TW200828425A - Method for fabricating semiconductor device with gate stack structure - Google Patents

Method for fabricating semiconductor device with gate stack structure Download PDF

Info

Publication number
TW200828425A
TW200828425A TW96146218A TW96146218A TW200828425A TW 200828425 A TW200828425 A TW 200828425A TW 96146218 A TW96146218 A TW 96146218A TW 96146218 A TW96146218 A TW 96146218A TW 200828425 A TW200828425 A TW 200828425A
Authority
TW
Taiwan
Prior art keywords
layer
nitrogen
tungsten
titanium
metal
Prior art date
Application number
TW96146218A
Other languages
Chinese (zh)
Other versions
TWI488223B (en
Inventor
Kwan-Yong Lim
Hong-Seon Yang
Heung-Jae Cho
Tae-Kyung Kim
Yong-Soo Kim
Min-Gyu Sung
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW200828425A publication Critical patent/TW200828425A/en
Application granted granted Critical
Publication of TWI488223B publication Critical patent/TWI488223B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method for fabricating a semiconductor device includes forming a first conductive layer over a substrate, forming an intermediate structure over the first conductive layer, the intermediate structure formed in a stack structure comprising at least a first metal layer and a nitrogen containing metal silicide layer, and forming a second conductive layer over the intermediate structure.

Description

200828425 九、發明說明: 【相關申請案之對照參考資料】 本發明主張2006年12月27曰及2007年4月27日所 提出之韓國專利申請案第10-2006-01 34326號及第 10-2007-0041 28 8號之優先權,以提及方式倂入該等韓國專 利申請案之全部。 【發明所屬之技術領域】 本發明係有關於一種半導體元件的製造方法,以及更 特別地’是有關於一種具有一閘極堆疊結構之半導體元件 的製造方法。 本發明係有關於一種半導體元件及其製造方法,以及 更特別地,是有關於一種閘極堆疊及其製造方法。 【先前技術】 藉由堆疊多晶矽及鎢所形成之鎢多晶矽閘極電極具有 非常低電阻,該非常低電阻約爲藉由堆疊多晶矽及鎢矽化 物所形成之多晶矽/鎢矽化物(Poly-Si/WSh)閘極電極的電 阻之1 / 5至1 /1 0。於是,該鎢多晶矽閘極電極係製造次_ 6 〇 n m 記憶體元件所必需的。 第1 A至1 C圖描述典型鎢多晶矽閘極堆疊結構。如第 1 A圖所示,藉由連續地堆疊多晶矽層1 1、鎢氮化物(WN) 層12及鎢(W)層13以形成該鎢多晶矽閘極堆疊結構。該 WN層12做爲擴散阻障。 在隨後退火製程或閘極再氧化製程期間,使該WN層 12中之氮在該鎢層13與該多晶矽層1 1間分解成一像SiNx -5- 200828425 及SiOxNy之非均勻絕緣層。該非均勻絕緣層具有一約2nm 至3nm範圍之厚度。於是,在數百兆赫(MHz)之操作頻率 及1.5V或更小之操作電壓下可能導致一像信號延遲之元 件誤差。最近,已在該多晶砂層11與該WN層12間形成 一做爲一擴散阻障層之薄鎢政化物(WSix)或鈦(Ti)層,以防 止在該鎢層13與該多晶矽渾11間形成Si-N鍵。 ; 如第1 B圖所示,如果在該多晶矽層1 1與該WN層1 2 間形成一鎢矽化物(WSix)層14,則藉由在該WN層12之形 # 成期間所使用之氮氣電漿在該WSix層14上方形成W-Si-N 鍵。熟知W-Si-N係一具有金屬特性之良好擴散阻障層。 如第1 C圖所示,如果在該多晶矽層1 1與該WN層12 間形成鈦(ΤΠ層15,則在該WN層12之形成期間的反應式 濺鍍製程中該氮氣電漿將該鈦層1 5之Ti變換成鈦氮化物 (TiN)。該TiN層做爲擴散障壁層。結果,雖然在隨後熱製 程期間使該WN層12分解,但是該TiN防止氮朝該多晶矽 1 1擴散出來,因此,可有效地降低Si-N之形成。 ® 然而,若將該鎢多晶矽閘極應用至雙多晶矽閘極[亦 即,N-型金氧半導體場效電晶體(NM0SFET)之N、型多晶矽 閘極及P-型金氧半導體場效電晶體(PM0SFET)之P + -型多 晶矽閘極],如果在該鎢多晶矽閘極中使用該WSh/WN擴散 障壁結構,則可以大大地增加該鎢層與該P + -型多晶矽層間 之接觸電阻。相反地,如果在該鎢多晶矽閘極中使用該 Ti/WN擴散障壁結構,則該鎢層與該P + -型多晶矽層間之接 觸電阻較低而與該多晶矽摻雜種類無關。 -6- 200828425 在該PM OS FET之P + -型多晶矽的情況中,在實際操作 模式之反轉狀態中可能產生多晶矽空乏效應。該多晶矽空 乏效應之產生可能相依於在P + -型多晶矽內所保留之硼的 數量。 在該WSix/WN擴散障壁結構中比在該Ti/WN擴散障壁 結構中可能產生更大的多晶矽空乏效應。因此,該WSix/WN 擴散障壁結構可能降低電晶體特性。結果,因爲該Ti/WN 擴散阻障結構可在該鎢層與該多晶矽層間提供低接觸電阻 及防止P-型多晶矽空乏之產生,所以建議使用該Ti/WN擴 散障壁結構。 然而,如果使用Ti/WN擴散障壁結構,則可能使在該 Ti/WN擴散障壁結構上方所直接形成之鎢的片電阻(Rs)增 加約1.5至2倍。因此,該片電阻(Rs)之增加在未來可能影 響鎢多晶矽閘極之發展。 【發明内容】 本發明之實施例係有關於包括中間結構之半導體元件 的閘極堆疊,其中該中間結構具有低片電阻及接觸電阻及 可有效地防止雜質之向外擴散,以及有關於一種製造該閘 極堆疊之方法。 依據本發明之一觀點,提供一種製造半導體元件之方 法。該方法包含形成於基板上形成第一導電層;於該第一 導電層上方形成中間結構,形成堆疊結構之該中間結構包 含至少第一金屬層與含氮金屬矽化物層之氮;及於該中間 結構上方形成第二導電層。 200828425 依據本發明之另一觀點,提供一種製造半導體元件之 方法。該方法包含形成於基板上形成第一導電層,於該第 一導電層上方形成中間結構,形成堆疊結構之該中間結構 包含第一金屬層、第二金屬層、金屬矽化物層、及第三金 屬層;及於該中間結構上方形成第二導電層。 【實施方式】 第2A圖係描述用於每一型態之做爲擴散障壁的結構 在鎢與多晶矽間之接觸電阻的曲線圖。可觀察到當使用鎢 矽化物(WSi〇/鎢氮化物(WN)或鈦(Ti)/WN結構以取代鎢氮 化物(WN)結構時,可大大地改善在摻雜有N-型雜質之多晶 矽(N+ POLY-Si)與鎢(W)間之以RC標示的接觸電阻。 然而,若將該鎢多晶矽閘極應用至雙多晶矽閘極[亦 即,N-型金氧半導體場效電晶體(NM0SFET)之N + -型多晶矽 閘極及P-型金氧半導體場效電晶體(PM0SFET)之P + -型多 晶矽閘極],如果在該鎢多晶矽閘極中使用該WSix/WN結 構,則大大地增加該鎢與P + -型多晶矽(P+ P〇LY-Si)間之接 觸電阻。相反地,如果在該鎢多晶矽閘極中使用該Ti/WN 結構,則該鎢與P + -型多晶矽間之接觸電阻顯示低的位準而 與該多晶矽摻雜種類無關。 在該PM0SFET之P + -型多晶矽的情況中,可在爲實際 操作模式之反轉狀態中產生多晶矽空乏效應。該多晶矽空 乏效應之產生相依於該P + -型多晶矽內所保留之硼的數量。 第2B圖係描述每一型態之閘極堆疊的硼濃度之深度 輸廓的曲線圖。如在WSh/WN結構中所述,該硼濃度在閘 -8- 200828425 極絕緣層(例如:氧化物層)與多晶矽間之接面表面上低至 約5χ1019原子/cm3。使用Ti/WN結構時,在相同位置上所 測量之硼濃度大於約8x1019原子/cm3。結果,在該WSix/WN 結構中比在該Ti/WN結構中使該多晶矽之空乏更多,因 此,該WSix/WN結構降低該等電晶體特性。 因此,最好使用該Ti/WN結構,該Ti/WN結構提供在 該W與該多晶矽間之低接觸電阻及防止P-型多晶矽空乏。 然而,該Ti/WN結構之應用係有限制的。在該Ti/WN結構 φ 上方所形成之W的片電阻(Rs)增加約1.5至2倍。將在第 2C圖中更詳細描述此限制。 第2C圖係描述用於每一型態之做爲擴散障壁的結構 之片電阻的曲線圖。將W之片電阻標示爲Rs。通常,可在 多晶矽層、氮化矽(SiCh)層、氮化矽(ShN4)層及WSix層上 方形成非晶含氮鎢(WNX)層,因此,可在其上形成具有低特 定電阻(亦即,在約15μΩ-〇ιη至20μΩ<ιη之範圍中)之W。 然而,在多晶純金屬鈦(Ti)、鎢(W)及鉅(Ta)及金屬氮化物 φ 材料之鈦氮化物(TiN)及鉅氮化物(TaN)上方形成具有相對 小晶粒尺寸之W。因此,在其上形成具有約30 μ Ω-cm之高 特定電阻的W。該Ti/WN結構之應用所造成之片電阻的增 加可能對該鎢多晶矽閘極未來之發展產生限制。 依據下面所要描述之本發明的各種實施例,不同形態 之閘極堆疊的中間結構係形成有包含TI、W、矽(Si)或氮(N) 之多個薄層或每一層包含氮之多個薄層。該等中間結構做 爲擴散障壁,該擴散障壁可減少該接觸電阻及該片電阻, 以及防止雜質之穿透及向外擴散。 -9- 200828425 在下面實施例中,術語"含氮層/結構(layer/structure containing nitrogen)或者含有氮之層 / 結構(nitrogen c ο n t a i n i n g 1 a y e r7 s t r u c t u r e)"表示氮化金屬層/結構及含某一 含量/重量比之氮的金屬層/結構。並且,WSixNy中之X表 示矽對鎢之比例,其範圍從約0.5至3.0,以及y表示氮對 鎢矽化物之比例,其範圍從約0.01至10.00。 第3A圖描述依據本發明之第一實施例的閘極堆疊結 構。該閘極堆疊結構包括依序所形成之第一導電層2 1、中 間結構22及一第二導電層23。該第一導電層2 1包括高摻 雜有P-型雜質(例如:硼)或N-型雜質(例如:磷)之多晶矽 層。該第一導電層21亦可包括多晶矽鍺層(Si〃xGex,其中 X係在約0.0 1與1 · 0間之範圍內)或矽化物層。例如:該矽 化物層包括選自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、 钽(Ta)、給(Hf)、錐(Zr)及鉑(Pt)所組成之群組中之一。 該第二導電層23包括鎢層。該鎢層係約100A至2000A 厚及藉由實施物理氣相沉積(PVD)法、化學氣相沉積(CVD) 法或原子層沉積(ALD)法所形成。該PVD法包括使用鎢濺 鍍靶之濺鍍沉積法。200828425 IX. Inventive Note: [Reference References for Related Applications] The present invention claims Korean Patent Application No. 10-2006-01 34326 and No. 10-, filed on December 27, 2006 and April 27, 2007. Priority of 2007-0041 28 No. 8 and all of these Korean patent applications are incorporated by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a semiconductor device having a gate stack structure. The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a gate stack and a method of fabricating the same. [Prior Art] A tungsten polysilicon gate electrode formed by stacking polycrystalline germanium and tungsten has a very low electrical resistance, which is approximately polycrystalline germanium/tungsten telluride formed by stacking polycrystalline germanium and tungsten germanium (Poly-Si/ WSh) The resistance of the gate electrode is 1 / 5 to 1 / 1 0. Thus, the tungsten polysilicon gate electrode is required for the fabrication of the secondary _ 6 〇 n m memory device. Figures 1A through 1C depict a typical tungsten polysilicon gate stack structure. As shown in Fig. 1A, the tungsten polysilicon gate stack structure is formed by continuously stacking a polysilicon layer 11, a tungsten nitride (WN) layer 12, and a tungsten (W) layer 13. The WN layer 12 acts as a diffusion barrier. During the subsequent annealing process or gate re-oxidation process, the nitrogen in the WN layer 12 is decomposed between the tungsten layer 13 and the polysilicon layer 11 into a non-uniform insulating layer such as SiNx -5 - 200828425 and SiOxNy. The non-uniform insulating layer has a thickness ranging from about 2 nm to 3 nm. Thus, a component error of an image signal delay may occur at an operating frequency of several hundred megahertz (MHz) and an operating voltage of 1.5 V or less. Recently, a thin tungsten chevron (WSix) or titanium (Ti) layer as a diffusion barrier layer has been formed between the polycrystalline sand layer 11 and the WN layer 12 to prevent the tungsten layer 13 and the polysilicon layer. 11 forms Si-N bonds. As shown in FIG. 1B, if a tungsten germanide (WSix) layer 14 is formed between the polysilicon layer 1 1 and the WN layer 12, it is used during the formation of the WN layer 12. A nitrogen plasma forms a W-Si-N bond over the WSix layer 14. It is well known that W-Si-N is a good diffusion barrier layer having metallic properties. As shown in FIG. 1C, if titanium (germanium layer 15) is formed between the polysilicon layer 1 1 and the WN layer 12, the nitrogen plasma will be used in the reactive sputtering process during formation of the WN layer 12. Ti of the titanium layer 15 is converted into titanium nitride (TiN). The TiN layer acts as a diffusion barrier layer. As a result, although the WN layer 12 is decomposed during the subsequent thermal process, the TiN prevents diffusion of nitrogen toward the polysilicon 11 Come out, therefore, can effectively reduce the formation of Si-N. However, if the tungsten polysilicon gate is applied to the double polysilicon gate [that is, N of the N-type MOS field effect transistor (NM0SFET), a polycrystalline germanium gate and a P + -type polysilicon gate of a P-type MOS field effect transistor (PM0SFET), if the WSH/WN diffusion barrier structure is used in the tungsten polysilicon gate, it can be greatly increased Contact resistance between the tungsten layer and the P + -type polysilicon layer. Conversely, if the Ti/WN diffusion barrier structure is used in the tungsten polysilicon gate, the contact resistance between the tungsten layer and the P + -type polysilicon layer It is lower regardless of the polysilicon doping type. -6- 200828425 In this PM OS FET In the case of P + -type polysilicon, polycrystalline germanium depletion effect may occur in the reverse state of the actual operation mode. The polycrystalline germanium depletion effect may be dependent on the amount of boron retained in the P + -type polysilicon. The WSix/WN diffusion barrier structure may produce a larger polysilicon enthalpy effect than the Ti/WN diffusion barrier structure. Therefore, the WSix/WN diffusion barrier structure may degrade the transistor characteristics. As a result, the Ti/WN diffusion resistance The barrier structure can provide low contact resistance between the tungsten layer and the polysilicon layer and prevent P-type polysilicon from being depleted. Therefore, it is recommended to use the Ti/WN diffusion barrier structure. However, if a Ti/WN diffusion barrier structure is used, it may be The sheet resistance (Rs) of tungsten formed directly above the Ti/WN diffusion barrier structure is increased by about 1.5 to 2 times. Therefore, the increase of the sheet resistance (Rs) may affect the development of the tungsten polysilicon gate in the future. Embodiments of the present invention relate to a gate stack including a semiconductor device having an intermediate structure, wherein the intermediate structure has a low sheet resistance and a contact resistance and Effectively preventing outward diffusion of impurities, and a method for fabricating the gate stack. According to one aspect of the present invention, a method of fabricating a semiconductor device is provided, the method comprising forming a first conductive layer formed on a substrate; Forming an intermediate structure over the first conductive layer, the intermediate structure forming the stacked structure includes at least a first metal layer and a nitrogen of the nitrogen-containing metal telluride layer; and forming a second conductive layer over the intermediate structure. 