boron, and thus the polycrystalline layer. Multiple depletion occurs in 21, resulting in deterioration of device performance. As described above, the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 22B is in the range of about 0.3 to 1.5. The nitrogen-containing tungsten layer is regarded as tungsten nitrogen. a layer of tungsten or a layer of tungsten containing a certain content/weight ratio of nitrogen. Although described in the following third embodiment, it is known that the nitrogen-containing tungsten layer 22B supplies nitrogen to the nitrogen-containing tungsten-telluride layer 22C. The tungsten layer 22B has a thickness of about 20 A to 2 Å. Since the nitrogen-containing tungsten is deuterated The supply of nitrogen in layer 22C, after subsequent annealing, the nitrogen-containing tungsten layer 22B becomes a pure tungsten layer or a trace layer containing a trace of gas. The ratio of germanium to tungsten in the nitrogen-containing tungsten telluride layer 22C is about 0.5. The nitrogen content of the nitrogen-containing tungsten telluride layer 22C is in the range of about 1.0% to about 6% by weight. Here, the nitrogen content of the nitrogen-containing tungsten telluride layer 22C is Appropriate adjustment. If the nitrogen content is too low, the junction reaction will occur because the nitrogen-containing tungsten carbide layer 22C cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, it is included in the nitrogen-containing tungsten telluride. The SiN content in layer 22C may be high, and the contact resistance becomes high due to -9-201250804, resulting in deterioration of device performance. The nitrogen-containing tungsten telluride layer 22C represents a tungsten nitride telluride layer (i.e., tungsten). a tantalum nitride layer or a tungsten telluride layer containing a nitrogen/tungsten oxide layer 22C having a thickness in the range of from about 20 A to about 2 A.

藉由實施PVD法、CVD法或ald法形成該鈦層22A 及该含氮鶴層22B。藉由實施Pvd法形成該含氮鎢矽化 物層22C。該pVD法以濺鍍沉積法或反應式濺鍍沉積法 進行。例如:藉由以鈦濺鍍靶實施濺鍍沉積法來形成該 欽層22A。藉由在氮氣環境中以鎢濺鍍靶實施反應式濺 鍍沉積法來形成該含氮鎢層22B。藉由在氮氣環境中以 鶴石夕化物賤鍍乾實施反應式濺鍍沉積法來形成該含氮鎢 矽化物層22C。 特別地’因為在該含氮鎢層22B上方不易成長該含 氮鎢矽化物層22C,所以使用該PVD法(例如:反應式 藏鍛沉積法)以形成該含氮鎢矽化物層22C。如果藉由實 施CVD法形成该含氮鎢石夕化物層22C,則在該含氣鶴層 22B上方無法均勻地成長該含氮鎢矽化物層22c,因而 使其結塊。因為在該含氮鎢層22B上方存有氧化鎢 層,此減弱藉由該C V D法所形成之含氮鎢矽化物層2 2匸 的附著力,所以導致此結塊。然而,在該氮氣環境中以 該鎢矽化物濺鍍靶實施該反應式濺鍍沉積法以允許該含 氮鶴矽化物層22C之均勻形成而與下層型態無關。 第3B圖描述在藉由PVD法在含気鎢層上方形成含 氮鎢矽化物層後所獲得之影像。使用反應式濺鍍沉積法 做為該PVD方法,以在該含氮鎢層上方均勻地形成該含 -10- 201250804 氮鎢矽化物層。參考字母WSiN及WN分別表示該含氮 鎢矽化物層及該含氮鎢層。 依據本發明之第一實施例,該閘極堆疊結構包括該 第一導電層21、該Ti/WNx/WSixNy中間結構22及該第 二導電層23。該第一導電層21包括多晶矽及該第二導 電層23包括鎢,藉以形成鎢多晶矽閘極堆疊結構。 特別地,該Ti/WNx/WSixNy中間結構包括第一金屬 層、第二金屬層及含氮金屬矽化物層之堆疊結構。更特 別地,該第一金屬層、該第二金屬層及該含氮金屬矽化 物層分別包括純金屬層、含氮金屬層及含氮金屬矽化物 層。例如:該第一金屬層、該第二金屬層及該含氮金屬 矽化物層分別係該鈦層22A、該含氮鎢(WNx)層22B及 該含氮鎢矽化物(WSixNy)層22C。 亦可以其它不同結構形成包括上述多層之中間結 構。例如:該第一金屬層除了該鈦層之外還包括一鈕(Ta) 層,以及該第二金屬層除了該含氮鎢層之外還包括一含 氮敛鶴層。該含氮金屬矽化物層除了該含氮鎢矽化物層 之外還包括含氮欽石夕化物層或含氮组石夕化物層。藉由實 施包括藏鏟之PVD法、CVD法或ALD法形成該鈕層。 藉由在氮氣環境中以鈦鎢濺鍍靶實施反應式濺鍍沉積法 來形成該含氮鈦鎢層。藉由在氮氣環境中以個別鈦矽化 物及组石夕化物濺鍍靶實施反應式濺鍍沉積法來形成該含 氮鈦矽化物層及該含氮鈕矽化物層。該钽層所形成之厚 度係約1 〇A至80人。該Ta層22A較佳地具有約1 〇A到 約50A之厚度。該Ta層因為藉由隨後之WNX沈積而將 -11 - 201250804 其某些上部改變為TaN,以形成,益且其某些下部與該 第一導電層21反應’亦即,該多晶矽層因而形成TaSix 層,故具有如上述限制之厚度。若該Ta層之厚度是大 的,則該TaSix層之厚度也因為其體積擴大而增加發生 隆起。此外’若該Ta層之厚度是大的,則該Ta層可吸 收多晶矽層21之摻雜物’例如,磷或硼,因此於多晶矽 層2 1中發生多重空乏’導致元件性能之劣化。 該含氮鈦鎢層、該含氮鈦矽化物層及該含氮组矽化 物層之每一層所形成之厚度係約2〇入至200A及且每一 層具有在約1 0 %與6 0 %間之範圍的氮含量《在此,氮含 量以上述方式被適當調整。若氮含量太低,則接面反應 會因該含氮鈦或鈕矽化物層無法成功作為擴散障壁而發 生。另一方面,若氮含量太高,則包含於該含氮鈦或鈕 矽化物層中之SiN含量會是高的,並因此讓接觸電阻變 南’導致元件性能劣化。同時,在該含氮鈦鎢層中,鈦 對鎢之比例係約〇_5至3·〇之範圍内。在該含氮鈦矽化 物層中’矽對鈦之比例係在約〇 5至3〇之範圍内。在 該含氮钽矽化物層中,矽對鈕之比例係在約〇 5至3 〇 之犯圍内。 第3C圖描述依據本發明之第二實施例的閘極堆疊 結構。特別地,該閘極堆疊結構係從依據本發明之第一 實施例的閑極堆疊結構所修改之示範性閘極堆疊結構。 換句活說,該閘極堆疊結構包括含氮鈦層以取代第3八 圖所述之鈦層22Α,該含氮鈦層被識別為ΤίΝχ,其中 為約小於1。The titanium layer 22A and the nitrogen-containing river layer 22B are formed by performing a PVD method, a CVD method, or an ald method. The nitrogen-containing tungsten germanide layer 22C is formed by a Pvd method. The pVD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the seed layer 22A is formed by performing a sputtering deposition method on a titanium sputtering target. The nitrogen-containing tungsten layer 22B is formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 22C was formed by performing a reactive sputtering deposition method by dry plating in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten carbide layer 22C is not easily grown over the nitrogen-containing tungsten layer 22B, the PVD method (for example, reactive deposition deposition method) is used to form the nitrogen-containing tungsten carbide layer 22C. When the nitrogen-containing tungsten carbide layer 22C is formed by the CVD method, the nitrogen-containing tungsten carbide layer 22c cannot be uniformly grown above the gas-containing bridge layer 22B, thereby causing agglomeration. Since a tungsten oxide layer is present above the nitrogen-containing tungsten layer 22B, this weakens the adhesion of the nitrogen-containing tungsten carbide layer 2 2匸 formed by the C V D method, thereby causing the agglomeration. However, the reactive sputtering deposition method was carried out in the nitrogen atmosphere with the tungsten telluride sputtering target to allow uniform formation of the nitrogen-containing hedder telluride layer 22C irrespective of the underlying type. Figure 3B depicts an image obtained after the formation of a nitrogen-containing tungsten telluride layer over a tungsten-containing tungsten layer by a PVD process. The reactive sputtering deposition method is used as the PVD method to uniformly form the -10-201250804 nitrogen tungsten ruthenide layer over the nitrogen-containing tungsten layer. The reference letters WSiN and WN represent the nitrogen-containing tungsten telluride layer and the nitrogen-containing tungsten layer, respectively. According to a first embodiment of the present invention, the gate stack structure includes the first conductive layer 21, the Ti/WNx/WSixNy intermediate structure 22, and the second conductive layer 23. The first conductive layer 21 includes polysilicon and the second conductive layer 23 includes tungsten to form a tungsten polysilicon gate stack structure. In particular, the Ti/WNx/WSixNy intermediate structure includes a stacked structure of a first metal layer, a second metal layer, and a nitrogen-containing metal telluride layer. More specifically, the first metal layer, the second metal layer, and the nitrogen-containing metal telluride layer respectively comprise a pure metal layer, a nitrogen-containing metal layer, and a nitrogen-containing metal telluride layer. For example, the first metal layer, the second metal layer, and the nitrogen-containing metal telluride layer are the titanium layer 22A, the nitrogen-containing tungsten (WNx) layer 22B, and the nitrogen-containing tungsten germanide (WSixNy) layer 22C, respectively. It is also possible to form the intermediate structure including the above multiple layers in other different structures. For example, the first metal layer includes a button (Ta) layer in addition to the titanium layer, and the second metal layer includes a nitrogen-containing layer in addition to the nitrogen-containing tungsten layer. The nitrogen-containing metal telluride layer includes, in addition to the nitrogen-containing tungsten telluride layer, a nitrogen-containing cerium layer or a nitrogen-containing group. The button layer is formed by implementing a PVD method including a shovel, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer and the nitrogen-containing button telluride layer are formed by performing a reactive sputtering deposition method with a respective titanium germanium compound and a group of smectite sputtering targets in a nitrogen atmosphere. The thickness of the layer is about 1 〇A to 80 people. The Ta layer 22A preferably has a thickness of from about 1 〇A to about 50 Å. The Ta layer is formed by changing some of the upper portions of -11 - 201250804 to TaN by subsequent WNX deposition, and some of the lower portions thereof react with the first conductive layer 21 'that is, the polysilicon layer is formed The TaSix layer has a thickness as defined above. If the thickness of the Ta layer is large, the thickness of the TaSix layer also increases due to its volume expansion. Further, if the thickness of the Ta layer is large, the Ta layer can absorb the dopant of the polycrystalline germanium layer 21, for example, phosphorus or boron, so that multiple depletion occurs in the polycrystalline germanium layer 2, resulting in deterioration of element performance. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer, and the nitrogen-containing group telluride layer has a thickness of about 2 to 200 A and each layer has about 10% and 60%. Nitrogen content in the range of the "here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing titanium or button telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or button telluride layer may be high, and thus the contact resistance may be deteriorated, resulting in deterioration of element performance. Meanwhile, in the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 〇5 to 3·〇. The ratio of niobium to titanium in the nitrogen-containing titanium telluride layer is in the range of about 5 to 3 Å. In the nitrogen-containing telluride layer, the ratio of the 矽 to the button is within about 5 to 3 〇. Fig. 3C depicts a gate stack structure in accordance with a second embodiment of the present invention. In particular, the gate stack structure is an exemplary gate stack structure modified from the idler stack structure in accordance with the first embodiment of the present invention. In other words, the gate stack structure includes a titanium-containing titanium layer in place of the titanium layer 22A described in Figure 3, which is identified as ΤίΝχ, which is less than about 1.