200828425 Another aspect provides a method of fabricating a semiconductor device, the method comprising: forming a first conductive layer formed on a substrate, forming an intermediate structure over the first conductive layer, the intermediate structure forming the stacked structure comprising a first metal layer, a second metal layer, a metal telluride layer, and a third metal layer; and a second conductive layer is formed over the intermediate structure. [Embodiment] Fig. 2A is a graph showing the contact resistance between tungsten and polysilicon in a structure for each type of diffusion barrier. It can be observed that when a tungsten germanide (WSi〇/tungsten nitride (WN) or titanium (Ti)/WN structure is used in place of the tungsten nitride (WN) structure, the N-type impurity is doped greatly. The contact resistance indicated by RC between polycrystalline germanium (N+ POLY-Si) and tungsten (W). However, if the tungsten polysilicon gate is applied to a double polysilicon gate [ie, N-type metal oxide semiconductor field effect transistor] N + -type polysilicon gate of (NM0SFET) and P + -type polysilicon gate of P-type MOS field effect transistor (PM0SFET), if the WSix/WN structure is used in the tungsten polysilicon gate, The contact resistance between the tungsten and the P + -type polysilicon (P + P 〇 LY - Si) is greatly increased. Conversely, if the Ti / WN structure is used in the tungsten polysilicon gate, the tungsten and P + - The contact resistance between the polycrystalline turns exhibits a low level regardless of the polysilicon doping type. In the case of the P + -type polysilicon of the PMOS transistor, the polycrystalline germanium depletion effect can be generated in the inverted state of the actual operation mode. The polycrystalline germanium depletion effect is dependent on the amount of boron retained in the P + -type polycrystalline germanium. Figure 2B is a graph depicting the depth profile of the boron concentration for each type of gate stack. As described in the WSH/WN structure, the boron concentration is in the gate-8-200828425 pole insulating layer (eg oxide The surface of the layer and the polycrystalline crucible is as low as about 5 χ 1019 atoms/cm 3 . When the Ti/WN structure is used, the boron concentration measured at the same position is greater than about 8×10 19 atoms/cm 3 . As a result, in the WSix/WN structure. The WSix/WN structure reduces the characteristics of the transistor compared to the space in the Ti/WN structure. Therefore, it is preferable to use the Ti/WN structure, and the Ti/WN structure is provided in the W Low contact resistance with the polysilicon and prevention of P-type polysilicon vacancies. However, the application of the Ti/WN structure is limited. The sheet resistance (Rs) of W formed over the Ti/WN structure φ is increased by about 1.5 to 2. This limit will be described in more detail in Figure 2C. Figure 2C is a graph depicting the sheet resistance of a structure for each type of diffusion barrier. The sheet resistance of W is labeled Rs Usually, it can be in polycrystalline germanium layer, tantalum nitride (SiCh) layer, tantalum nitride (ShN4) layer and WS An amorphous nitrogen-containing tungsten (WNX) layer is formed over the ix layer, and thus, W having a low specific resistance (that is, in a range of about 15 μΩ - 〇ηη to 20 μΩ < ιη) can be formed thereon. The titanium nitride (TiN) and the large nitride (TaN) of the pure titanium (Ti), tungsten (W) and giant (Ta) and metal nitride φ materials form a W having a relatively small grain size. W having a specific resistance of about 30 μ Ω-cm is formed thereon. The increase in sheet resistance caused by the application of the Ti/WN structure may limit the future development of the tungsten polysilicon gate. According to various embodiments of the invention to be described below, the intermediate structure of the gate stack of different forms is formed with a plurality of thin layers comprising TI, W, bismuth (Si) or nitrogen (N) or each layer containing a large amount of nitrogen Thin layer. The intermediate structures act as diffusion barriers which reduce the contact resistance and the sheet resistance, as well as prevent penetration and outward diffusion of impurities. -9- 200828425 In the following examples, the term "layer/structure containing nitrogen or nitrogen-containing layer/structure (nitrogen c ο ntaining 1 aye r7 structure)" Structure and metal layer/structure containing nitrogen in a certain amount/weight ratio. Also, X in WSixNy represents the ratio of bismuth to tungsten, which ranges from about 0.5 to 3.0, and y represents the ratio of nitrogen to tungsten ruthenium, which ranges from about 0.01 to 10.00. Fig. 3A depicts a gate stack structure in accordance with a first embodiment of the present invention. The gate stack structure includes a first conductive layer 21, an intermediate structure 22, and a second conductive layer 23 formed in sequence. The first conductive layer 21 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 21 may also include a polysilicon layer (Si〃xGex, wherein the X system is in a range between about 0.01 and 1.0) or a germanide layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), tantalum (Ta), (Hf), cone (Zr), and platinum. One of the groups consisting of (Pt). The second conductive layer 23 includes a tungsten layer. The tungsten layer is about 100A to 2000A thick and is formed by performing a physical vapor deposition (PVD) method, a chemical vapor deposition (CVD) method, or an atomic layer deposition (ALD) method. The PVD method includes a sputtering deposition method using a tungsten sputtering target.

該中間結構22包括鈦層22 A、含氮鎢(WN〇層22B及 含氮鎢矽化物(WShNy)層22C。詳而言之,該鈦層22A之厚 度係在約1 0 A至約8 0 A之範圍內。較佳地,該欽層2 2 A具 有約10A到約50A之厚度。該鈦層22A因爲藉由隨後之 WNX沈積而將其某些上部改變爲TiN,以形成含氮鎢層22β, 並且其某些下部與該第一導電層21反應,亦即,該多晶矽層 因而形成TiSix層,故具有如上述限制之厚度。若該鈦層22A -10-The intermediate structure 22 includes a titanium layer 22 A, a tungsten-containing tungsten (WN layer 22B, and a nitrogen-containing tungsten germanide (WShNy) layer 22C. In detail, the thickness of the titanium layer 22A is from about 10 A to about 8 Preferably, the seed layer 2 2 A has a thickness of from about 10 A to about 50 A. The titanium layer 22A is changed to TiN by subsequent WNX deposition to form a nitrogen-containing layer. The tungsten layer 22β, and some of its lower portion react with the first conductive layer 21, that is, the polysilicon layer thus forms a TiSix layer, and thus has a thickness as defined above. If the titanium layer 22A -10-

200828425 之厚度是大的,則該TiSh層之厚度也因爲其體積擴 加發生隆起。此外,若該鈦層22A之厚度是大的,則 22A可吸收多晶矽層21之摻雜物,例如,磷或硼,因 晶矽層2 1中發生多重空乏,導致元件性能之劣化。 如以上所述,在該含氮鎢層22B中之氮1對鎢的 在約0.3至1.5之範圍內。該含氮鎢層視同鎢氮化物 某一含量/重量比之氮的鎢層。雖然將描述於下面第 例中,但是知道該含氮鎢層22B供應氮至該含氮鎢 層2 2C。該含氮鎢層22B具有約20A至200A之厚度 對該含氮鎢矽化物層2 2C之氮的供應,在隨後退 後,該含氮鎢層22B變成純鎢層或含微量氮之鎢層 在含氮鎢矽化物層22C中之矽對鎢的比例係在 至3.0之範圍內,以及該含氮鎢矽化物層22C之氮 在約1 0 %至約6 0 %之範圍內。在此,含氮鎢矽化物層 氮含量以上述方式被適當調整。若氮含量太低,則接 會因該含氮鎢矽化物層22C無法成功作爲擴散障 生。另一方面,若氮含量太高,則包含於該含氮鎢矽 22C中之SiN含量會是高的,並因此讓接觸電阻變高 件性能劣化。該含氮鎢砂化物層22C表示一鎢氮化 物層(亦即,鎢矽氮化物層)或含某一含量/重量比之 矽化物層。該含氮鎢矽化物層22C所形成之厚度係拍 至約200A之範圍內。 藉由實施PVD法、CVD法或ALD法形成該錄 及該含氮鎢層22B。藉由實施pVD法形成該含氮鎢 層22C。該PVD法以濺鍍沉積法或反應式濺鍍沉 大而增 該鈦層 此於多 比例係 層或含 三實施 矽化物 。由於 火處理 〇 :約 0 · 5 含量係 22C之 面反應 壁而發 化物層 ,導致元 物矽化 氮的鎢 Ξ 約 20A :層 22A i矽化物 t積法進 -11-The thickness of 200828425 is large, and the thickness of the TiSh layer is also raised due to its volume expansion. Further, if the thickness of the titanium layer 22A is large, 22A can absorb the dopant of the polysilicon layer 21, for example, phosphorus or boron, which causes deterioration of device performance due to multiple depletion in the germanium layer 21. As described above, the nitrogen in the nitrogen-containing tungsten layer 22B is in the range of about 0.3 to 1.5 for tungsten. The nitrogen-containing tungsten layer is regarded as a tungsten layer of a certain content/weight ratio of tungsten nitride. Although it will be described in the following example, it is known that the nitrogen-containing tungsten layer 22B supplies nitrogen to the nitrogen-containing tungsten layer 2 2C. The nitrogen-containing tungsten layer 22B has a thickness of about 20A to 200A to the nitrogen of the nitrogen-containing tungsten telluride layer 2 2C. After the subsequent removal, the nitrogen-containing tungsten layer 22B becomes a pure tungsten layer or a tungsten layer containing a trace of nitrogen. The ratio of germanium to tungsten in the nitrogen-containing tungsten telluride layer 22C is in the range of 3.0, and the nitrogen of the nitrogen-containing tungsten germanide layer 22C is in the range of about 10% to about 60%. Here, the nitrogen content of the nitrogen-containing tungsten telluride layer is appropriately adjusted in the above manner. If the nitrogen content is too low, the nitrogen-containing tungsten carbide layer 22C cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten crucible 22C may be high, and thus the contact resistance becomes high. The nitrogen-containing tungsten silicide layer 22C represents a tungsten nitride layer (i.e., a tungsten-rhenium nitride layer) or a telluride layer containing a certain content/weight ratio. The thickness of the nitrogen-containing tungsten carbide layer 22C is formed to be in the range of about 200 Å. The recording of the nitrogen-containing tungsten layer 22B is carried out by performing a PVD method, a CVD method or an ALD method. The nitrogen-containing tungsten layer 22C is formed by performing a pVD method. The PVD method increases the thickness of the titanium layer by sputtering deposition or reactive sputtering, which is in a multi-proportion layer or contains three implementations of a telluride. Due to the fire treatment 〇: about 0 · 5 content is the reaction wall of the surface of 22C and the chemical layer, which leads to the tungsten enthalpy of the material deuterated nitrogen about 20A: layer 22A i 矽 t 积 进 -11-

200828425 ί了。例如:藉由以欽灑鑛祀實施灑鑛沉積法來 22 Α。藉由在氮氣環境中以鎢濺鍍靶實施反應式 來形成該含氮鎢層22 B。藉由在氮氣環境中以 鍍靶實施反應式濺鍍沉積法來形成該含氮; 220 特別地,因爲在該含氮鎢層22B上方不易 鎢矽化物層22C,所以使用該PVD法(例如:反 積法)以形成該含氮鎢矽化物層22C。如果藉由^ 形成該含氮鎢矽化物層22C,則在該含氮鎢層 法均勻地成長該含氮鎢矽化物層22C,因而使 爲在該含氮鎢層22B上方存有氧化鎢(W〇x)層, 該CVD法所形成之含氮鎢矽化物層22C的附毫 致此結塊。然而,在該氮氣環境中以該鎢矽化 施該反應式濺鍍沉積法以允許該含氮鎢矽化物 勻形成而與下層型態無關。 第3B圖描述在藉由PVD法在含氮鎢層上 鎢矽化物層後所獲得之影像。使用反應式濺鍍 該PVD方法,以在該含氮鎢層上方均勻地形月 化物層。參考字母WSiN及WN分別表示該含| 及該含氮鎢層。 依據本發明之第一^實施例,該閘極堆疊糸 一導電層21、該Ti/WNx/WSixNy中間結構22 2 層23。該第一導電層21包括多晶矽及該第二 括鎢,藉以形成鎢多晶矽閘極堆疊結構。 特S!J地,該Ti/WNx/WSixNy中間結構包括 形成該欽層 濺鍍沉積法 鎢矽化物濺 窘矽化物層 成長該含氮 應式濺鍍沉 實施CVD法 22B上方無 其結塊。因 此減弱藉由 ,力,所以導 物濺鍍靶實 層22C之均 .方形成含氮 沉積法做爲 :該含氮鎢石夕 ,鎢矽化物層 ί構包括該第 :該第二導電 導電層23包 I 一金屬層、 -12- .200828425 第二金屬層及含氮金屬矽化物層之堆疊結構。更特別地, 該第一金屬層、該第二金屬層及該含氮金屬矽化物層分別 包括純金屬層、含氮金屬層及含氮金屬矽化物層。例如: 該第一金屬層、該第二金屬層及該含氮金屬矽化物層分別 係該鈦層22A'該含氮鎢(WNX)層22B及該含氮鎢矽化物 (WShNy)層 22C。 亦可以其它不同結構形成包括上述多層之中間結構。 例如··該第一金屬層除了該鈦層之外還包括一鉅(T a)層, 以及該第二金屬層除了該含氮鎢層之外還包括一含氮鈦鎢 層。該含氮金屬矽化物層除了該含氮鎢矽化物層之外還包 括含氮鈦矽化物層或含氮鉅矽化物層。藉由實施包括濺鍍 之PVD法、CVD法或ALD法形成該鉅層。藉由在氮氣環境 中以鈦鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮鈦鎢 層。藉由在氮氣環境中以個別鈦矽化物及鉅矽化物濺鍍靶 實施反應式濺鍍沉積法來形成該含氮鈦砂化物層及該含氮 鉅矽化物層。該鉅層所形成之厚度係約1〇Α至80A。該Ta 層22A較佳地具有約10A到約50人之厚度。該Ta層因爲 藉由隨後之WNX沈積而將其某些上部改變爲TaN,以形成, 並且其某些下部與該第一導電層21反應,亦即.,該多晶矽層 因而形成TaSix層,故具有如上述限制之厚度。若該Ta層之 厚度是大的,則該TaSh層之厚度也因爲其體積擴大而增加 發生隆起。此外,若該T a層之厚度是大的,則該τ a層可吸收 多晶矽層2 1之摻雜物,例如肩或硼,因此於多晶砂層2 1 中發生多重空乏,導致元件性能之劣化。 該含氮欽鎢層、該含氮欽砂化物層及該含氮钽砍化物 -13- .200828425 層之每一層所形成之厚度係約20A至200A及且每一層具 有在約10%與60%間之範圍的氮含量。在此,氮含量以上述 方式被適當調整。若氮含量太低,則接面反應會因該含氮鈦 或钽矽化物層無法成功作爲擴散障壁而發生。另一方面, 若氮含量太高,則包含於該含氮鈦或組矽化物層中之SiN含 量會是高的,並因此讓接觸電阻變高,導致元件性能劣化。 同時,在該含氮鈦鎢層中,鈦對鎢之比例係約0.5至3.0之 範圍內。在該含氮鈦砂化物層中,砂對鈦之比例係在約〇. 5 φ 至3 · 0之範圍內。在該含氮組矽化物層中,矽對钽之比例 係在約0.5至3.0之範圍內。 第3 C圖描述依據本發明之第二實施例的閘極堆疊結 構。特別地,該閘極堆疊結構係從依據本發明之第一實施 例的閘極堆疊結構所修改之示範性閘極堆疊結構。換句言舌 說’該閘極堆覺結構包括含氣鈦層以取代第3 A圖所述之鈦 層22A,該含氮鈦層被識別爲TiNx,其中x爲約小於1。 依據第一實施例之閘極堆疊結構包括第一導電層 _ 2 01、中間結構202及第二導電層203。該第一導電層201 包括尚摻雜P -型雜質(例如:硼(B))或N -型雜質(例如:磷(p)) 之多晶矽層。除該多晶矽層之外,該第一導電層2 〇丨亦可 包括多晶矽鍺(SihGex)層’其中X係在約〇.〇1至1〇之範 圍內’或者包括矽化物層。該矽化物層包括選自由鎳(Νι)、 鉻(co、鈷(c〇)、鈦(Ti)、鎢(w)、钽(Ta)、給(Hf)、鉻(Zr) 及鉑(Pt)所組成之群組中之一。200828425 ί. For example, by performing a sprinkling method with a sprinkling mine, 22 Α. The nitrogen-containing tungsten layer 22B is formed by performing a reaction formula with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing formation is carried out by performing a reactive sputtering deposition method with a plating target in a nitrogen atmosphere; 220 In particular, since the tungsten germanide layer 22C is not easily formed over the nitrogen-containing tungsten layer 22B, the PVD method is used (for example: Inversely forming) to form the nitrogen-containing tungsten telluride layer 22C. If the nitrogen-containing tungsten germanide layer 22C is formed by ^, the nitrogen-containing tungsten germanide layer 22C is uniformly grown in the nitrogen-containing tungsten layer method, so that tungsten oxide is present above the nitrogen-containing tungsten layer 22B ( The W?x) layer, the nitrogen-containing tungsten germanide layer 22C formed by the CVD method is attached to the agglomerate. However, the reactive sputtering deposition method was applied to the tungsten in the nitrogen atmosphere to allow the formation of the nitrogen-containing tungsten carbide to be uniform regardless of the underlying type. Figure 3B depicts an image obtained after the tungsten germanide layer on the nitrogen-containing tungsten layer by the PVD method. The PVD method is used to reactively deposit the layer of the moon layer over the nitrogen-containing tungsten layer. Reference letters WSiN and WN denote the containing | and the nitrogen-containing tungsten layer, respectively. According to a first embodiment of the present invention, the gate is stacked with a conductive layer 21, and a Ti/WNx/WSixNy intermediate structure 22 2 layer 23. The first conductive layer 21 includes a polysilicon and the second tungsten to form a tungsten polysilicon gate stack structure. In particular, the Ti/WNx/WSixNy intermediate structure includes the formation of the smear layer, the sputter deposition method, the tungsten sulphide sputter sulphide layer, the growth of the nitrogen-containing splatter, and the CVD method. Therefore, by virtue of the force, the conductor sputtering target layer 22C is uniformly formed. The nitrogen-containing deposition method is as follows: the nitrogen-containing tungsten stone, the tungsten germanide layer includes the first: the second conductive conductive Layer 23 comprises a metal layer, a -12-.200828425 second metal layer and a nitrogen-containing metal telluride layer stack structure. More specifically, the first metal layer, the second metal layer, and the nitrogen-containing metal telluride layer respectively comprise a pure metal layer, a nitrogen-containing metal layer, and a nitrogen-containing metal telluride layer. For example, the first metal layer, the second metal layer, and the nitrogen-containing metal telluride layer are respectively the titanium layer 22A' of the nitrogen-containing tungsten (WNX) layer 22B and the nitrogen-containing tungsten germanide (WShNy) layer 22C. It is also possible to form the intermediate structure including the above multiple layers in other different structures. For example, the first metal layer includes a giant (T a) layer in addition to the titanium layer, and the second metal layer includes a nitrogen-containing titanium tungsten layer in addition to the nitrogen-containing tungsten layer. The nitrogen-containing metal telluride layer includes, in addition to the nitrogen-containing tungsten telluride layer, a nitrogen-containing titanium telluride layer or a nitrogen-containing giant telluride layer. The macrolayer is formed by performing a PVD method including sputtering, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium sand layer and the nitrogen-containing giant telluride layer are formed by performing reactive sputtering deposition using individual titanium telluride and giant telluride sputtering targets in a nitrogen atmosphere. The macrolayer is formed to a thickness of about 1 to 80 Å. The Ta layer 22A preferably has a thickness of from about 10A to about 50 people. The Ta layer is formed by changing some of its upper portions to TaN by subsequent WNX deposition, and some of its lower portions react with the first conductive layer 21, that is, the polysilicon layer thus forms a TaSix layer, It has a thickness as defined above. If the thickness of the Ta layer is large, the thickness of the TaSh layer also increases and bulges due to its volume expansion. In addition, if the thickness of the T a layer is large, the τ a layer can absorb the dopant of the polycrystalline germanium layer 2 1 , such as shoulder or boron, so multiple depletion occurs in the polycrystalline sand layer 2 1 , resulting in component performance. Deterioration. Each of the nitrogen-containing tungsten layer, the nitrogen-containing sulphate layer, and the nitrogen-containing strontium-13-.200828425 layer has a thickness of about 20A to 200A and each layer has about 10% and 60%. The nitrogen content in the range between %. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing titanium or telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or group telluride layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. Meanwhile, in the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the nitrogen-containing titanium sand layer, the ratio of sand to titanium is in the range of about 〇 5 φ to 3 · 0. In the nitrogen-containing group telluride layer, the ratio of ruthenium to osmium is in the range of about 0.5 to 3.0. Fig. 3C depicts a gate stack structure in accordance with a second embodiment of the present invention. In particular, the gate stack structure is an exemplary gate stack structure modified from the gate stack structure in accordance with the first embodiment of the present invention. In other words, the gate stack structure includes a gas-containing titanium layer in place of the titanium layer 22A described in FIG. 3A, which is identified as TiNx, where x is less than about 1. The gate stack structure according to the first embodiment includes a first conductive layer _ 0.001, an intermediate structure 202, and a second conductive layer 203. The first conductive layer 201 includes a polysilicon layer which is doped with a P-type impurity (for example, boron (B)) or an N-type impurity (for example, phosphorus (p)). In addition to the polysilicon layer, the first conductive layer 2 may also include a polycrystalline germanium (SihGex) layer 'where X is in the range of about 〇1 to 1 ’' or include a telluride layer. The telluride layer comprises a layer selected from the group consisting of nickel (nickel), chromium (co, cobalt (c), titanium (Ti), tungsten (w), tantalum (Ta), (Hf), chromium (Zr), and platinum (Pt). One of the groups formed.