X -12- 201250804 依據第二實施例之閘極堆疊結構包括第一導電層 201、中間結構202及第二導電層2〇3。該第一導電層2〇1 包括鬲摻雜P-型雜質(例如:爛(]8))或N•型雜質(例如·填 (p))之多晶矽層。除該多晶矽層之外,該第一導電層2〇1 亦可包括多晶矽鍺(Sil_xGex^,其中χ係在約〇 〇1至 1 ·〇之範圍内,或者包括矽化物層。該矽化物層包括選 自由鎳(Νι)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、鈕(Ta)、 給(Hf)、錯(Zr)及鉑(pt)所組成之群組中之一。 該第二導電層203包括鎢層。實施pvD法、CVD 法及ALD法中之一以形成約i〇〇a至2,〇〇〇人厚之鎢層。 s亥P V D法包括使用鎢錢鑛乾之錢鐘沉積法。 該中間結構202包括含氮鈦(TiNx)層202A、含氮鎢 (WNX)層202B及含氮鎢矽化物(WSixNy)層2020更詳而 言之’該含氮鈦層202A之氮對鈦具有某一比例,例如: 約0.2至0.8之範圍。在此,含氮金屬層,亦即,含氮 鈦層202A具有如上所述之氮比鈦之比例,以防此siN 於TiNx層中產生。於隨後退火處理期間,由於τίΝχ層 中過量的Ti會損壞多晶矽與TiNx之間所形成之Si-N 鍵’並因而移除SiN,因此可防止SiN之產生。此可能 因為TiN並SiN具有較強健的結合。不同於第3A圖所 述之鈦層22A’該含氮鈦層202A所形成之厚度係約10人 至150A。該含氮鈦層202A表示鈦氮化物層或含某一含 量/重量比之氮的鈦層。 έ亥含氮鎢層2 0 2 B之氣對鶴具有某一比例,例如:在 約0_3至1.5之範圍内。該含氮鎢層202Β表示鎢氮化物 -13- 201250804 層或含某一含量/重量比之氮*的鶴層。雖然將於其後說 明’但是該含氣鶴層202B供應氮至該含氮嫣石夕化物層 202C。該含氮鎢層202B所形成之厚度係約2〇人至 200A。由於氮之供應,該含氮鎢層202B在之後退火處 理後變成純鎢層或含微量氮之鎢層。 在該含氮鎢矽化物層202C中之矽對鎢的比例係在 約0.5與3.0間之範圍内’以及該含氮鶴石夕化物層2 〇 2 C 之氮含量係在約10%至約60%之範圍内。在此,氮含量 係以如上所述做適當調整。若該氮含量太低,由於該含 氮鎢矽化物層202C無法成功作為擴散障壁,故會發生 接面反應。另一方面,若該氮含量太高,則包含於該含 氮鎢矽化物層20 2C中之SiN含量可為高的,並因此接 觸電阻變高’導致元件性能劣化。該含氮鎢矽化物層 202C表示鎢矽氮化層或含某一含量/重量比之氮的鎢矽 化物層。 藉由實施PVD法、CVD法或ALD法形成該含氮鎢 層202B。藉由實施PVD法形成該含氮鈦層2〇2A及該含 氮鎢矽化物層202C。t亥PVD &以濺鍍沉積法或反應式 濺鍍沉積法進行。例如:藉由在氮氣環境中以鈦濺鍍靶實 施濺鍍沉積法來形成該含氮鈦層2〇2A。藉由在氮氣環境 中以嫣滅鍍把實施反應式賤鍍沉積法來形成該含氮鶴層 202B。藉由在氮氣環境中以“化物㈣無實施反應式 滅锻沉積法來形成該含氮鎢矽化物層2〇2c。 202B上方不易成長該 該P V D法(例如:反應式 特別地’因為在該含氮鎢層 含氮鎢矽化物層202C ’所以使用 •14- 201250804 濺鍍沉積法)以形成該含氮鎢矽化物層202C。若藉由實 施CVD法形成該含氮鎢矽化物層202C,則在該含氮鶴 層2 0 2 B上方無法均勻地成長該含氮嫣石夕化物層2 〇 2 c, 因而使其結塊。因為在該含氮鎢層202B上方存有嫣氧 化物(WOx)層,此減弱藉由該CVD法所形成之含氮鶴石夕 化物層202C的附著力,所以導致此結塊。然而,在該 氮氣環境中以該鎢矽化物濺鍍靶實施該反應式濺鑛沉積 法以允許該含氮鶴石夕化物層202C之均勻形成而與於下 層型態無關。 當使用相似於第一實施例中之鈦層22A的第二實施 例中之含氮鈦層2 0 2 A時,可獲得低接觸電阻。獲得該 低接觸電阻之理由是因為供應氬至該含氮鈦層202A所 形成之含氮鎢層202B,藉此使該含氮鈦層202A之上部 強健,並同時防止Ti-Si鍵之結塊。 依據本發明之第二實施例的閘極堆疊結構包括該第 一導電層201、該TiNx/WNx/WSixNy中間結構202及該 第二導電層203。該第一導電層201包括多晶矽及該第 二導電層203包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,該TiNx/WNx/WSixNy中間結構202係以包 括第一金層層、第二金屬層及含氮金屬矽化物層之堆疊 結構形成。該第一及第二金屬層係含某一含量/重量比之 氮的金屬層,以及該含氮金屬矽化物層包含某一含量/ 重量比之氮。例如:該第一金屬層係該含氮鈦層202A。 該第二金屬層係該含氮鎢層202B。該金屬矽化物層係該 含氮鎢矽化物層202C。 -15- 201250804 如上所述之多層中間結構亦可以其它不同結構來形 成例如· 6亥第一含氮金屬層除了該含氮鈦層之外還包 括含氮钽層(TaNx)層,以及該第二含氮金屬層除了該含 氮鎢層之外還包括含氮鈦鎢(TiWNx)層。該含氮金屬矽化 物層除了戎含氮鎢矽化物層之外還包括含氮鈦矽化物 (TiSixNy)層或含氮鈕矽化物(TaS“Nj層。藉由實施包括 濺鍍之PVD法、CVD法或ALD法形成該含氮鈕層。藉 由在氣氣ί哀境中以鈦鎢濺鍍靶實施反應式濺鍍沉積法來 形成s玄含氣欽鶴層。藉由在氮氣環境中以個別鈦矽化物 及组石夕化物賤鑛乾實施反應式濺鍍沉積法來形成該含氮 鈦矽化物層及該含氮钽矽化物層。該含氮钽層所形成之 厚度係約1 0Α至80人。該含氮鈦鎢層、該含氮鈦矽化物 層及該含氮钽矽化物層之每一層所形成之厚度係約2〇人 至200Α及每一層具有在約1〇%與6〇%間之範圍内的氮 含量。在此,氮含量係以如上所述被適當調整。若氮含 量太低,則由於該含氮鈦或钽矽化物層無法成功作為擴 散障壁’故會發生接面反應。另一方面,若該氮含量太 兩’則包含於s亥含氣鈦或纽石夕化物層中之S丨Ν含量可為 高的,並因而接觸電阻變高,導致元件性能劣化。在該 含氮鈦鎢層中,鈦對鎢之比例係在約〇 5至3 〇之範圍 内。在該含氮鈦矽化物層中,矽對鈦之比例係在約0 5 至3.0之範圍内。在該含氮钽矽化物層中,矽對鈕之比 例係在約0.5至3.0之範圍内。 相似於該TiNx/WNx/WSixNy中間結構,包括該含氣 鈕層以取代該含氮鈦層之中間結構可具有低接觸電阻及 -16- 201250804 片電阻以及同時防止一多晶矽空乏。雖然以3層形成依 據第二實施例之中間結構,但是該中間結構可以進一步 在該含鎢矽化物層上方包括一含氮鎢(WNx)層。該額外 所提供含氮鎢層具有大致相同於該第一所提供含氮鎢層 之厚度及氮含量。依據第二實施例之TiNx/WNx/WSixNy 中間結構的複數層包含氮。結果,該TiNx/WNx/WSixNy 中間結構可具有低片電阻及接觸電阻以及減少該閘極堆 疊結構之咼度。並且,該TiNx/WNx/wsixNy中間結構可 減少因在該第一導電層2〇丨中所摻雜之雜質(例如:蝴)的 向外擴散所造成之多晶石夕空乏。 第3 D圖描述依據本發明之第三實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層2丨丨、中間結構 212及第二導電層213。該第一導電層211包括高摻雜有 P-型雜質(例如:硼(3))或N_型雜質(例如:磷(p))之多晶 矽層。該第一導電層21丨除了該多晶矽之外亦可包括多 晶矽鍺(Si〗-xGex)層,其中x係在約〇 〇1至i 〇之範圍内, 或亦可包括矽化物層。該矽化物層包括選自由鎳(Ni)、 鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、鈕(Ta)、铪(Hf)、錯(Zr) 及鉑(Pt)所組成之群組中之一。 該第二導電層213包括鎢層。實施PVD法、CVD 法及ALD法中之一以形成約1〇〇人至2〇〇〇人厚度之鎢 層。該PVD法包括使用具鎢濺鍍靶之濺鍍沉積法。 該中間結構212包括鈦矽化物(TiSix)層212A、含氣 鈦(ΉΝ,)層212B、含氮鎢(WNx)層212C、及含氮鎢矽化 物(WSixNy)層212D。依據在個別第一及第二實施例中所 -17- 201250804 述之中間結構22及202 ’除了該鈦石夕化物層、含氮欽層 及該含氮鎢層之外,亦可分別形成钽矽化物層、含氮钽 層及含氮鈦鎢層。此外,除了該含氮鎢矽化物層之外, 亦可形成含氮鈦;5夕化物層或含氮纽石夕化物層。 依據第三實施例之閘極堆疊結構係在對依據本發明 之第一及第二貫施例的閘極堆疊結構實施一退火處理後 所造成之結構。該退火包括在形成該等閘極堆疊結構後 所貫施之各種製程(例如:間隔物形成及内層絕緣層形成) 期間所伴隨之熱處理。 參考第3 A及3 D圖以比較該中間結構2 1 2與該中間 結構22。當該鈦層22A與來自該第一導電層21之多晶 石夕反應時’形成具有約1 A至3 0 A厚度之鈦石夕化物層 2 1 2 A。該鈦矽化物層2 1 2 A中之矽對鈦的比例係在約〇 5 與3.0間之範圍内。 當從該含氮嫣層22B供應氮至該鈦層22A時,造成 該含氮鈦層212B。該含氮鈦層212B之厚度係約1〇Α至 1 0 0 A且具有約0.7至1.3範圍之氮對鈦的比例。相較於 在該鈦層22Α中之氮對鈦的比例,在該含氮鈦層2 1 2Β 中之氮對鈦的比例從約0增加至約0.7至1 .3。 在該退火後,該含氮鎢層 212C 因侵蝕作用 (denudation)而具有降至約1 0%或更少之氮含量。元件符 號WNX(D)表示該經侵蝕之含氮鎢層。該含氮鎢層212C 係約20人至200人厚。在該含氮鎢層212C中之氮對鎢的 比例係在約〇.〇1與0.15間之範圍内。相較於在第3A圖 中所述之含氮鎢層22C中之氮對鎢的比例,在該含氮鎢 -18- 201250804 層2 1 2C中之氮對鎢的比例從約0.3與1.5間之範圍減少 至約0 · 0 1至0.1 5間之範圍。 該含氮鎢矽化物層2 1 2D具有大致相同於該含氮鎢 矽化物層22 C之厚度及成分。詳而言之,該含氮鎢矽化 物層212D具有約0.5至3.0範圍之矽對鎢的比例及約 10%與60%間之範圍的氮含量。該含氮鎢矽化物層212D 之厚度係在約20A與200A間之範圍内。 參考第3D及3C圖以比較該中間結構212與該中間 結構202。在該退火處理期間,從該含氮鎢層202B將氮 供應至該含氮鈦層202A。結果,使該含氮鈦層202A變 換成為與該鈦矽化物層212A而具有最小反應之含氮鈦 層212B。該鈦矽化物層212A之厚度係在約i人至3〇A 之範圍内,以及該含氮鈦層2 1 2B之厚度係在約丨〇人至 100A之範圍内。 在該含氮鈦層2 1 2 B中之氮對鈦的比例係在約〇 7與 1.3間之範圍内。相較於在該含氮鈦層2 0 2 B中之氣對鈦 比例,在該含氮鈦層212B中之氮對鈦比例從約〇 2至 0.8間之範圍增加至約0.7與1.3間之範圍。 在該退火後,該含氮鎢層2 12C因侵|虫作用而具有 降至約10%或更少之氮含量。該含氮鎢層212C係約20A 至200人厚。在該含氮鎢層212C中之氮對鎢的比例係在 約0.0 1與0 · 1 5間之範圍内。相較於在第3 C圖中所述之 含氮鎢層202C中之氮對鎢的比例,在該含氮鶴層2丨2C 中之氮對鎢的比例從約〇·3與1.5間之範圍減少至約 0.01至0.15間之範圍。 -19- 201250804 同於該含氮鎢 ’該含氮鎢矽 稿的比例及約 該含氮鎢矽化物層2 1 2D具有大致相 矽化物層202C之厚度及成分。詳而言之 化物層2 1 2D具有約0.5至3.0範圍之石夕對 10%與60%間之範圍的氮含量。該含氮鎢矽化物層2i2D 之厚度係在約20A與200A間之範圍内。 依據第三實施例之閘極堆疊結構包括第一中間結構 及第二中間結構。該第一中間結構包括第—金屬矽化物 層及第一含氮金屬層,以及該第二中間結構包括第二含 氮金屬層及第二含氮金屬矽化物層。例如:藉由堆疊該 鈦矽化物層212A及該含氮鈦層212B形成該第一中^結 構。藉由堆豐該含氣鎢層212C及該含氮鎢矽化物層 21 2D形成該第二中間結構。 第3 E圖描述在退火製程後之閘極堆疊結構的影像 圖。相同於第一到第三實施例所述之元件符號代表相同 元件。因此,省略其詳細敘述。 第4 A圖描述依據本發明之第四實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層3 1、中間纟士構3 2 及第二導電層33。s亥第一導電層31包括高換雜有p_型 雜質(例如:硼)或N-型雜質(例如:磷)之多晶石夕層。該 第一導電層31亦可包括多晶石夕鍺層(si^xGex,其中X係 在約0.0 1與1.0間之範圍内)或矽化物層。例如:該矽化 物層包括選自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鶴(W)、 钽(Ta)、姶(Hf)、锆(Zr)及鉑(pt)所組成之群組中之一。 該第二導電層33包括鎢層。該鎢層係約1〇〇入至 2000A厚及藉由實施PVD法、CVD法或ALD法所形成。 -20- 201250804 δ亥P V D法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構32包括鈦層32A及含氮鎢矽化物 (WSixNy)層3 2B。詳而言之,該鈦層32A之厚度係在約 10A至約80A之範圍内。較佳地,該鈇層32A具有約⑺人 至約50人的厚度。該鈦層32A因為藉由隨後之wsixNy 沈積而將其某些上部改變為TiN ,以形成含氮鎢矽化物 層32B’並且其某些下部與該第一導電層31反應,亦即, 該多晶矽層因而形成TiSix層,故具有如上述限制之厚 度。若該鈦層32A之厚度是大的,則該TiSix層之厚度 也因為其體積擴大而增加發生隆起。此外,若該鈦層32A 之厚度是大的’則該鈦層3 2 A可吸收摻雜物,例如,多 晶矽層3 1之填或硼並因此於多晶矽層3 1中發生多重空 乏,導致元件性能之劣化。該含氮鎢矽化物層32B具有 〇. 5至3.0範圍之矽對鎢的比例及具有約1 〇 %至6 0 %之氮 含量。在此,該氮含量以上述方式被適當調整。若該氮 含量太低,則接面反應會因含氮鎢矽化物層32B不能成 功作為擴散障壁而發生。另一方面,若該氮含量太高, 則包含於該含氮鎢矽化物層32B中之SiN含量會是高 的,並因而使接觸電阻變高,導致元件性能劣化。該含 氮鎢矽化物層3 2 B表示鎢矽氮化物層或包含某一含量/ 重量比之氮的鶴石夕化物層。該含氮鶴石夕化物層3 2 B所形 成之厚度係約20A至200A。 藉由PVD法、CVD法或ALD法形成該鈦層32A。 藉由PVD法形成該含氮鎢矽化物層32B。該PVD法以 濺鍍沉積法或反應式濺鍍沉積法進行。例如:藉由以鈦 201250804 濺鍍靶實施濺鍍沉積法來形成該鈦層32A。藉由在氮氣 環境中以鎢矽化物濺鍍靶實施反應式濺鍍沉積法來形成 該含氮鎢矽化物層32B。特別地,因為可均勻地形成該 含氮鶴矽化物層32B而與下層型態無關,所以使用該 PVD法(例如:反應式濺鍍沉積法)以形成該含氮鎢矽化 物層3 2 B。 依據本發明之第四實施例的閘極堆疊結構包括該第 一導電層3 1、該Ti/WSixNy中間結構32及該第二導電層 33。該第一導電層31包括多晶矽及該第二導電層33包 括鎢’藉此形成鎢多晶矽閘極堆疊結構。 特別地,該Ti/WSixNy中間結構32包括金屬層及含 氮金屬矽化物層。該金屬層包括純金屬層及該金屬矽化 物層包括含氮鎢矽化物層。例如:該金屬層係該鈦層32A 及該金屬矽化物層係該含氮鎢矽化物層32B。 依據第四實施例之多層中間結構亦可以其它結構形 成。該金屬層除了該鈦層之外還包括鉅層,以及該含氮 夕金屬矽化物層除了該含氮鎢矽化物層之外還包括含氮 鈦矽化物(TiSLNy)層或含氮钽矽化物(TaSixNy)層。藉由 包括濺鍍沉積法之PVD法、CVD法或ALD法形成‘钽 曰藉由在氮氣環境中以鈦矽化物濺鍍乾實施反應式濺 鍍沉積法來形成該含氮鈦發化物層。藉由在I氣環境中 以紐石夕化物賤錢乾實施反應式錢鍍沉積&來形成該含氣 钽矽化物層。該鈕層係約1〇人至8〇A厚。較佳地,該钽 層具有約10A到約5〇A之厚度。該鈕層因為藉由隨後之 WShNy沈積而將其某些上部改變為τ&ν,以形成金屬矽 -22- 201250804 化物層,並且其某些下部與該第一導電層31反應,亦 即’該多晶矽層因而形成TaSix層,故具有如上述限制 之厚度。若該钽層之厚度是大的,則該TaSix層之厚度 也因為其體積擴大而增加發生隆起。此外,若該鈕層之 厚度是大的’則該钽層可吸收多晶矽層31之摻雜物,例 如’磷或硼,因此於多晶矽層31中發生多重空乏,導致 元件性此之劣化。該含氮鈦石夕化物層及該含氮组石夕化物 層之每一層所形成之厚度係約20A至200人及每一層具 有約10%至60%之氮含量。在此,該氮含量以上述方式 被適當調整。若該氮含量太低,則接面反應會因含氮鈦 或钽矽化物層不能成功作為擴散障壁而發生。另一方 面,若該氮含量太高,則包含於該含氮鈦或钽矽化物層 中之SiN含里會是高的,並因而使接觸電阻變高,導致 元件性能劣化。在該含氮鈦矽化物層中之矽對鈦的比例 係在約0.5與3.0間之範圍内。該含氮钽矽化物層具有 約0·5至3.0之矽對钽比例。 第4Β圖描述依據本發明之第五實施例的閘極堆疊 結構。該所述閘極堆疊結構係從依據第二實施例之閘極 堆疊結構所修改而成。換句話說’使用含氮鈦(τίΝχ)層 以取代鈦,其中X約小於1。 該閘極堆4結構包括第—導電層30卜中間結構302 及第二導電層3〇3。該第m 301包括高摻雜有p_ 型雜質(例如:硼)或N-型雜質(例如:磷)之多晶矽層。 該第一導電層301亦可包括多晶矽鍺層(Sii_xGex,盆中X 係在約〇.(H與1.0間之範圍内)或石夕化物層。例如;該石夕 -23 - 201250804 化物層包括選自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢 (W)、钽(Ta)、鈴(Hf)、鍅(Zr)及鉑(pt)所組成之群組中之 ―― 〇 該第二導電層303包括鎢層。藉由實施pvd法、CVD 法或ALD法以形成約ΐοοΑ至2000A厚之鎢層。該PVD 法包括使用鶴減鍍輕之錢鑛沉積法。 該中間結構302包括含氮鈦(TiNx)層302A及含氮鎢 矽化物(WSixNy)層302Β»該含氮鈦層302A具有約0.2 至0.8範圍之氮對鈦的比例及約1 〇 a至1 5 〇人之厚度。 在此’該含氮金屬層’亦即,含氮鈦層3〇2A具有如上 所述之氮比鈇之比例,以防止SiN自該TiNx層302A中 產生。在隨後之退火處理期間,siN的產生會因於TiNx 層302A中過量的Ti破壞於多晶矽與ΤίΝχ之間所形成之 Si-N鍵而被防止,並因而移除siN。因為TiN接合比SiN 接合強健許多’故此為可行的。該含氮鈦層3〇2A表示 欽氮化物層或含氮之鈦層。在本實施例中,該含氮鈦層 具有金屬特性。該含氮鎢矽化物層3〇2B具有〇 5至3.0 範圍之石夕對鎢的比例及約1〇%至約60%之氮含量。在 此’該氮含量以上述方式被適當調整。若該氮含量太低, 則接面反應會因含氮鎢矽化物層302B不能成功作為擴 散障壁而發生。另一方面,若該氮含量太高,則包含於 該含氮鶴石夕化物層302B中之SiN含量會是高的,並因 而使接觸電阻變高,導致元件性能劣化。該含氮鎢矽化 物層302B表示鎢矽氮化物層或含某一含量/重量比之氮 的鎢矽化物層。 -24- 201250804 藉由PVD法形成該含氮鈦層302A及該含氮鶴石夕化 物層302B。該PVD法以濺鍍沉積法或反應式濺艘沉積 法進行。例如:藉由在氮氣環境中以鈦濺鍍靶實施反應 式濺鍍沉積法來形成該含氮鈦層3 0 2 A。藉由在氮氣環境 中以鶴妙化物錢鍍歡實施反應式激鍵沉積法來形成該含 氮鎢矽化物層302B。 因為該PVD法允許該含氮鎢矽化物層302B之均勻 形成而與下層型態無關,所以使用該PVD法(例如:上 述反應式濺鍍沉積法)以形成該含氮鎢矽化物層302B。 依據第五實施例之閘極堆疊結構包括該第一導電層 301、該TiNx/WSixNy中間結構302及該第二導電層303。 該第一導電層301及該第二導電層303分別包括多晶矽 層及鎢層。因此,設有鎢多晶矽閘極堆疊結構。 特別地,該TiNx/WSixNy中間結構包括金屬層及含 氮金屬矽化物層。該金屬層包括含某一含量/重量比之氮 的金屬層’以及該金屬矽化物層包括含某一含量/重量比 之氮的金屬矽化物層。例如:該金屬層包括該含氮鈦層 302A,以及該金屬矽化物層包括該含氮鎢矽化物層 302B 〇 依據第五實施例之多層中間結構可以其它不同結構 形成。該含氮金屬層除了該含氮鈦層之外還包括含氮钽 (TaNx)層。該含氮金屬矽化物層除了該含氮鎢矽化物 (wSixNy)層之外還包括含氮鈦矽化物(TisixNy)層或含氮 组石夕化物(TaSixNy)層。藉由包括賤錄沉積法之pVD法、 CVD法或ALD法形成該含氮Is層。藉由在氮氣環境中 -25- .201250804 以鈦矽化物濺鍍靶實施反應式濺鍍沉積法來形成該含氮 鈦矽化物層。#由在氣氣環境中以钽矽化物濺鍍靶實施 反應式濺鍍沉積法來形成該含氮鈕矽化物層。該含氮鈕 層具有約1〇人至8〇λ間範圍之厚度。該含氣鈦矽化物層 及該含氮钽矽化物層之每一層所形成之厚度係約20Α至 200Α,以及每一層具有約10%至6〇%之氮含量。在此, 該氮含量以上述方式被適當調整。若該氮含量太低,則 接面反應會因含氮鈦或钽矽化物層不能成功作為擴散障 壁而發生。另一方面,若該氮含量太高,則包含於該含 氮鈦或钽矽化物層中之siN含量會是高的,並因而使接 觸電阻l问,導致元件性能劣化。在該含氮鈦矽化物層 中之矽對鈦的比例係在約〇5與3 〇間之範圍内。該含 氮鈕矽化物層具有約〇,5至3 〇範圍之矽對钽的比例。 第4C圖描述依據本發明之第六實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層3丨丨、中間結構 312及第二導電層313。該第一導電層311包括高摻雜有 P-型雜質(例如:硼(B))或N-型雜質(例如:鱗(p))之多晶 石夕層。該第一導電層3 1 1除該多晶矽層之外亦可包括多 晶矽鍺層(Sil-xGe*),其中X係在約0.01與1.0間之範圍 内’或者可包括矽化物層。該矽化物層包括選自由鎳 (Νι)、鉻(Cr)、始(Co)、鈦(Ti)、鎢、组(Ta)、給(Hf)、 錯(Zr)及鉑(pt)所組成之群組中之一。 該第二導電層313包括鎢層。藉由實施PVD法、CVD 法及ALD法中之一以形成約i〇〇a至2〇〇〇A厚之鎢層。 s亥PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 -26- 201250804 該中間結構3 12包括鈦矽化物(TiSix)層3 12A、含氮 欽(ΤιΝχ)層312B及含氮鎢矽化物(wsixNy)層312C。可 根據選自第四及第五實施例所述之材料以其它不同結構 形成該中間結構。 依據第六實施例之閘極堆疊結構係在對依據本發明 之第四及第五實施例的閘極堆疊結構實施一退火處理後 所造成之結構。該退火包括在形成該等閘極堆疊結構後 所實施之各種製程(例如··間隔物形成及内層絕緣層形成) 期間所伴隨之熱處理。 在該鈦層32A上方形成該含氮鎢矽化物層32b之情 況中參照(第4A圖)’在該退火後,在該鈦層μα與該 a氣鶴石夕化物層3 2 B間之邊界區域中使該含氮鶴石夕化物 層32B中之微量氮分解。因此,如第4c圖所述,使該 鈦層32A之上部分變換成為該含氮鈦層312B,以及該鈦 層32A之下部分與來自該第一導電層3 1之多晶石夕反 應,以形成該鈦矽化物層3 1 2 A。 該鈦矽化物層3 1 2A之厚度係在約1 A至30A間之範 圍内,以及其中矽對鈦的比例係在約0.5與3 ·〇間之範 圍内。該含氮鈦層312B係約l〇A至100A厚及具有約 〇 · 7與1.3間範圍之氮對敛的比例。 該含氮鶴石夕化物層3 1 2 C具有大致相同於該含氮鶴 石夕化物層32B之厚度及成分。詳而言之,該含氮鎢矽化 物層312C具有約0.5至3.0範圍之矽對鎢的比例及約 1 0 %與6 0 %間範圍之氮含量。該含氮鎢矽化物層3丨2 c之 厚度係在約20A與200A間之範圍内。 -27- 201250804 參照第4C及4B圖以比較該中間結構3 1 2與該中間 結構302。在該退火處理期間,從該含氮鎢矽化物層3〇2b 供應氮至該含氮鈦層302A,藉此使含氮鈦層302A變換 成為與該鈦矽化物層3 1 2 A有最小反應之含氮鈦層 3 1 2B。該鈦矽化物層3 1 2A之厚度係在約1 A至30A之 範圍内,以及該含氮鈦層312B之厚度係在約1〇人至 10 0 A之範圍内。該含氮鈦層3 1 2 B中之氮對鈦的比例係 在約0.7至1.3之範圍内。相較於在該含氮鈦層302B中 之氮對鈦比例(見第4C圖),在該含氮鈦層3 1 2B中之氮 對鈦比例從約〇 · 2至0.8之範圍增加至約〇 · 7與1.3間之 範圍。 該含氮鎢矽化物層3 1 2 C具有大致相同於該含氮鎢 石夕化物層302C之厚度及成分。詳而言之,該含氮鎢石夕 化物層3 1 2 C具有約0 · 5至3.0範圍之石夕對鎢的比例及約 10%與60°/。間範圍之氮含量。該含氮鎢矽化物層3 12c之 厚度係在約20A與200A間之範圍。 依據第六實施例之閘極堆疊結構包括第一中間結構 及第二中間結構。該第一中間結構包括金屬矽化物層及 含氮金屬層’以及該第二中間結構包括含氮金屬矽化物 層。例如:藉由堆疊該鈦矽化物層3丨2 A及該含氮鈦層 3 1 2B形成該第一中間結構。該第二中間結構包括該含氮 鎢矽化物層3 1 2 C。 第5A圖描述依據本發明之第七實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層4卜中間結構42 及第二導電層43。該第一導電層41包括高摻雜有p_型 -28- 201250804 雜質(例如:硼)或N-型雜質(例如:磷)之多晶矽層。該 第一導電層41亦可包括多晶妙錯層(sL.xGex’其中X係 在約0.0 1與1.0間之範圍内)或矽化物層。例如:該石夕化 物層包括選自由鎳(Ni)、鉻(Cr)、姑(Co)、鈦(Ti)、鶴(\γ)、 钽(Ta)、姶(Hf)、锆(Zr)及鉑(Pt)所組成之群組中之一。 該第二導電層43包括鎢層。該鎢層係約1 〇〇a至 2000A厚及藉由實施PVD法、CVD法或ALD法所形成。 該P V D法包括使用鎢濺鍍乾之濺鑛沉積法。 該中間結構42包括鈦層42A、含氮鎢矽化物(wSixNy;) 層42B及含氮鎢(WNX)層42C。詳而言之,該鈦層42A 之厚度係在約1 0A至約80人之範圍内。較佳地,該鈦層 42A具有約i〇A到約50A之厚度。該鈦層42A因為藉由 隨後之WNX沈積而將其某些上部改變為TiN,以形成含 氮嫣層42C,並且其某些下部與該第一導電層41反應, 亦即’ s亥多晶石夕層因而形成τ i S i x層,故具有如上述限 制之厚度。若該鈦層42A之厚度是大的,則該TiSix層 之厚度也因為其體積擴大而增加發生隆起。此外,若該 欽層42A之厚度是大的’則該鈦層42A可吸收多晶矽層 4 1之摻雜物,例如碌或硼,因此於多晶石夕層4 1中發生 多重空乏’導致元件性能之劣化。該含氮鎢矽化物層42B 具有約0 · 5至3.0範圍之矽對鎢的比例及具有約1 〇 %至 60之氮含量。在此,該氮含量以上述方式被適當調整。 若該氮含量太低,則接面反應會因含氮鎢矽化物層42B 不能成功作為擴散障壁而發生。另一方面,若該氮含量 太南’則包含於該含氮鎢矽化物層42B中之siN含量會 -29- 201250804 是高的,並因而使接觸電阻變高,導致元件性能劣化。 該含氮鎢矽化物層42B表示鎢矽氮化物層或包含某一含 量/重ΐ比之氮的鎢矽化物層。該含氮鎢矽化物層42B所 形成之厚度係約20A至200人。 在該含氮鎢層4 2 C中之氮對鎢的比例係在約〇 3與 1.5間之範圍内。該含氮鎢層42c表示鎢氮化物層或包 含某一含量/重量比之氮的鎢層。該含氮鎢層42C之厚度 係在約20A至200入之範圍内。雖然將於之後說明,但 是知道該含氮鎢層42C供應氮至該含氮鎢矽化物層 42B。因此,在該退火後,該含氮鎢層42(:變成不具有 氮之純鎢層或含微量氮之鎢層。X -12- 201250804 The gate stack structure according to the second embodiment includes a first conductive layer 201, an intermediate structure 202, and a second conductive layer 2〇3. The first conductive layer 2〇1 includes a polysilicon layer doped with a p-type impurity (for example, ruthenium (8)) or an N-type impurity (for example, filled (p)). In addition to the polysilicon layer, the first conductive layer 2〇1 may also include polysilicon (Sil_xGex^, wherein the lanthanide is in the range of about 至1 to 1·〇, or includes a bismuth layer. The invention comprises the steps of: nickel (Νι), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), button (Ta), (Hf), (Zr) and platinum (pt). One of the groups. The second conductive layer 203 includes a tungsten layer. One of the pvD method, the CVD method, and the ALD method is performed to form a tungsten layer of about i〇〇a to 2, which is thick. The method includes a tungsten carbide deposition method using a tungsten-rich ore. The intermediate structure 202 includes a titanium-containing titanium (TiNx) layer 202A, a nitrogen-containing tungsten (WNX) layer 202B, and a nitrogen-containing tungsten germanide (WSixNy) layer 2020. The nitrogen of the nitrogen-containing titanium layer 202A has a certain ratio to titanium, for example, a range of about 0.2 to 0.8. Here, the nitrogen-containing metal layer, that is, the nitrogen-containing titanium layer 202A has a nitrogen ratio of titanium as described above. In proportion to prevent this siN from being generated in the TiNx layer. During the subsequent annealing process, excessive Ti in the τίΝχ layer will damage the Si-N bond formed between the polysilicon and TiNx and thus shift SiN, thus preventing the generation of SiN. This may be because TiN and SiN have a strong bond. The titanium-containing layer 22A' different from the layer 2A described in FIG. 3A has a thickness of about 10 to 150 Å. The nitrogen-containing titanium layer 202A represents a titanium nitride layer or a titanium layer containing nitrogen in a certain content/weight ratio. The gas of the nitrogen-containing tungsten layer of the sea has a certain ratio to the crane, for example, at about 0_3 to In the range of 1.5, the nitrogen-containing tungsten layer 202 Β represents a layer of tungsten nitride-13-201250804 or a layer of helium containing a certain content/weight ratio of nitrogen*, although it will be described later 'but the gas-bearing layer 202B is supplied Nitrogen to the nitrogen-containing strontium layer 87C. The nitrogen-containing tungsten layer 202B is formed to a thickness of about 2 to 200 A. Due to the supply of nitrogen, the nitrogen-containing tungsten layer 202B becomes a pure tungsten layer after annealing treatment. Or a trace of tungsten containing a trace of nitrogen. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 202C is in the range of between about 0.5 and 3.0' and the nitrogen of the nitrogen-containing heparide layer 2 〇 2 C The content is in the range of from about 10% to about 60%. Here, the nitrogen content is appropriately adjusted as described above. Low, since the nitrogen-containing tungsten carbide layer 202C cannot be successfully used as a diffusion barrier, a junction reaction occurs. On the other hand, if the nitrogen content is too high, the SiN contained in the nitrogen-containing tungsten carbide layer 20 2C The content may be high, and thus the contact resistance becomes high, resulting in deterioration of the device properties. The nitrogen-containing tungsten telluride layer 202C represents a tungsten-rhenium nitride layer or a tungsten germanide layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten layer 202B is formed by a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 2〇2A and the nitrogen-containing tungsten germanide layer 202C are formed by a PVD method. The tHAI PVD & is carried out by sputtering deposition or reactive sputtering deposition. For example, the nitrogen-containing titanium layer 2〇2A is formed by sputtering deposition using a titanium sputtering target in a nitrogen atmosphere. The nitrogen-containing heddle layer 202B was formed by performing a reactive ruthenium plating deposition method by quenching plating in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 2〇2c is formed by performing a reactive forging deposition method in a nitrogen atmosphere in a nitrogen atmosphere. The PVD method is not easily grown above 202B (for example, the reaction type is particularly 'because The nitrogen-containing tungsten layer nitrogen-containing tungsten germanide layer 202C' is thus deposited using the method of 14-201250804 sputtering deposition to form the nitrogen-containing tungsten germanide layer 202C. If the nitrogen-containing tungsten germanide layer 202C is formed by performing a CVD method, Then, the nitrogen-containing strontium-lithium layer 2 〇 2 c cannot be uniformly grown over the nitrogen-containing bridge layer 2 0 2 B, thereby causing agglomeration because cerium oxide is present above the nitrogen-containing tungsten layer 202B ( a layer of WOx) which attenuates the adhesion of the nitrogen-containing Heatherite layer 202C formed by the CVD method, thereby causing the agglomeration. However, the reaction is carried out with the tungsten telluride sputtering target in the nitrogen atmosphere. The sputter deposition method allows the uniform formation of the nitrogen-containing heheite layer 202C regardless of the underlying type. When a nitrogen-containing titanium similar to the second embodiment of the titanium layer 22A in the first embodiment is used Low contact resistance can be obtained at layer 2 0 2 A. Obtaining this low contact The reason for the resistance is because argon is supplied to the nitrogen-containing tungsten layer 202B formed by the nitrogen-containing titanium layer 202A, whereby the upper portion of the nitrogen-containing titanium layer 202A is made strong, and at the same time, the agglomeration of the Ti-Si bond is prevented. The gate stack structure of the second embodiment includes the first conductive layer 201, the TiNx/WNx/WSixNy intermediate structure 202, and the second conductive layer 203. The first conductive layer 201 includes a polysilicon and the second conductive layer 203. Tungsten is included, thereby forming a tungsten polysilicon gate stack structure. In particular, the TiNx/WNx/WSixNy intermediate structure 202 is formed in a stacked structure including a first gold layer, a second metal layer, and a nitrogen-containing metal halide layer. The first and second metal layers are metal layers containing nitrogen in a certain content/weight ratio, and the nitrogen-containing metal telluride layer contains nitrogen in a certain content/weight ratio. For example, the first metal layer contains the Nitrogen titanium layer 202A. The second metal layer is the nitrogen-containing tungsten layer 202B. The metal telluride layer is the nitrogen-containing tungsten germanide layer 202C. -15- 201250804 The multilayer intermediate structure as described above may also be in other different structures. Forming, for example, the first nitrogen-containing metal layer of 6 hai The nitrogen-containing titanium layer further includes a nitrogen-containing tantalum layer (TaNx) layer, and the second nitrogen-containing metal layer includes a nitrogen-containing titanium tungsten (TiWNx) layer in addition to the nitrogen-containing tungsten layer. The layer includes a nitrogen-containing titanium telluride (TiSixNy) layer or a nitrogen-containing button telluride (TaS "Nj layer" by performing a PVD method including sputtering, a CVD method, or an ALD method. Forming the nitrogen-containing button layer, forming a smectite gas-bearing layer by performing a reactive sputtering deposition method with a titanium-tungsten sputtering target in a gas atmosphere, by using individual titanium telluride in a nitrogen atmosphere And the group of Xixi compound antimony ore is subjected to reactive sputtering deposition to form the nitrogen-containing titanium telluride layer and the nitrogen-containing telluride layer. The nitrogen-containing tantalum layer is formed to a thickness of about 10 to 80 people. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer, and the nitrogen-containing telluride layer has a thickness of about 2 to 200 Å and each layer has between about 1% and 6%. The nitrogen content within the range. Here, the nitrogen content is appropriately adjusted as described above. If the nitrogen content is too low, the junction reaction will occur because the nitrogen-containing titanium or telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too large, the content of S? contained in the titanium-containing or neolithic layer of shai can be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 5 to 3 Torr. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is in the range of about 0 5 to 3.0. In the nitrogen-containing telluride layer, the ratio of the ruthenium button is in the range of about 0.5 to 3.0. Similar to the TiNx/WNx/WSixNy intermediate structure, the intermediate structure including the gas-containing button layer in place of the nitrogen-containing titanium layer can have low contact resistance and -16-201250804 sheet resistance and simultaneously prevent a polysilicon enthalpy. Although the intermediate structure according to the second embodiment is formed in three layers, the intermediate structure may further include a nitrogen-containing tungsten (WNx) layer over the tungsten-containing germanide layer. The additional nitrogen-containing tungsten layer provided has substantially the same thickness and nitrogen content as the first provided nitrogen-containing tungsten layer. The plurality of layers of the TiNx/WNx/WSixNy intermediate structure according to the second embodiment contain nitrogen. As a result, the TiNx/WNx/WSixNy intermediate structure can have low sheet resistance and contact resistance and reduce the twist of the gate stack structure. Moreover, the TiNx/WNx/wsixNy intermediate structure can reduce polycrystalline lithotripsy caused by out-diffusion of impurities (e.g., butterflies) doped in the first conductive layer 2?. Fig. 3D depicts a gate stack structure in accordance with a third embodiment of the present invention. The gate stack structure includes a first conductive layer 2, an intermediate structure 212, and a second conductive layer 213. The first conductive layer 211 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron (3)) or an N-type impurity (e.g., phosphorus (p)). The first conductive layer 21 may include a polysilicon (Si)-xGex layer in addition to the polysilicon, wherein x is in the range of about 〇1 to i , or may include a vaporized layer. The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), button (Ta), hafnium (Hf), mal (Zr), and platinum (Pt). One of the groups formed. The second conductive layer 213 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is carried out to form a tungsten layer having a thickness of about 1 to 2 Å. The PVD process involves the use of a sputter deposition process with a tungsten sputter target. The intermediate structure 212 includes a titanium telluride (TiSix) layer 212A, a gas-containing titanium (ITO) layer 212B, a nitrogen-containing tungsten (WNx) layer 212C, and a nitrogen-containing tungsten germanide (WSixNy) layer 212D. According to the intermediate structures 22 and 202' described in the respective first and second embodiments, -17 to 201250804, in addition to the titanium lithium layer, the nitrogen-containing layer, and the nitrogen-containing tungsten layer, yttrium may be separately formed. a telluride layer, a nitrogen-containing tantalum layer, and a nitrogen-containing titanium tungsten layer. Further, in addition to the nitrogen-containing tungsten telluride layer, a nitrogen-containing titanium; a cerium compound layer or a nitrogen-containing nitrite layer may be formed. The gate stack structure according to the third embodiment is constructed by performing an annealing treatment on the gate stack structure according to the first and second embodiments of the present invention. The annealing includes heat treatments that are accompanied by various processes (e.g., spacer formation and formation of an inner insulating layer) that are applied after the formation of the gate stack structures. Referring to Figures 3A and 3D, the intermediate structure 2 1 2 and the intermediate structure 22 are compared. When the titanium layer 22A reacts with the polycrystalline stone from the first conductive layer 21, a titanium lithium layer 2 1 2 A having a thickness of about 1 A to 30 A is formed. The ratio of bismuth to titanium in the titanium telluride layer 2 1 2 A is in the range of between about 与5 and 3.0. When nitrogen is supplied from the nitrogen-containing tantalum layer 22B to the titanium layer 22A, the nitrogen-containing titanium layer 212B is caused. The nitrogen-containing titanium layer 212B has a thickness of from about 1 Torr to about 100 Å and a ratio of nitrogen to titanium in the range of from about 0.7 to about 1.3. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 2 1 2Β is increased from about 0 to about 0.7 to 1.3 as compared to the ratio of nitrogen to titanium in the titanium layer 22Α. After the annealing, the nitrogen-containing tungsten layer 212C has a nitrogen content reduced to about 10% or less due to the denudation. The component symbol WNX (D) indicates the etched nitrogen-containing tungsten layer. The nitrogen-containing tungsten layer 212C is about 20 to 200 people thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 212C is in the range of between about 〇1 and 0.15. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten-18-201250804 layer 2 1 2C is from about 0.3 to 1.5 compared to the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 22C described in FIG. 3A. The range is reduced to a range of between about 0. 0 1 and 0.15. The nitrogen-containing tungsten telluride layer 2 1 2D has substantially the same thickness and composition as the nitrogen-containing tungsten germanide layer 22 C. In detail, the nitrogen-containing tungsten germanide layer 212D has a ratio of germanium to tungsten in the range of about 0.5 to 3.0 and a nitrogen content in the range of between about 10% and 60%. The thickness of the nitrogen-containing tungsten germanide layer 212D is in the range of between about 20A and 200A. Referring to Figures 3D and 3C, the intermediate structure 212 and the intermediate structure 202 are compared. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten layer 202B to the nitrogen-containing titanium layer 202A. As a result, the nitrogen-containing titanium layer 202A is changed into the nitrogen-containing titanium layer 212B having the smallest reaction with the titanium germanide layer 212A. The thickness of the titanium telluride layer 212A is in the range of about i to 3 Å, and the thickness of the titanium-containing titanium layer 2 1 2B is in the range of about 丨〇 to 100 Å. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 2 1 2 B is in the range of between about 与7 and 1.3. The nitrogen to titanium ratio in the nitrogen-containing titanium layer 212B is increased from about 〇2 to 0.8 to about 0.7 and 1.3 as compared to the gas to titanium ratio in the nitrogen-containing titanium layer 2 0 2 B. range. After the annealing, the nitrogen-containing tungsten layer 2 12C has a nitrogen content of about 10% or less due to the action of the invading insect. The nitrogen-containing tungsten layer 212C is about 20A to 200 people thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 212C is in the range of about 0.01 and 0.15. The ratio of nitrogen to tungsten in the nitrogen-containing heddle layer 2丨2C is from about 〇·3 to 1.5 compared to the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 202C described in FIG. 3C. The range is reduced to a range of between about 0.01 and 0.15. -19-201250804 is the same as the ratio of the nitrogen-containing tungsten to the nitrogen-containing tungsten germanium and about the thickness and composition of the substantially vapor-containing layer 202C. In detail, the layer 2 1 2D has a nitrogen content ranging from about 0.5 to 3.0 in the range of 10% to 60%. The thickness of the nitrogen-containing tungsten carbide layer 2i2D is in the range of between about 20A and 200A. The gate stack structure according to the third embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a first metal halide layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal layer and a second nitrogen-containing metal halide layer. For example, the first intermediate structure is formed by stacking the titanium germanide layer 212A and the nitrogen-containing titanium layer 212B. The second intermediate structure is formed by stacking the gas-containing tungsten layer 212C and the nitrogen-containing tungsten carbide layer 21 2D. Figure 3E depicts an image of the gate stack structure after the annealing process. The same component elements as those described in the first to third embodiments represent the same elements. Therefore, the detailed description thereof will be omitted. Fig. 4A depicts a gate stack structure in accordance with a fourth embodiment of the present invention. The gate stack structure includes a first conductive layer 31, an intermediate gentleman 3 2, and a second conductive layer 33. The first conductive layer 31 includes a polycrystalline layer of a highly modified p-type impurity (for example, boron) or an N-type impurity (for example, phosphorus). The first conductive layer 31 may also include a polycrystalline stone layer (si^xGex, wherein the X system is in the range of between about 0.01 and 1.0) or a vaporized layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), crane (W), tantalum (Ta), hafnium (Hf), zirconium (Zr), and platinum. One of the groups consisting of (pt). The second conductive layer 33 includes a tungsten layer. The tungsten layer is formed to a thickness of about 2000 Å and formed by a PVD method, a CVD method or an ALD method. -20- 201250804 The δHai P V D method includes a sputter deposition method using a tungsten sputtering target. The intermediate structure 32 includes a titanium layer 32A and a nitrogen-containing tungsten germanide (WSixNy) layer 32B. In detail, the thickness of the titanium layer 32A is in the range of about 10A to about 80A. Preferably, the layer 32A has a thickness of from about (7) people to about 50 people. The titanium layer 32A changes some of its upper portion to TiN by subsequent wsixNy deposition to form a nitrogen-containing tungsten germanide layer 32B' and some of its lower portion reacts with the first conductive layer 31, that is, the polysilicon The layer thus forms a TiSix layer and therefore has a thickness as defined above. If the thickness of the titanium layer 32A is large, the thickness of the TiSix layer also increases due to its volume expansion. In addition, if the thickness of the titanium layer 32A is large, the titanium layer 3 2 A can absorb dopants, for example, the polysilicon layer 31 is filled or boron and thus multiple depletion occurs in the polysilicon layer 31, resulting in components. Deterioration in performance. The nitrogen-containing tungsten carbide layer 32B has a rhodium to tungsten ratio of from 0.5 to 3.0 and a nitrogen content of from about 1% to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 32B is not successful as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 32B may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten telluride layer 3 2 B represents a tungsten-rhenium nitride layer or a heparite layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing heparite layer 3 2 B is formed to have a thickness of about 20A to 200A. The titanium layer 32A is formed by a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten telluride layer 32B is formed by a PVD method. The PVD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the titanium layer 32A is formed by performing a sputtering deposition method on a titanium 201250804 sputtering target. The nitrogen-containing tungsten telluride layer 32B is formed by performing a reactive sputtering deposition method with a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the nitrogen-containing hedder telluride layer 32B can be uniformly formed regardless of the underlying type, the PVD method (for example, reactive sputtering deposition method) is used to form the nitrogen-containing tungsten telluride layer 3 2 B. . A gate stack structure according to a fourth embodiment of the present invention includes the first conductive layer 31, the Ti/WSixNy intermediate structure 32, and the second conductive layer 33. The first conductive layer 31 includes a polysilicon and the second conductive layer 33 includes tungsten' thereby forming a tungsten polysilicon gate stack structure. In particular, the Ti/WSixNy intermediate structure 32 includes a metal layer and a nitrogen-containing metal halide layer. The metal layer comprises a pure metal layer and the metal telluride layer comprises a nitrogen-containing tungsten germanide layer. For example, the metal layer is the titanium layer 32A and the metal halide layer is the nitrogen-containing tungsten germanide layer 32B. The multilayer intermediate structure according to the fourth embodiment can also be formed in other structures. The metal layer includes a giant layer in addition to the titanium layer, and the nitrogen-containing silicon metal halide layer includes a nitrogen-containing titanium telluride (TiSLNy) layer or a nitrogen-containing germanide in addition to the nitrogen-containing tungsten germanide layer. (TaSixNy) layer. The nitrogen-containing titanium oxide layer is formed by a PVD method including a sputtering deposition method, a CVD method or an ALD method by performing a reactive sputtering deposition method by sputtering with titanium bismuth oxide in a nitrogen atmosphere. The gas-containing telluride layer is formed by performing reactive gold plating deposition & in a gas atmosphere in a gas atmosphere. The button layer is about 1 to 8 inches thick. Preferably, the ruthenium layer has a thickness of from about 10 A to about 5 Å. The button layer is changed to τ & ν by subsequent WSHNy deposition to form a metal 矽-22-201250804 layer, and some of its lower portion reacts with the first conductive layer 31, that is, ' The polysilicon layer thus forms a TaSix layer and thus has a thickness as defined above. If the thickness of the tantalum layer is large, the thickness of the TaSix layer also increases due to its volume expansion. Further, if the thickness of the button layer is large, the ruthenium layer can absorb the dopant of the polysilicon layer 31, such as 'phosphorus or boron, so that multiple vacancies occur in the polysilicon layer 31, resulting in deterioration of the elemental properties. Each of the nitrogen-containing titanium lithium layer and the nitrogen-containing group is formed to have a thickness of about 20 to 200 persons and each layer has a nitrogen content of about 10% to 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing titanium or telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or telluride layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The ratio of niobium to titanium in the nitrogen-containing titanium telluride layer is in the range of between about 0.5 and 3.0. The nitrogen-containing telluride layer has a rhodium to rhodium ratio of from about 0.5 to about 3.0. Fig. 4 is a view showing a gate stack structure in accordance with a fifth embodiment of the present invention. The gate stack structure is modified from the gate stack structure according to the second embodiment. In other words, a titanium-containing titanium (τίΝχ) layer is used in place of titanium, where X is less than about 1. The gate stack 4 structure includes a first conductive layer 30 and an intermediate structure 302 and a second conductive layer 3〇3. The mth 301 includes a polysilicon layer highly doped with a p-type impurity (for example, boron) or an N-type impurity (for example, phosphorus). The first conductive layer 301 may also include a polysilicon layer (Sii_xGex, X in the basin is about (. (in the range between H and 1.0) or a lithium layer. For example; the Shi Xi-23 - 201250804 layer includes Select from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), tantalum (Ta), bell (Hf), niobium (Zr) and platinum (pt) In the group - the second conductive layer 303 comprises a tungsten layer. The pvd method, the CVD method or the ALD method is used to form a tungsten layer of about ΐοοΑ to 2000A thick. The PVD method includes the use of a crane-reduced light weight mine. The intermediate structure 302 includes a titanium-containing titanium (TiNx) layer 302A and a nitrogen-containing tungsten germanide (WSixNy) layer 302. The nitrogen-containing titanium layer 302A has a nitrogen to titanium ratio of about 0.2 to 0.8 and about 1 〇. The thickness of a to 15 〇 person. Here, the 'nitrogen-containing metal layer', that is, the nitrogen-containing titanium layer 3〇2A has a ratio of nitrogen to 如上 as described above to prevent SiN from being generated from the TiNx layer 302A. During the subsequent annealing process, the generation of siN is prevented by the excessive Ti in the TiNx layer 302A being destroyed by the Si-N bond formed between the polysilicon and the ,, and thus removed. iN. Since the TiN bonding is much stronger than the SiN bonding, it is feasible. The nitrogen-containing titanium layer 3〇2A represents a zinc nitride layer or a nitrogen-containing titanium layer. In this embodiment, the nitrogen-containing titanium layer has metal characteristics. The nitrogen-containing tungsten carbide layer 3〇2B has a ratio of 石5 to 3.0 in the range of 〇5 to 3.0 and a nitrogen content of about 1% to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 302B cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, it is included in the nitrogen-containing heparite layer. The SiN content in 302B may be high, and thus the contact resistance becomes high, resulting in deterioration of device performance. The nitrogen-containing tungsten telluride layer 302B represents a tungsten-rhenium nitride layer or a tungsten-deposited layer containing a certain content/weight ratio of nitrogen. The layer is formed by a PVD method and the nitrogen-containing titanium layer 302B is formed by a PVD method. The PVD method is performed by a sputtering deposition method or a reactive sputtering deposition method, for example, by Reactive sputtering deposition method is formed by using a titanium sputtering target in a nitrogen atmosphere. Nitrogen-containing titanium layer 3 0 2 A. The nitrogen-containing tungsten telluride layer 302B is formed by performing a reactive key deposition method in a nitrogen atmosphere in a nitrogen atmosphere. Because the PVD method allows the nitrogen-containing tungsten to be deuterated. The layer 302B is uniformly formed regardless of the underlying type, so the PVD method (for example, the above reactive sputtering deposition method) is used to form the nitrogen-containing tungsten germanide layer 302B. The gate stack structure according to the fifth embodiment The first conductive layer 301, the TiNx/WSixNy intermediate structure 302, and the second conductive layer 303 are included. The first conductive layer 301 and the second conductive layer 303 respectively include a polysilicon layer and a tungsten layer. Therefore, a tungsten polysilicon gate stack structure is provided. In particular, the TiNx/WSixNy intermediate structure includes a metal layer and a nitrogen-containing metal telluride layer. The metal layer includes a metal layer 'containing a certain content/weight ratio of nitrogen' and the metal halide layer includes a metal halide layer containing a certain content/weight ratio of nitrogen. For example, the metal layer includes the nitrogen-containing titanium layer 302A, and the metal halide layer includes the nitrogen-containing tungsten germanide layer 302B. The multilayer intermediate structure according to the fifth embodiment can be formed in other different structures. The nitrogen-containing metal layer includes a nitrogen-containing niobium (TaNx) layer in addition to the nitrogen-containing titanium layer. The nitrogen-containing metal telluride layer includes a nitrogen-containing titanium telluride (TisixNy) layer or a nitrogen-containing composition (TaSixNy) layer in addition to the nitrogen-containing tungsten germanide (wSixNy) layer. The nitrogen-containing Is layer is formed by a pVD method, a CVD method, or an ALD method including a recording deposition method. The nitrogen-containing titanium telluride layer was formed by performing a reactive sputtering deposition method on a titanium telluride sputtering target in a nitrogen atmosphere at -25 - 201250804. # The nitrogen-containing knob telluride layer was formed by performing a reactive sputtering deposition method in a gas-vapor environment with a telluride sputtering target. The nitrogen-containing button layer has a thickness ranging from about 1 〇 to 8 λ. Each of the gas-containing titanium telluride layer and the nitrogen-containing telluride layer has a thickness of from about 20 Å to about 200 Å, and each layer has a nitrogen content of from about 10% to about 6%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing titanium or telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the content of siN contained in the nitrogen-containing titanium or telluride layer may be high, and thus the contact resistance may be caused, resulting in deterioration of element performance. The ratio of niobium to titanium in the nitrogen-containing titanium telluride layer is in the range of about 〇5 and 3 〇. The nitrogen-containing button telluride layer has a ratio of 矽 to 钽 in the range of about 至, 5 to 3 。. Fig. 4C depicts a gate stack structure in accordance with a sixth embodiment of the present invention. The gate stack structure includes a first conductive layer 3, an intermediate structure 312, and a second conductive layer 313. The first conductive layer 311 includes a polycrystalline layer which is highly doped with a P-type impurity (e.g., boron (B)) or an N-type impurity (e.g., scale (p)). The first conductive layer 31 may also include a polysilicon layer (Sil-xGe*) in addition to the polysilicon layer, wherein the X system is in the range of between about 0.01 and 1.0 or may include a vapor layer. The telluride layer comprises a layer selected from the group consisting of nickel (nickel), chromium (Cr), cobalt (Ti), titanium (Ti), tungsten, group (Ta), (Hf), (Zr) and platinum (pt). One of the groups. The second conductive layer 313 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is performed to form a tungsten layer of about i〇〇a to 2〇〇〇A thick. The shai PVD method includes a sputter deposition method using a tungsten sputtering target. -26- 201250804 The intermediate structure 3 12 includes a titanium telluride (TiSix) layer 3 12A, a nitrogen-containing layer 312B, and a nitrogen-containing tungsten germanide (wsixNy) layer 312C. The intermediate structure may be formed in other different structures according to the materials selected from the fourth and fifth embodiments. The gate stack structure according to the sixth embodiment is a structure resulting from the annealing treatment of the gate stack structures according to the fourth and fifth embodiments of the present invention. The annealing includes heat treatments accompanying various processes (e.g., spacer formation and inner insulating layer formation) performed after forming the gate stack structures. In the case where the nitrogen-containing tungsten germanide layer 32b is formed over the titanium layer 32A, reference is made to the boundary between the titanium layer μα and the a gas crane layer 34 2 B after the annealing. A trace amount of nitrogen in the nitrogen-containing Hepoxia layer 32B is decomposed in the region. Therefore, as described in FIG. 4c, a portion above the titanium layer 32A is transformed into the nitrogen-containing titanium layer 312B, and a portion below the titanium layer 32A reacts with the polycrystal from the first conductive layer 31, To form the titanium germanide layer 3 1 2 A. The thickness of the titanium telluride layer 3 1 2A is in the range of between about 1 A and 30 A, and wherein the ratio of tantalum to titanium is in the range between about 0.5 and 3 · 〇. The nitrogen-containing titanium layer 312B is about 1 Å to 100 Å thick and has a ratio of nitrogen to convergence in the range of about 〇 · 7 and 1.3. The nitrogen-containing Heatherite layer 3 1 2 C has a thickness and a composition substantially the same as those of the nitrogen-containing Hetian compound layer 32B. In detail, the nitrogen-containing tungsten germanide layer 312C has a ratio of germanium to tungsten in the range of about 0.5 to 3.0 and a nitrogen content in the range of between about 10% and 60%. The thickness of the nitrogen-containing tungsten telluride layer 3?2c is in the range of between about 20A and 200A. -27- 201250804 Referring to Figures 4C and 4B, the intermediate structure 3 1 2 and the intermediate structure 302 are compared. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten carbide layer 3〇2b to the nitrogen-containing titanium layer 302A, thereby converting the nitrogen-containing titanium layer 302A into a minimum reaction with the titanium germanide layer 3 1 2 A. Nitrogen-containing titanium layer 3 1 2B. The thickness of the titanium telluride layer 3 1 2A is in the range of about 1 A to 30 A, and the thickness of the nitrogen-containing titanium layer 312B is in the range of about 1 to 10 A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 3 1 2 B is in the range of about 0.7 to 1.3. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 3 1 2B increases from about 〇·2 to 0.8 to about the ratio of nitrogen to titanium in the nitrogen-containing titanium layer 302B (see FIG. 4C). 〇· The range between 7 and 1.3. The nitrogen-containing tungsten telluride layer 3 1 2 C has substantially the same thickness and composition as the nitrogen-containing tungsten-lithium layer 302C. In detail, the nitrogen-containing tungsten carbide layer 3 1 2 C has a ratio of stone-to-tungsten in the range of about 0.5 to 3.0 and about 10% and 60°/. The nitrogen content of the range. The thickness of the nitrogen-containing tungsten carbide layer 3 12c is in the range of between about 20A and 200A. The gate stack structure according to the sixth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a nitrogen-containing metal layer ' and the second intermediate structure includes a nitrogen-containing metal halide layer. For example, the first intermediate structure is formed by stacking the titanium germanide layer 3丨2 A and the nitrogen-containing titanium layer 3 1 2B. The second intermediate structure includes the nitrogen-containing tungsten telluride layer 3 1 2 C. Fig. 5A depicts a gate stack structure in accordance with a seventh embodiment of the present invention. The gate stack structure includes a first conductive layer 4 and an intermediate structure 42 and a second conductive layer 43. The first conductive layer 41 includes a polysilicon layer highly doped with p_ type -28-201250804 impurity (for example, boron) or N-type impurity (for example, phosphorus). The first conductive layer 41 may also include a polycrystalline misalignment layer (sL.xGex' wherein X is in the range of between about 0.01 and 1.0) or a telluride layer. For example, the lithiation layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), agglomerate (Co), titanium (Ti), crane (\γ), tantalum (Ta), hafnium (Hf), and zirconium (Zr). And one of the groups consisting of platinum (Pt). The second conductive layer 43 includes a tungsten layer. The tungsten layer is about 1 〇〇a to 2000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The P V D method includes a dry sputtering deposition method using tungsten sputtering. The intermediate structure 42 includes a titanium layer 42A, a nitrogen-containing tungsten germanide (wSixNy;) layer 42B, and a nitrogen-containing tungsten (WNX) layer 42C. In detail, the thickness of the titanium layer 42A is in the range of about 10A to about 80 people. Preferably, the titanium layer 42A has a thickness of from about i A to about 50 Å. The titanium layer 42A changes some of its upper portion to TiN by subsequent WNX deposition to form a nitrogen-containing germanium layer 42C, and some of its lower portion reacts with the first conductive layer 41, that is, 's-sea polycrystal The stone layer thus forms a layer of τ i S ix and thus has a thickness as defined above. If the thickness of the titanium layer 42A is large, the thickness of the TiSix layer also increases due to its volume expansion. In addition, if the thickness of the seed layer 42A is large, the titanium layer 42A can absorb the dopant of the polysilicon layer 41, such as lanthanum or boron, so multiple vacancies occur in the polycrystalline layer 41. Deterioration in performance. The nitrogen-containing tungsten carbide layer 42B has a rhodium to tungsten ratio of from about 0.5 to 3.0 and a nitrogen content of from about 1% to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 42B cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too south, the siN content contained in the nitrogen-containing tungsten carbide layer 42B is high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten telluride layer 42B represents a tungsten germanium nitride layer or a tungsten germanide layer containing a nitrogen in a certain amount/weight ratio. The nitrogen-containing tungsten telluride layer 42B is formed to have a thickness of about 20 to 200 people. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 2 C is in the range of between about 与 3 and 1.5. The nitrogen-containing tungsten layer 42c represents a tungsten nitride layer or a tungsten layer containing nitrogen in a certain content/weight ratio. The thickness of the nitrogen-containing tungsten layer 42C is in the range of about 20A to 200%. Although will be described later, it is known that the nitrogen-containing tungsten layer 42C supplies nitrogen to the nitrogen-containing tungsten carbide layer 42B. Therefore, after the annealing, the nitrogen-containing tungsten layer 42 (: becomes a pure tungsten layer having no nitrogen or a tungsten layer containing a trace of nitrogen.