&弟一導電層2 0 3包括鎢層。實施p v d法、c V D法及 ALD法中之以形成約100A至2,〇〇〇人厚之鎢層。該pvD -14- ,200828425 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構202包括含氮鈦(TiNx)層202A、含氮鎢(WNX) 層202B及含氮鎢矽化物(WSixNy)層202C。更詳而言之,該 含氮鈦層202A之氮對鈦具有某一比例,例如:約0.2至0.8 之範圍。在此,含氮金屬層,亦即,含氮鈦層202A具有如上所 述之氮比鈦之比例,以防此SiN於TiNx層中產生。於隨後退 火處理期間,由於TiNx層中過量的Ti會損壞多晶矽與TiNx之間 所形成之Si-N鍵,並因而移除SiN,因此可防止SiN之產生。 此可能因爲TiN並SiN具有較強健的結合。不同於第3A圖 所述之鈦層2 2 A,該含氮鈦層2 0 2 A所形成之厚度係約1 0人 至150A。該含氮鈦層202A表示鈦氮化物層或含某一含量/ 重量比之氮的鈦層。 該含氮鎢層202B之氮對鎢具有某一比例,例如:在約 0.3至1.5之範圍內。該含氮鎢層202B表示鎢氮化物層或 含某一含量/重量比之氮的鎢層。雖然將於其後說明,但是 該含氮鎢層202B供應氮至該含氮鎢矽化物層202C。該含 氮鎢層202B所形成之厚度係約20A至200A。由於氮之供 應,該含氮鎢層202B在之後退火處理後變成純鎢層或含微 量氮之鎢層。 在該含氮鎢矽化物層202C中之矽對鎢的比例係在約 0.5與3.0間之範圍內,以及該含氮鎢矽化物層202C之氮 含量係在約10%至約60%之範圍內。在此,氮含量係以如上 所述做適當調整。若該氮含量太低,由於該含氮鎢砂化物層 202C無法成功作爲擴散障壁,故會發生接面反應。另一方面, 若該氮含量太高,則包含於該含氮鎢矽化物層202C中之 -15- 200828425& A conductive layer 2 0 3 includes a tungsten layer. The p v d method, the c V D method, and the ALD method are carried out to form a tungsten layer of about 100 A to 2, which is thick. The pvD-14-, 200828425 method includes a sputter deposition method using a tungsten sputtering target. The intermediate structure 202 includes a nitrogen-containing titanium (TiNx) layer 202A, a nitrogen-containing tungsten (WNX) layer 202B, and a nitrogen-containing tungsten germanide (WSixNy) layer 202C. More specifically, the nitrogen of the nitrogen-containing titanium layer 202A has a certain ratio to titanium, for example, a range of about 0.2 to 0.8. Here, the nitrogen-containing metal layer, i.e., the nitrogen-containing titanium layer 202A, has a ratio of nitrogen to titanium as described above to prevent the SiN from being generated in the TiNx layer. During the subsequent annealing treatment, since excessive Ti in the TiNx layer damages the Si-N bond formed between the polysilicon and TiNx, and thus SiN is removed, the generation of SiN can be prevented. This may be because TiN and SiN have a strong bond. Unlike the titanium layer 2 2 A described in Fig. 3A, the nitrogen-containing titanium layer 2 0 2 A is formed to have a thickness of about 10 to 150 Å. The nitrogen-containing titanium layer 202A represents a titanium nitride layer or a titanium layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten layer 202B has a certain ratio of nitrogen to tungsten, for example, in the range of about 0.3 to 1.5. The nitrogen-containing tungsten layer 202B represents a tungsten nitride layer or a tungsten layer containing a certain content/weight ratio of nitrogen. Although described later, the nitrogen-containing tungsten layer 202B supplies nitrogen to the nitrogen-containing tungsten carbide layer 202C. The nitrogen-containing tungsten layer 202B is formed to have a thickness of about 20A to 200A. Due to the supply of nitrogen, the nitrogen-containing tungsten layer 202B becomes a pure tungsten layer or a tungsten-containing tungsten layer after annealing treatment. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 202C is in the range of between about 0.5 and 3.0, and the nitrogen content of the nitrogen-containing tungsten germanide layer 202C is in the range of from about 10% to about 60%. Inside. Here, the nitrogen content is appropriately adjusted as described above. If the nitrogen content is too low, since the nitrogen-containing tungsten silicide layer 202C cannot be successfully used as a diffusion barrier, a junction reaction occurs. On the other hand, if the nitrogen content is too high, it is included in the nitrogen-containing tungsten telluride layer 202C -15-200828425

SiN含量可爲高的,並因此接觸電阻變高,導致元件性能劣 化。該含氮鎢砍化物層202C表示鎢砂氮化層或含某一含量 /重量比之氮的鎢矽化物層。 藉由實施PVD法、CVD法或ALD法形成該含氮鎢層 202B。藉由實施PVD法形成該含氮鈦層202A及該含氮鎢 矽化物層202C。該PVD法以濺鍍沉積法或反應式濺鍍沉積 法進行。例如:藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積 法來形成該含氮鈦層202A。藉由在氮氣環境中以鎢濺鍍靶 φ 實施反應式濺鍍沉積法來形成該含氮鎢層202B。藉由在氮 氣環境中以鎢矽化物濺鍍靶實施反應式濺鍍沉積法來形成 該含氮鎢矽化物層202C。 特別地,因爲在該含氮鎢層202B上方不易成長該含氮 鎢矽化物層202C,所以使用該PVD法(例如:反應式濺鍍沉 積法)以形成該含氮鎢矽化物層202C。若藉由實施CVD法 形成該含氮鎢矽化物層202C,則在該含氮鎢層202B上方 無法均勻地成長該含氮鎢矽化物層202C,因而使其結塊。 φ 因爲在該含氮鎢層202B上方存有鎢氧化物(W〇〇層,此減 弱藉由該CVD法所形成之含氮鎢矽化物層202C的附著 力,所以導致此結塊。然而,在該氮氣環境中以該鎢矽化 物濺鍍靶實施該反應式濺鍍沉積法以允許該含氮鎢矽化物 層202C之均勻形成而與於下層型態無關。 當使用相似於第一實施例中之鈦層22A的第二實施例 中之含氮鈦層202A時,可獲得低接觸電阻。獲得該低接觸 電阻之理由是因爲供應氮至該含氮鈦層202A所形成之含‘ 氮鎢層202B,藉此使該含氮鈦層202A之上部強健,並同時 -16- 200828425 防止Ti-Si鍵之結塊。 .依據本發明之第二實施例的閘極堆疊結構包括該第一 導電層201、該TiNx/WNJWSixNy中間結構202及該第二導 電層203。該第一導電層201包括多晶矽及該第二導電層 203包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,該TiNx/WNx/WSixNy中間結構202係以包括第 一金層層、第二金屬層及含氮金屬矽化物層之堆疊結構形 成。該第一及第二金屬層係含某一含量/重量比之氮的金屬 φ 層’以及該含氮金屬矽化物層包含某一含量/重量比之氮。 例如:該第一金屬層係該含氮鈦層202 A。該第二金屬層係該 含氮鎢層 202B。該金屬矽化物層係該含氮鎢矽化物層 202C。 如上所述之多層中間結構亦可以其它不同結構來形 成。例如:該第一含氮金屬層除了該含氮鈦層之外還包括 含氮鉬層(TaNx)層,以及該第二含氮金屬層除了該含氮鎢層 之外還包括含氮鈦鎢(TiWNx)層。該含氮金屬矽化物層除了 φ 該含氮鎢矽化物層之外還包括含氮鈦矽化物(TlSixNy)層或 含氮組矽化物(TaSixNy)層。藉由實施包括濺鍍之PVD法、 CVD法或ALD法形成該含氮钽層。藉由在氮氣環境中以鈦 鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮鈦鎢層。藉 由在氮氣環境中以個別鈦矽化物及鉬矽化物濺鍍靶實施反 應式濺鍍沉積法來形成該含氮鈦矽化物層及該含氮鉬矽化 物層。該含氮鉬層所形成之厚度係約10A至80A。該含氮 鈦鎢層、該含氮鈦矽化物層及該含氮鉅矽化物層之每一層 所形成之厚度係約20A至200A及每一層具有在約10%與 -17- 200828425 60%間之範圍內的氮含量。在此,氮含量係以如上所 當調整。若氮含量太低,則由於該含氮鈦或钽矽化物 成功作爲擴散障壁,故會發生接面反應。另一方面,若 量太高,則包含於該含氮鈦或鉅矽化物層中之SiN含 高的,並因而接觸電阻變高,導致元件性能劣化。在該 鎢層中,鈦對鎢之比例係在約0.5至3.0之範圍內。 氮鈦矽化物層中,矽對鈦之比例係在約0.5至3.0 內。在該含氮鉅矽化物層中,矽對鉬之比例係在約 φ 3.0之範圍內。 相似於該TiNx/WNx/WSixNy中間結構,包括該含 以取代該含氮鈦層之中間結構可具有低接觸電阻及 以及同時防止一多晶矽空乏。雖然以3層形成依據 施例之中間結構,但是該中間結構可以進一步在該 化物層上方包括一含氮鎢(WNX)層。該額外所提供含 具有大致相同於該第一所提供含氮鎢層之厚度及氮 依據第二實施例之TiNx/WNx/WSixNy中間結構的複 φ 含氮。結果,該TiNx/WNx/WSixNy中間結構可具有低 及接觸電阻以及減少該閘極堆疊結構之高度。並 TiNx/WNx/WSixNy中間結構可減少因在該第一導電層 所摻雜之雜質(例如:硼)的向外擴散所造成之多晶矽 第3D圖描述依據本發明之第三實施例的閘極 構。該閘極堆疊結構包括第一導電層2 1 1、中間結 及第二導電層213。該第一導電層211,包括高摻雜 雜質(例如··硼(B))或N-型雜質(例如:磷(P))之多晶 該第一導電層211除了該多晶矽之外亦可包括多 述被適 層無法 該氮含 量可爲 含氮鈦 在該含 之範圍 0.5至 氮鉬層 片電阻 第二實 含鎢砍 氮鎢層 含量。 數層包 片電阻 且,該 201中 空乏。 堆疊結 構2 12 有P-型 3砂層。 晶矽鍺 -18- 200828425 (Si^Gex)層,其中χ係在約o.oi至κο之範圍內,或亦可 包括矽化物層。該矽化物層包括選自由鎳(Ni)、鉻(Cr)、銘 (Co)、鈦(Ti) ' 鎢(W)、鉅(了&)、給(11〇、锆(2〇及鉑(?1)所 組成之群組中之一。 該第二導電層213包括鎢層。實施PVD法、CVD法及 ALD法中之一以形成約ιοοΑ至2000A厚度之鎢層。該PVD 法包括使用具鎢濺鍍靶之濺鍍沉積法。 該中間結構212包括鈦矽化物(TiSix)層21 2A、含氮 鈦(TiN〇層212B、含氮鎢(WN〇層212C、及含氮鎢矽化物 (WShNO層212D。依據在個別第一及第二實施例中所述之 中間結構22及202,除了該鈦矽化物層、含氮鈦層及該含 氮鎢層之外,亦可分別形成钽矽化物層、含氮钽層及含氮 鈦鎢層。此外,除了該含氮鎢矽化物層之外,亦可形成含 氮鈦矽化物層或含氮鉅矽化物層。 依據第三實施例之閘極堆疊結構係在對依據本發明之 第一及第二實施例的閘極堆疊結構實施一退火處理後所造 成之結構。該退火包括在形成該等閘極堆疊結構後所實施 之各種製程(例如:間隔物形成及內層絕緣層形成)期間所 伴隨之熱處理。 參考第3A及3D圖以比較該中間結構2 1 2與該中間結 構22。當該鈦層22A與來自該第一導電層21之多晶矽反 應時,形成具有約1A至30A厚度之鈦矽化物層212A。該 鈦矽化物層212A中之矽對鈦的比例係在約0.5與3.0間之 範圍內。 當從該含氮鎢層22B供應氮至該鈦層22A時,造成該 -19- 200828425 含氮鈦層212B。該含氮鈦層212B之厚度係約10A至100A 且具有約0.7至1.3範圍之氮對鈦的比例。相較於在該鈦層 22A中之氮對鈦的比例,在該含氮鈦層2 1 2B中之氮對鈦的 比例從約0增加至約0.7至1.3。The SiN content can be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten decide layer 202C represents a tungsten sand nitride layer or a tungsten ruthenide layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten layer 202B is formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 202A and the nitrogen-containing tungsten germanide layer 202C are formed by a PVD method. The PVD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the nitrogen-containing titanium layer 202A is formed by sputtering deposition using a titanium sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten layer 202B is formed by performing a reactive sputtering deposition method with a tungsten sputtering target φ in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 202C is formed by performing a reactive sputtering deposition method using a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten germanide layer 202C is not easily grown over the nitrogen-containing tungsten layer 202B, the PVD method (e.g., reactive sputtering deposition method) is used to form the nitrogen-containing tungsten germanide layer 202C. When the nitrogen-containing tungsten germanide layer 202C is formed by the CVD method, the nitrogen-containing tungsten germanide layer 202C cannot be uniformly grown over the nitrogen-containing tungsten layer 202B, thereby causing agglomeration. φ because the tungsten oxide (W layer) is present above the nitrogen-containing tungsten layer 202B, which weakens the adhesion of the nitrogen-containing tungsten carbide layer 202C formed by the CVD method, thereby causing the agglomeration. The reactive sputtering deposition method is performed in the nitrogen atmosphere with the tungsten telluride sputtering target to allow uniform formation of the nitrogen-containing tungsten carbide layer 202C regardless of the underlying type. When used similar to the first embodiment When the nitrogen-containing titanium layer 202A in the second embodiment of the titanium layer 22A is used, a low contact resistance can be obtained. The reason for obtaining the low contact resistance is because nitrogen is supplied to the nitrogen-containing titanium layer 202A to form a nitrogen-containing tungsten The layer 202B, whereby the upper portion of the nitrogen-containing titanium layer 202A is made strong, and at the same time - 16-200828425 prevents the agglomeration of the Ti-Si bond. The gate stack structure according to the second embodiment of the present invention includes the first conductive The layer 201, the TiNx/WNJWSixNy intermediate structure 202 and the second conductive layer 203. The first conductive layer 201 comprises a polysilicon and the second conductive layer 203 comprises tungsten, thereby forming a tungsten polysilicon gate stack structure. TiNx/WNx/WSixNy intermediate structure 202 to include Forming a stack of a gold layer, a second metal layer, and a nitrogen-containing metal telluride layer. The first and second metal layers are a metal φ layer containing a certain content/weight ratio of nitrogen and the nitrogen-containing metal deuteration The layer includes a certain content/weight ratio of nitrogen. For example, the first metal layer is the nitrogen-containing titanium layer 202 A. The second metal layer is the nitrogen-containing tungsten layer 202B. The metal telluride layer is the nitrogen-containing layer. The tungsten germanide layer 202C. The multilayer intermediate structure as described above may also be formed in other different structures. For example, the first nitrogen-containing metal layer includes a nitrogen-containing molybdenum layer (TaNx) layer in addition to the nitrogen-containing titanium layer, and The second nitrogen-containing metal layer includes a nitrogen-containing titanium tungsten (TiWNx) layer in addition to the nitrogen-containing tungsten layer. The nitrogen-containing metal halide layer includes nitrogen-containing titanium germanium in addition to the nitrogen-containing tungsten germanide layer. a (TlSixNy) layer or a nitrogen-containing group telluride (TaSixNy) layer. The nitrogen-containing germanium layer is formed by performing a PVD method including sputtering, a CVD method or an ALD method, by sputtering a target with titanium tungsten in a nitrogen atmosphere. A reactive sputtering deposition method is performed to form the nitrogen-containing titanium tungsten layer by using a nitrogen ring The nitrogen-containing titanium telluride layer and the nitrogen-containing molybdenum telluride layer are formed by reactive sputtering deposition using individual titanium telluride and molybdenum telluride sputtering targets. The thickness of the nitrogen-containing molybdenum layer is about 10A. Up to 80 A. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer, and the nitrogen-containing giant telluride layer has a thickness of about 20A to 200A and each layer has about 10% and -17-200828425 The nitrogen content is in the range of 60%. Here, the nitrogen content is adjusted as above. If the nitrogen content is too low, the junction reaction occurs because the nitrogen-containing titanium or telluride succeeds as a diffusion barrier. On the other hand, if the amount is too high, the SiN contained in the nitrogen-containing titanium or giant telluride layer is high, and thus the contact resistance becomes high, resulting in deterioration of element performance. In the tungsten layer, the ratio of titanium to tungsten is in the range of about 0.5 to 3.0. In the nitroxide telluride layer, the ratio of niobium to titanium is within about 0.5 to 3.0. In the nitrogen-containing macrochemical layer, the ratio of cerium to molybdenum is in the range of about φ 3.0. Similar to the TiNx/WNx/WSixNy intermediate structure, including the intermediate structure including the Ni-Ti-containing layer, it has a low contact resistance and at the same time prevents a polysilicon from being depleted. Although the intermediate structure according to the embodiment is formed in three layers, the intermediate structure may further include a nitrogen-containing tungsten (WNX) layer over the layer. The additional provided contains a complex φ nitrogen having a thickness substantially the same as that of the first provided nitrogen-containing tungsten layer and nitrogen according to the TiNx/WNx/WSixNy intermediate structure of the second embodiment. As a result, the TiNx/WNx/WSixNy intermediate structure can have low and contact resistance and reduce the height of the gate stack structure. And the TiNx/WNx/WSixNy intermediate structure can reduce polysilicon caused by out-diffusion of impurities (for example, boron) doped in the first conductive layer. FIG. 3D depicts a gate electrode according to a third embodiment of the present invention. Structure. The gate stack structure includes a first conductive layer 21, an intermediate junction, and a second conductive layer 213. The first conductive layer 211 includes polycrystals of highly doped impurities (for example, boron (B)) or N-type impurities (for example, phosphorus (P)). The first conductive layer 211 may be in addition to the polysilicon. Including the inclusion of the stratified layer, the nitrogen content may be the content of the nitrogen-containing titanium in the range of 0.5 to the nitrogen-molybdenum layer resistance of the second solid tungsten-containing nitrogen-nitriding layer. Several layers of chip resistors, and the 201 is depleted. The stacked structure 2 12 has a P-type 3 sand layer. Crystalline -18- 200828425 (Si^Gex) layer, wherein the lanthanide is in the range of about o.oi to κο, or may also include a telluride layer. The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), Ming (Co), titanium (Ti) 'tungsten (W), giant (amplitude &), and (11 〇, zirconium (2 〇 and platinum) (?1) One of the group consisting of. The second conductive layer 213 includes a tungsten layer. One of a PVD method, a CVD method, and an ALD method is performed to form a tungsten layer having a thickness of about ιοο to 2000 A. The PVD method includes A sputtering deposition method using a tungsten sputtering target is used. The intermediate structure 212 includes a titanium telluride (TiSix) layer 21 2A, a nitrogen-containing titanium (TiN layer 212B, a nitrogen-containing tungsten (WN layer 212C, and a nitrogen-containing tungsten germanium). WShNO layer 212D. According to the intermediate structures 22 and 202 described in the first and second embodiments, in addition to the titanium germanide layer, the nitrogen-containing titanium layer and the nitrogen-containing tungsten layer, they may be separately formed. a telluride layer, a nitrogen-containing tantalum layer, and a nitrogen-containing titanium tungsten layer. Further, in addition to the nitrogen-containing tungsten germanide layer, a nitrogen-containing titanium telluride layer or a nitrogen-containing giant telluride layer may be formed. The gate stack structure of the example is a structure caused by performing an annealing treatment on the gate stack structure according to the first and second embodiments of the present invention. The heat treatment accompanying the various processes (e.g., spacer formation and inner insulating layer formation) performed after forming the gate stack structure. Referring to Figures 3A and 3D to compare the intermediate structure 2 1 2 with The intermediate structure 22. When the titanium layer 22A reacts with the polysilicon from the first conductive layer 21, a titanium germanide layer 212A having a thickness of about 1 A to 30 A is formed. The ratio of germanium to titanium in the titanium germanide layer 212A is Between about 0.5 and 3.0. When nitrogen is supplied from the nitrogen-containing tungsten layer 22B to the titanium layer 22A, the -19-200828425 nitrogen-containing titanium layer 212B is formed. The thickness of the nitrogen-containing titanium layer 212B is about 10A. To 100A and having a ratio of nitrogen to titanium in the range of about 0.7 to 1.3. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 2 1 2B is about from the ratio of nitrogen to titanium in the titanium layer 22A. 0 is increased to about 0.7 to 1.3.

在該退火後,該含氮鎢層212C因侵蝕作用(denudation) 而具有降至約10%或更少之氮含量。元件符號WN“D)表示 該經侵蝕之含氮鎢層。該含氮鎢層21 2C係約20A至200人 厚。在該含氮鎢層212C中之氮對鎢的比例係在約0.01與 φ 0.15間之範圍內。相較於在第3A圖中所述之含氮鎢層22C 中之氮對鎢的比例,在該含氮鎢層2 1 2C中之氮對鎢的比例 從約0.3與1. 5間之範圍減少至約0.0 1至0 . 1 5間之範圍。 該含氮鎢矽化物層2 1 2D具有大致相同於該含氮鎢矽 化物層22C之厚度及成分。詳而言之,該含氮鎢矽化物層 2 12D具有約0.5至3.0範圍之矽對鎢的比例及約10%與60% 間之範圍的氮含量。該含氮鎢矽化物層2 1 2D之厚度係在約 20A與200A間之範圍內。 φ 參考第3D及3C圖以比較該中間結構212與該中間結 構202。在該退火處理期間,從該含氮鎢層202B將氮供應 至該含氮鈦層202A。結果,使該含氮鈦層202A變換成爲 與該鈦矽化物層212A而具有最小反應之含氮鈦層212B。 該鈦矽化物層212A之厚度係在約1A至30A之範圍內,以 及該含氮鈦層212B之厚度係在約10A至100A之範圍內。 在該含氮鈦層212B中之氮對鈦的比例係在約0.7與 1.3間之範圍內。相較於在該含氮鈦層202B中之氮對鈦比 例,在該含氮鈦層21 2B中之氮對鈦比例從約0.2至0.8間 -20- .200828425 之範圍增加至約〇. 7與1 · 3間之範圍。 在該退火後,該含氮鎢層212C因侵蝕作用而具有降至 約10%或更少之氮含量。該含氮鎢層212C係約20A至200A 厚。在該含氮鎢層212C中之氮對鎢的比例係在約0.01與 0.15間之範圍內。相較於在第3C圖中所述之含氮鎢層202C 中之氮對鎢的比例,在該含氮鎢層212C中之氮對鎢的比例 從約0.3與1.5間之範圍減少至約〇 · 〇 1至0.1 5間之範圍。 該含氮鎢矽化物層2 1 2D具有大致相同於該含氮鎢矽 φ 化物層202C之厚度及成分。詳而言之,該含氮鎢矽化物層 21 2D具有約0.5至3.0範圍之矽對鎢的比例及約10%與60% 間之範圍的氮含量。該含氮鎢矽化物層2 1 2D之厚度係在約 20A與200A間之範圍內。 依據第三實施例之閘極堆疊結構包括第一中間結構及 第二中間結構。該第一中間結構包括第一金屬矽化物層及 第一含氮金屬層,以及該第二中間結構包括第二含氮金屬 層及第二含氮金屬矽化物層。例如:藉由堆疊該鈦矽化物 0 層21 2A及該含氮鈦層212B形成該第一中間結構。藉由堆 疊該含氮鎢層212C及該含氮鎢矽化物層212D形成該第二 中間結構。 第3E圖描述在退火製程後之閘極堆疊結構的影像 圖。相同於第一到第三實施例所述之元件符號代表相同元 件。因此,省略其詳細敘述。 第4A圖描述依據本發明之第四實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層3 1、中間結構3 2及 第二導電層33。該第一導電層31包括高摻雜有p -型雜質 -21- .200828425 (例如:硼)或N -型雜質(例如:磷)之多晶砂層。該第一導 電層31亦可包括多晶矽鍺層(Si i.xGex,其中X係在約〇.〇1 與1.0間之範圍內)或矽化物層。例如:該矽化物層包括選 自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、钽(Ta)、給 (Hf)、鍩(Zr)及鉑(Pt)所組成之群組中之一。 該第二導電層33包括鎢層。該鎢層係約100A至2000A 厚及藉由實施PVD法、(:\^法或人:10法所形成。該?¥0 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構32包括鈦層32A及含氮鎢矽化物(WSuNy) 層32B。詳而言之,該鈦層32A之厚度係在約1〇Α至約80A 之範圍內。較佳地,該鈦層32A具有約10A至約50A的厚 度。該鈦層32A因爲藉由隨後之WSixNy沈積而將其某些上 部改變爲TiN,以形成含氮鎢矽化物層32B,並且其某些下部 與該第一導電層31反應,亦即,該多晶矽層因而形成TiSh 層,故具有如上述限制之厚度。若該鈦層3 2 A之厚度是大的, 則該TiSix層之厚度也因爲其體積擴大而增加發生隆起。此 外,若該鈦層3 2 A之厚度是大的,則該鈦層3 2 A可吸收摻雜 物,例如,多晶矽層3 1之磷或硼並因此於多晶矽層3 1中發生 多重空乏,導致元件性能之劣化。該含氮鎢矽化物層32B具 有0.5至3.0範圍之矽對鎢的比例及具有約10%至60%之氮 含量。在此,該氮含量以上述方式被適當調整。若該氮含量 太低,則接面反應會因含氮鎢矽化物層32B不能成功作爲擴 散障壁而發生。另一方面,若該氮含量太高,則包含於該含 氮鎢矽化物層32B中之SiN含量會是高的,並因而使接觸電 阻變高,導致元件性能劣化。該含氮鎢矽化物層32B表示鎢 -22- 200828425 矽氮化物層或包含某一含量/重量比之氮的鎢矽化物層。該 含氮鎢矽化物層32B所形成之厚度係約20A至200A。 藉由PVD法、CVD法或ALD法形成該鈦層32A。藉由 PVD法形成該含氮鎢矽化物層32B。該PVD法以濺鍍沉積 法或反應式濺鍍沉積法進行。例如:藉由以鈦濺鍍靶實施 濺鍍沉積法來形成該鈦層3 2 A。藉由在氮氣璋境中以鎢矽 化物濺鍍靶實施反應式濺鍍沉積法來形成該含氮鎢矽化物 層32B。特別地,因爲可均勻地形成該含氮鎢矽化物層32B φ 而與下層型態無關,所以使用該PVD法(例如:反應式濺鍍 沉積法)以形成該含氮鎢矽化物層32B。 依據本發明之第四實施例的閘極堆疊結構包括該第一 導電層31、該Ti/WSlxNy中間結構32及該第二導電層33。 該第一導電層31包括多晶矽及該第二導電層33包括鎢, 藉此形成鎢多晶矽閘極堆疊結構。 特別地’該Ti/WSixNy中間結構32包括金屬層及含氮 金屬矽化物層。該金屬層包括純金屬層及該金屬矽化物層 φ 包括含氮鎢矽化物層。例如:該金屬層係該鈦層32A及該 金屬矽化物層係該含氮鎢矽化物層3 2 B。 依據第四實施例之多層中間結構亦可以其它結構形 成。該金屬層除了該鈦層之外還包括钽層,以及該含氮矽 金屬矽化物層除了該含氮鎢矽化物層之外還包括含氮鈦矽 化物(TiShNy)層或含氮鉬矽化物(TaShNy)層。藉由包括濺鍍 沉積法之PVD法、CVD法或ALD法形成該組層。藉由在氮 氣環境中以鈦矽化物濺鍍靶實施反應式濺鍍沉積法來形成 該含氮鈦矽化物層。藉由在氮氣環境中以鉬矽化物濺鍍靶 -23- 200828425 實施反應式濺鍍沉積法來形成該含氮組矽化物層。該鉬層 係約l〇A至80A厚。較佳地,該鉅層具有約i〇A到約50A 之厚度。該钽層因爲藉由隨後之WShNy沈積而將其某些上 部改變爲TaN,以形成金屬矽化物層,並且其某些下部與該 第一導電層31反應,亦即,該多晶矽層因而形成TaSu層,故 具有如上述限制之厚度。若該鉅層之厚度是大的,則該TaSu 層之厚度也因爲其體積擴大而增加發生隆起。此外,若該鉅 層之厚度是大的,則該組層可吸收多晶矽層3 1之摻雜物,例 φ 如,磷或硼,因此於多晶政層3 1中發生多重空乏,導致元 件性能之劣化。該含氮鈦矽化物層及該含氮鉬矽化物層之 每一層所形成之厚度係約20A至200A及每一層具有約1〇% .至60%之氮含量。在此,該氮含量以上述方式被適當調整。 若該氮含量太低,則接面反應會因含氮鈦或钽矽化物層不 能成功作爲擴散障壁而發生。另一方面,若該氮含量太高, 則包含於該含氮鈦或鉬矽化物層中之SiN含量會是高的,並 因而使接觸電阻變高,導致元件性能劣化。在該含氮鈦矽化 φ 物層中之矽對鈦的比例係在約0.5與3 · 0間之範圍內。該含 氮鉅矽化物層具有約0.5至3.0之矽對鉅比例。 第4 B圖猫述依據本發明之第五實施例的閘極堆疊結 構。該所述閘極堆疊結構係從依據第二實施例之閘極堆疊 結構所修改而成。換句話說,使用含氮鈦(TiNx)層以取代 鈦,其中X約小於1。 該閘極堆疊結構包括第一導電層301、中間結構302 及第二導電層303。該第一導電層301包括高摻雜有p_型 雜質(例如:硼)或N-型雜質(例如:磷)之多晶矽層。該第 -24- 200828425 —導電層301亦可包括多晶矽鍺層(Si !-xGex,其中x係在約 0.01與1.0間之範圍內)或矽化物層。例如:該矽化物層包 括選自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、鉬(Ta)、 飴(Hf)、锆(2〇及鉑(?〖)所組成之群組中之一。 該第二導電層303包括鎢層。藉由實施PVD法、CVD 法或ALD法以形成約100A至2000A厚之鎢層。該PVD法 包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構302包括含氮鈦(TiN〇層3 02A及含氮鎢矽 Φ 化物(WSixNy)層302B。該含氮鈦層302A具有約0.2至0.8 範圍之氮對鈦的比例及約1 0 A至1 5 0 A之厚度。在此,該含 氮金屬層,亦即,含氮鈦層302A具有如上所述之氮比鈦之比 例,以防止SiN自該TiNx層302A中產生。在隨後之退火處 理期間,SiN的產生會因於TiNx層3 02A中過量的Ti破壞於 多晶矽與TiNx之間所形成之Sl_N鍵而被防止,並因而移除 SiN。因爲TiN接合比SiN接合強健許多,故此爲可行的。 該含氮鈦層302A表示鈦氮化物層或含氮之鈦層。在本實施 % 例中,該含氮鈦層具有金屬特性。該含氮鎢矽化物層3 02B 具有0.5至3.0範圍之矽對鎢的比例及約10%至約60%之氮 含量。在此,該氮含量以上述方式被適當調整。若該氮含量 太低,則接面反應會因含氮鎢矽化物層302B不能成功作爲 擴散障壁而發生。另一方面,若該氮含量太高,則包含於該 含氮鎢矽化物層302B中之SiN含量會是高的,並因而使接 觸電阻變高,導致元件性能劣化。該含氮鎢矽化物層3 0 2 B 表不鎢砂氮化物層或含某一含量/重量比之氮的鎢砂化物 層。 -25- 200828425 藉由PVD法形成該含氮鈦層302A及該含氮鎢矽化物 層3 02B。該PVD法以濺鍍沉積法或反應式濺鍍沉積法進 行。例如:藉由在氮氣環境中以欽濺鍍耙實施反應式滕鍍 沉積法來形成該含氮鈦層302A。藉由在氮氣環境中以鎢矽 化物濺鍍耙實施辰應式濺鍍沉積法來形成該含氮鎢砂化物 層 302B 。 因爲該PVD法允許該含氮鎢矽化物層302B之均勻形 成而與下層型態無關,所以使用該PVD ^ (例如:上述反應 φ 式濺鍍沉積法)以形成該含氮鎢矽化物層302B。 依據第五實施例之閘極堆疊結構包括該第一導電層 301、該TiNx/WSixNy中間結構302及該第二導電層303。該 第一導電層301及該第二導電層303分別包括多晶矽層及 鎢層。因此,設有鎢多晶矽閘極堆疊結構。 特別地,該TiNx/WSixNy中間結構包括金屬層及含氮金 屬矽化物層。