藉由實施PVD法、CVD法或ALD法形成該鈦層42A 及該含氮鎢層42C。藉由實施PVD法形成該含氮鎢矽化 物層42B。 该PVD法以濺鍍沉積法或反應式激鑛沉積法進 行。例如:藉由以鈦濺鍍靶實施濺鍍沉積法來形成該鈦 層42A °藉由在氮氣環境中以鎢濺鍍靶實施反應式濺鍵 >儿積法來形成該含氮鎢層4 2 C。藉由在氮氣環境中以鶴 石夕化物職鍍靶實施反應式濺鍍沉積法來形成該含氮鎢石夕 化物層42B。特別地,因為在該氮氣環境中以該鎢石夕化 物激鎮乾實施上述反應式濺鍍沉積法以允許該含氮鶴石夕 化物層42B之均勻形成而與下層型態無關,所以使用該 PVD法(例如:反應式濺鍍沉積法)形成該含氮鎢矽化物 層 42B 〇 依據本發明之第七實施例的閘極堆疊結構包括該第 -30- 201250804 一導電層41、該Ti/WSixNy/WNx中間結構42及該第二* 導電層43。該第一導電層41包括多晶矽及該第二導電 層43包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,該Ti/WSixNy/WNx中間結構包括第〆金廣 層、含氮金屬矽化物層及第二金屬層。該第一金屬層包 括純金屬層該第二金屬層包括一含氮金屬層。該金屬 矽化物層包括含氮金屬矽化物層。例如:該第一金屬層 係該鈦層42A。該第二金屬層係該含氮鎢層42C。該金 屬矽化物層係該含氮鎢矽化物層42B。 依據第七實施例之多層中間結構亦可以其它結構形 成。該第一金屬層除了該鈦層之外還包括钽層。該第二 金屬層除了該含氮鎢層之外還包括含氮鈦鎢(TiWNx) 層。該金屬石夕化物層除了該含氤鶴石夕化物層之外還包括 含氮鈦石夕化物(TiSixNy)層或含氮钽矽化物(TaSixNy)層。 藉由包括濺鍍沉積法之PVD法、CVD法或ALD法形成 s玄组層。藉由在氮氣環境中以鈦鶊濺鍍靶實施反應式濺 鑛來形成該含氮鈦鎢層。藉由在氮氣環境中以鈦矽化物 滅:錢鞋*實施反應式濺鍍沉積法來形成該含氮鈦矽化物 層。藉由在氮氣環境中以钽矽化物濺鍍靶實施反應式濺 鑛沉積法來形成該含氮钽矽化物層。該鈕層係約1 〇 A至 80A厚。較佳地,該鈕層具有約1 oA到約5〇A之厚度。 1鈕層因為藉由隨後《WSixNy沈積而將其某些上部改 又為TaN以开》成金屬石夕化物層,並且其某些下部與該 第導電層41反應,亦即,該多晶石夕層目而形成丁&队 層,故具有如上述限制之厚度。若該钽層之厚度是大的, -31 - 201250804 則該TaSix層之厚度也因為其體積擴大而增加發生隆 起此外’若該钽層之厚度是大的,則該钽層可吸收摻 雜物,例如,多晶矽層41之磷或硼並因此於多晶矽層 4 1中發生多重空乏,導致元件性能之劣化。該含氮鈦鎢 層及該含氮鈕矽化物層之每一層所形成之厚度係約20人 至200A及每一層具有約1〇%至6〇%之氮含量。在此, 該氮含罝以上述方式被適當調整。若該氮含量太低,則 接面反應會因含氮鈕矽化物層不能成功作為擴散障壁而 發生。另一方面,若該氮含量太高,則包含於該含氮鈕 石夕化物層中之SiN含量會是高的,並因而使接觸電阻變 高,導致το件性能劣化。該含氮鈦鎢層具有約〇·5與3 〇 間範圍之鈦對鎢的比例。該含氮鈦矽化物層中之矽對鈦 的比例係在約〇·5與3.〇間之範圍内。該含氮鈕矽化物 層具有約〇. 5至3.0之矽對鈦比例。 第5Β圖描述依據本發明之第八實施例的一閘極堆 疊結構。该閘極堆疊結構包括第一導電層4 〇丨、中間結 構402及第二導電層403。該第一導電層4〇1包括高摻 雜有P-型雜質(例如:硼)或N•型雜質(例如:磷)之多晶 矽層。該第一導電層401亦可包括多晶矽鍺層(sii xGex, 其中X係在約0 _ 0 1與1 · 〇間之範圍内)或石夕化物層。例 如:該石夕化物層包括選自由鎳(Ni)、鉻(Cr)、鈷(c〇)、鈦 (Ti)、鎢(W)、鈕(Ta)、铪(Hf)、锆(Zr)及鉑(pt)所組成之 群組中之一。 s哀第一導電層4 0 3包括鶴層。該鶴層係約1 〇 〇 a至 2000人厚及藉由實施PVD法、CVD法或ALD法所形成。 -32- 201250804 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構402包括含氮鈦(TiNx)層402A、含氮鎢 矽化物(WSixNy)層402B及含氮鎢(WNX)層402C。更詳而 言之,該含氮鈦層402A之氮對鈦具有某一比例(例如: 在約0.2至0.8之範圍内)。在此,該含氣金屬層,亦即, 該含氮鈦層4 0 2 A,具有如上述之氮比鈦之比例,以防止 SiN於該含氮鈦層402 A中產生。由於在隨後之退火處理 期間該含氮鈦層402A中過多的Ti會破壞多晶矽與TiNx 之間所形成的Si-N鍵並因而移除SiN,故可防止SiN的 產生。此因為TiN連結比SiN連結更強健而變得可行。 該含氮鈦層402A所形成之厚度係約10A至150A。該含 氮鈦層402A亦包括鈦氮化物層。 該含氮鎢矽化物層402B中之矽對鎢的比例係在約 〇·5與3.0間之範圍内,以及該含氮鎢矽化物層402B之 氮含量在約10%至60%之範圍内。在此,該氮含量以上 述方式被適當調整。若該氮含量太低,則接面反應會因 含氮鎢矽化物層 4 0 2 B不能成功作為擴散障壁而發生。 另一方面,若該氮含量太高’則包含於該含氮鎢石夕化物 層402B中之SiN含量會是高的’並因而使接觸電阻變 高’導致元件性能劣化。該含氮鎢矽化物層402B亦包 括鎢矽氮化物層或含某一含量/重量比之氮的鎢矽化物 層。 該含氮鎢層402C之氮對鎢具有某一比例(例如:在 約0.3至1.5之範圍内)。該含氮鎢層402C表示鎢氮化 物層或含某一含量/重量比之氮的鎢層。雖然描述於後, -33 - 201250804 但是知道該含氮鎢層402C供應氮至該含氮鎢石夕化物層 402B。該含氮鎢層402C所形成之厚度約2〇A至200A。 由於氮之供應’該含氮鶴層402C在該退火後變成純鶴 層或含微ϊ氮》之嫣層。 藉由實施PVD法、CVD法或ALD法形成該含氮鶴 層402C。藉由實施PVD法形成該含氮鈦層4〇2A及該含 氮鎢石夕化物層4 0 2 B。 該PVD法以濺鍍沉積法或一反應式濺鑛沉積法進 行。例如:藉由在氮氣環境中以鈦濺鍍靶實施濺鑛沉積 法來形成該含氮鈦層402 A。藉由在氮氣環境中以嫣賤_ 靶實施反應式濺鍍沉積法來形成該含氮鎢層4〇2c>藉由 在氮氣環境中以鎢矽化物濺鍍靶實施反應式賤錄沉積法 來形成該含氮鎢矽化物層402B。特別地,田或1 ^ ^ M两均勻地 形成該含氮鎢矽化物層402B而與下層创能& θ 土 ^•、黑關,所以 使用該PVD法(例如:反應式濺鍍沉積法)形成該含氮 矽化物層402B。 依據本發明之第八實施例的問極堆疊結構包 一導電層4〇1、該TiNx/WSixNy/WNx中間結構4〇2及卞 第二導電層403。該第一導電層4〇1包括多晶石夕及該: 二導電層403包括鎢,藉此形成鎢多晶矽閘極堆疊社The titanium layer 42A and the nitrogen-containing tungsten layer 42C are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten germanide layer 42B is formed by performing a PVD method. The PVD method is carried out by a sputtering deposition method or a reactive alloy deposition method. For example, the titanium layer 42A is formed by sputtering deposition using a titanium sputtering target, and the nitrogen-containing tungsten layer is formed by performing a reactive sputtering bond by a tungsten sputtering target in a nitrogen atmosphere. 2 C. The nitrogen-containing tungsten carbide layer 42B was formed by performing a reactive sputtering deposition method in a nitrogen atmosphere with a Heshixi compound job target. In particular, since the above-described reactive sputtering deposition method is carried out in the nitrogen atmosphere by the tungsten sulphide spurt to allow the uniform formation of the nitrogen-containing Heatherite layer 42B regardless of the underlying type, the use of the The PVD method (for example, reactive sputtering deposition method) forms the nitrogen-containing tungsten germanide layer 42B. The gate stack structure according to the seventh embodiment of the present invention includes the conductive layer 41 of the -30-201250804, the Ti/ WSixNy/WNx intermediate structure 42 and the second* conductive layer 43. The first conductive layer 41 includes polysilicon and the second conductive layer 43 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. In particular, the Ti/WSixNy/WNx intermediate structure includes a third gold layer, a nitrogen-containing metal halide layer, and a second metal layer. The first metal layer comprises a pure metal layer and the second metal layer comprises a nitrogen-containing metal layer. The metal telluride layer comprises a nitrogen-containing metal telluride layer. For example, the first metal layer is the titanium layer 42A. The second metal layer is the nitrogen-containing tungsten layer 42C. The metal telluride layer is the nitrogen-containing tungsten germanide layer 42B. The multilayer intermediate structure according to the seventh embodiment can also be formed in other structures. The first metal layer includes a tantalum layer in addition to the titanium layer. The second metal layer includes a nitrogen-containing titanium tungsten (TiWNx) layer in addition to the nitrogen-containing tungsten layer. The metal lithium layer further includes a Titanium-containing Titanium (TiSixNy) layer or a Nitrogen-containing Telluride (TaSixNy) layer in addition to the ruthenium-containing ruthenium-containing layer. The smectic layer is formed by a PVD method including a sputter deposition method, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing reactive sputtering with a titanium ruthenium sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer was formed by performing a reactive sputtering deposition method using a titanium oxide in a nitrogen atmosphere. The nitrogen-containing telluride layer is formed by performing a reactive sputtering deposition method with a telluride sputtering target in a nitrogen atmosphere. The button layer is about 1 〇 A to 80 Å thick. Preferably, the button layer has a thickness of from about 1 oA to about 5 〇A. The button layer is formed into a metal lithium layer by a part of the WSixNy deposition, which is changed to TaN to open, and some of the lower portion thereof reacts with the first conductive layer 41, that is, the polycrystalline stone. The ding & team layer is formed at the same time, so it has a thickness as described above. If the thickness of the ruthenium layer is large, -31 - 201250804, the thickness of the TaSix layer is also increased due to its volume expansion, and if the thickness of the ruthenium layer is large, the ruthenium layer can absorb dopants. For example, phosphorus or boron of the polysilicon layer 41 and thus multiple depletion in the polysilicon layer 41, resulting in deterioration of device performance. Each of the nitrogen-containing titanium tungsten layer and the nitrogen-containing button telluride layer has a thickness of from about 20 to 200 Å and each layer has a nitrogen content of from about 1% to about 6%. Here, the nitrogen-containing ruthenium is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing button telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing button layer will be high, and thus the contact resistance will become high, resulting in deterioration of the properties of the member. The nitrogen-containing titanium tungsten layer has a ratio of titanium to tungsten in a range of about 〇·5 and 3 。. The ratio of niobium to titanium in the nitrogen-containing titanium telluride layer is in the range of about 〇·5 and 3. The nitrogen-containing knob telluride layer has a rhodium to titanium ratio of from about 0.5 to about 3.0. Fig. 5 is a view showing a gate stack structure in accordance with an eighth embodiment of the present invention. The gate stack structure includes a first conductive layer 4, an intermediate structure 402, and a second conductive layer 403. The first conductive layer 〇1 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N• type impurity (e.g., phosphorus). The first conductive layer 401 may also include a polysilicon layer (sii xGex, wherein X is in the range between about 0 _ 0 1 and 1 · 〇) or a lithium layer. For example, the lithiation layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (c), titanium (Ti), tungsten (W), button (Ta), hafnium (Hf), and zirconium (Zr). And one of the groups consisting of platinum (pt). The first conductive layer 4 0 3 includes a crane layer. The crane layer is about 1 〇 〇 a to 2000 Å thick and is formed by a PVD method, a CVD method or an ALD method. -32- 201250804 This PVD method includes a sputter deposition method using a tungsten sputtering target. The intermediate structure 402 includes a nitrogen-containing titanium (TiNx) layer 402A, a nitrogen-containing tungsten germanide (WSixNy) layer 402B, and a nitrogen-containing tungsten (WNX) layer 402C. More specifically, the nitrogen-containing titanium layer 402A has a certain ratio of nitrogen to titanium (e.g., in the range of about 0.2 to 0.8). Here, the gas-containing metal layer, that is, the nitrogen-containing titanium layer 40 2 A, has a ratio of nitrogen to titanium as described above to prevent SiN from being generated in the nitrogen-containing titanium layer 402 A. Since excessive Ti in the nitrogen-containing titanium layer 402A breaks the Si-N bond formed between the polysilicon and TiNx during the subsequent annealing treatment and thus removes SiN, the generation of SiN can be prevented. This is because the TiN connection is more robust than the SiN connection. The nitrogen-containing titanium layer 402A is formed to a thickness of about 10A to 150A. The titanium-containing titanium layer 402A also includes a titanium nitride layer. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 402B is in the range of about 〇·5 and 3.0, and the nitrogen content of the nitrogen-containing tungsten germanide layer 402B is in the range of about 10% to 60%. . Here, the nitrogen content is appropriately adjusted as described above. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 4 0 2 B cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten-lithium layer 402B may be high 'and thus the contact resistance becomes high', resulting in deterioration of element performance. The nitrogen-containing tungsten germanide layer 402B also includes a tungsten germanium nitride layer or a tungsten germanide layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten layer 402C has a certain ratio of nitrogen to tungsten (e.g., in the range of about 0.3 to 1.5). The nitrogen-containing tungsten layer 402C represents a tungsten nitride layer or a tungsten layer containing a certain content/weight ratio of nitrogen. Although described later, -33 - 201250804, it is known that the nitrogen-containing tungsten layer 402C supplies nitrogen to the nitrogen-containing tungsten-lithium layer 402B. The nitrogen-containing tungsten layer 402C is formed to have a thickness of about 2 Å to 200 Å. Due to the supply of nitrogen, the nitrogen-containing heddle layer 402C becomes a layer of pure heave or micro-nitride after the annealing. The nitrogen-containing crane layer 402C is formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 4〇2A and the nitrogen-containing tungsten-lithium layer 4 0 2 B are formed by a PVD method. The PVD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the nitrogen-containing titanium layer 402 A is formed by performing a sputtering deposition method with a titanium sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten layer 4〇2c is formed by performing a reactive sputtering deposition method with a 嫣贱_ target in a nitrogen atmosphere. The reaction enthalpy deposition method is performed by using a tungsten ruthenium sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 402B is formed. In particular, the field or 1 ^ ^ M two uniformly forms the nitrogen-containing tungsten carbide layer 402B and the lower layer of energy creation & θ soil ^, black off, so the PVD method is used (for example: reactive sputtering deposition method) The nitrogen-containing telluride layer 402B is formed. A gate stack structure according to an eighth embodiment of the present invention includes a conductive layer 4?1, a TiNx/WSixNy/WNx intermediate structure 4?2, and a second conductive layer 403. The first conductive layer 4〇1 includes polycrystalline silicon and the: the second conductive layer 403 includes tungsten, thereby forming a tungsten polysilicon gate stack