該金屬層包括含某一含量/重量比之氮的金屬 層,以及該金屬矽化物層包括含某一含量/重量比之氮的金 φ 屬矽化物層。例如:該金屬層包括該含氮鈦層3 02A,以及 該金屬矽化物層包括該含氮鎢矽化物層3 0 2 B。 依據第五實施例之多層中間結構可以其它不同結構形 成。該含氮金屬層除了該含氮鈦層之外還包括含氮組(TaNx) 層。該含氮金屬矽化物層除了該含氮鎢矽化物(WSixNy)層之 外還包括含氮鈦矽化物(TiSixNy)層或含氮鉅矽化物 (TaShNy)層。藉由包括濺鍍沉積法之PVD法、CVD法或ALD 法形成該含氮钽層。藉由在氮氣環境中以鈦矽化物濺鍍靶 實施反應式濺鍍沉積法來形成該含氮鈦矽化物層。藉由在 -26- ,200828425 氮氣環境中以鉬矽化物濺鍍靶實施反應式濺鍍沉積法來形 成該含氮組矽化物層。該含氮鉅層具有約10A至80A間範 圍之厚度。該含氮鈦矽化物層及該含氮钽矽化物層之每一 層所形成之厚度係約20A至200A,以及每一層具有約1〇% 至60%之氮含量。在此,該氮含量以上述方式被適當調整。 若該氮含量太低,則接面反應會因含氮鈦或組矽化物層不 能成功作爲擴散障壁而發生。另一方面_,若該氮含量太高, 則包含於該含氮鈦或鉬矽化物層中之SiN含量會是高的,並 φ 因而使接觸電阻變高,導致元件性能劣化。在該含氮鈦矽化 物層中之矽對鈦的比例係在約0.5與3.0間之範圍內。該含 氮鉅矽化物層具有約0.5至3.0範圍之矽對鉬的比例。 第 4C圖描述依據本發明之第六實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層3 1 1、中間結構312 及第二導電層313。該第一導電層311包括高摻雜有P-型 雜質(例如:硼(6))或N_型雜質(例如:磷(P))之多晶矽層。 該第一導電層3 1 1除該多晶矽層之外亦可包括多晶矽鍺層 φ (Sil〃Ge〇,其中X係在約〇.〇1與1.0間之範圍內,或者可 包括矽化物層。該矽化物層包括選自由鎳(Ni)、鉻(C〇、鈷 (Co)、·鈦(Ti)、鎢(,)、鉅(1&)、給(11〇、锆(2:〇及舶(?〖)所 組成之群組中之一。 該第二導電層313包括鎢層。藉由實施PVD法、CVD 法及ALD法中之一以形成約ιοοΑ至2000A厚之鎢層。該 PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構312包括鈦矽化物(TiSix)層31 2A、含氮鈦 (TiNx)層3 12B及含氮鎢矽化物(wSixN〇層312C。可根據選 -27- 200828425 自第四及第五實施例所述之材料以其它不同結構形成該中 間結構。 依據第六實施例之閘極堆疊結構係在對依據本發明之 第四及第五實施例的閘極堆疊結構實施一退火處理後所造 成之結構。該退火包括在形成該等閘極堆疊結構後所實施 之各種製程(例如:間隔物形成及內層絕緣層形成)期間所 伴隨之熱處理。 在該鈦層3 2 A上方形成該含氮鎢矽化物層3 2 B之情況 0 中參照(第4A圖),在該退火後,在該駄層32 A與該含氮鎢 矽化物層32B間之邊界區域中使該含氮鎢矽化物層32B中 之微量氮分解。因此,如第4C圖所述,使該鈦層32A之 上部分變換成爲該含氮鈦層312B,以及該鈦層32A之下部 分與來自該第一導電層3 1之多晶矽反應,以形成該鈦矽化 物層312A。 該鈦矽化物層312A之厚度係在約1A至30A間之範圍 內,以及其中矽對鈦的比例係在約0.5與3.0間之範圍內。After the annealing, the nitrogen-containing tungsten layer 212C has a nitrogen content reduced to about 10% or less due to the denudation. The component symbol WN "D) represents the etched nitrogen-containing tungsten layer. The nitrogen-containing tungsten layer 21 2C is about 20 A to 200 Å thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 212C is about 0.01. φ is in the range of 0.15. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 2 1 2C is from about 0.3 compared to the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 22C described in FIG. 3A. The range of distance between 1.5 and 1.5 is reduced to a range of about 0.01 to 0.15. The nitrogen-containing tungsten telluride layer 2 1 2D has substantially the same thickness and composition as the nitrogen-containing tungsten telluride layer 22C. The nitrogen-containing tungsten telluride layer 2 12D has a ratio of germanium to tungsten in the range of about 0.5 to 3.0 and a nitrogen content in the range of between about 10% and 60%. The thickness of the nitrogen-containing tungsten germanide layer 2 1 2D It is in the range between about 20 A and 200 A. φ Referring to Figures 3D and 3C to compare the intermediate structure 212 with the intermediate structure 202. During the annealing process, nitrogen is supplied from the nitrogen-containing tungsten layer 202B to the nitrogen-containing layer. Titanium layer 202A. As a result, the nitrogen-containing titanium layer 202A is transformed into a nitrogen-containing titanium layer 212B having minimal reaction with the titanium germanide layer 212A. The thickness of the titanium germanide layer 212A The ratio is in the range of about 1A to 30A, and the thickness of the nitrogen-containing titanium layer 212B is in the range of about 10A to 100A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 212B is between about 0.7 and 1.3. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 21 2B is increased from about 0.2 to 0.8 -20 - . 200828425 to A range of between about 7 and 1 · 3. After the annealing, the nitrogen-containing tungsten layer 212C has a nitrogen content of about 10% or less due to erosion. The nitrogen-containing tungsten layer 212C is about 20A to 200A thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 212C is in the range of about 0.01 to 0.15. Compared with the nitrogen to tungsten in the nitrogen-containing tungsten layer 202C described in FIG. 3C In proportion, the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 212C is reduced from a range of between about 0.3 and 1.5 to a range of from about 〇1 to about 0.15. The nitrogen-containing tungsten telluride layer 2 1 2D has a rough Same as the thickness and composition of the nitrogen-containing tungsten-rhenium compound layer 202C. In detail, the nitrogen-containing tungsten germanide layer 21 2D has a ratio of germanium to tungsten of about 0.5 to 3.0 and about 10%. a nitrogen content in the range of 60%. The thickness of the nitrogen-containing tungsten carbide layer 2 1 2D is in a range between about 20 A and 200 A. The gate stack structure according to the third embodiment includes a first intermediate structure and a second The intermediate structure includes a first metal telluride layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal layer and a second nitrogen-containing metal telluride layer. For example, the first intermediate structure is formed by stacking the titanium germanide 0 layer 21 2A and the nitrogen-containing titanium layer 212B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten layer 212C and the nitrogen-containing tungsten germanide layer 212D. Figure 3E depicts an image of the gate stack structure after the annealing process. The component symbols as described in the first to third embodiments represent the same elements. Therefore, the detailed description thereof will be omitted. Fig. 4A depicts a gate stack structure in accordance with a fourth embodiment of the present invention. The gate stack structure includes a first conductive layer 31, an intermediate structure 32, and a second conductive layer 33. The first conductive layer 31 includes a polycrystalline sand layer highly doped with a p-type impurity -21 - 200828425 (for example, boron) or an N-type impurity (for example, phosphorus). The first conductive layer 31 may also include a polysilicon layer (Si i.xGex, where X is in the range between about 〇1 and 1.0) or a germanide layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), tantalum (Ta), (Hf), germanium (Zr), and platinum. One of the groups consisting of (Pt). The second conductive layer 33 includes a tungsten layer. The tungsten layer is about 100A to 2000A thick and is formed by performing a PVD method, a (: method, or a person: 10 method). The method includes a sputtering deposition method using a tungsten sputtering target. The titanium layer 32A and the nitrogen-containing tungsten germanide (WSuNy) layer 32B are included. In detail, the thickness of the titanium layer 32A is in the range of about 1 Torr to about 80 A. Preferably, the titanium layer 32A has about A thickness of 10A to about 50 A. The titanium layer 32A is changed to TiN by some subsequent upper portion by WSixNy deposition to form a nitrogen-containing tungsten germanide layer 32B, and some of its lower portion and the first conductive layer 31 The reaction, that is, the polysilicon layer thus forms a TiSh layer, and thus has a thickness as defined above. If the thickness of the titanium layer 3 2 A is large, the thickness of the TiSix layer also increases due to its volume expansion. In addition, if the thickness of the titanium layer 3 2 A is large, the titanium layer 3 2 A can absorb dopants, for example, phosphorus or boron of the polycrystalline germanium layer 31 and thus multiple depletion in the polycrystalline germanium layer 31. Deteriorating the performance of the device. The nitrogen-containing tungsten carbide layer 32B has a ratio of germanium to tungsten in the range of 0.5 to 3.0 and There is a nitrogen content of about 10% to 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may not succeed as a diffusion barrier due to the nitrogen-containing tungsten carbide layer 32B. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 32B may be high, and thus the contact resistance becomes high, resulting in deterioration of element properties. The telluride layer 32B represents a tungsten-22-200828425 germanium nitride layer or a tungsten germanide layer containing nitrogen in a certain amount/weight ratio. The nitrogen-containing tungsten germanide layer 32B is formed to have a thickness of about 20A to 200A. The titanium layer 32A is formed by a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten germanide layer 32B is formed by a PVD method. The PVD method is performed by a sputtering deposition method or a reactive sputtering deposition method, for example, by The titanium sputtering target is subjected to a sputtering deposition method to form the titanium layer 3 2 A. The nitrogen-containing tungsten germanide layer 32B is formed by performing a reactive sputtering deposition method with a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten germanide layer 32B φ can be uniformly formed and The pattern is independent, so the PVD method (for example, reactive sputtering deposition method) is used to form the nitrogen-containing tungsten germanide layer 32B. The gate stack structure according to the fourth embodiment of the present invention includes the first conductive layer 31. The Ti/WSlxNy intermediate structure 32 and the second conductive layer 33. The first conductive layer 31 includes polysilicon and the second conductive layer 33 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. In particular, the Ti/ The WSixNy intermediate structure 32 includes a metal layer and a nitrogen-containing metal telluride layer. The metal layer includes a pure metal layer and the metal telluride layer φ includes a nitrogen-containing tungsten germanide layer. For example, the metal layer is the titanium layer 32A and the metal halide layer is the nitrogen-containing tungsten germanide layer 3 2 B. The multilayer intermediate structure according to the fourth embodiment can also be formed in other structures. The metal layer includes a tantalum layer in addition to the titanium layer, and the nitrogen-containing niobium metal telluride layer includes a nitrogen-containing titanium telluride (TiShNy) layer or a nitrogen-containing molybdenum telluride in addition to the nitrogen-containing tungsten telluride layer. (TaShNy) layer. The set of layers is formed by a PVD method including a sputtering deposition method, a CVD method, or an ALD method. The nitrogen-containing titanium telluride layer is formed by performing a reactive sputtering deposition method using a titanium telluride sputtering target in a nitrogen atmosphere. The nitrogen-containing group telluride layer was formed by performing a reactive sputtering deposition method using a molybdenum telluride sputtering target -23-200828425 in a nitrogen atmosphere. The molybdenum layer is about 10 Å to 80 Å thick. Preferably, the macrolayer has a thickness of from about i〇A to about 50A. The germanium layer changes some of its upper portion to TaN by subsequent WSHNy deposition to form a metal telluride layer, and some of its lower portion reacts with the first conductive layer 31, that is, the polysilicon layer thus forms TaSu The layer has a thickness as defined above. If the thickness of the giant layer is large, the thickness of the TaSu layer also increases due to its volume expansion. In addition, if the thickness of the giant layer is large, the group of layers can absorb the dopant of the polycrystalline germanium layer 31, such as phosphorus or boron, so multiple depletion occurs in the polycrystalline layer 31, resulting in components. Deterioration in performance. Each of the nitrogen-containing titanium telluride layer and the nitrogen-containing molybdenum telluride layer has a thickness of from about 20 A to about 200 A and each layer has a nitrogen content of from about 1% to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may not occur as a diffusion barrier due to the nitrogen-containing titanium or telluride layer. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or molybdenum telluride layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The ratio of niobium to titanium in the nitrogen-containing titanium niobium φ layer is in the range of about 0.5 to 3.0. The nitrogen-containing giant telluride layer has a rhodium to macro ratio of from about 0.5 to about 3.0. Fig. 4B shows a gate stack structure in accordance with a fifth embodiment of the present invention. The gate stack structure is modified from the gate stack structure according to the second embodiment. In other words, a titanium-containing titanium (TiNx) layer is used in place of titanium, where X is less than about 1. The gate stack structure includes a first conductive layer 301, an intermediate structure 302, and a second conductive layer 303. The first conductive layer 301 includes a polysilicon layer highly doped with a p-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The -24-200828425 - conductive layer 301 may also include a polycrystalline germanium layer (Si!-xGex, where x is in the range of between about 0.01 and 1.0) or a germanide layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), molybdenum (Ta), hafnium (Hf), zirconium (2, and platinum). One of the group consisting of: The second conductive layer 303 comprises a tungsten layer. The PVD method, the CVD method or the ALD method is performed to form a tungsten layer of about 100 A to 2000 A thick. The PVD method includes use. Sputter deposition method of a tungsten sputtering target. The intermediate structure 302 includes a nitrogen-containing titanium (TiN〇 layer 302A and a nitrogen-containing tungsten germanium Φ compound (WSixNy) layer 302B. The nitrogen-containing titanium layer 302A has a range of about 0.2 to 0.8. The ratio of nitrogen to titanium and the thickness of about 10 A to 150 A. Here, the nitrogen-containing metal layer, that is, the nitrogen-containing titanium layer 302A has a ratio of nitrogen to titanium as described above to prevent SiN self. This TiNx layer 302A is produced. During the subsequent annealing process, the generation of SiN is prevented by the excessive Ti in the TiNx layer 302A being destroyed by the Sl_N bond formed between the polysilicon and TiNx, and thus the SiN is removed. This is possible because the TiN bonding is much stronger than the SiN bonding. The nitrogen-containing titanium layer 302A represents a titanium nitride layer or a nitrogen-containing titanium layer. In this example, in this example The nitrogen-containing titanium layer has a metal characteristic. The nitrogen-containing tungsten telluride layer 302B has a rhodium to tungsten ratio of from 0.5 to 3.0 and a nitrogen content of from about 10% to about 60%. Here, the nitrogen content is in the above manner If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 302B cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, it is included in the nitrogen-containing tungsten. The SiN content in the telluride layer 302B may be high, and thus the contact resistance becomes high, resulting in deterioration of device performance. The nitrogen-containing tungsten germanide layer 3 0 2 B represents a tungsten sand nitride layer or contains a certain content / a tungsten carbide layer having a weight ratio of nitrogen. -25- 200828425 The nitrogen-containing titanium layer 302A and the nitrogen-containing tungsten telluride layer 302B are formed by a PVD method. The PVD method is deposited by sputtering deposition or reactive sputtering. The method is carried out. For example, the nitrogen-containing titanium layer 302A is formed by performing a reactive plating deposition method in a nitrogen atmosphere, and the sputtering method is performed by sputtering with a tungsten telluride in a nitrogen atmosphere. Plating deposition method to form the nitrogen-containing tungsten carbide layer 302B. Because the PVD method allows The nitrogen-containing tungsten carbide layer 302B is uniformly formed regardless of the underlying type, so the PVD ^ (for example, the above-described reaction φ-type sputtering deposition method) is used to form the nitrogen-containing tungsten germanide layer 302B. The gate stack structure includes the first conductive layer 301, the TiNx/WSixNy intermediate structure 302, and the second conductive layer 303. The first conductive layer 301 and the second conductive layer 303 respectively include a polysilicon layer and a tungsten layer. Therefore, a tungsten polysilicon gate stack structure is provided. In particular, the TiNx/WSixNy intermediate structure comprises a metal layer and a nitrogen-containing metal telluride layer. The metal layer includes a metal layer containing nitrogen in a certain content/weight ratio, and the metal germanide layer includes a gold bismuth telluride layer containing nitrogen in a certain content/weight ratio. For example, the metal layer includes the nitrogen-containing titanium layer 302A, and the metal halide layer includes the nitrogen-containing tungsten germanide layer 30B. The multilayer intermediate structure according to the fifth embodiment can be formed in other different structures. The nitrogen-containing metal layer includes a nitrogen-containing group (TaNx) layer in addition to the nitrogen-containing titanium layer. The nitrogen-containing metal telluride layer includes a nitrogen-containing titanium telluride (TiSixNy) layer or a nitrogen-containing giant telluride (TaShNy) layer in addition to the nitrogen-containing tungsten germanide (WSixNy) layer. The nitrogen-containing tantalum layer is formed by a PVD method including a sputtering deposition method, a CVD method, or an ALD method. The nitrogen-containing titanium telluride layer was formed by performing a reactive sputtering deposition method using a titanium telluride sputtering target in a nitrogen atmosphere. The nitrogen-containing group telluride layer was formed by performing a reactive sputtering deposition method using a molybdenum telluride sputtering target in a nitrogen atmosphere of -26-, 200828425. The nitrogen-containing macrolayer has a thickness ranging from about 10A to 80A. Each of the nitrogen-containing titanium telluride layer and the nitrogen-containing telluride layer has a thickness of about 20A to 200A, and each layer has a nitrogen content of about 1% to 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may not occur as a diffusion barrier due to the nitrogen-containing titanium or group telluride layer. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or molybdenum telluride layer may be high, and φ thus causes the contact resistance to become high, resulting in deterioration of element performance. The ratio of niobium to titanium in the nitrogen-containing titanium telluride layer is in the range of between about 0.5 and 3.0. The nitrogen-containing macrochemical layer has a ratio of cerium to molybdenum ranging from about 0.5 to 3.0. Fig. 4C depicts a gate stack structure in accordance with a sixth embodiment of the present invention. The gate stack structure includes a first conductive layer 31, an intermediate structure 312, and a second conductive layer 313. The first conductive layer 311 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron (6)) or an N-type impurity (e.g., phosphorus (P)). The first conductive layer 31 1 may include a polycrystalline germanium layer φ (Sil〃Ge〇, wherein the X system is in a range between about 〇1 and 1.0, or may include a vaporized layer) in addition to the polysilicon layer. The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (C 〇, cobalt (Co), titanium (Ti), tungsten (,), giant (1 &), (11 〇, zirconium (2: 〇 and One of the group consisting of: The second conductive layer 313 includes a tungsten layer. The tungsten layer is formed by one of a PVD method, a CVD method, and an ALD method to form a tungsten layer of about ιοοΑ to 2000 Å. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 312 includes a titanium telluride (TiSix) layer 31 2A, a titanium-containing titanium (TiNx) layer 3 12B, and a nitrogen-containing tungsten germanide (wSixN germanium layer 312C). The intermediate structure may be formed in other different structures according to the materials described in the fourth and fifth embodiments according to -27-200828425. The gate stack structure according to the sixth embodiment is in accordance with the fourth and fifth aspects of the present invention. The gate stack structure of the embodiment is subjected to an annealing process, and the annealing is performed after forming the gate stack structure. Heat treatment accompanying various processes (for example, spacer formation and formation of an inner insulating layer). The formation of the nitrogen-containing tungsten telluride layer 3 2 B over the titanium layer 3 2 A is referred to in the reference 0 (Fig. 4A) After the annealing, a trace amount of nitrogen in the nitrogen-containing tungsten carbide layer 32B is decomposed in a boundary region between the tantalum layer 32 A and the nitrogen-containing tungsten carbide layer 32B. Therefore, as shown in FIG. 4C The titanium layer 32A is partially transformed into the nitrogen-containing titanium layer 312B, and the lower portion of the titanium layer 32A is reacted with the polysilicon from the first conductive layer 31 to form the titanium germanide layer 312A. The thickness of the telluride layer 312A is in the range of between about 1A and 30A, and wherein the ratio of germanium to titanium is in the range of between about 0.5 and 3.0.