::地,以包括第一金屬層、含氮金屬…:;層及 弟一金屬層之堆疊結構形成該TiNx/WSixNy/wN 構402。該第一及第二金屬層係含氮金屬層,二二: 屬矽化物層係含氮金屬矽化物層。例如:該 以金 係該含氮鈦層402A。該第二金屬層係含氮鎢•二層 -34- 201250804 該金屬矽化物層係含氮鎢矽化物層4 0 2 B。 可以其它不同結構形成上述多層中間結構。例如: 該第一含氮金屬層除了該含氮鈦層之外還包括含氮鈕 層。該第二含氮金屬層除了該含氮鎢層之外還包括含氮 欽鶴層。該含氮金屬矽化物層除了該含氮鎢矽化物層之 外還包括含氮欽石夕化物層或含氮组石夕化物層。藉由實施 包括濺鍍之PVD法、CVD法或ALD法形成該含氮鈕層。 藉由在氮氣環境中以一鈦鎢濺鍍靶實施反應式濺鍍沉積 法來形成該含氮鈦鎢層。藉由在氮氣環境中以個別鈦矽 化物及组石夕化物濺鍍靶實施反應式濺鍍沉積法來形成該 3氣鈦珍化物層及該含氮鈕矽化物層。該含氮钽層所形 成之厚度係約1 ο A至80A。該含氮鈇鎢層、該含氮鈦矽 化物層及該含氮鈕矽化物層之每一層所形成之厚度係 3人至200A ’以及每一層具有約1〇%與6〇%間範圍之氮 2量。在此,該氮含量以上述方式被適當調整。若該氮 量太低,則接面反應會因含氮鈦或组矽化物層不能成 功作為擴散障壁而發生。另—方面,若該氮含量太高, 含於泫3氮鈦或钽矽化物層中之含量會是高 ::並因而使接觸電阻變高,導致元件性能劣化。在該 3氮鈦鎢層中’鈦對鎢之比例係在約0.5至3.0之範圍 内。在該:氮鈦矽化物層中,石夕對鈦之比例係在約0.5 至3.0之範圍内。在該含氮鉅矽化物層中,矽對钽之比 例係在約0_5至3.0之範圍中。 第5C iN苗述依據本發明之第九實 "〜尔凡員她例的一閘極堆 足結構。該閘極堆疊纟士雄—k站 再立、、、口構包括第一導電層41 i、中間結 -35- 201250804 構412及第二導電層413。該第一導電層411包括高摻 雜有P-型雜質(例如:硼(B))或N-型雜質(例如··磷(P)) 之多晶矽層。該第一導電層41丨除了該多晶矽層之外, 亦可包括多晶矽鍺(Si^Gex)層,其中X係在約〇 〇ι與 1 · 〇之範圍内,或者包括矽化物層。該矽化物層包括選 自由鎳(Νι)、鉻(Cr)、鈷(Co)、鈦(Ti) ' 鎢(w)、钽(Ta)、 給(Hf)、錘(Zr)及鉑(Pt)所組成之群組中之一。 s玄第二導電層413包括鎢層。實施pvD法、CVD 法及ALD法中之一以形成約1〇〇人至2〇〇〇人厚之鎢層。 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構412包括鈦矽化物(TiSix)層412A、含氮 鈦(TiNx)層412B、含氮鎢矽化物(WsixNy^ 412(:及含 氮鎢(WNX)層4 1 2D。可依據本發明之第七及第八實施例 所述之選擇材料以不同結構形成該中間結構412。 依據第九實施例之閘極堆疊結構係在對依據本發明 之第七及第八實施例的閘極堆疊結構實施退火處理後所 造成之結構。該退火包括在形成該等閘極堆疊結構後所 實施之各種製程(例如:間隔物形成及内層絕緣層形成) 期間所伴隨之熱處理。 參照第5C及5 A圖以比較該中間結構4丨2與該中間 結構42。當該鈦層42A與來自該第一導電層41之多晶 矽反應時,形成具有約!人至30人厚度之鈦矽化物層 4 1 2 A。該鈦矽化物層2 1 2 A中之矽對鈦的比例係在約〇. 5 與3 · 0間之範圍内。 當從該含氮鎢層42B供應氮至該鈦層42A時,造成 -36- 201250804 該含氮鈦層412B。該含氮鈦層412B具有約1〇Α至100A 範圍之厚度且具有約〇. 7至1 · 3範圍之氮對鈦的比例。 相較於在該鈦層42A中之氮對鈦的比例,在該含氮鈦層 4 12B中之氮對鈦的比例從約0增加至約0·7至1.3。 該含氮鎢矽化物層4 1 2C具有大致相同於該含氮鎢 矽化物層4 2 C之厚度及成分。詳而言之,該含氮鎢矽化 物層4 1 2 C具有約〇. 5至3 · 0範圍之矽對鎢的比例及約 10%與60%間範圍之氮含量。該含氮鎢矽化物層412C之 厚度係在約20A與200A間之範圍内。 在該退火後,該含氮鎢層41 2D具有因該侵蝕作用 而降至約10%或更少之氮含量。元件符號WNX(D)表示該 侵蝕之含氮鎢層。該含氮鎢層412D係約20A至200A 厚。在該含氮鎢層4 1 2D中之氮對鎢的比例係在約0.0 1 與0.1 5間之範圍内。相較於在第5 A圖所述之含氮鎢層 42C中之氮對鎢的比例,在該含氮鎢層4 1 2D中之氮對鎢 的比例從約0 · 3與1.5間之範圍減少至約〇 . 〇 1至0.1 5之 範圍。 在該鈦層42A上方形成該含氮鎢矽化物層42B之情 況中(見第5A圖)’在該退火後,在該欽層42A與該含 氮鎢矽化物42B間之邊界區域中使該含氮鎢矽化物層 42B中之微量氮分解。結果,如第5C圖所述,該鈦層 42A之上部分變換成為該含氮鈦層412b,以及該鈦層 42A之下部分與來自該第一導電層4 1之多晶矽反應,以 形成該欽碎化物層4 1 2 A。 參考第5 C及5 B圖以比較該中間結構4 1 2與該中間 -37- 201250804 結構402。使該含氮鈦層402A變換成為與該鈦矽化物層 412A有最小反應之含氮鈦層412B。該鈇;ε夕化物層412A 之厚度係在約1A至30人之範圍内,以及該含氮鈦層 412B之厚度係在約1〇人至ιοοΑ之範圍内。在該含氮鈦 層4 1 2B中之氮對鈦的比例係在約〇.7與1.3間之範圍 内。該含氮鎢矽化物層4 1 2C具有大致相同於該含氮鶴 矽化物層42B之厚度及成分。更特別地,該含氮鎢矽化 物層412C中之矽對鎢的比例係在約〇,5至3.〇之範圍 内。該含氮鎢矽化物層412C具有約10%至60%範圍之 氮含量及形成有約20A至200A之厚度。 在該退火後’該含氮鎢層412D具有因侵蝕作用而 降至約1 0%或更少之氮含量。該含氮鎢層4 1 2D係約20 A 至200A厚。該含氮鎢層4 1 2D中之氮對鎢的比例係在約 0.01與0.15間之範圍内。 依據第九實施例之閘極堆疊結構包括第一中間結構 及第二中間結構。該第一中間結構包括第一金屬矽化物 層及第一含氤金屬層’以及該第二中間結構包括第二含 II金屬層及含氮金屬石夕化物層。例如:藉由堆疊該鈦石夕 化物層4 1 2 A及該含氮鈦層4丨2B形成該第一中間結構。 藉由堆疊該含氮鎢矽化物層4 1 2 C及該含氮鎢層4 1 2 C形 成該第二中間結構。 第6A圖描述依據本發明之第十實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層5丨、中間結構52 及第二導電層53。該第一導電層51包括高摻雜有p-型 雜質(例如:硼)或N-型雜質(例如:磷)之多晶矽層。該 -38- 201250804 第一導電層51亦可包括多晶矽鍺層(s“ xGex,其中χ係 在約0.0 1與1 · 0間之範圍内)或一矽化物層。例如:該石夕 化物層包括選自由鎳(Ni)、鉻(cr)、鈷(c〇)、鈦(Ti)、嫣 (W)、组(Ta)、給(Hf)、錯'(Zr)及鈾(Pt)所組成之群组中之 〇 该第二導電層53包括鎢層。該鶴層係約人至 2000A厚及藉由實施PVD法、CVD法或ALD法所形成。 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構52包括鈦(Ti)層52A、第一含氮鎢(WNx) 層52B、含氮鎢矽化物(WSixNy)層52C以及第二含氮嫣 (WNX)層52D。詳而言之,該鈦層52A之厚度係在約ι〇Α 至約80Λ之範圍内。較佳地,該鈦層52A具有約1〇A到 約50A之厚度。該鈦層52A因為藉由隨後之WNx沈積 而將其某些上部改變為TiN,以形成第一含氮鎢層52B, 並且其某些下部與該第一導電層5 1反應,亦即,該多晶 石夕層因而开> 成T i S i x層’故具有如上述限制之厚度。若 該欽層52A之厚度是大的,則該TiSix層之厚度也因為 其體積擴大而增加發生隆起。此外,若該鈦層5 2 A之厚 度疋大的’則該鈦層5 2 A可吸收多晶石夕層5 1之播雜物, 例如’鱗或硼,因此於多晶矽層5 1中發生多重空乏,導 致元件性能之劣化。在該第一及第二含氮鎢層52B及 5 2 D中之每一層的氮對鎢之比例係在約0.3與1 · 5間之範 圍内。s亥第一及第二含氮鶴層之每一層視為鶴氮化物層 或含某一含量/重量比之氮的鎢層。雖然將於之後說明, 但是知道該第一及第二含氮鎢層52B及52D供應氮至該 -39- 201250804 含氤鎢矽化物層52C。該第一及第二含氮鎢層52B及52D 之每—層具有約20A至20〇A之厚度。由於供應氮至該 含氮鎢矽化物層52C,在隨後退火處理後,該第一及第 二含氮鎢層52B及52D之每一層變成純鎢層或含微量氮 之鶴層。 在該含氮鎢矽化物層52C中之矽對鎢的比例係在約 〇 ’ 5與3.0間之氣圍内,以及该含氣鶴石夕化物層$ 2 c之氮ι 含量係在約10%至約60%之範圍内。在此,該氮含量以 上述方式被適當調整。若該氮含量太低,則接面反應會 因含氮嫣石夕化物層52C不能成功作為擴散障壁而發生。 另一方面’若該氮含量太高’則包含於該含氮鎢矽化物 層52C中之SiN含量會是高的,並因而使接觸電阻變 高,導致元件性能劣化。該含氮鎢矽化物層52C表示鶴 石夕氮化物層或含某一含量/重量比之氮的鶴石夕化物層。該 含氮鎢矽化物層52C所形成之厚度係在約20A至約 200A之範圍内。 藉由實施PVD法、CVD或ALD法形成該鈦層52A 及該第一及第二含氮鎢層52B及52D。藉由PVD法形成 該含氮鎢矽化物層52C。該PVD法以濺鍍沉積法或一反 應式濺鍍沉積法進行。例如:藉由以鈦濺鍍靶實施賤鑛 沉積法來形成該鈦層52A。藉由在氮氣環境中以鎢職鏟 靶實施反應式濺鍍沉積法來形成該第一及第二含氮鶴層 5 2 B及5 2 D。藉由在氮氣環境中以鑛石夕化物濺錄革巴實施 反應式濺鍍沉積法來形成該含氮鎢矽化物層5 2 C。特別 地’因為可均勻地形成該含氮鎢矽化物層502C而與下 -40- 201250804 層型態無關,所以可使用該PVD法(例如:反應式賤鍛 沉積法),以形成該含氮鎢矽化物層502C。 依據第十實施例之閘極堆疊結構包括該第—導電声 51、該Ti/WNx/WSixNy/WNx中間結構52及該第二導電 層53。該第一導電層51及該第二導電層53分別包括— 多晶石夕層及鶴層’藉此形成一鶴多晶石夕閘極堆疊結構。 特別地’該Ti/WNx/WSixNy/WNx中間結構52包括 第一金屬層、第二金屬層、含氮金屬石夕化物層及第三金 屬層。該第一金屬層包括純金屬層,然而該第二及第三 金屬層包括含氮金屬層。該含氮金屬矽化物層包括含某 一含量/重量比之氮的金屬矽化物層。例如:該第一金屬 層係該鈦層5 2 A ’以及該第二及第三金屬層分別係該第 一及第二含氮鎢層52B及52D。該金屬矽化物層係該含 氮鎢矽化物層52C。 亦可以其它不同結構形成上述多層中間結構。例 如:該第一金屬層除了該鈦層之外還包括钽層。該第二 及第三金屬層除了該含氮鎢層之外還包括例如含氮鈦鎢 層之大致相同材料。該含氮金屬矽化物層除了該含氮鎢 石夕化物層之外還包括含鈦氮化物層或含氮组石夕化物層。 藉由實施包括濺鑛之PVD法、CVD法或ALD法形成該 组層。藉由在氮氣環境中以鈦鎢濺鍍靶實施反應式濺鍍 沉積法來形成該含氮鈦鎢層。藉由在氮氣環境中以個別 鈦矽化物及鈕矽化物濺鍍靶實施反應式濺鍍沉積法來形 成該含氮鈦矽化物層及該含氮鈕矽化物層。該钽層所形 成之厚度係約1 〇 A至8 0 A。較佳地,該纽層具有約1 〇人 -41 - 201250804 到約50人之厚度。該钽層因為藉由隨後之ψΝχ沈積而將 其某些上部改變為TaN ’以形成第二金屬層,並且其某 些下部與該第一導電層51反應’亦即,該多晶矽層因而 形成TaSix層’故具有如上述限制之厚度。若該组層之 厚度是大的’則該之厚度也因為其體積擴大而 增加發生隆起。此外,若該组層之厚度是大的,則該組 層可吸收多晶石夕層5 1之擦雜物’例如,碟或蝴,因此於 多曰曰石夕層5 1中發生多重空乏,導致元件性能之劣化。該 含氮鈦鎢層、該含氮鈦矽化物層及該含氮钽矽化物層之 每一層所形成之厚度係約20A至200A,以及每一層具 有約10%與60%間範圍之氮含量。在此,該氮含量以上 述方式被適當調整。若該氮含量太低,則接面反應會因 含氮鈦或钽矽化物層不能成功作為擴散障壁而發生。另 一方面,若該氮含量太高,則包含於該含氮鈦或鈕矽化 物層中之SiN含量會是高的,並因而使接觸電阻變高, 導致元件性能劣化。在該含氮鈦鎢層中,鈦對鎢之比例 係在約0 · 5至3.0之範圍内。在該含氮鈦矽化物層中, 石夕對欽之比例係在約〇 5至3 〇之範圍内。在該含氮钽 石夕化物層中’矽對鈕之比例係在約〇 5至3 〇之範圍内。 第6B圖描述依據本發明之第十一實施例的閘極堆 疊結構。該閘極堆疊結構包括第一導電層5〇 1、中間結 構5 02及第二導電層5〇3。該第一導電層501包括高摻 雜有P-型雜質(例如:硼)或N_型雜質(例如:磷)之多晶 石夕層。該第一導電層501亦可包括多晶矽鍺層(sii xGex, 其中x係在約0.01與1.0間之範圍内)或矽化物層。例 -42- 201250804 如:該矽化物層包括選自由鎳(Ni)、鉻(Cr)、鈷(co)、鈦 (Ti)、鎢(W)、钽(Ta)、铪(Hf)、鍅(Zr)及鉑(Pt)所組成之 群組中之一。 該第二導電層503包括鎢層。該鎢層係約i〇〇a至 2000人厚及藉由實施PVD法、CVD法或ALD法所形成。 該P V D法包括使用鶴濺鑛乾之濺鍍沉積法。 該中間結構502包括含氮鈦(τίΝχ)層502A、第一含 氮鎢(WNX)層502B、含氮鎢矽化物(wsixNy)層5〇2C及第 二含氮鎢(WNX)層502D。更詳而言之,該含氮鈦層5〇2A 之氮對鈦具有某一比例(例如:在約〇. 2至〇 · 8之範圍内) 及形成有約l〇A至150 A之厚度。在此,該含氮金屬層, 亦即,該含氣鈦層502A ’具有如上述之氮比鈦之比例, 以防止SiN於該含氮鈦層502A中產生。由於在隨後之 退火處理期間§亥含氣欽層502A中過多的Ti會破壞多晶 石夕與TiNx之間所形成的Si-N鍵並因而移除SiN,故可 防止SiN的產生。此因為TiN連結比SiN連結更強健而 變得可行。該含氮鈦層502 A表示鈦氮化物層或含某— 含量/重量比之氮的鈦層。 該第一及第二含氮鎢層502B及502D之每一層的氮^ 對鎢具有某一比例(例如:在約0.3至1.5之範圍内)。該 第一及第二含氮鶴層502B及502D之每一層亦包括一鶏 氮化物層。雖然描述於後,但是知道該第一及第二含氮 鎢層502B及502D供應氮至該含氮鈦層502A及該含氮 鎢矽化物層502C。該第一及第二含氮鎢層502B及502D 之每一層形成有約20人至200人之厚度。由於氮之供應, -43 - 201250804 該第一及第二含氮鶴層502B及502D在該退火後變成純 鶴層或含微量氮之鶴層。 在該含氮鶴石夕化物層5 0 2 C争之;ε夕對鶴的比例係在 約〇_5與3.0間之範圍内,以及該含氮鎢矽化物層5〇2C 之氮含量係在約10。/。至約60%之範圍内。在此,氮含量 以上述方式被適當調整。若氮含量太低,則接面反應會 因該含氮鎢石夕化物層5 0 2 C無法成功作為擴散障壁而發 生。另一方面,若氮含量太高,則包含於該含氮鎢矽化 物層502C中之SiN含量會是高的,並因此讓接觸電阻 變高,導致元件性能劣化。該含氮鎢矽化物層502C亦 包括鎢矽氮化物層。該含氮鎢矽化物層502C具有約20A 至200A之厚度。 藉由實施PVD法、CVD法或ALD法形成該第一及 第二含氮鎢層502B及502D。藉由實施PVD法形成該含 氮鈦層502A及該含氮鎢矽化物層502C。 該 PVD法以濺鍍沉積法或反應式濺鍍沉積法進 行。例如:藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積 法來形成該含氮鈦層502A。藉由在氮氣環境中以鎢濺鍍 靶實施反應式濺鍍沉積法來形成該第一及第二含氮鎢層 5 0 2 B及5 0 2 D之每一層。藉由在氮氣環境中以鎢矽化物 濺鍍靶實施反應式濺鍍沉積法來形成該含氮鎢矽化物層 502C。特別地,因為可均勻地形成該含氮鎢矽化物層 5 〇 2 C而與一下層型態無關,所以使用該P V D法(例如: 反應式濺鍍沉積法)以形成該含氮鎢矽化物層5 02C。 依據本發明之第十一實施例的閘極堆疊結構包括該 -44- 201250804 第一導電層50卜該TiNx/WNx/WSixNy/WN中門#德 y 、x甲間結構5 〇 2 及該第二導電層503。該第一導電層5〇1 1枯多晶石夕及 該第二導電層503包括鶴’藉以形成鶴多晶㈣ 結構。 且 金屬層、含氮金 弟 特別地,以包括第一金屬層、 屬矽化物層及第三金屬層之堆疊結構形成The ground is formed into a TiNx/WSixNy/wN structure 402 by a stacked structure including a first metal layer, a nitrogen-containing metal, and the like. The first and second metal layers are nitrogen-containing metal layers, and the second and second metal layers are nitrogen-containing metal telluride layers. For example, the gold-based titanium layer 402A is made of gold. The second metal layer is nitrogen-containing tungsten and two layers -34 - 201250804. The metal telluride layer is a nitrogen-containing tungsten germanide layer 4 0 2 B. The above multilayer intermediate structure may be formed in other different structures. For example: the first nitrogen-containing metal layer includes a nitrogen-containing button layer in addition to the nitrogen-containing titanium layer. The second nitrogen-containing metal layer includes a nitrogen-containing gantry layer in addition to the nitrogen-containing tungsten layer. The nitrogen-containing metal telluride layer includes, in addition to the nitrogen-containing tungsten telluride layer, a nitrogen-containing cerium layer or a nitrogen-containing group. The nitrogen-containing button layer is formed by performing a PVD method including sputtering, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The three-gas titanium layer and the nitrogen-containing button telluride layer are formed by performing a reactive sputtering deposition method on a respective titanium bismuth compound and a group lithium sputter target in a nitrogen atmosphere. The nitrogen-containing tantalum layer has a thickness of about 1 οA to 80 Å. Each of the nitrogen-containing strontium tungsten layer, the nitrogen-containing titanium bismuthide layer, and the nitrogen-containing bismuth telluride layer has a thickness of from 3 to 200 A′ and each layer has a range of between about 1% and about 〇%. Amount of nitrogen 2. Here, the nitrogen content is appropriately adjusted in the above manner. If the amount of nitrogen is too low, the junction reaction may occur because the nitrogen-containing titanium or the group telluride layer is not successful as a diffusion barrier. On the other hand, if the nitrogen content is too high, the content contained in the niobium titanium nitride or telluride layer may be high :: and thus the contact resistance becomes high, resulting in deterioration of element performance. The ratio of titanium to tungsten in the 3 titanium tungsten tungsten layer is in the range of about 0.5 to 3.0. In the nitrogen-titanium telluride layer, the ratio of the stone to the titanium is in the range of about 0.5 to 3.0. In the nitrogen-containing macrochemical layer, the ratio of ruthenium to iridium is in the range of about 0-5 to 3.0. The 5th C iN seedling according to the ninth embodiment of the present invention has a gate stack structure. The gate stacks the gentleman-k station, and the port structure includes a first conductive layer 41i, an intermediate junction -35-201250804, and a second conductive layer 413. The first conductive layer 411 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron (B)) or an N-type impurity (e.g., phosphorus (P)). The first conductive layer 41 may include a polysilicon layer (Si^Gex) layer in addition to the polysilicon layer, wherein the X system is in the range of about 〇 与ι and 1 · 〇 or includes a ruthenium layer. The telluride layer comprises a layer selected from the group consisting of nickel (nickel), chromium (Cr), cobalt (Co), titanium (Ti) 'tungsten (w), tantalum (Ta), (Hf), hammer (Zr), and platinum (Pt). One of the groups formed. The s-second conductive layer 413 includes a tungsten layer. One of the pvD method, the CVD method, and the ALD method is performed to form a tungsten layer of about 1 to 2 Å thick. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 412 includes a titanium telluride (TiSix) layer 412A, a nitrogen-containing titanium (TiNx) layer 412B, a nitrogen-containing tungsten germanide (WsixNy^ 412 (: and a nitrogen-containing tungsten (WNX) layer 4 1 2D. According to the present invention The selection materials described in the seventh and eighth embodiments form the intermediate structure 412 in different structures. The gate stack structure according to the ninth embodiment is in the gate stack according to the seventh and eighth embodiments of the present invention. The structure is formed after the annealing treatment is performed. The annealing includes heat treatment accompanying various processes (for example, spacer formation and formation of an inner insulating layer) performed after forming the gate stack structure. Referring to 5C and 5 A is for comparing the intermediate structure 4丨2 with the intermediate structure 42. When the titanium layer 42A reacts with the polysilicon from the first conductive layer 41, a titanium telluride layer 4 having a thickness of about 10,000 to 30 is formed. 2 A. The ratio of tantalum to titanium in the titanium telluride layer 2 1 2 A is in the range of between about 0.5 and 3 · 0. When nitrogen is supplied from the nitrogen-containing tungsten layer 42B to the titanium layer 42A , resulting in -36-201250804 the nitrogen-containing titanium layer 412B. The nitrogen-containing titanium layer 412B has There is a thickness in the range of about 1 〇Α to 100 A and a ratio of nitrogen to titanium in the range of about 7. 7 to 1.7. Compared to the ratio of nitrogen to titanium in the titanium layer 42A, the nitrogen-containing titanium layer The ratio of nitrogen to titanium in 4B is increased from about 0 to about 0.77 to 1.3. The nitrogen-containing tungsten telluride layer 4 1 2C has a thickness and composition substantially the same as the nitrogen-containing tungsten telluride layer 4 2 C. In detail, the nitrogen-containing tungsten telluride layer 4 1 2 C has a ratio of germanium to tungsten in a range of about 0.5 to 3 · 0 and a nitrogen content in a range between about 10% and 60%. The thickness of the layer 412C is in the range of between about 20 A and 200 A. After the annealing, the nitrogen-containing tungsten layer 41 2D has a nitrogen content of about 10% or less due to the erosion. Component symbol WNX ( D) represents the eroded nitrogen-containing tungsten layer. The nitrogen-containing tungsten layer 412D is about 20 A to 200 A thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2D is between about 0.01 and 0.15. In the range of nitrogen to tungsten in the nitrogen-containing tungsten layer 42C as described in FIG. 5A, the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2D is from about 0.3 to 1.5. The range between the two is reduced to about 〇. 〇 a range of 1 to 0.1 5. In the case where the nitrogen-containing tungsten telluride layer 42B is formed over the titanium layer 42A (see FIG. 5A) 'after the annealing, the seed layer 42A and the nitrogen-containing tungsten germanide 42B A trace amount of nitrogen in the nitrogen-containing tungsten telluride layer 42B is decomposed in the boundary region therebetween. As a result, as described in FIG. 5C, the titanium layer 42A is partially converted into the nitrogen-containing titanium layer 412b, and the titanium layer 42A. The lower portion reacts with the polysilicon from the first conductive layer 41 to form the cleavage layer 4 1 2 A. Referring to Figures 5C and 5B, the intermediate structure 4 1 2 and the intermediate -37-201250804 structure 402 are compared. The nitrogen-containing titanium layer 402A is converted into a nitrogen-containing titanium layer 412B having a minimum reaction with the titanium germanide layer 412A. The thickness of the enamel layer 412A is in the range of about 1A to 30 people, and the thickness of the nitrogen-containing titanium layer 412B is in the range of about 1 〇 to ιοο. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 4 1 2B is in the range of about 〇.7 and 1.3. The nitrogen-containing tungsten telluride layer 4 1 2C has substantially the same thickness and composition as the nitrogen-containing helium telluride layer 42B. More specifically, the ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 412C is in the range of about 〇, 5 to 3. 。. The nitrogen-containing tungsten carbide layer 412C has a nitrogen content in the range of about 10% to 60% and a thickness of about 20A to 200A. After the annealing, the nitrogen-containing tungsten layer 412D has a nitrogen content reduced to about 10% or less by etching. The nitrogen-containing tungsten layer 4 1 2D is about 20 A to 200 A thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2D is in the range of between about 0.01 and 0.15. The gate stack structure according to the ninth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a first metal germanide layer and a first germanium-containing metal layer ' and the second intermediate structure includes a second metal-containing layer II and a nitrogen-containing metal lithiate layer. For example, the first intermediate structure is formed by stacking the titanium lithium layer 4 1 2 A and the nitrogen-containing titanium layer 4丨2B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten telluride layer 4 1 2 C and the nitrogen-containing tungsten layer 4 1 2 C. Fig. 6A depicts a gate stack structure in accordance with a tenth embodiment of the present invention. The gate stack structure includes a first conductive layer 5, an intermediate structure 52, and a second conductive layer 53. The first conductive layer 51 includes a polysilicon layer highly doped with a p-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The -38-201250804 first conductive layer 51 may also include a polycrystalline germanium layer (s "xGex, wherein the lanthanide is in the range of between about 0.01 and 1.0" or a germanide layer. For example: the lithiation layer Including from nickel (Ni), chromium (cr), cobalt (c), titanium (Ti), strontium (W), group (Ta), (Hf), er' (Zr) and uranium (Pt) The second conductive layer 53 includes a tungsten layer, which is about 2000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes using a tungsten sputtering target. Sputter deposition method. The intermediate structure 52 includes a titanium (Ti) layer 52A, a first nitrogen-containing tungsten (WNx) layer 52B, a nitrogen-containing tungsten germanide (WSixNy) layer 52C, and a second nitrogen-containing germanium (WNX) layer 52D. In detail, the thickness of the titanium layer 52A is in the range of about ι to about 80. Preferably, the titanium layer 52A has a thickness of about 1 A to about 50 A. The titanium layer 52A is borrowed. Some of its upper portion is changed to TiN by subsequent WNx deposition to form a first nitrogen-containing tungsten layer 52B, and some of its lower portion reacts with the first conductive layer 51, that is, the polycrystalline layer Open > into T i S ix 'Therefore, there is a thickness as defined above. If the thickness of the layer 52A is large, the thickness of the TiSix layer is also increased due to its volume expansion. Further, if the thickness of the titanium layer 5 2 A is large 'The titanium layer 5 2 A can absorb the broadcast of the polycrystalline layer 5 1 , such as 'scale or boron, so multiple depletion occurs in the polysilicon layer 51, resulting in deterioration of device performance. The ratio of nitrogen to tungsten in each of the second nitrogen-containing tungsten layers 52B and 5 2 D is in the range of about 0.3 to 1.5. Each of the first and second nitrogen-containing crane layers is regarded as a nitride layer or a tungsten layer containing a certain content/weight ratio of nitrogen. Although will be described later, it is known that the first and second nitrogen-containing tungsten layers 52B and 52D supply nitrogen to the -39-201250804 tantalum-containing tungsten. The telluride layer 52C. Each of the first and second nitrogen-containing tungsten layers 52B and 52D has a thickness of about 20 A to 20 A. Since nitrogen is supplied to the nitrogen-containing tungsten carbide layer 52C, after subsequent annealing treatment Each of the first and second nitrogen-containing tungsten layers 52B and 52D becomes a pure tungsten layer or a trace layer containing a trace amount of nitrogen. The ratio of germanium to tungsten in the layer 52C is in a gas range of about 〇'5 and 3.0, and the nitrogen content of the gas-bearing healite layer is about 10% to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing strontium-base layer 52C cannot be successfully used as a diffusion barrier. If the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 52C may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten telluride layer 52C represents a Heshixi nitride layer or a Heshixi layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten germanide layer 52C is formed to a thickness in the range of from about 20 Å to about 200 Å. The titanium layer 52A and the first and second nitrogen-containing tungsten layers 52B and 52D are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten telluride layer 52C is formed by a PVD method. The PVD method is carried out by sputtering deposition or a reactive sputtering deposition method. For example, the titanium layer 52A is formed by performing a tantalum deposition method with a titanium sputtering target. The first and second nitrogen-containing heddle layers 5 2 B and 5 2 D are formed by performing a reactive sputtering deposition method with a tungsten target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 5 2 C is formed by performing a reactive sputtering deposition method in a nitrogen atmosphere with ore lithography. In particular, since the nitrogen-containing tungsten carbide layer 502C can be uniformly formed regardless of the layer type of the lower-40-201250804 layer, the PVD method (for example, reactive upset deposition method) can be used to form the nitrogen-containing layer. Tungsten carbide layer 502C. The gate stack structure according to the tenth embodiment includes the first conductive sound 51, the Ti/WNx/WSixNy/WNx intermediate structure 52, and the second conductive layer 53. The first conductive layer 51 and the second conductive layer 53 respectively comprise a polysilicon layer and a crane layer, thereby forming a monolithic gate stack structure. Specifically, the Ti/WNx/WSixNy/WNx intermediate structure 52 includes a first metal layer, a second metal layer, a nitrogen-containing metal lithium layer, and a third metal layer. The first metal layer comprises a layer of pure metal, whereas the second and third layers of metal comprise a layer of nitrogen-containing metal. The nitrogen-containing metal telluride layer includes a metal telluride layer containing nitrogen in a certain content/weight ratio. For example, the first metal layer is the titanium layer 5 2 A ' and the second and third metal layers are the first and second nitrogen-containing tungsten layers 52B and 52D, respectively. The metal telluride layer is the nitrogen-containing tungsten germanide layer 52C. The above multilayer intermediate structure may also be formed by other different structures. For example, the first metal layer includes a tantalum layer in addition to the titanium layer. The second and third metal layers comprise substantially the same material as the nitrogen-containing titanium tungsten layer in addition to the nitrogen-containing tungsten layer. The nitrogen-containing metal telluride layer includes a titanium-containing nitride layer or a nitrogen-containing group of lithium layers in addition to the nitrogen-containing tungsten-lithium layer. The set of layers is formed by performing a PVD method including sputtering, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer and the nitrogen-containing button telluride layer are formed by performing a reactive sputtering deposition method with an individual titanium germanide and a button telluride sputtering target in a nitrogen atmosphere. The thickness of the layer is about 1 〇 A to 80 A. Preferably, the layer has a thickness of about 1 - -41 - 201250804 to about 50 people. The germanium layer changes some of its upper portion to TaN' by subsequent germanium deposition to form a second metal layer, and some of its lower portion reacts with the first conductive layer 51', that is, the polycrystalline germanium layer thus forms TaSix The layer 'has a thickness as defined above. If the thickness of the set of layers is large, then the thickness is also increased due to its volume expansion. In addition, if the thickness of the group of layers is large, the group of layers can absorb the rubbings of the polycrystalline stone layer 51, such as a dish or a butterfly, so that multiple voids occur in the polylayer , resulting in deterioration of component performance. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer, and the nitrogen-containing telluride layer has a thickness of about 20A to 200A, and each layer has a nitrogen content ranging between about 10% and 60%. . Here, the nitrogen content is appropriately adjusted as described above. If the nitrogen content is too low, the junction reaction may not occur as a diffusion barrier due to the nitrogen-containing titanium or telluride layer. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or the button compound layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the nitrogen-containing titanium telluride layer, the ratio of Shi Xi to Qin is in the range of about 5 to 3 。. The ratio of the '矽 to the button' in the nitrogen-containing ruthenium layer is in the range of about 5 to 3 Torr. Fig. 6B depicts a gate stack structure in accordance with an eleventh embodiment of the present invention. The gate stack structure includes a first conductive layer 5? 1, an intermediate structure 502, and a second conductive layer 5?. The first conductive layer 501 includes a polycrystalline layer which is highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 501 may also include a polysilicon layer (sii xGex, where x is in the range of between about 0.01 and 1.0) or a germanide layer. Example-42-201250804 For example: the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (co), titanium (Ti), tungsten (W), tantalum (Ta), hafnium (Hf), tantalum One of a group consisting of (Zr) and platinum (Pt). The second conductive layer 503 includes a tungsten layer. The tungsten layer is about i〇〇a to 2000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The P V D method includes a sputtering deposition method using a crane splash. The intermediate structure 502 includes a nitrogen-containing titanium (τίΝχ) layer 502A, a first nitrogen-containing tungsten (WNX) layer 502B, a nitrogen-containing tungsten germanide (wsixNy) layer 5〇2C, and a second nitrogen-containing tungsten (WNX) layer 502D. More specifically, the nitrogen-containing titanium layer 5〇2A has a certain ratio of nitrogen to titanium (for example, in the range of about 〇. 2 to 〇·8) and a thickness of about 1 〇A to 150 Å. . Here, the nitrogen-containing metal layer, that is, the gas-containing titanium layer 502A' has a ratio of nitrogen to titanium as described above to prevent SiN from being generated in the nitrogen-containing titanium layer 502A. Since excessive Ti in the gas-containing gas layer 502A during the subsequent annealing treatment destroys the Si-N bond formed between the polycrystalline stone and the TiNx and thus removes the SiN, the generation of SiN can be prevented. This is because the TiN connection is more robust than the SiN connection. The nitrogen-containing titanium layer 502 A represents a titanium nitride layer or a titanium layer containing a certain content/weight ratio of nitrogen. Each of the first and second nitrogen-containing tungsten layers 502B and 502D has a certain ratio of nitrogen to tungsten (e.g., in the range of about 0.3 to 1.5). Each of the first and second nitrogen-containing heddle layers 502B and 502D also includes a tantalum nitride layer. Although described later, it is known that the first and second nitrogen-containing tungsten layers 502B and 502D supply nitrogen to the nitrogen-containing titanium layer 502A and the nitrogen-containing tungsten germanide layer 502C. Each of the first and second nitrogen-containing tungsten layers 502B and 502D is formed to a thickness of about 20 to 200 people. Due to the supply of nitrogen, the first and second nitrogen-containing river layers 502B and 502D become a pure crane layer or a trace layer containing a trace of nitrogen after the annealing. In the nitrogen-containing Heshixi layer 5 2 2 C; the ratio of ε 对 to the crane is in the range of about 〇 5 and 3.0, and the nitrogen content of the nitrogen-containing tungsten lanthanide layer 5 〇 2C At about 10. /. Up to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten-lithium layer 5 0 2 C cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 502C may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten germanide layer 502C also includes a tungsten germanium nitride layer. The nitrogen-containing tungsten germanide layer 502C has a thickness of about 20A to 200A. The first and second nitrogen-containing tungsten layers 502B and 502D are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 502A and the nitrogen-containing tungsten germanide layer 502C are formed by a PVD method. The PVD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the nitrogen-containing titanium layer 502A is formed by sputtering deposition using a titanium sputtering target in a nitrogen atmosphere. Each of the first and second nitrogen-containing tungsten layers 5 0 2 B and 5 0 2 D is formed by performing a reactive sputtering deposition method using a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 502C is formed by performing a reactive sputtering deposition method using a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten carbide layer 5 〇 2 C can be uniformly formed regardless of the underlying type, the PVD method (for example, reactive sputtering deposition method) is used to form the nitrogen-containing tungsten telluride. Layer 5 02C. A gate stack structure according to an eleventh embodiment of the present invention includes the -44-201250804 first conductive layer 50, the TiNx/WNx/WSixNy/WN gate #德y, the x-a structure 5 〇2, and the first Two conductive layers 503. The first conductive layer 5〇1 1 is a polycrystalline spine and the second conductive layer 503 includes a crane to form a crane polycrystalline (four) structure. And the metal layer, the nitrogen-containing metal, in particular, formed by a stacked structure including the first metal layer, the germanide layer, and the third metal layer

TiNx/WNx/WSixNy/WNx 中間結構 502。該第一、第二 μ 第三金屬層係含氮金屬層’以及該含氮金屬砂化物3 含某-含量/重量比之氮。例如:該第一金屬層係該含: 鈦層502Α’以及該第二及第三金屬層分別係該第一及 二含IUI層5G2B A 5G2D。該金屬碎化物層係該含 矽化物層502C。 亦可以其它不同結構形成上述多層中間結構。例 如:除該含氮鈦層之外,該第一金屬層還包括含氮鉅 (TaNx)層。除該含氮鎢層之外,該第二及第三金屬層還 包括例如含氮鈦鎢(TiWNx)層之大致相同材料。除該:氮 鎢矽化物層之外,該含氮金屬矽化物層還包括含氮二矽 化物(TiSixNy)層或含氮鈕矽化物(TaSixNy)層。藉由實施 包括⑽之卿法、CVDmLD法形成該含氮纽層。 藉由在氮氣環境中以鈦鎢濺鍍靶實施反應式濺鍍沉積法 來形成該含氮鈦鎢層。藉由在氮氣環境中以個別鈦矽化 物及鈕矽化物濺鍍靶實施反應式濺鍍沉積法來形成該含 氮鈦矽化物層及該含氮钽矽化物層。該含氮鈕層形成有 約1 0A至80A之厚度。該含氮鈦鶴層、該含氮鈦石夕化物 層及該含氮鈕矽化物層之每—層形成有約20人至200人 -45- 201250804 之厚度,以及每— 量。在此,氤合軎 —層具有約10%與TiNx/WNx/WSixNy/WNx intermediate structure 502. The first and second μ third metal layers are a nitrogen-containing metal layer 'and the nitrogen-containing metal sand compound 3 contains a certain content/weight ratio of nitrogen. For example, the first metal layer comprises: a titanium layer 502 Α ' and the second and third metal layers are the first and second IUI-containing layers 5G2B A 5G2D, respectively. The metal fragment layer is the vapor-containing layer 502C. The above multilayer intermediate structure may also be formed by other different structures. For example, in addition to the nitrogen-containing titanium layer, the first metal layer further includes a nitrogen-containing giant (TaNx) layer. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further comprise substantially the same material as, for example, a nitrogen-containing titanium tungsten (TiWNx) layer. In addition to the nitrogen tungsten telluride layer, the nitrogen-containing metal telluride layer further includes a nitrogen-containing ditelluride (TiSixNy) layer or a nitrogen-containing germanium telluride (TaSixNy) layer. The nitrogen-containing layer is formed by performing a CVD method using (10). The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer and the nitrogen-containing telluride layer are formed by performing a reactive sputtering deposition method using a respective titanium germanium compound and a button telluride sputtering target in a nitrogen atmosphere. The nitrogen-containing button layer is formed to have a thickness of about 10A to 80A. Each of the nitrogen-containing titanium crane layer, the nitrogen-containing titanium tartan compound layer, and the nitrogen-containing button compound layer is formed to have a thickness of about 20 to 200 to 45 to 201250804, and each amount. Here, the 軎 軎 layer has about 10%

10%與60%間範圍之氮含 以上述方式被適當調整。若氮含量太 因該含氮鈦或组石夕化物層無法成功作 。另一方面,若氮含量太高,則包含 物層中之SiN含量會是高的,並因此 導致元件性能劣化。在該含氮鈦鎢層 係在約〇. 5至3 · 0之範圍内。在該含 矽對鈦之比例係在約0.5至3.0之範 圍内。在δ亥含氮鈕矽化物層中,矽對钽之比例係在約〇. 5 至3.0之範圍内。 第6C圖描述依據本發明之第十二實施例的閘極堆 疊結構。該閘極堆疊結構包括第一導電層5丨丨、中間結 構512及第二導電層513。該第一導電層511包括高摻 雜有P-型雜質(例如:硼(3))或N_型雜質(例如:磷(p)) 之多晶石夕層。該第一導電層5 1 1除了該多晶矽層之外, 亦可包括多晶矽鍺(Si^Gex)層,其中X係在約〇.〇1與 1 ·〇之範圍内,或者包括矽化物層。該矽化物層包括選 自由鎳(Ni)、鉻(Cr)、鈷(c〇)、鈦(Ti)、鎢(W)、钽(Ta)、 給(Hf)、銘·(Zr)及始(Pt)所組成之群組中之一。 該第二導電層513包括鎢層。實施PVD法、CVD 法及ALD法中之一以形成約ιοοΑ至2〇〇〇A厚之鶴層。 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構5 12包括鈦矽化物(TiSix)層512A、含氮 鈦(TiNx)層512B、第一含氮鎢(WNx)層512C、含氮鶴石夕 化物(WSixNy)層512D及第二含氮鎢層512E。可依據本 -46- 201250804 發明之第十及第十一實施例所述之選擇材料以不同結構 形成該中間結構5 i 2。 依據第十二實施例之閘極堆疊結構係在對依據本發 明之第十及第十一實施例的閘極堆疊結構實施退火處理 後所造成之結構。該退火包括在形成該等閘極堆疊結構 後所實施之各種製程(例如:間隔物形成及内層絕緣層形 成)期間所伴隨之熱處理。 參考第6 C及6 A圖以比較該中間結構5 1 2與該中間 結構52。當該鈦層52A與來自該第一導電層5 1之多晶 石夕反應時,形成具有約1A至3 0 A厚度之鈦矽化物層 5 1 2 A。該鈦矽化物層5 1 2 A中之矽對鈦的比例係在約〇. 5 與3.0間之範圍内。 當從該第一含氮鎢層52B供應氮至該鈦層ha時, 造成該含氮鈦層5 1 2B。該含氮鈦層5 1 2B具有約1 〇人至 100A範圍之厚度且具有約〇.7至i 3範圍之氮對鈦的比 例。 在該退火後’該第一及第二含氮鎢層5 1 2C及5 1 2E 之每一層具有因該侵蝕作用而降至約丨0%或更少之氮含 里°元件符號WNX(D)表示該侵|虫之含氮鎢層。該第一及 第二含氮鎢層512C及512E之每一層係約20人至200A 厚。在該第一及第二含氮鎢層512C及512E之每一層中 的氮對鎢之比例係在約〇 · 〇 1與〇.丨5間之範圍内。 該含氮鎢石夕化物層5 1 2D具有大致相同於該含氮鎢 砂化物層52C之厚度及成分。詳而言之,該含氮鎢矽化 物層5 1 2D具有約〇 5至3 ·0範圍之矽對鎢的比例及約 -47- 201250804 1 0%至60%之氮含量。該含氮鎢矽化物層5 1 2d之厚度係 在約20A與200A間之範圍内。 參考第6C及6B圖以比較該中間結構5 12與該中間 結構502。在該退火處理期間,從該含氮鎢層502B供應 氮至該含氮鈦層502A。結果,使該含氮鈦層502A變換 成為與遠鈦石夕化物層5 1 2 A有最小反應之含氣鈦層 5 1 2B。該鈦矽化物層5 1 2A之厚度係在約1 A至30人之 範圍内,以及該含氮鈦層5 1 2B之厚度係在約丨〇 A至 1 0 0 A之範圍内。在該含氮鈦層5 1 2 B中之氮對鈦的比例 係在約0.7與1.3間之範圍内。 在該退火後’當侵蝕該第一及第二含氮鎢層5 〇2B 及5 02D時,該第一及第二含氮鎢層512C及512E之每 一層具有降至約1 0 %或更少之氮含量。該第一及第二含 氮鎢層512C及512E之每一層係約2〇A至200A厚。在 該第一及第二含氮鎢層51 2C及512E之每一層中的氮對 鎢之比例係在約0. 〇 1與〇. 1 5間之範圍内。 該含氮鎢矽化物層5 1 2D具有大致相同於該含氮鶴 矽化物層502C之厚度及成分。詳而言之,該含氮鎢矽 化物層5 12D具有約0.5至3.0範圍之矽對鎢的比例及約 10%至60%之氮含量《該含氮鎢矽化物層5 1 2D之厚度係 在約20A與200A間之範圍内。 依據第十二實施例之閘極堆疊結構包括第一中間結 構及第二中間結構。該第一中間結構包括金屬矽化物層 及第一含氮金屬層’以及該第二中間結構包括第二含氮 金屬層、含氮金屬矽化物層及第三含氮金屬層。例如: -48 - 201250804 藉由堆疊6亥鈦石夕化物層5 1 2 A及該含氮鈇層5 1 2 B形成該 第一中間結構。藉由堆疊該含氮鎢層5 1 2C、該含氮鎢矽 化物層5 1 2D及該含氮鎢層5 1 2E形成該第二中間結構。 依據本發明之第一至第十二實施例的每一中間結構 包括含氮金屬矽化物層(例如:含氮鎢矽化物層)及亦包 括多個薄層(包含鈦、矽、鎢及氮)。藉由在氮氣環境中 以鎢矽化物濺鍍靶實施反應式濺鍍沉積法來形成該含氮 鎢矽化物層。當沉積該含氮鎢矽化物層時,該反應式濺 鍍沉積法之實施使該鈦層變換成為該鈦氮化物層。在該 鈦層上方形成該含氮鎢層之情況中’使該鈦層變換成為 該鈦氮化物層。 因為該含氮鎢矽化物層當做非晶擴散障壁,所以當 形成該鎮層時,該鎢層具有約1 5 μ Ω - c m之範圍内的小 的特定電阻及大晶粒尺寸。因此,因為可形成該具有低 特定電阻之鎢層,所以該鎢層降低片電阻。 因為當形成該含氣鶴層或該含氣鎢>5夕化物層時,使 該鈦層或該含氮鈦層變換成為該鈦氮化物層,所以依據 本發明之第一至第十二實施例的閘極堆疊結構具有低接 觸電阻及可減少多晶矽空乏。此外,因為在每一中間結 構中包括該含氮鎢矽化物層,所以該閘極堆疊結構具有 低片電阻_。 由於上述該鈦層或鈦氮化物層變換為該鈦氮化物層 之變換,故在該等中間結構中所包括之複數層的每一層 包含氮。結果,該接觸電阻及該片電阻是低的,以及可 減少每~閘極堆疊結構之高度。此外,可允許減少因在 -49- 201250804 該第-導電層中所摻雜之雜f (例如:硼)向外擴 成之多晶矽空乏效應。 厅以 第7A _述依據本發明 < 第十三實施例的 疊結構。該閘極堆疊結構包括第一導電層6丨、中門妹 62及第二導電層63。該第一導電層61包括高摻心 1 型雜質(例如:硼)或N_型雜質(例如:磷)之多晶矽層。 該第一導電層61亦可包括多晶矽鍺層(Sii xGex,其中X 係在約0.01與1.0間之範圍内)或矽化物層。例如該石夕x 化物層包括選自由鎳(Ni) '鉻(Cr)、鈷(c〇)、鈦(Ti) 了 = (W)、钽(Ta)、銓(Hf)、鍅(Zr)及鉑(Pt)所組成之群組中之 該第二導電層63包括鎢層。該鎢層係約1〇〇人至 2000A厚及藉由實施PVD法、CVD法或aLd法所形成。 該PVD法包括使用嫣賤鐘乾之賤鍍沉積法。 該中間結構62包括鈦(Ti)層62A、第一含氮鎢(WNx) 層62B、鎢矽化物(WSix)層62C(其中x係在約1 5與1〇 間之範圍内)以及第二含氮鎢(WNX)層62D。更特別地, 該鈦層62A形成有約1〇人至80A範圍之厚度。較佳地, 該鈦層62A具有約10A到約50A之厚度。該鈦層62A 因為藉由隨後之WNX沈積而將其某些上部改變為TiN, 以形成含氮鎢層62B,並且其某些下部與該第—導電層 61反應’亦即’該多晶石夕層因而形成TiSix層,故具有 如上述限制之厚度。若該鈦層62A之厚度是大的,則該 之厚度也因為其體積擴大而增加發生隆起。此 外,若該鈦層62A之厚度是大的,則該鈦層62A可吸收 -50- 201250804 摻雜物,例如,多晶矽層61之磷或硼並因此於多晶矽層 β 1中發生多重空乏,導致元件性能之劣化。 該第一及第二含氮鎢層62Β及62D之每一層的氮對 鎢具有某一比例(例如:在約〇·3至1.5之範圍内)。該第 一及第二含氮鎢層62B及6 2D之每一層亦包括鎢氮化物 層。雖然描述於後’但是知道該第一及第二含氮鎢層6 2 B 及62D具有金屬特性。該第一及第二含氮鎢層62B及 62D供應氮至該鎢矽化物層62C。該第一及第二含氮鎢 層62B及62D之每一層形成有約2〇人至200A之厚度。 由於氮之供應,該第一及第二含氮鎢層6 2B及6 2D在該 退火後變成純鎢層或含微量氮之鎢層。 在該含氮鎢矽化物層6 2 C中之矽對鎢的比例係在約 0 · 5與3.0間之範圍内。該含氮鎢矽化物層62C形成有約 2〇A至100A之厚度。 藉由實施PVD法、CVD法或ALD法形成該鈦層 62A、該第一及第二含氮鎢層62B及62D及該鎢層63。 藉由實施PVD法形成該含氮鎢矽化物層62C。 該PVD法以賤鐘沉積法或反應式濺錢沉積法進 行。例如:藉由以鈦濺鍍靶實施濺鍍沉積法來形成該鈦 層62A。藉由在氮氣環境中以鎢濺鍍靶實施反應式濺鍍 沉積法來形成該第一及第二含氮鎢層62B及62D之每一 層。藉由以鎢矽化物濺鍍靶實施反應式濺鍍沉積法來形 成該含氮鎢矽化物層6 2 C。藉由以鎢濺鍍乾實施濺鍍沉 積法來形成該鎢層63。 依據本發明之第十三實施例的閘極堆疊結構包括該 -51 - 201250804 第一導電層61、該Ti/WNx/WSix/WNx中間結構62及該 第二導電層63。該第一導電層61包括多晶矽及該第二 導電層63包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地’以包括第一金屬層 兔屬層、金屬石夕 化物層及第三金屬層之堆疊結構形成該Ti/WNx/wsix/ WNX中間結構62。該第一金屬層包括純金屬層。該第二 及第三金屬層包括含氮金屬層,以及該金屬矽化物層包 括純鎢矽化物層。例如:該第—金屬層係該鈦層62A, 以及該第二及第二金屬層分別係該第一及第二含氮鎢層 62B及62D。該金屬石夕化物層係該含线碎化物層62c> 亦可以其它不同結構形成上述多層中間結構。例 如:除該鈦層之外,該第一金屬層還包括钽層。除該鶴 石夕化物層之外,1亥金屬石夕化物層還包括欽石夕化物⑺叫 層其中X係在1.5與1〇間之範圍内,或钽矽化物 層’其中X係在U與10間之範圍内。除該含氮鶴層之 外’該第二及第三金屬層還包括含氮鈦僞(TiWNx)層。藉 由實施包括濺鍍之PVD法、CVD法或ald法形成該钽 層。藉由在I氣環境中以鈦鶴賤餘實施反應式賤鍵沉 積法來形㈣層Q藉由以個別鈇料物及组石夕 化物減❹實施反應式濺錢沉積法來形成該鈦石夕化物層 及該钽矽化物層。該鈕層形成有約1〇入至8〇人之厚产。 較佳地,該組層具有約1QA到約5GA之厚度。該组層因 為猎由隨後之WNx沈積而將其某些上部改變為TaN,以 形成第二金屬層’並且其某些下部與該第一導電層Η 反應’亦即,該多晶矽層因而彡 s 口而形成TaSix層,故具有如 -52- 201250804 上述限制之厚度。若該钽層之厚度是大的,則該TaSix 層之厚度也因為其體積擴大而增加發生隆起。此外,若 該鈕層之厚度是大的,則該鈕層可吸收摻雜物,例如, 多晶矽層6 1之磷或硼並因此於多晶矽層61中發生多重 空乏,導致元件性能之劣化。該含氮鈦鎢層係約20A至 200A厚。該鈦矽化物層及該鈕矽化物層之每一層形成有 約20人至200人之厚度。該含氮鈦鎢層具有約1〇。/。與60% 間範圍之氮含量。在該含氮鈦鎢層中,鈦對鎢之比例係 在約0.5至3.0之範圍内。在該鈦矽化物層中,矽對鈦 之比例係在約0.5至3 · 0之範圍内。在該鈕矽化物層中, 矽對钽之比例係在約〇 · 5至3 · 0之範圍内。 藉由實施PVD法(例如:濺鍍沉積法)在該第一含氮 鶴層62B上方形成該鶴石夕化物層62C。以該鑛石夕化物激 鐘靶實施該濺鐘沉積法以允許該鎢矽化物層6 2 C之均勻 形成而與下層型態無關。 第7B圖描述在藉由實施個別化學氣相沉積(CvD) 及物理氣相沉積(PVD)法在含氮鶴層上方形成鎢矽化物 層後所配置之結構的影像。雖然藉由該CVD法沒有在該 鶴氮化物層WN上方適當地形成該鎢矽化物層 CVD-WSix ’但是藉由該pvd法可在該鎢氮化物層WN 上方均勻地形成該鎢矽化物層PVD_WSix。因此,因為 可在該鎢矽化物層上方形成該具有低特定電阻之鎢層, 所以可減少該鎢層之片電阻。 依據本發明之第十三實施例的閘極堆疊結構,當在 «玄鈦層上方形成該含氮鎢層62B時,使該鈦層變換成為 -53 - 201250804 鈦氮化物層。 依據本發明之第十三實施例,因為在該含氮層之形 成期間使該中間結構之鈦層變換成為該鈦氮化物層,所 以該閘極堆疊結構可獲得低接觸電阻及減少該多晶矽空 乏效應。再者,因為該中間結構包括該鎢矽化物層,所 以該閘極堆疊結構亦可獲得低片電阻。 第7C圖描述依據本發明之第十四實施例的閘極堆 疊結構。該閘極堆疊結構包括第—導電層601、中間結 構602及第二導電層6〇3。該第—導電層6〇1包括高摻 雜有P-型雜質(例如:硼)或N_型雜質(例如:磷)之多晶 矽層。該第一導電層601亦可包括多晶矽鍺層(sii xGex, 其中x係在約〇.〇 1與1 0間之範圍内)或矽化物層。例 如.該石夕化物層包括選自由鎳(Ni)、鉻(Cr)、鈷(c〇)、鈦 (Τι)、鎢(W)、组(Ta)、铪(Hf)、鍅(Zr)及鉑(Pt)所組成之 群組中之一。 該第二導電層6〇3包括鎢層。該鎢層係約1〇〇A至 2000A厚及藉由實施PVD法、CVD法或ALD法所形成。 該PVD法包括使用鎢濺鑛靶之濺鍍沉積法。 該中間結構602包括含氮鈦(ΤίΝχ)層602A、第一含 氮鎢(WNX)層602B、鎢矽化物(WSix)層602C及第二含氮 嫣(WNX)層60 2D °更詳而言之,該含氮鈦層6〇2A之氮 對鈦具有某一比例(例如:在約〇 2至〇. 8之範圍内)及形 成有約10A至150 A之厚度。在此,該含氮金屬層,亦 即’該含氮鈥層6 0 2 A,具有如上述之氮比鈦之比例,以 防止SiN於该含氮鈦層6〇2A中產生。由於在隨後之退 -54- 201250804 火處理期間該含氮鈦層602A中過多的Ti會破壞多晶石夕 與TiNx之間所形成的Si-N鍵並因而移除SiN,故可防 止SiN的產生。此因為TiN連結比SiN連結更強健而變 得可行。該含氮鈦層602A亦包括鈦氮化物層。 該第一及第二含氮鎢層602B及602D之每一層的氮 對鎢具有某一比例(例如:在約〇·3至1.5之範圍内)。該 第一及第二含氮鎢層602B及602D之每一層亦包括鎢氮 化物層。該第一及第二含氮鎢層602B及602D供應氮至 該鎢矽化物層602C。該第一及第二含氮鎢層602B及 602D之每一層形成有約2〇A至200A之厚度。由於氮之 供應,該第一及第二含氮鎢層602Β及602D在該退火後 變成純鎢層或含微量氮之鎢層。 在鎢石夕化物層6 0 2 C中之矽比嫣之比例在約〇 5與 3.0之間的範圍。該鎢矽化物層602C具有約20Α到200A 的厚度。 藉由實施PVD法、CVD法或ALD法形成該第一及 第二含氮鎢層602B及602D。藉由實施PVD法形成該含 氮鈦層602A及該鎢矽化物層602C。 s亥PVD法以藏鑛沉積法或反應式濺鍍沉積法進 行。例如’藉由在氮氣環境中以鈦激鍍乾實施濺鑛沉積 法來形成該含氮鈦層602A。藉由在氮氣環境中以鎢濺鍍 乾貫施反應式滅鍵沉積法來形成該第一及第二含氮鎢層 6 0 2B及602D。藉由以鎢矽化物濺鑛靶實施反應式濺鍍 沉積法來形成該鎢矽化物層602C。藉由以鎢濺鍍靶實施 濺鍍沉積法來形成該鎢層603。依據本發明之第十四實 -55- 201250804 施例的閑極堆疊結構包括該第一導電層601、該 Til^/WlSU/WSix/Wl^中間結構602及該第二導電層 603。該第一導電層601包括多晶矽及該第二導電層603 包括鎢,藉以形成鎢多晶矽閘極堆疊結構。 特別地’以包括第一金屬層、第二金屬層、金屬矽 化物層及第三金屬層之堆疊結構形成該TiNx/WNx/ WSix/WNx中間結構6〇2。該第一、第二及第三金屬層係 含氣金屬層’以及該金屬矽化物層係純金屬矽化物層。 例如:該第一金屬層係該含氮鈦層6〇2A,以及該第二及 第二金屬層分別係該第一及第二含氮鎢層602B及 6 0 2 D。該金屬矽化物層係該鎢矽化物層6 〇 2 c。 亦可以其它不同結構形成上述多層中間結構。例 如:除該含氮鈦層之外,該第一金屬層還包括含氮鈕 (TaNx)層。除該鎢矽化物層之外,該金屬矽化物層還包 括鈦石夕化物(TiSix),其中X係在約1 5與1〇間之範圍内, 或組矽化物(TaSix),其中x係在約1.5與1〇間之範圍 内。除該含氮鎢層之外’該第二及第三金屬層還包括含 氮鈦鎢(TiWNx)層。藉由在氮氣環境中以钽濺鍍靶實施反 應式濺鍍法來形成該含氮钽層。藉由在氮氣環境中以鈦 鎢濺錢靶實施反應式濺鍍沉積法來形成該含氮鈦鎢層。 藉由以個別鈦矽化物及钽矽化物濺鍍靶實施反應式減鍛 沉積法來形成該鈦矽化物層及該鈕矽化物層。該含氮知 層形成有約10A至150A之厚度。該含氮鈦鎢層、該鈦 石夕化物層及該钽矽化物層之每一層形成有約2〇a至 200人之厚度。該含氮鈦嫣層中之氮含量係在約1〇%與 -56- 201250804 6 0 %間之範圍内。在該含氡叙植既上 * 3氮鈦鎢層+,鈦對鎢之比例係 在約0.…之範圍内,鈦石夕化物層中石夕對鈦 之比例係在約0·…·〇之範圍内。在該鈕矽化物層中, 石夕對组之比例係在約0.5至3 〇之範圍内。 在上迷中間結構602中,藉由pvD法(例如:滅鐘 沉積法)在該第一含氮鎢層6〇2B上方形成該鎢矽化物層 602C。以該鎢矽化物濺鍍靶實施該濺鍍沉 鶴石夕化物…之均勾形成而與下層型態無關允L 第7D圖描述依據本發明之第十五實施例的閘極堆 疊結構。該閘極堆疊結構包括第一導電層6丨丨、中間結 構612及第二導電層613。該第一導電層611包括高摻 雜有P-型雜質(例如:硼斤))或N_型雜質(例如:磷(p)) 之多BB石夕層。除該多晶石夕層之外,該第一導電層6 1 }亦 可包括多晶石夕鍺(Si!-xGex)層,其中X係在約〇.〇1與1.〇 之範圍内,或者包括矽化物層。該矽化物層包括選自由 鎳(Ni)、鉻(Cr)、鈷(Co)、鈦⑺)、鎢(W)、钽(Ta)、姶(Hf)、 锆(Zr)及鉑(Pt)所組成之群組中之一。The nitrogen content in the range between 10% and 60% is appropriately adjusted in the above manner. If the nitrogen content is too high, the nitrogen-containing titanium or group of lithium layers cannot be successfully produced. On the other hand, if the nitrogen content is too high, the SiN content in the inclusion layer may be high, and thus the performance of the element is deteriorated. The nitrogen-containing titanium-tungsten layer is in the range of about 0.5 to 3.0. The ratio of the cerium to titanium is in the range of about 0.5 to 3.0. In the δHeil nitrogen-containing bismuth telluride layer, the ratio of ruthenium to iridium is in the range of about 〇. 5 to 3.0. Fig. 6C depicts a gate stack structure in accordance with a twelfth embodiment of the present invention. The gate stack structure includes a first conductive layer 5, an intermediate structure 512, and a second conductive layer 513. The first conductive layer 511 includes a polycrystalline layer of a highly doped P-type impurity (e.g., boron (3)) or an N-type impurity (e.g., phosphorus (p)). The first conductive layer 51 1 may include, in addition to the polysilicon layer, a polysilicon (Si^Gex) layer, wherein the X system is in the range of about 〇1〇1·1·〇, or includes a telluride layer. The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (c), titanium (Ti), tungsten (W), tantalum (Ta), (Hf), and (Zr). One of the groups consisting of (Pt). The second conductive layer 513 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is performed to form a thick layer of about ιοοΑ to 2〇〇〇A. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 5 12 includes a titanium telluride (TiSix) layer 512A, a nitrogen-containing titanium (TiNx) layer 512B, a first nitrogen-containing tungsten (WNx) layer 512C, a nitrogen-containing Hexagon (WSixNy) layer 512D, and a second Nitrogen tungsten layer 512E. The intermediate structure 5 i 2 may be formed in a different structure according to the selection materials described in the tenth and eleventh embodiments of the invention of the present invention. The gate stack structure according to the twelfth embodiment is a structure resulting from the annealing treatment of the gate stack structures according to the tenth and eleventh embodiments of the present invention. The annealing includes heat treatments associated with various processes (e.g., spacer formation and inner insulating layer formation) performed after forming the gate stack structures. Referring to Figures 6C and 6A, the intermediate structure 51 is compared to the intermediate structure 52. When the titanium layer 52A reacts with the polycrystal from the first conductive layer 51, a titanium germanide layer 5 1 2 A having a thickness of about 1 A to 30 A is formed. The ratio of bismuth to titanium in the titanium telluride layer 5 1 2 A is in the range of about 〇5 and 3.0. When nitrogen is supplied from the first nitrogen-containing tungsten layer 52B to the titanium layer ha, the nitrogen-containing titanium layer 5 1 2B is caused. The nitrogen-containing titanium layer 5 1 2B has a thickness ranging from about 1 Torr to 100 A and a ratio of nitrogen to titanium ranging from about 〇.7 to i 3 . After the annealing, each of the first and second nitrogen-containing tungsten layers 5 1 2C and 5 1 2E has a nitrogen content of about 0% or less due to the erosion. The component symbol WNX (D) ) indicates the nitrogen-containing tungsten layer of the invading insect. Each of the first and second nitrogen-containing tungsten layers 512C and 512E is about 20 to 200 Å thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 512C and 512E is in a range between about 〇·〇 1 and 〇.丨5. The nitrogen-containing tungsten-lithium layer 5 1 2D has substantially the same thickness and composition as the nitrogen-containing tungsten sand layer 52C. In detail, the nitrogen-containing tungsten germanide layer 5 1 2D has a rhodium to tungsten ratio of about 〇 5 to 3 · 0 and a nitrogen content of about -47 to 201250804 1 0% to 60%. The thickness of the nitrogen-containing tungsten telluride layer 5 1 2d is in the range of between about 20A and 200A. Referring to Figures 6C and 6B, the intermediate structure 5 12 and the intermediate structure 502 are compared. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten layer 502B to the nitrogen-containing titanium layer 502A. As a result, the nitrogen-containing titanium layer 502A is converted into a gas-containing titanium layer 5 1 2B which has a minimum reaction with the far Titanite layer 5 1 2 A. The thickness of the titanium telluride layer 5 1 2A is in the range of about 1 A to 30 people, and the thickness of the nitrogen-containing titanium layer 5 1 2B is in the range of about 丨〇 A to 100 A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 5 1 2 B is in the range of between about 0.7 and 1.3. After the annealing, when etching the first and second nitrogen-containing tungsten layers 5 〇 2B and 502D, each of the first and second nitrogen-containing tungsten layers 512C and 512E has a decrease of about 10% or more. Less nitrogen content. Each of the first and second nitrogen-containing tungsten layers 512C and 512E is about 2 Å to 200 Å thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 51 2C and 512E is in the range of about 0.1 to about 15. The nitrogen-containing tungsten telluride layer 5 1 2D has substantially the same thickness and composition as the nitrogen-containing helium telluride layer 502C. In detail, the nitrogen-containing tungsten germanide layer 5 12D has a ratio of germanium to tungsten of about 0.5 to 3.0 and a nitrogen content of about 10% to 60%. The thickness of the nitrogen-containing tungsten germanide layer 5 1 2D is Within the range between about 20A and 200A. The gate stack structure according to the twelfth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a first nitrogen-containing metal layer ' and the second intermediate structure includes a second nitrogen-containing metal layer, a nitrogen-containing metal telluride layer, and a third nitrogen-containing metal layer. For example: -48 - 201250804 The first intermediate structure is formed by stacking 6 hexahideite layer 5 1 2 A and the nitrogen-containing ruthenium layer 5 1 2 B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten layer 5 1 2C, the nitrogen-containing tungsten carbide layer 5 1 2D, and the nitrogen-containing tungsten layer 5 1 2E. Each of the intermediate structures according to the first to twelfth embodiments of the present invention includes a nitrogen-containing metal telluride layer (for example, a nitrogen-containing tungsten germanide layer) and also includes a plurality of thin layers (including titanium, tantalum, tungsten, and nitrogen). ). The nitrogen-containing tungsten telluride layer is formed by performing a reactive sputtering deposition method using a tungsten telluride sputtering target in a nitrogen atmosphere. When the nitrogen-containing tungsten germanide layer is deposited, the reactive sputtering deposition method converts the titanium layer into the titanium nitride layer. In the case where the nitrogen-containing tungsten layer is formed over the titanium layer, the titanium layer is transformed into the titanium nitride layer. Since the nitrogen-containing tungsten germanide layer acts as an amorphous diffusion barrier, the tungsten layer has a small specific resistance and a large grain size in the range of about 15 μ Ω - c m when the town layer is formed. Therefore, since the tungsten layer having a low specific resistance can be formed, the tungsten layer lowers the sheet resistance. Since the titanium layer or the nitrogen-containing titanium layer is transformed into the titanium nitride layer when the gas-bearing layer or the gas-containing tungsten layer is formed, the first to twelfth according to the present invention The gate stack structure of the embodiment has low contact resistance and can reduce polysilicon vacancies. Furthermore, since the nitrogen-containing tungsten germanide layer is included in each intermediate structure, the gate stack structure has a low sheet resistance. Since the titanium layer or the titanium nitride layer is transformed into the titanium nitride layer, each layer of the plurality of layers included in the intermediate structures contains nitrogen. As a result, the contact resistance and the sheet resistance are low, and the height of each of the gate stack structures can be reduced. In addition, it is allowed to reduce the polycrystalline germanium depletion effect due to the outward expansion of the impurity f (e.g., boron) doped in the first conductive layer of -49-201250804. The hall is based on the stack structure of the thirteenth embodiment of the present invention in accordance with the seventh embodiment. The gate stack structure includes a first conductive layer 丨, a middle gate 62, and a second conductive layer 63. The first conductive layer 61 includes a polysilicon layer of a high doped type 1 impurity (for example, boron) or an N type impurity (for example, phosphorus). The first conductive layer 61 may also include a polycrystalline germanium layer (Sii xGex, wherein X is in the range of between about 0.01 and 1.0) or a germanide layer. For example, the stone layer includes a layer selected from the group consisting of nickel (Ni) 'chromium (Cr), cobalt (c), titanium (Ti) = (W), tantalum (Ta), tantalum (Hf), and niobium (Zr). The second conductive layer 63 in the group consisting of platinum (Pt) includes a tungsten layer. The tungsten layer is about 1 to 2000 A thick and is formed by performing a PVD method, a CVD method, or an aLd method. The PVD method includes a ruthenium plating method using a cesium clock. The intermediate structure 62 includes a titanium (Ti) layer 62A, a first nitrogen-containing tungsten (WNx) layer 62B, a tungsten germanide (WSix) layer 62C (where x is in a range between about 15 and 1), and a second Nitrogen-containing tungsten (WNX) layer 62D. More specifically, the titanium layer 62A is formed to have a thickness ranging from about 1 〇 to 80 Å. Preferably, the titanium layer 62A has a thickness of from about 10A to about 50A. The titanium layer 62A is changed to TiN by a subsequent WNX deposition to form a nitrogen-containing tungsten layer 62B, and some of its lower portion reacts with the first conductive layer 61 'that is, the polycrystalline stone The layer thus forms a TiSix layer and thus has a thickness as defined above. If the thickness of the titanium layer 62A is large, the thickness also increases due to its volume expansion. In addition, if the thickness of the titanium layer 62A is large, the titanium layer 62A can absorb the -50 to 201250804 dopant, for example, phosphorus or boron of the polycrystalline germanium layer 61 and thus multiple depletion in the polycrystalline germanium layer β1, resulting in multiple depletion, resulting in Degradation of component performance. The nitrogen of each of the first and second nitrogen-containing tungsten layers 62A and 62D has a certain ratio to tungsten (e.g., in the range of about 〇·3 to 1.5). Each of the first and second nitrogen-containing tungsten layers 62B and 62D also includes a tungsten nitride layer. Although described later, it is known that the first and second nitrogen-containing tungsten layers 6 2 B and 62D have metallic properties. The first and second nitrogen-containing tungsten layers 62B and 62D supply nitrogen to the tungsten germanide layer 62C. Each of the first and second nitrogen-containing tungsten layers 62B and 62D is formed to have a thickness of about 2 to 200 Å. The first and second nitrogen-containing tungsten layers 6 2B and 6 2D become a pure tungsten layer or a tungsten-containing tungsten layer after the annealing due to the supply of nitrogen. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 6 2 C is in the range of between about 0.5 and 3.0. The nitrogen-containing tungsten carbide layer 62C is formed to have a thickness of about 2 Å to 100 Å. The titanium layer 62A, the first and second nitrogen-containing tungsten layers 62B and 62D, and the tungsten layer 63 are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten telluride layer 62C is formed by performing a PVD method. The PVD method is carried out by a cesium clock deposition method or a reactive sputtering method. For example, the titanium layer 62A is formed by performing a sputtering deposition method using a titanium sputtering target. Each of the first and second nitrogen-containing tungsten layers 62B and 62D is formed by performing a reactive sputtering deposition method using a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 6 2 C is formed by performing a reactive sputtering deposition method using a tungsten telluride sputtering target. The tungsten layer 63 is formed by a sputtering deposition method by dry sputtering with tungsten. A gate stack structure according to a thirteenth embodiment of the present invention includes the -51 - 201250804 first conductive layer 61, the Ti/WNx/WSix/WNx intermediate structure 62, and the second conductive layer 63. The first conductive layer 61 includes polysilicon and the second conductive layer 63 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. Specifically, the Ti/WNx/wsix/WNX intermediate structure 62 is formed in a stacked structure including a first metal layer of a rabbit layer, a metallization layer, and a third metal layer. The first metal layer comprises a layer of pure metal. The second and third metal layers comprise a nitrogen-containing metal layer, and the metal halide layer comprises a pure tungsten germanide layer. For example, the first metal layer is the titanium layer 62A, and the second and second metal layers are the first and second nitrogen-containing tungsten layers 62B and 62D, respectively. The metal-lithium layer is the line-containing layer 62c> or the above-mentioned multilayer intermediate structure may be formed by other different structures. For example, in addition to the titanium layer, the first metal layer further includes a tantalum layer. In addition to the Heshixi compound layer, the 1 hai metal lithium layer further includes a ceramsite (7) called a layer in which the X system is in the range between 1.5 and 1 ,, or a bismuth layer 'where X is in the U Within the range of 10 rooms. In addition to the nitrogen-containing heave layer, the second and third metal layers further comprise a nitrogen-containing titanium pseudo (TiWNx) layer. The ruthenium layer is formed by performing a PVD method including sputtering, a CVD method, or an ald method. Forming the (4) layer Q by performing a reactive enthalpy bond deposition method in a gas atmosphere in the I atmosphere, the titanium oxide is formed by performing a reactive splash deposition method with individual mash and group lithology reduction. An evening layer and the vaporized layer. The button layer is formed with a thickness of about 1 to 8 inches. Preferably, the set of layers has a thickness of from about 1 QA to about 5 GA. The group of layers changes some of its upper portion to TaN by subsequent WNx deposition to form a second metal layer 'and some of its lower portion reacts with the first conductive layer '', ie, the polycrystalline layer is thus 彡s The TaSix layer is formed by the mouth, so it has a thickness as described above in the range of -52 to 201250804. If the thickness of the tantalum layer is large, the thickness of the TaSix layer also increases due to its volume expansion. Further, if the thickness of the button layer is large, the button layer can absorb dopants, for example, phosphorus or boron of the polysilicon layer 61 and thus multiple depletion in the polysilicon layer 61, resulting in deterioration of device performance. The nitrogen-containing titanium tungsten layer is about 20A to 200A thick. Each of the titanium telluride layer and the button telluride layer is formed to a thickness of from about 20 to 200. The nitrogen-containing titanium tungsten layer has about 1 Å. /. Nitrogen content in the range of 60%. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the titanium telluride layer, the ratio of niobium to titanium is in the range of about 0.5 to 3.0. In the button telluride layer, the ratio of 矽 to 钽 is in the range of about 〇 · 5 to 3 · 0. The Heatherite layer 62C is formed over the first nitrogen-containing bridge layer 62B by performing a PVD method (for example, a sputtering deposition method). The splatter deposition method is carried out with the ore chemistry target to allow uniform formation of the tungsten sulphide layer 6 2 C regardless of the underlying type. Figure 7B depicts an image of the structure configured after the formation of a tungsten germanide layer over a nitrogen-containing heddle layer by performing individual chemical vapor deposition (CvD) and physical vapor deposition (PVD) methods. Although the tungsten germanide layer CVD-WSix ' is not formed properly over the gate nitride layer WN by the CVD method, the tungsten germanide layer can be uniformly formed over the tungsten nitride layer WN by the pvd method. PVD_WSix. Therefore, since the tungsten layer having a low specific resistance can be formed over the tungsten germanide layer, the sheet resistance of the tungsten layer can be reduced. According to the gate stack structure of the thirteenth embodiment of the present invention, when the nitrogen-containing tungsten layer 62B is formed over the "tita titanium layer, the titanium layer is transformed into a -53 - 201250804 titanium nitride layer. According to the thirteenth embodiment of the present invention, since the titanium layer of the intermediate structure is transformed into the titanium nitride layer during formation of the nitrogen-containing layer, the gate stack structure can obtain low contact resistance and reduce the polysilicon enthalpy effect. Moreover, since the intermediate structure includes the tungsten germanide layer, the gate stack structure can also obtain a low sheet resistance. Fig. 7C depicts a gate stack structure in accordance with a fourteenth embodiment of the present invention. The gate stack structure includes a first conductive layer 601, an intermediate structure 602, and a second conductive layer 6〇3. The first conductive layer 6〇1 includes a polycrystalline germanium layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 601 may also include a polysilicon layer (sii xGex, where x is in a range between about 〇 1 and 10) or a germanide layer. For example, the lithiation layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (c〇), titanium (Τι), tungsten (W), group (Ta), hafnium (Hf), and niobium (Zr). And one of the groups consisting of platinum (Pt). The second conductive layer 6〇3 includes a tungsten layer. The tungsten layer is about 1 Å to 2000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten splash target. The intermediate structure 602 includes a nitrogen-containing titanium layer 602A, a first nitrogen-containing tungsten (WNX) layer 602B, a tungsten germanide (WSix) layer 602C, and a second nitrogen-containing germanium (WNX) layer 60 2D ° in more detail. The nitrogen-containing titanium layer 6〇2A has a certain ratio of nitrogen to titanium (for example, in the range of about 〇2 to 8. 8) and a thickness of about 10A to 150 Å. Here, the nitrogen-containing metal layer, i.e., the nitrogen-containing tantalum layer 60 2 A, has a ratio of nitrogen to titanium as described above to prevent SiN from being generated in the nitrogen-containing titanium layer 6〇2A. Since excessive Ti in the nitrogen-containing titanium layer 602A during the subsequent -54-201250804 fire treatment destroys the Si-N bond formed between the polycrystalline stone and the TiNx and thus removes the SiN, the SiN can be prevented. produce. This is because the TiN connection is more robust than the SiN connection. The nitrogen-containing titanium layer 602A also includes a titanium nitride layer. Each of the first and second nitrogen-containing tungsten layers 602B and 602D has a certain ratio of nitrogen to tungsten (e.g., in the range of about 〇·3 to 1.5). Each of the first and second nitrogen-containing tungsten layers 602B and 602D also includes a tungsten nitride layer. The first and second nitrogen-containing tungsten layers 602B and 602D supply nitrogen to the tungsten germanide layer 602C. Each of the first and second nitrogen-containing tungsten layers 602B and 602D is formed to have a thickness of about 2 Å to 200 Å. The first and second nitrogen-containing tungsten layers 602 and 602D become a pure tungsten layer or a tungsten-containing tungsten layer after the annealing due to the supply of nitrogen. The ratio of enthalpy to enthalpy in the tungsten carbide layer 6 0 2 C is in the range between about 〇 5 and 3.0. The tungsten germanide layer 602C has a thickness of about 20 Å to 200 Å. The first and second nitrogen-containing tungsten layers 602B and 602D are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 602A and the tungsten germanide layer 602C are formed by performing a PVD method. The shai PVD method is carried out by a Tibetan deposit method or a reactive sputter deposition method. For example, the nitrogen-containing titanium layer 602A is formed by performing a sputtering deposition method by dry plating in a nitrogen atmosphere. The first and second nitrogen-containing tungsten layers 6 0 2B and 602D are formed by dry sputtering of a tungsten alloy in a nitrogen atmosphere. The tungsten germanide layer 602C is formed by performing a reactive sputtering deposition method with a tungsten telluride sputtering target. The tungsten layer 603 is formed by sputtering deposition using a tungsten sputtering target. The idler stack structure of the fourteenth embodiment of the present invention includes the first conductive layer 601, the Til^/WlSU/WSix/Wl^ intermediate structure 602, and the second conductive layer 603. The first conductive layer 601 includes a polysilicon and the second conductive layer 603 includes tungsten to form a tungsten polysilicon gate stack structure. Specifically, the TiNx/WNx/WSix/WNx intermediate structure 6〇2 is formed in a stacked structure including a first metal layer, a second metal layer, a metal telluride layer, and a third metal layer. The first, second and third metal layers are a gas-containing metal layer' and the metal telluride layer is a pure metal telluride layer. For example, the first metal layer is the nitrogen-containing titanium layer 6〇2A, and the second and second metal layers are the first and second nitrogen-containing tungsten layers 602B and 602D, respectively. The metal telluride layer is the tungsten germanide layer 6 〇 2 c. The above multilayer intermediate structure may also be formed by other different structures. For example, in addition to the nitrogen-containing titanium layer, the first metal layer further includes a nitrogen-containing button (TaNx) layer. In addition to the tungsten germanide layer, the metal telluride layer further includes Titanium (TiSix), wherein the X system is in a range between about 15 and 1 Å, or a group telluride (TaSix), wherein the x system Within the range of about 1.5 and 1 。. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further comprise a titanium-titanium-titanium (TiWNx) layer. The nitrogen-containing ruthenium layer was formed by performing a reactive sputtering method with a ruthenium sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The titanium telluride layer and the button telluride layer are formed by performing reactive subtractive forging deposition on individual titanium telluride and telluride sputter targets. The nitrogen-containing layer is formed to a thickness of about 10A to 150A. Each of the nitrogen-containing titanium tungsten layer, the titanium lithium layer, and the vaporized layer is formed to a thickness of about 2 Å to 200 Å. The nitrogen content of the nitrogen-containing titanium layer is in the range of between about 1% and -56 to 201250804%. In the 氡 containing 既 既 * * * 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氡 氡 氡 氡 氡 氡 氡 氡Within the scope. In the button telluride layer, the ratio of the Shixi to the group is in the range of about 0.5 to 3 Torr. In the upper intermediate structure 602, the tungsten germanide layer 602C is formed over the first nitrogen-containing tungsten layer 6?2B by a pvD method (e.g., a clock-breaking method). The sputtering of the sputtering target is carried out by the tungsten-telluride sputtering target, and is independent of the lower layer type. Fig. 7D is a view showing the gate stacking structure according to the fifteenth embodiment of the present invention. The gate stack structure includes a first conductive layer 丨丨, an intermediate structure 612, and a second conductive layer 613. The first conductive layer 611 includes a multi-BB layer which is highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus (p)). In addition to the polycrystalline layer, the first conductive layer 6 1 } may also include a polycrystalline Si锗 (Si!-xGex) layer, wherein the X system is within the range of approximately 〇.〇1 and 1.〇. Or include a telluride layer. The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (7), tungsten (W), tantalum (Ta), hafnium (Hf), zirconium (Zr), and platinum (Pt). One of the groups formed.

該第二導電層613包括鎢層。實施PVD法、CVD 法及ALD法中之一以形成約1〇〇人至2000A厚之鎢層。 該PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 s亥中間結構6 1 2包括欽石夕化物(T i S i X)層6 1 2 A、含氮 鈦(TiNx)層612B、第一含氮鎢(WNX)層6 1 2C、含氮鎢矽 化物(WSixNy)層612D及第二含氮鎢層612E。可依據本 發明之第十三及第十四實施例所述之選擇材料以不同結 構形成該中間結構6 1 2。 -57- 201250804 依據本發明之第十五實施例之閘極堆疊結構係在對 依據本發明之第十三及第十四實施例的閘極堆叠結構實 施退火處理後所造成之結構。該退火包括在形成該等閘 極堆疊結構後所實施之各種製程(例如··間隔物形成及内 層絕緣層形成)期間所伴隨之熱處理。 參考第7D及7 A圖以比較該中間結構6丨2與該中間 結構62。當該鈦層62A與來自該第一導電層6 i之多晶 石夕反應時’形成具有約1A至30A厚度之鈦矽化物層 6 1 2 A。該鈦矽化物層6 1 2 A中之矽對鈦的比例係在約〇 5 與3 · 0間之範圍内。 當從該鈦層62A供應氮至該鈦層62A時,造成該含 氮鈦層612B。該含氮鈦層612B具有約1〇Α至1〇〇入範 圍之厚度且具有約0.6至1.2範圍之氮對鈦的比例。 在該退火後’該第一及第二.含氮鎢層612C及612E 之每一層具有因該侵蝕作用而降至約丨〇 %或更少之氮含 里。元件符號WNX(D)表示該侵触之含氣鶴層。該第一及 第一含II鶴層612C及612E之每一層係約20人至200A 厚。在該第一及第二含氮鎢層612C及61 2E之每一層中 的氮對鎢之比例係在約0·0 1與〇. 1 5間之範圍内。 當分解來自該第一及第二含氮鎢層602B及602D之 氮時,使該鎢矽化物層602C變換成為該含氮鎢矽化物 層6 1 2 D。在該含氮鎮石夕化物層6 1 2 D中之石夕對鶴的比例 係在約〇 . 5至3.0之範圍内。該含氮鎢矽化物層6 1 2D具 有約10%至60%之氮含量及約20A至200A之厚度。 參考第7D及7C圖以比較該中間結構6 1 2與該中間 -58- 201250804 結構602。在該退火處理期間,從該含氮鎢層6〇2B供應 氮至該含氮鈦層602A。結果,使該含氮鈦層6〇2A變換 成為與該欽石夕化物層612A有最小反應之含氮鈦層 612B。該鈦矽化物層612A之厚度係在約u至3〇A之 祀圍内,以及該含氮鈦層612B之厚度係在約ι〇Α至 100A之範圍内。在該含氮鈦層612B中之氮對鈦的比例 係在約0 · 7與1.3間之範圍内。 在該退火後,當侵蝕該第一及第二含氮鎢層6〇2b 及602D時,該第一及第二含氮鎢層612c及6i2E之每 一層具有降至約10%或更少之氮含量。該第一及第二含 氮鎢層612C及612E之每一層係約20A至200A厚。在 該第一及第二含氮鎢層612C及612e之每一層中的氮對 嫣之比例係在約〇 〇 1與〇丨5間之範圍内。 當杈蝕來自該第一及第二含氮鎢層602B及602D之 氮時,使該鎢矽化物層602C變換成為該含氮鎢矽化物 層612D。該含氮鎢矽化物層612D具有約〇.5至3〇之 矽對鎢的比例及約1〇%至6〇%之氮含量。在此,氮含量 以上述方式被適當調整。若氮含量太低’則接面反應= 因該含氮鎢矽化物層612D無法成功作為擴散障壁而發 方面’若氮含f太咼’則包含於該含氮鎢石夕化 物層612D中之SiN含量會是高的,並因此讓接觸電阻 變高,導致元件性能劣化。該含氮鎢矽化物層6丨2d之 厚度係在約20A與200A間之範圍内。 依據第十五實施例之閘極堆疊結構包括第—中間結 構及第一中間結構。該第一中間結構包括金屬石夕化物屛 -59- 201250804 及第一含氮金屬層,以及該第二中間結構包括第二含氮 金屬層、含氮金屬矽化物層及第三含氮金屬層。例如: 藉由堆疊該鈦矽化物層612A及該含氮鈦層612B形成該 第一中間結構。藉由堆疊該含氮鶴層6 1 2 C、該含氮鶴矽 化物層6 1 2D及該含氮鎢層6 1 2E形成該第二中間結構。 依據本發明之第一至第十五實施例的中間結構,可 實施以控制除了動態隨機存取記憶體(dram)元件之 外’還可控制快閃記憶體元件之閘極電極及許多邏輯元 件之間極電極。 第8圖描述依據本發明之第十六實施例的快閃記憶 體元件之閘極堆疊結構。在基板70 1上方形成對應於閘 極絕緣層之穿隧氧化層7〇2。在該穿隧氧化層702上方 形成用於浮動閘極FG之第一多晶矽電極7〇3。 在該第一多晶矽電極703上方形成介電層7〇4,以 及在該介電層704上方形成用於控制閘極CG之第二多 晶矽電極705。 在該第二多晶矽電極705上方形成選自由本發明之 第一至第十五實施例所述之各種型態的中間結構所構成 之群組中的中間結構706。該中間結構7〇6包括依據本 發明之第一實施例的Ti/WNx/WSixNy中間結構。因此, 藉由連續地堆疊鈦層706A、含氮鎢層7〇6b及含氮鎢矽 化物層7 0 6 C以形成該中間結構7 〇 6。 在該中間結構706 7 0 8。元件符號w及 罩 708。 706上方形成鶴電極7〇7 Η/M分別表示該轉電極 u 7及硬罩 707及該硬 -60- 201250804 具有如第8圖所示之中間結構 706的快閃記憶體元The second conductive layer 613 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is performed to form a tungsten layer of about 1 to 2000 A thick. The PVD method includes a sputtering deposition method using a tungsten sputtering target. sH intermediate structure 6 1 2 includes 钦西夕 (T i S i X) layer 6 1 2 A, nitrogen-containing titanium (TiNx) layer 612B, first nitrogen-containing tungsten (WNX) layer 6 1 2C, nitrogen-containing tungsten A telluride (WSixNy) layer 612D and a second nitrogen-containing tungsten layer 612E. The intermediate structure 61 may be formed in a different structure according to the selection materials described in the thirteenth and fourteenth embodiments of the present invention. The gate stack structure according to the fifteenth embodiment of the present invention is a structure resulting from the annealing treatment of the gate stack structures according to the thirteenth and fourteenth embodiments of the present invention. The annealing includes heat treatment accompanying various processes (e.g., spacer formation and formation of an inner insulating layer) performed after the formation of the gate stack structures. Referring to Figures 7D and 7A, the intermediate structure 6丨2 and the intermediate structure 62 are compared. When the titanium layer 62A reacts with the polycrystal from the first conductive layer 6 i, a titanium telluride layer 6 1 2 A having a thickness of about 1 A to 30 A is formed. The ratio of bismuth to titanium in the titanium telluride layer 6 1 2 A is in the range of between about 与 5 and +/- 0. When nitrogen is supplied from the titanium layer 62A to the titanium layer 62A, the nitrogen-containing titanium layer 612B is caused. The nitrogen-containing titanium layer 612B has a thickness of about 1 〇Α to 1 且 and has a ratio of nitrogen to titanium in the range of about 0.6 to 1.2. After the annealing, each of the first and second nitrogen-containing tungsten layers 612C and 612E has a nitrogen content of about 丨〇% or less due to the erosive action. The component symbol WNX(D) indicates the invading gas-bearing crane layer. Each of the first and first II containing layers 612C and 612E is about 20 to 200 angstrom thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 612C and 61 2E is in the range of about 0.001 and 〇 15. When the nitrogen from the first and second nitrogen-containing tungsten layers 602B and 602D is decomposed, the tungsten germanide layer 602C is transformed into the nitrogen-containing tungsten germanide layer 6 1 2 D. The ratio of the stone to the crane in the nitrogen-containing township layer 6 1 2 D is in the range of about 〇. 5 to 3.0. The nitrogen-containing tungsten telluride layer 6 1 2D has a nitrogen content of about 10% to 60% and a thickness of about 20A to 200A. Referring to Figures 7D and 7C, the intermediate structure 61 is compared to the intermediate -58-201250804 structure 602. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten layer 6?2B to the nitrogen-containing titanium layer 602A. As a result, the nitrogen-containing titanium layer 6〇2A is converted into a nitrogen-containing titanium layer 612B which has a minimum reaction with the celestial layer 612A. The titanium germanide layer 612A has a thickness in the range of about u to 3 Å, and the nitrogen-containing titanium layer 612B has a thickness in the range of about ι to 100 Å. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 612B is in the range of between about 0.7 and 1.3. After the annealing, when the first and second nitrogen-containing tungsten layers 6〇2b and 602D are eroded, each of the first and second nitrogen-containing tungsten layers 612c and 6i2E has a reduction of about 10% or less. Nitrogen content. Each of the first and second nitrogen-containing tungsten layers 612C and 612E is about 20A to 200A thick. The ratio of nitrogen to enthalpy in each of the first and second nitrogen-containing tungsten layers 612C and 612e is in the range between about 〇 〇 1 and 〇丨 5. When the nitrogen from the first and second nitrogen-containing tungsten layers 602B and 602D is etched, the tungsten germanide layer 602C is transformed into the nitrogen-containing tungsten germanide layer 612D. The nitrogen-containing tungsten carbide layer 612D has a rhodium to tungsten ratio of about 0.5 to 3 Å and a nitrogen content of about 1% to 6% by weight. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, then the junction reaction = because the nitrogen-containing tungsten carbide layer 612D cannot be successfully used as a diffusion barrier, and if the nitrogen contains f too, it is included in the nitrogen-containing tungsten-lithium layer 612D. The SiN content may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The thickness of the nitrogen-containing tungsten carbide layer 6丨2d is in the range of between about 20A and 200A. The gate stack structure according to the fifteenth embodiment includes a first intermediate structure and a first intermediate structure. The first intermediate structure includes a metal lithium 屛-59-201250804 and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal layer, a nitrogen-containing metal telluride layer, and a third nitrogen-containing metal layer . For example, the first intermediate structure is formed by stacking the titanium germanide layer 612A and the nitrogen-containing titanium layer 612B. The second intermediate structure is formed by stacking the nitrogen-containing heddle layer 6 1 2 C, the nitrogen-containing helium telluride layer 6 1 2D, and the nitrogen-containing tungsten layer 6 1 2E. The intermediate structure according to the first to fifteenth embodiments of the present invention can be implemented to control a gate electrode and a plurality of logic elements that can control a flash memory element in addition to a dynamic random access memory (dram) element. Between the pole electrodes. Fig. 8 is a view showing a gate stack structure of a flash memory device in accordance with a sixteenth embodiment of the present invention. A tunnel oxide layer 7〇2 corresponding to the gate insulating layer is formed over the substrate 70 1 . A first polysilicon electrode 7〇3 for the floating gate FG is formed over the tunnel oxide layer 702. A dielectric layer 7〇4 is formed over the first polysilicon electrode 703, and a second polysilicon electrode 705 for controlling the gate CG is formed over the dielectric layer 704. An intermediate structure 706 selected from the group consisting of intermediate structures of the various types described in the first to fifteenth embodiments of the present invention is formed over the second polysilicon electrode 705. The intermediate structure 7〇6 includes a Ti/WNx/WSixNy intermediate structure in accordance with the first embodiment of the present invention. Therefore, the intermediate structure 7 〇 6 is formed by continuously stacking the titanium layer 706A, the nitrogen-containing tungsten layer 7〇6b, and the nitrogen-containing tungsten carbide layer 7 0 6 C. In the intermediate structure 706 7 0 8 . Component symbol w and cover 708. The formation of the crane electrode 7 〇 7 Η / M above the 706 indicates that the rotating electrode u 7 and the hard cover 707 and the hard - 60 - 201250804 have the flash memory element of the intermediate structure 706 as shown in FIG.

質之多晶矽電極及在該中間結構上方所形成之鎢電極) 所組成。 第9圖係描述依據本發明之第一至第十五實施例所 开> 成之母一型態的中間結構之鎢層的片電阻(Rs)之曲線 圖。該鎢層具有約40nm之厚度。 可觀察到在Ti/WNX中間結構上方藉由CVD法及 PVD法額外地施加 WSix/WNx中間結構(亦即, Ti/WNx/CVD-WSix/WNx 結構及 Ti/WNX/PVD-WSix/WNx 結構)及施加WSixNy層(亦即,Ti/WNx/WSixNy結構)之情 況中,減少該鎢電極之片電阻。然而,因為藉由CVD法 無法在WNX層上方適當地成長WSix層,所以需要藉由 PVD法(例如:濺鍍沉積法)在WNX層上方形成該WSix 層。藉由使用鎢矽化物濺鍍靶及氮氣之反應式濺鍍沉積 法實施該WSixNy層之形成。 將比較該 Ti/WNx/CVD-WSix/WNx中間結構、該 Ti/WNx/PVD-WSix/WNx 中間結構及該 Ti/WNx/WSixNy 中 61 - 201250804 間結構之鎢電極的片電阻。該鎢電極之片電阻只在康用 該Ti/WNx/PVD-WSix/WNx中間結構之情況中是較低 的’以及該Ti/WNx/WSixNy中間結構係相同於應用 WSix/WNx中間結構之情況。在藉由該CVD法施加該 WSix層之情況中’無法在該WNX層上方均勻地形成該 WSix層。結果,在該WNx層上方產生結塊,因而增加 該片電阻。相反地’若使用該利用wsix濺鍍靶之錢鍛沉 積法或該反應式濺鍍沉積法,則可均勻地形成咳wsi 擴散層,藉此減少該鎢電極之片電阻。 第10A至10C圖使用第3A圖所示之閘極堆疊結構 來描述閘極圖案化製程。第3 A圖中所識別之相同元件 符號在此表示相同元件。 參考第10A圖’在基板800上方形成閘極絕緣層 801’其中在該基板801中實施離子佈植製程以形成隔^ 層、井區及通道。 在該閘極絕緣層80 1上方形成圖案化第—導電層 21。在該圖案化第一導電層21上方形成中間結構22 : 在該中間結構22上方形成圖案化第二導電層23。 該圖案化第一導電層21包括高摻雜有ρ —型雜質(例 如:侧)或Ν-型雜質(例如:磷)之多晶矽層。該圖案化第 一導電層21亦可包括多晶矽鍺層(SiixGex,其” X係在 約0,01與1 .〇間之範圍内)或矽化物層。如. 砂化物 層包括選自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(w)、 鈕(Ta)、铪(Hf)、鍅(Zr)及鉑(pt)所組成之群組中之一。 該中間結構22包括圖案化鈦層(Ti)22A、圖案化含 -62- 201250804 氣鶴(WNX)層22B及圖案化含氮鎢矽化物(WSixNy)層 22C。 該圖案化第二導電層23包括鎢層。藉由實施PVD 法、CVD法或ALD法形成該鎢層。該Pvd法包括使用 鶴濺鍍靶之濺鍍沉積法。 在该圖案化第二導電層23上方形成硬罩802。可省 略该硬罩802之形成。該硬罩802包括氮化矽(Si3N4)。 實施問極圖案化製程,以形成該所述之閘極堆疊結 構。特別地’雖然未顯示,但是使用由光阻層所形成之 蝕刻P早壁閘極遮罩(未顯示)來實施第一圖案化製程,以 蝕刻硬罩層、第二導電層、包括該中間結構22之鈦層、 3瓦鶴層及含氮鎢矽化物層的複數層及第一導電層之一 4为。結果’在該閘極絕緣層8〇 i及該基板8〇0上方形 成包括該硬罩802、該圖案化第二導電層23、該中間結 構22及該圖案化第一導電層21之結構。 _參考第1〇B圖,移除該閘極遮罩,然後,實施前間 隔物製程,以防止該圖案化第二導電層2 3 (亦即,鎢層) 及該中間結構22之非均勻蝕刻及氧化。例如:形成 層803做為前間隔物層。 參考第1〇C目’實施第二閘極圖案化製程,以蝕刻 該ShA層803及該圖案化第—導電層以之一部分。在 第二閘極®案化製程期間,使用乾式餘刻法蚀刻該s i 3 N 4 層803之—部分’以在該閘極堆疊結構之側壁上形成間 隔物803A。纟用該等間隔物8Q3A做為蚀刻障壁以钱刻 該圖案化第一導電|21。元件符號21八表示電極(例如: -63- 201250804 多晶矽電極)。 可將使用如上述前間隔物層之第一及第二閘極圖案 化製程應用至依據本發明之第二至第十五實施例的問極 堆疊結構。 第1 1圖使用第3 A圖所示之閘極堆疊結構描述另— 閘極圖案化製程。第1 〇 A至丨〇 C圖所使用之相同元件符 號在此表示相同元件。 在基板800上方形成閘極絕緣層8〇1,其中在該基 板800中實施離子佈植製程以形成隔離層、井區及通 道。在該閘極絕緣層80 1上方形成圖案化第一導電層 2 1 B ^在該圖案化第一導電層2丨b上方形成中間結構 22。在該中間結構22上方形成圖案化第二導電層23。 該圖案化第一導電層21B包括高摻雜有P_型雜質 (例如:硼)或N-型雜質(例如:磷)之多晶矽層。該圖案 化第一導電層21B亦可包括多晶矽鍺層(Si^G%,其中 X係在約0 .〇 1與1 .〇間之範圍内)或矽化物層。例如:該 矽化物層包括選自由鎳(Ni)、鉻(Cr)、鈷(co)、鈦(丁丨)、 鶴(w)、叙(Ta)、铪(Hf)、锆(Zr)及鉑(pt)所組成之群組 之一〇 、、’ 該中間結構22包括圖案化鈦層(Ti)22A、圖案化人 氮鶴(WNX)層22B及圖案化含氮鎢矽化物(Wsi 2 22C。 y)層 該圖案化第二導電層23包括鎢層。藉由實施pvD 法、CVD法或ALD法形成該鎢層。該PVD法句 拍、也^ ^枯使用 螞機鍍靶之濺鍍沉積法。 -64- 201250804 在該圖案化第二導電層23上方形成硬遮罩8〇2。可 省略該硬遮罩802之形成。該硬遮罩8〇2包括氮化矽 (SiA)。實施間極圖案化製程,以形成該所述之閘極堆 疊結構。特別地,雖然未顯示,但是使用由光阻層所形 成之蝕刻障壁閘極遮罩(未顯示)來同時蝕刻硬罩層、第 二導電層、包括該中間結構22之鈦層、含氮鎢層及含氮 鎢矽化物層的複數層及第一導電層之部分。結果,在該 閘極絕緣層801及該基板8〇〇上方形成包括該硬罩 802、該圖案化第二導電層23、該中間結構22及該圖案 化第一導電層2 1 B之結構。選擇立即實施蝕刻而不使用 前間隔物層之閘極圖案化製程,以取代使用該前間隔物 層之包含兩個步驟的閘極圖案化製程。可將不使用該前 間隔物層之閘極圖案化製程應用至依據本發明之第二至 第十五實施例的閘極堆疊結構。 依據本發明之實施例,由在鎢電極與多晶矽電極間 所配置之多個薄層(包含鈦、鎢、矽及氮或每一層包含氮) 所構成之中間結構可允許獲得和p〇ly_Si/WNx/w及 P〇ly-Si/WNx/WSix/W中間結構一樣低之片電阻。因此, 可減少閘極堆疊結構之高度,因而可容易地獲得製程整 合。 由於硼穿透或硼向外擴散之減少,可減少多晶矽空 乏效應’以及因此,可增加PMOSFET之操作電流。此 外,在該鎢電極與該多晶矽電極間可獲得非常低接觸電 阻,因而有利於高速元件之製造。 至於形成用以製造高速/高密度/低功率記憶體元件 -65- 201250804 之鎢多晶矽閘極的方法,可藉由實施由多個薄膜(包人 鈦、鎢、矽及氮,或每—薄膜包含氮)所構成之中間結構 以獲得低接觸電阻及低多晶石夕空乏效應。 雖然已參考該等特定實施例來描述本發 習該項技藝者將明顯易知在不脫離下面請求項所界定之 本發明的精神及範圍内可實施各種變更及修改。 【圖式簡單說明】 第1 A至1C圖描述典型鎢多晶矽閘極之閘極姓 構。 且、、,° 第2Α圖係描述每一型態之中間結構在鎢與多晶矽 間之接觸電阻的曲線圖。The polycrystalline germanium electrode and the tungsten electrode formed over the intermediate structure are composed of. Fig. 9 is a graph showing the sheet resistance (Rs) of the tungsten layer of the intermediate structure of the first to fifteenth embodiments according to the first to fifteenth embodiments of the present invention. The tungsten layer has a thickness of about 40 nm. It can be observed that the WSix/WNx intermediate structure (ie, Ti/WNx/CVD-WSix/WNx structure and Ti/WNX/PVD-WSix/WNx structure) is additionally applied by the CVD method and the PVD method over the Ti/WNX intermediate structure. In the case of applying a WSixNy layer (that is, a Ti/WNx/WSixNy structure), the sheet resistance of the tungsten electrode is reduced. However, since the WSix layer cannot be properly grown over the WNX layer by the CVD method, it is necessary to form the WSix layer over the WNX layer by a PVD method (e.g., sputter deposition method). The formation of the WSixNy layer was carried out by reactive sputtering deposition using a tungsten telluride sputtering target and nitrogen. The sheet resistance of the Ti/WNx/CVD-WSix/WNx intermediate structure, the Ti/WNx/PVD-WSix/WNx intermediate structure, and the tungsten electrode of the structure between 61 and 201250804 in the Ti/WNx/WSixNy will be compared. The sheet resistance of the tungsten electrode is only lower in the case of the Ti/WNx/PVD-WSix/WNx intermediate structure, and the Ti/WNx/WSixNy intermediate structure is the same as the application of the WSix/WNx intermediate structure. . In the case where the WSix layer is applied by the CVD method, the WSix layer cannot be uniformly formed over the WNX layer. As a result, agglomerates are generated above the WNx layer, thereby increasing the sheet resistance. Conversely, if the money forging deposition method using the wsix sputtering target or the reactive sputtering deposition method is used, the csi diffusion layer can be uniformly formed, thereby reducing the sheet resistance of the tungsten electrode. Figures 10A through 10C illustrate the gate patterning process using the gate stack structure shown in Figure 3A. The same elements as identified in Figure 3A are denoted by the same elements herein. Referring to Fig. 10A', a gate insulating layer 801' is formed over the substrate 800, in which an ion implantation process is performed to form a spacer, a well region, and a via. A patterned first conductive layer 21 is formed over the gate insulating layer 80 1 . An intermediate structure 22 is formed over the patterned first conductive layer 21: a patterned second conductive layer 23 is formed over the intermediate structure 22. The patterned first conductive layer 21 includes a polysilicon layer highly doped with a p-type impurity (e.g., a side) or a Ν-type impurity (e.g., phosphorus). The patterned first conductive layer 21 may also include a polysilicon layer (SiixGex, which "X series is in the range of about 0, 01 and 1.") or a vaporized layer. For example, the sand layer includes a layer selected from nickel ( One of a group consisting of Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (w), button (Ta), hafnium (Hf), yttrium (Zr), and platinum (pt) The intermediate structure 22 includes a patterned titanium layer (Ti) 22A, a patterned -62-201250804 gas crane (WNX) layer 22B, and a patterned nitrogen-containing tungsten germanide (WSixNy) layer 22C. The patterned second conductive layer 23 includes a tungsten layer. The tungsten layer is formed by performing a PVD method, a CVD method, or an ALD method. The Pvd method includes a sputtering deposition method using a crane sputtering target. A hard mask 802 is formed over the patterned second conductive layer 23. The formation of the hard mask 802 may be omitted. The hard mask 802 includes tantalum nitride (Si3N4). A pole patterning process is performed to form the gate stack structure. In particular, although not shown, An etched P early wall gate mask (not shown) formed by the photoresist layer is used to perform a first patterning process to etch the hard mask layer, the second conductive layer, including The titanium layer of the intermediate structure 22, the three-layered crane layer, and the plurality of layers of the nitrogen-containing tungsten germanide layer and one of the first conductive layers 4 are formed. The result 'forms on the gate insulating layer 8〇i and the substrate 8〇0. The structure includes the hard mask 802, the patterned second conductive layer 23, the intermediate structure 22, and the patterned first conductive layer 21. _ Referring to FIG. 1B, the gate mask is removed, and then implemented The front spacer process prevents the non-uniform etching and oxidation of the patterned second conductive layer 23 (i.e., the tungsten layer) and the intermediate structure 22. For example, the formation layer 803 is used as the front spacer layer. The second gate patterning process is performed to etch the portion of the ShA layer 803 and the patterned first conductive layer. During the second gate process, the dry etch is used to etch the si 3 N 4 layer 803 - part 'to form a spacer 803A on the sidewall of the gate stack structure. The spacer 8Q3A is used as an etch barrier to engrave the patterned first conductive | 21. Eight indicates the electrode (for example: -63- 201250804 polycrystalline germanium electrode). It can be used as before The first and second gate patterning processes of the spacer layer are applied to the gate stack structure according to the second to fifteenth embodiments of the present invention. FIG. 1 is a gate stack structure shown in FIG. The description of the same is used for the gate patterning process. The same component symbols used in the first to third embodiments represent the same elements. A gate insulating layer 8〇1 is formed over the substrate 800, wherein the substrate 800 is implemented in the substrate 800. An ion implantation process to form an isolation layer, a well region, and a via. A patterned first conductive layer 2 1 B is formed over the gate insulating layer 80 1 . An intermediate structure 22 is formed over the patterned first conductive layer 2 丨 b . A patterned second conductive layer 23 is formed over the intermediate structure 22. The patterned first conductive layer 21B includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The patterned first conductive layer 21B may also include a polycrystalline germanium layer (Si^G%, where X is in the range of about 0. 〇 1 and 1. 〇) or a germanide layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (co), titanium (butadiene), crane (w), argon (Ta), hafnium (Hf), zirconium (Zr), and One of the groups consisting of platinum (pt), 'the intermediate structure 22 includes a patterned titanium layer (Ti) 22A, a patterned human nitrogen crane (WNX) layer 22B, and a patterned nitrogen-containing tungsten germanide (Wsi 2) 22C. y) Layer The patterned second conductive layer 23 comprises a tungsten layer. The tungsten layer is formed by performing a pvD method, a CVD method, or an ALD method. The PVD method is also used to spray the deposition method of the target of the aircraft. -64- 201250804 A hard mask 8〇2 is formed over the patterned second conductive layer 23. The formation of the hard mask 802 can be omitted. The hard mask 8〇2 includes tantalum nitride (SiA). An interpolar patterning process is performed to form the gate stack structure. In particular, although not shown, an etch barrier gate mask (not shown) formed by a photoresist layer is used to simultaneously etch the hard mask layer, the second conductive layer, the titanium layer including the intermediate structure 22, and the nitrogen-containing tungsten. a layer and a plurality of layers of the nitrogen-containing tungsten germanide layer and portions of the first conductive layer. As a result, a structure including the hard mask 802, the patterned second conductive layer 23, the intermediate structure 22, and the patterned first conductive layer 2 1 B is formed over the gate insulating layer 801 and the substrate 8A. The gate patterning process is performed immediately without etching using the front spacer layer instead of the two-step gate patterning process using the front spacer layer. A gate patterning process that does not use the front spacer layer can be applied to the gate stack structure according to the second to fifteenth embodiments of the present invention. According to an embodiment of the present invention, an intermediate structure composed of a plurality of thin layers (including titanium, tungsten, tantalum, and nitrogen or each layer containing nitrogen) disposed between the tungsten electrode and the polycrystalline germanium electrode allows for obtaining and p〇ly_Si/ The WNx/w and P〇ly-Si/WNx/WSix/W intermediate structures have the same low sheet resistance. Therefore, the height of the gate stack structure can be reduced, and thus the process integration can be easily obtained. Due to the reduction in boron penetration or boron out-diffusion, the polysilicon enthalpy effect can be reduced' and, therefore, the operating current of the PMOSFET can be increased. In addition, a very low contact resistance can be obtained between the tungsten electrode and the polycrystalline germanium electrode, which is advantageous for the manufacture of high speed components. The method for forming a tungsten polysilicon gate for manufacturing a high speed/high density/low power memory device-65-201250804 can be implemented by using a plurality of films (including titanium, tungsten, tantalum, and nitrogen, or each film). An intermediate structure composed of nitrogen is included to obtain low contact resistance and low polycrystalline litter effect. Various modifications and changes may be made without departing from the spirit and scope of the invention as defined by the appended claims. [Simple description of the diagram] Figures 1A to 1C depict the gate structure of a typical tungsten polysilicon gate. And, ,, ° Fig. 2 is a graph showing the contact resistance between the tungsten and the polycrystalline silicon in the intermediate structure of each type.

第2B圖係描述每-型態之閉極堆疊結構的硼濃度 之深度輸廓的曲線圖。 X 第2C圖係描述每—型態之中間結構的片電阻之曲 線圖。 第3A圖描述依據本發明之第一實施例的閘極堆疊 結構。 且 第3B圖係在藉由物理氣相沉積(pvD)法在鎢氮化 物層之上部为上方形成鎢矽氮化物層後所獲得之影像。 第3C圖描述依據本發明之第二實施例的閘極堆疊 結構。 且 第3D圖描述依據本發明之第三實施例的閘極堆疊 結構。 且 第3E圖描述在退火製程後之閑極堆疊結構的影像。 第4A ffi#述依據本發明之第四實施例的問極堆疊 -66- 201250804 結構。 第4B圖描述依據本發明之第五實施例的閘極堆疊 結構。 第4C圖描述依據本發明之第六實施例的閘極堆疊 結構。 第5A圖描述依據本發明之第七實施例的閘極堆疊 結構。 第5B圖描述依據本發明之第八實施例的閘極堆疊 結構。 第5C圖描述依據本發明之第九實施例的閘極堆疊 結構。 第6A圖描述依據本發明之第十實施例的閘極堆疊 結構。 第6B圖描述依據本發明之第十一實施例的閘極堆 疊結構。 第6C圖描述依據本發明之第十二實施例的閘極堆 疊結構。 第7A圖描述依據本發明之第十三實施例的閘極堆 疊結構。 第7B圖描述在藉由實施個別化學氣相沉積(CVD) 及物理氣相沉積(PVD)法在含氮鎢層上方形成鎢矽化物 層後所配置之結構的影像。 第7C圖描述依據本發明之第十四實施例的閘極堆 疊結構。 第7D圖描述依據本發明之第十五實施例的閘極堆 -67- 結構 每—型態 201250804 疊結構。 第8圖描述依據本發明之第十六實施例的閘極 第9圖係描述依據本發明之實施例 間結構的鎢電極之片電阻之曲線圖。 ,至1()C圖係描述依據本發明之實施例的 <、化方法以獲第3A圖所述之閘極堆疊妗 第Π圖係使用第3A圖所示之閉極、剖3 極圖案化方法之剖面圖。 隹疊結構描 堆疊 之中 閉極 f圖。 述閘 【主要元件符號說明】 Π 多晶矽層 12 鎢氮化物(WN)層 13 鎢(W)層 14 鎢矽化物(WSix)層 21 第一導電層 21A 電極 21B 圖案化第一導電層 22 中間結構 22A 鈦層 22B 含氮鎢(WNX)層 22C 含氮鎢矽化物(WSixNy)層 23 第二導電層 31 第一導電層 32 中間結構 32A 鈦層 -68- 201250804 32B 33 41 42 42A 42B 42C 43 51 52 52A 52B 52C 52D 53 61 62 62A 62B 62C 62D 63 201 202Figure 2B is a graph depicting the depth profile of the boron concentration for each-type closed-pole stack structure. X Figure 2C is a graph depicting the sheet resistance of the intermediate structure of each type. Fig. 3A depicts a gate stack structure in accordance with a first embodiment of the present invention. And Fig. 3B is an image obtained by forming a tungsten-rhenium nitride layer on the upper portion of the tungsten nitride layer by a physical vapor deposition (pvD) method. Fig. 3C depicts a gate stack structure in accordance with a second embodiment of the present invention. And Fig. 3D depicts a gate stack structure in accordance with a third embodiment of the present invention. And Figure 3E depicts an image of the stack of idle electrodes after the annealing process. 4A ffi# describes a structure of a fourth embodiment of the present invention in accordance with the fourth embodiment of the present invention. Fig. 4B depicts a gate stack structure in accordance with a fifth embodiment of the present invention. Fig. 4C depicts a gate stack structure in accordance with a sixth embodiment of the present invention. Fig. 5A depicts a gate stack structure in accordance with a seventh embodiment of the present invention. Fig. 5B depicts a gate stack structure in accordance with an eighth embodiment of the present invention. Fig. 5C depicts a gate stack structure in accordance with a ninth embodiment of the present invention. Fig. 6A depicts a gate stack structure in accordance with a tenth embodiment of the present invention. Fig. 6B depicts a gate stack structure in accordance with an eleventh embodiment of the present invention. Fig. 6C depicts a gate stack structure in accordance with a twelfth embodiment of the present invention. Fig. 7A depicts a gate stack structure in accordance with a thirteenth embodiment of the present invention. Figure 7B depicts an image of the structure configured after the formation of a tungsten germanide layer over a nitrogen-containing tungsten layer by performing a separate chemical vapor deposition (CVD) and physical vapor deposition (PVD) process. Fig. 7C depicts a gate stack structure in accordance with a fourteenth embodiment of the present invention. Fig. 7D depicts a gate stack-67-structure according to a fifteenth embodiment of the present invention. Fig. 8 is a view showing a graph showing the sheet resistance of a tungsten electrode according to an embodiment of the present invention, in which a gate electrode according to a sixteenth embodiment of the present invention is described. , to 1 () C diagram describes a <, method according to an embodiment of the present invention to obtain the gate stack described in Figure 3A, the first diagram uses the closed pole, section 3 pole shown in Figure 3A A cross-sectional view of the patterning method.隹 结构 描 描 堆叠 堆叠 堆叠 闭 f f f f f f f Description [Main component symbol description] Π Polycrystalline germanium layer 12 Tungsten nitride (WN) layer 13 Tungsten (W) layer 14 Tungsten germanide (WSix) layer 21 First conductive layer 21A Electrode 21B Patterned first conductive layer 22 Intermediate structure 22A Titanium layer 22B Nitrogen-containing tungsten (WNX) layer 22C Nitrogen-containing tungsten telluride (WSixNy) layer 23 Second conductive layer 31 First conductive layer 32 Intermediate structure 32A Titanium layer-68- 201250804 32B 33 41 42 42A 42B 42C 43 51 52 52A 52B 52C 52D 53 61 62 62A 62B 62C 62D 63 201 202

202A 含氮鎢矽化物(WSixNy)層 第二導電層 第一導電層 中間結構 鈦層 含氮鎢矽化物(WSixNy)層 含氮鎢(WNX)層 第二導電層 第一導電層 中間結構 鈦(Ti)層 第一含氮鎢(WNX)層 含氮鎢矽化物(WSixNy)層 第二含氮鎢(WNX)層 第二導電層 第一導電層 中間結構 鈦(Ti)層 第一含氮鎢(WNX)層 鎢矽化物(〜3丨?〇層 第二含氮鎢(WNX:^ 第二導電層 第一導電層 中間結構 含氮鈦(TiNx:^ -69- 201250804 202B 含氮鎢(WNX)層 202C 含氮鎢矽化物(WSixNy)層 203 第二導電層 211 第一導電層 212 中間結構 212A 鈦石夕化物層 212B 含氮鈦(TiNx;^ 212C 含氮鎢(WNX)層 212D 含氮鎢矽化物(WSixNy)層 213 第二導電層 301 第一導電層 302 中間結構 302A 含氮鈦(TiNx:^ 302B 含氮鎢矽化物(WSixNy)層 303 第二導電層 31 1 第一導電層 3 12 中間結構 312A 鈦矽化物(TiSix)層 312B 含氮鈦(TiNx;^ 312C 含氮鎢矽化物(WSixNy)層 313 第二導電層 401 第一導電層 402 中間結構 402A 含氮鈦(TiNx)層 402B 含氮鎢矽化物(WSixNy)層 -70- 201250804 402C 含氮鎢(WNX)層 403 第二導電層 411 第一導電層 412 中間結構 412A 鈦矽化物(TiSix:^ 412B 含氮鈦(TiNx:^ 412C 含氮鎢矽化物(WSixNy)層 412D 含氮鎢(\¥化)層 413 第二導電層 501 第一導電層 502 中間結構 502A 含氮鈦(TiNx;^ 502B 第一含氮鎢(WNX)層 502C 含氮鎢矽化物(WSixNy)層 502D 第二含氮鎢(WNX)層 503 第二導電層 511 第一導電層 512 中間結構 512A 鈦矽化物(TiSix)層 512B 含氮鈦(TiNx;^ 512C 第一含氮鎢(WNX:^ 512D 含氮鎢矽化物(WSixNy)層 512E 第二含氮鶴層 513 第二導電層 601 第一導電層 -71 - 201250804 602 中間結構 602A 含氮鈦(TiNx:^ 602B 第一含氮鎢(WNX;^ 602C 鎢矽化物(\¥8丨〇層 602D 第二含氮鎢(WNX;^ 603 第二導電層 61 1 第一導電層 612 中間結構 612A 鈦矽化物(TiSix)層 612B 含氮鈦(TiNx:^ 612C 第一含氮鎢(WNX)層 612D 含氮鎢矽化物(WSixNy)層 612E 第二含氮嫣層 613 第二導電層 701 基板 702 穿隧氧化層 703 第一多晶矽電極 704 介電層 705 第二多晶矽電極 706 中間結構 706A 鈦層 706B 含氮鎢層 706C 含氮鎢矽化物層 707 鶴電極 708 硬罩 -72- 201250804 800 基板 801 閘極絕緣層 802 硬罩 803 Si3N4 層 803A 間隔物 CG 控制閘極 FG 浮動閘極 H/M 硬罩 Rc 接觸電阻 Rs 片電阻 W 鶴電極 -73-202A nitrogen-containing tungsten telluride (WSixNy) layer second conductive layer first conductive layer intermediate structure titanium layer nitrogen-containing tungsten germanide (WSixNy) layer nitrogen-containing tungsten (WNX) layer second conductive layer first conductive layer intermediate structure titanium ( Ti) layer first nitrogen-containing tungsten (WNX) layer nitrogen-containing tungsten germanide (WSixNy) layer second nitrogen-containing tungsten (WNX) layer second conductive layer first conductive layer intermediate structure titanium (Ti) layer first nitrogen-containing tungsten (WNX) layer tungsten telluride (~3丨?〇 layer second nitrogen-containing tungsten (WNX:^ second conductive layer first conductive layer intermediate structure containing nitrogen and titanium (TiNx: ^ -69- 201250804 202B nitrogen-containing tungsten (WNX Layer 202C nitrogen-containing tungsten germanide (WSixNy) layer 203 second conductive layer 211 first conductive layer 212 intermediate structure 212A titanium nitride layer 212B nitrogen-containing titanium (TiNx; ^ 212C nitrogen-containing tungsten (WNX) layer 212D nitrogen-containing Tungsten telluride (WSixNy) layer 213 second conductive layer 301 first conductive layer 302 intermediate structure 302A nitrogen-containing titanium (TiNx: ^ 302B nitrogen-containing tungsten germanide (WSixNy) layer 303 second conductive layer 31 1 first conductive layer 3 12 Intermediate structure 312A Titanium telluride (TiSix) layer 312B Nitrogen-containing titanium (TiNx; ^ 312C nitrogen Tungsten Telluride (WSixNy) Layer 313 Second Conductive Layer 401 First Conductive Layer 402 Intermediate Structure 402A Nitrogen-Titanium (TiNx) Layer 402B Nitrogen-Tungsten Telluride (WSixNy) Layer - 70 - 201250804 402C Nitrogen-Containing Tungsten (WNX) Layer 403 second conductive layer 411 first conductive layer 412 intermediate structure 412A titanium germanide (TiSix: ^ 412B nitrogen-containing titanium (TiNx: ^ 412C nitrogen-containing tungsten germanide (WSixNy) layer 412D nitrogen-containing tungsten (\¥) layer 413 Second conductive layer 501 first conductive layer 502 intermediate structure 502A nitrogen-containing titanium (TiNx; ^ 502B first nitrogen-containing tungsten (WNX) layer 502C nitrogen-containing tungsten germanide (WSixNy) layer 502D second nitrogen-containing tungsten (WNX) layer 503 second conductive layer 511 first conductive layer 512 intermediate structure 512A titanium germanide (TiSix) layer 512B containing nitrogen titanium (TiNx; ^ 512C first nitrogen-containing tungsten (WNX: ^ 512D nitrogen-containing tungsten germanide (WSixNy) layer 512E Second nitrogen-containing crane layer 513 Second conductive layer 601 First conductive layer -71 - 201250804 602 Intermediate structure 602A Nitrogen-containing titanium (TiNx: ^ 602B First nitrogen-containing tungsten (WNX; ^ 602C tungsten telluride (\¥8丨) 〇 layer 602D second nitrogen-containing tungsten (WNX; ^ 603 second conductive 61 1 First Conductive Layer 612 Intermediate Structure 612A Titanium Telluride (TiSix) Layer 612B Nitrogen Titanium (TiNx: ^ 612C First Nitrogen Containing Tungsten (WNX) Layer 612D Nitrogen Tungsten Telluride (WSixNy) Layer 612E Second Nitrogen嫣 layer 613 second conductive layer 701 substrate 702 tunneling oxide layer 703 first polysilicon electrode 704 dielectric layer 705 second polysilicon electrode 706 intermediate structure 706A titanium layer 706B nitrogen-containing tungsten layer 706C nitrogen-containing tungsten germanide layer 707 Crane electrode 708 Hard cover-72- 201250804 800 Substrate 801 Gate insulation layer 802 Hard cover 803 Si3N4 Layer 803A Spacer CG Control gate FG Floating gate H/M Hard cover Rc Contact resistance Rs Chip resistance W Crane electrode-73 -

Claims (1)

201250804 七、申請專利範圍: 1. 一種製造半導體元件之方法,該方; 於基板上方形成第一導電層,· 於該第一導電層上方形成中間多 結構係形成為堆疊結構,該堆疊結構 、第二金屬層、金屬矽化物層、及第 於該中間結構上方形成第二導f 2.如申請專利範圍第1項之方法,其中 係藉由實施反應式濺鍍沈積法形成。 3 ·如申請專利範圍第1項之方法,其中 包含選自於由鎢矽化物層、鈦矽化物 層所組成之群組中的一種。 4. 如申請專利範園第1項之方法,其中 及第三金屬層之每一層包含含氮金屬 5. 如申請專利範園第4項之方法,其中 第三金屬層之每一層包含含氮鎢層: 之一種。 6. 如申請專利範圍第5項之方法,其中 約1 0 %到約6 〇 %的氮含量,且氮對鎢 從約0.3到約i.5。 7. 如申請專利範圍第4項之方法,其中 有氮對金屬之原子比例範圍從約〇. 2 8. 如申請專利範圍第4項之方法,其中 3含氮欽層與含氮組層中之一種。 9. 如申請專利範圍第1項之方法,其中 έ·包含: i構’其中該中間 包含第一金屬層 二金屬層;及 :層。 該金屬矽化物層 該金屬矽化物層 層、及组石夕化物 該第一、第二、 層。 該第二金屬層與 轉含氮鈦鎢層中 該含氮鎢層具有 之原子比例範圍 該第一金屬層具 到約0.8 。 該第一金屬層包 該第一金屬層包 -74- 201250804 含鈦層與姐層中之一種。 1 0 .如申請專利範圍第1項之方法 含選自於由多晶矽層、多晶矽 之群組中的一種,且該第二導 ,其中該第一導電層包 鍺層及石夕化物層所組成 電層包含鎢層。 -75-201250804 VII. Patent application scope: 1. A method for manufacturing a semiconductor component, wherein: forming a first conductive layer over the substrate, forming an intermediate multi-structure system over the first conductive layer to form a stacked structure, the stacked structure, A second metal layer, a metal telluride layer, and a second conductive layer formed over the intermediate structure. 2. The method of claim 1, wherein the method is performed by performing a reactive sputtering deposition method. 3. The method of claim 1, wherein the method comprises one selected from the group consisting of a tungsten telluride layer and a titanium telluride layer. 4. The method of claim 1, wherein each of the third metal layers comprises a nitrogen-containing metal. 5. The method of claim 4, wherein each layer of the third metal layer comprises nitrogen. Tungsten layer: One of them. 6. The method of claim 5, wherein the nitrogen content is from about 10% to about 6%, and the nitrogen to tungsten is from about 0.3 to about i.5. 7. The method of claim 4, wherein the atomic ratio of nitrogen to metal ranges from about 〇. 2 8. The method of claim 4, wherein the nitrogen-containing layer and the nitrogen-containing layer are One of them. 9. The method of claim 1, wherein the method comprises: an i structure wherein the middle comprises a first metal layer and a second metal layer; and: a layer. The metal telluride layer, the metal telluride layer, and the group of the first layer, the second layer. The atomic ratio of the second metal layer to the nitrogen-containing tungsten layer in the nitrogen-containing titanium-titanium layer has a range of the first metal layer of about 0.8. The first metal layer includes the first metal layer package -74-201250804 and one of a titanium layer and a layer. The method of claim 1, wherein the method comprises: one selected from the group consisting of a polycrystalline germanium layer and a polycrystalline germanium, and the second conductive portion, wherein the first conductive layer comprises a germanium layer and a lithiated layer The electrical layer contains a layer of tungsten. -75-
TW101107806A 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure TWI447790B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060134326 2006-12-27
KR1020070041288A KR100844940B1 (en) 2006-12-27 2007-04-27 Semiconductor device with multi layer diffusion barrier and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201250804A true TW201250804A (en) 2012-12-16
TWI447790B TWI447790B (en) 2014-08-01

Family

ID=39611685

Family Applications (3)

Application Number Title Priority Date Filing Date
TW096136856A TWI349956B (en) 2006-12-27 2007-10-02 Semiconductor device with gate stack structure
TW101107806A TWI447790B (en) 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure
TW096146218A TWI488223B (en) 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW096136856A TWI349956B (en) 2006-12-27 2007-10-02 Semiconductor device with gate stack structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW096146218A TWI488223B (en) 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure

Country Status (4)

Country Link
KR (1) KR100844940B1 (en)
CN (2) CN101257040B (en)
DE (1) DE102007060238B4 (en)
TW (3) TWI349956B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581318B (en) * 2015-06-03 2017-05-01 華邦電子股份有限公司 Gate conductor and fabrication method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639227B (en) 2015-01-07 2018-10-21 聯華電子股份有限公司 Memory device and method for fabricating the same
US9461137B1 (en) * 2015-09-11 2016-10-04 Applied Materials, Inc. Tungsten silicide nitride films and methods of formation
CN107845632A (en) * 2016-09-21 2018-03-27 联华电子股份有限公司 Dynamic random access memory
CN107221495B (en) * 2017-06-05 2018-07-20 睿力集成电路有限公司 A kind of semiconductor device structure and preparation method thereof
KR102446864B1 (en) * 2018-03-19 2022-09-23 삼성전자주식회사 Manufacturing method of a semiconductor device
US11075274B2 (en) 2019-01-18 2021-07-27 Micron Technology, Inc. Conductive line construction, memory circuitry, and method of forming a conductive line construction
CN112864240B (en) * 2021-01-14 2022-05-31 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and two semiconductor structures
EP4199110A4 (en) 2021-01-14 2024-04-10 Changxin Memory Tech Inc Manufacturing method for semiconductor structure, and two semiconductor structures

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908934B1 (en) 1997-10-07 2008-12-31 Texas Instruments Incorporated Method of manufacturing a gate electrode
US6271590B1 (en) * 1998-08-21 2001-08-07 Micron Technology, Inc. Graded layer for use in semiconductor circuits and method for making same
JP2000091441A (en) * 1998-09-16 2000-03-31 Sony Corp Semiconductor device and manufacture thereof
KR20020002176A (en) * 2000-06-29 2002-01-09 박종섭 Method for manufacturing gate electrode of semiconductor device
US6774442B2 (en) * 2000-07-21 2004-08-10 Renesas Technology Corp. Semiconductor device and CMOS transistor
JP4651848B2 (en) * 2000-07-21 2011-03-16 ルネサスエレクトロニクス株式会社 Semiconductor device, manufacturing method thereof, and CMOS transistor
KR100351907B1 (en) * 2000-11-17 2002-09-12 주식회사 하이닉스반도체 method for forming gate electrode semiconductor device
JP3781666B2 (en) * 2001-11-29 2006-05-31 エルピーダメモリ株式会社 Method for forming gate electrode and gate electrode structure
JP4191000B2 (en) * 2003-10-06 2008-12-03 エルピーダメモリ株式会社 Semiconductor device and manufacturing method thereof
JP2005197308A (en) * 2003-12-26 2005-07-21 Toshiba Corp Nonvolatile semiconductor storage device
US7030012B2 (en) * 2004-03-10 2006-04-18 International Business Machines Corporation Method for manufacturing tungsten/polysilicon word line structure in vertical DRAM
US20060228876A1 (en) * 2005-04-08 2006-10-12 Infineon Technologies Ag Method of manufacturing a semiconductor device
KR100618895B1 (en) * 2005-04-27 2006-09-01 삼성전자주식회사 Semiconductor device having polymetal gate electrode and method for manufacturing the saem
JP4690120B2 (en) * 2005-06-21 2011-06-01 エルピーダメモリ株式会社 Semiconductor device and manufacturing method thereof
KR20060134326A (en) 2005-06-22 2006-12-28 주식회사 하이닉스반도체 Apparatus for generating plasma and fabrication method for phase shift mask thereby
KR100625795B1 (en) * 2005-08-25 2006-09-18 주식회사 하이닉스반도체 Gate of semiconductor device and method for forming the same
JP2007109010A (en) 2005-10-13 2007-04-26 Fujitsu Ltd Data storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581318B (en) * 2015-06-03 2017-05-01 華邦電子股份有限公司 Gate conductor and fabrication method thereof

Also Published As

Publication number Publication date
CN101211771A (en) 2008-07-02
CN101257040A (en) 2008-09-03
TW200828424A (en) 2008-07-01
CN101257040B (en) 2013-10-30
DE102007060238A1 (en) 2009-01-29
TWI349956B (en) 2011-10-01
TWI447790B (en) 2014-08-01
KR100844940B1 (en) 2008-07-09
TW200828425A (en) 2008-07-01
CN100550306C (en) 2009-10-14
DE102007060238B4 (en) 2009-10-22
KR20080061224A (en) 2008-07-02
TWI488223B (en) 2015-06-11

Similar Documents

Publication Publication Date Title
TW201250804A (en) Method for fabricating semiconductor device with gate stack structure
US6953719B2 (en) Integrating n-type and p-type metal gate transistors
TWI321831B (en) Method for integration of silicide contacts and silicide gate metals
TWI307938B (en) Method and process to make multiple-threshold metal_gates cmos technology
TW400557B (en) Partial silicidation method to form shallow source/drain junctions
TWI374516B (en) Metal carbide gate structure and method of fabrication
US8441079B2 (en) Semiconductor device with gate stack structure
US8154130B2 (en) Self-aligned metal to form contacts to Ge containing substrates and structure formed thereby
JP5090173B2 (en) Method of manufacturing a semiconductor device having a high dielectric constant gate dielectric layer and a silicide gate electrode
TW200300571A (en) Semiconductor device having a low-resistance gate electrode
JP4146859B2 (en) Manufacturing method of semiconductor device
JP2006310842A (en) Semiconductor device having polymetal gate electrode and manufacturing method therefor
TW200937527A (en) MOS transistors having NiPtSi contact layers and methods for fabricating the same
TW201005939A (en) Wiring structure, thin film transistor substrate, method for manufacturing thin film transistor substrate, and display device
JP4191000B2 (en) Semiconductor device and manufacturing method thereof
TW541631B (en) Method of enhanced oxidation of MOS transistor gate corners
TWI463672B (en) Semiconductor device
JP4533155B2 (en) Semiconductor device and manufacturing method thereof
US7419905B2 (en) Gate electrodes and the formation thereof
JP2006114633A (en) Method of manufacturing semiconductor device
WO2017181418A1 (en) Manufacturing method of cu-based resistive random access memory, and memory
KR20090026646A (en) Gate structure and method for manufacturing of the same
JP2008219036A (en) Method of manufacturing semiconductor device