^ 該含氮鈦層3 12B係約10A至100A厚及具有約0.7與1.3 W 間範圍之氮對鈦的比例。 該含氮鎢矽化物層312C具有大致相同於該含氮鎢矽 化物層32B之厚度及成分。詳而言之,該含氮鎢矽化物層 3 12C具有約0.5至3.0範圍之矽對鎢的比例及約10%與60% 間範圍之氮含量。該含氮鎢矽化物層3 1 2C之厚度係在約 20A與200A間之範圍內。 參照第4C及4B圖以比較該中間結構3 1 2與該中間結 構3 02。在該退火處理期間,從該含氮鎢矽化物層302B供 •28- .200828425 應氮至該含氮鈦層302A,藉此使含氮鈦層302A變換成爲 與該鈦矽化物層312A有最小反應之含氮鈦層312B。該鈦 矽化物層3 12A之厚度係在約1 A至30A之範圍內,以及該 含氮鈦層312B之厚度係在約10A至100A之範圍內。該含 氮鈦層312B中之氮對鈦的比例係在約0.7至1.3之範圍 內。相較於在該含氮鈦層302B中之氮對鈦比例(見第4C 圖),在該含氮鈦層312B中之氮對鈦比例從約0.2至0.8之 範圍增加至約0.7與1.3間之範圍。 φ 該含氮鎢矽化物層3 1 2C具有大致相同於該含氮鎢矽 化物層3 02 C之厚度及成分。詳而言之,該含氮鎢矽化物層 3 12C具有約0.5至3.0範圍之矽對鎢的比例及約10%與60% 間範圍之氮含量。該含氮鎢矽化物層3 1 2C之厚度係在約 20A與200A間之範圍。 依據第六實施例之閘極堆疊結構包括第一中間結構及 第二中間結構。該第一中間結構包括金屬矽化物層及含氮 金屬層’以及該第二中間結構包括含氮金屬矽化物層。例 φ 如:藉由堆疊該鈦矽化物層3 1 2A及該含氮鈦層3 1 2B形成 該第一中間結構。該第二中間結構包括該含氮鎢矽化物層 3 12C。 第5 A圖描述依據本發明之第七實施例的閘極堆疊結 構。該閘極堆疊結構包括第一導電層4 1、中間結構42及 第二導電層43。該第一導電層41包括高摻雜有P-型雜質 (例如:硼)或N-型雜質(例如:磷)之多晶矽層。該第一導 電層41亦可包括多晶矽鍺層(Sll.xGex,其中X係在約〇 〇1 與1.0間之範圍內)或矽化物層。例如:該矽化物層包括選 •29- .200828425 自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、鉅(Ta)、給 (Hf)、銷(Zr)及鉑(Pt)所組成之群組中之一。 該第二導電層43包括鎢層。該鎢層係約100A至2000A 厚及藉由實施PVD法、CVD法或ALD法所形成。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構42包括鈦層42A、含氮鎢矽化物(WSixNy) 層42B及含氮鎢(WNX)層42C。詳而言之,該鈦層42A之厚 度係在約1 0 A至約8 0 A之範圍內。較佳地,該鈦層4 2 A具有 φ 約1〇Α到約50A之厚度。該鈦層42A因爲藉由隨後之WNX 沈積而將其某些上部改變爲TiN,以形成含氮鎢層42C,並且 其某些下部與該第一導電層41反應,亦即,該多晶矽層因而 形成TiSh層,故具有如上述限制之厚度。若該鈦層42A之 厚度是大的,則該TiSh層之厚度也因爲其體積擴大而增加 發生隆起。此外,若該鈦層42A之厚度是大的,則該鈦層42A 可吸收多晶矽層4 1之摻雜物,例如磷或硼,因此於多晶矽 層4 1中發生多重空乏,導致元件性能之劣化。該含氮鎢矽 φ 化物層42B具有約0.5至3.0範圍之矽對鎢的比例及具有約 10%至60%之氮含量。在此,該氮含量以上述方式被適當調 整。若該氮含量太低,則接面反應會因含氮鎢矽化物層42B 不能成功作爲擴散障壁而發生。另一方面,若該氮含量太高, 則包含於該含氮鎢矽化物層42B中之SiN含量會是高的, 並因而使接觸電阻變高,導致元件性能劣化。該含氮鎢矽化 物層42B表示鎢矽氮化物層或包含某一含量/重量比之氮的 鎢矽化物層。該含氮鎢矽化物層42B所形成之厚度係約20A 至 200A 。 -30- 200828425 在該含氮鎢層42C中之氮對鎢的比例係在約〇. 3與1. 5 間之範圍內。該含氮鎢層42C表示鎢氮化物層或包含某一 含量/重量比之氮的鎢層。該含氮鎢層42C之厚度係在約 20A至200A之範圍內。雖然將於之後說明,但是知道該含 氮鎢層42C供應氮至該含氮鎢矽化物層42B。因此,在該 退火後,該含氮鎢層42C變成不具有氮之純鎢層或含微量 氮之鎢層。 藉由實施PVD法、CVD法或ALD法形成該鈦層42A φ 及該含氮鎢層42C。藉由實施PVD法形成該含氮鎢矽化物 層 42B。 該PV D法以濺鍍沉積法或反應式濺鍍沉積法進行。例 如:藉由以鈦濺鍍靶實施濺鍍沉積法來形成該鈦層42A。 藉由在氮氣環境中以鎢濺鍍靶實施反應式濺鍍沉積法來形 成該含氮鎢層4 2 C。藉由在氮氣環境中以鎢矽化物濺鍍靶 實施反應式濺鍍沉積法來形成該含氮鎢砂化物層42B。特 別地’因爲在該氮氣環境中以該鎢矽化物濺鍍靶實施上述 I 反應式濺鍍沉積法以允許該含氮鎢矽化物層42B之均勻形 成而與下層型態無關,所以使用該PVD法(例如:反應式濺 鍍沉積法)形成該含氮鎢矽化物層42B。 依據本發明之第七實施例的閘極堆疊結構包括該第一 導電層41、該Ti/WSixNy/WNx中間結構42及該第二導電層 43。該第一導電層41包括多晶矽及該第二導電層43包括 鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,該Ti/WShNy/WNx中間結構包括第一金屬層、 含氮金屬矽化物層及第二金屬層。該第一金屬層包括純金 -31- 200828425 屬層。該第二金屬層包括一含氮金屬層。該金屬矽化物層 包括含氮金屬矽化物層。例如:該第一金屬層係該鈦層 42A。該第二金屬層係該含氮鎢層42C。該金屬矽化物層係 該含氮鎢矽化物層42B。 依據第七實施例之多層中間結構亦可以其它結構形 成。該第一金屬層除了該鈦層之外還包括鉅層。該第二金 屬層除了該含氮鎢層之外還包括含氮鈦鎢(TiWNO層。該金 屬砂化物層除了該含氮鶴砂化物層之外還包括含氮鈦5夕化 物(TiSixNy)層或含氮鉅矽化物(TaShNy)層。藉由包括濺鍍沉 積法之PVD法、CVD法或ALD法形成該鉬層。藉由在氮氣 環境中以鈦鎢濺鍍靶實施反應式濺鍍來形成該含氮鈦鎢 層。藉由在氮氣環境中以鈦矽化物濺鍍靶實施反應式濺鍍 沉積法來形成該含氮鈦矽化物層。藉由在氮氣環境中以鉅 矽化物濺鍍靶實施反應式濺鍍沉積法來形成該含氮钽矽化 物層。該鉬層係約10A至80人厚。較佳地,該鉬層具有約 10人到約50A之厚度。該鉅層因爲藉由隨後之wSixNy沈積 而將其某些上部改變爲TaN,以形成金屬矽化物層,並且其 某些下部與該第一導電層41反應,亦即,該多晶矽層因而形 成TaSix層,故具有如上述限制之厚度。若該钽層之厚度是 大的,則該TaSix層之厚度也因爲其體積擴大而增加發生隆 起。此外,若該鉬層之厚度是大的,則該鉅層可吸收摻雜物, 例如,多晶矽層4 1之磷或硼並因此於多晶矽層4 1中發生多 重空乏,導致元件性能之劣化。該含氮鈦鎢層及該含氮鉅矽 化物層之每一層所形成之厚度係約20A至200A及每一層 具有約10 %至60 %之氮含量。在此,該氮含量以上述方式被 -32- 200828425 適當調整。若該氮含量太低,則接面反應會因含氮钽矽化物 層不能成功作爲擴散障壁而發生。另一方面,若該氮含量太 高,則包含於該含氮钽矽化物層中之SiN含量會是高的,並 因而使接觸電阻變高,導致元件性能劣化。該含氮鈦鎢層具 有約0.5與3 · 0間範圍之鈦對鎢的比例。該含氮鈦矽化物層 中之矽對鈦的比例係在約0.5與3 · 0間之範圍內。該含氮鉅 矽化物層具有約0.5至3.0之矽對鈦比例。 第5 B圖描述依據本發明之第八實施例的一閘極堆疊 φ 結構。該閘極堆疊結構包括第一導電層4 0 1、中間結構4 0 2 及第二導電層403。該第一導電層401包括高摻雜有P-型 雜質(例如:硼)或N-型雜質(例如:磷)之多晶矽層。該第 一導電層401亦可包括多晶矽鍺層(Si^xGex,其中X係在約 0.0 1與1 · 0間之範圍內)或矽化物層。例如:該矽化物層包 括選自由鎳(Ni)、鉻(C〇、鈷(Co)、鈦(Ti)、鎢(W)、鉬(Ta)、 給(Hf)、锆(Zr)及鉑(Pt)所組成之群組中之一。 該第二導電層403包括鎢層。該鎢層係約1〇〇A至 φ 2000A厚及藉由實施PVD法、CVD法或ALD法所形成。該 PVD法包括使用鎢濃鍍靶之濺鍍沉積法。The nitrogen-containing titanium layer 3 12B is about 10A to 100A thick and has a nitrogen to titanium ratio in the range between about 0.7 and 1.3 W. The nitrogen-containing tungsten germanide layer 312C has substantially the same thickness and composition as the nitrogen-containing tungsten carbide layer 32B. In detail, the nitrogen-containing tungsten telluride layer 3 12C has a rhodium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content ranging between about 10% and 60%. The thickness of the nitrogen-containing tungsten telluride layer 3 1 2C is in the range of between about 20A and 200A. Referring to Figures 4C and 4B, the intermediate structure 3 1 2 and the intermediate structure 302 are compared. During the annealing process, nitrogen is supplied from the nitrogen-containing tungsten germanide layer 302B to the nitrogen-containing titanium layer 302A, thereby converting the nitrogen-containing titanium layer 302A to a minimum with the titanium germanide layer 312A. The nitrogen-containing titanium layer 312B is reacted. The thickness of the titanium telluride layer 3 12A is in the range of about 1 A to 30 A, and the thickness of the nitrogen-containing titanium layer 312B is in the range of about 10 A to 100 A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 312B is in the range of about 0.7 to 1.3. The nitrogen to titanium ratio in the nitrogen-containing titanium layer 312B is increased from about 0.2 to 0.8 to about 0.7 and 1.3 as compared to the nitrogen to titanium ratio in the nitrogen-containing titanium layer 302B (see Figure 4C). The scope. φ The nitrogen-containing tungsten telluride layer 3 1 2C has substantially the same thickness and composition as the nitrogen-containing tungsten germanide layer 302 C. In detail, the nitrogen-containing tungsten telluride layer 3 12C has a rhodium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content ranging between about 10% and 60%. The thickness of the nitrogen-containing tungsten carbide layer 3 1 2C is in the range of between about 20A and 200A. The gate stack structure according to the sixth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a nitrogen-containing metal layer ' and the second intermediate structure includes a nitrogen-containing metal telluride layer. For example, φ is formed by stacking the titanium germanide layer 3 1 2A and the nitrogen-containing titanium layer 3 1 2B. The second intermediate structure includes the nitrogen-containing tungsten telluride layer 3 12C. Fig. 5A depicts a gate stack structure in accordance with a seventh embodiment of the present invention. The gate stack structure includes a first conductive layer 41, an intermediate structure 42, and a second conductive layer 43. The first conductive layer 41 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 41 may also include a polycrystalline germanium layer (Sll.xGex, where X is in the range between about 〇1 and 1.0) or a germanide layer. For example, the telluride layer includes: 29-.200828425 free nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), giant (Ta), give (Hf), pin One of a group consisting of (Zr) and platinum (Pt). The second conductive layer 43 includes a tungsten layer. The tungsten layer is about 100 A to 2000 A thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 42 includes a titanium layer 42A, a nitrogen-containing tungsten germanide (WSixNy) layer 42B, and a nitrogen-containing tungsten (WNX) layer 42C. In detail, the thickness of the titanium layer 42A is in the range of about 10 A to about 80 A. Preferably, the titanium layer 4 2 A has a thickness of from about 1 〇Α to about 50 Å. The titanium layer 42A changes some of its upper portion to TiN by subsequent WNX deposition to form a nitrogen-containing tungsten layer 42C, and some of its lower portion reacts with the first conductive layer 41, that is, the polysilicon layer Since the TiSh layer is formed, it has a thickness as defined above. If the thickness of the titanium layer 42A is large, the thickness of the TiSh layer also increases due to its volume expansion. In addition, if the thickness of the titanium layer 42A is large, the titanium layer 42A can absorb the dopant of the polysilicon layer 41, such as phosphorus or boron, so that multiple depletion occurs in the polysilicon layer 41, resulting in deterioration of device performance. . The nitrogen-containing tungsten ruthenium compound layer 42B has a rhodium to tungsten ratio of about 0.5 to 3.0 and a nitrogen content of about 10% to 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 42B cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 42B may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten germanide layer 42B represents a tungsten germanium nitride layer or a tungsten germanide layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten carbide layer 42B is formed to have a thickness of about 20A to 200A. -30至 200828425 The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 42C is in the range of between about 0.3 and 1.5. The nitrogen-containing tungsten layer 42C represents a tungsten nitride layer or a tungsten layer containing nitrogen in a certain content/weight ratio. The thickness of the nitrogen-containing tungsten layer 42C is in the range of about 20A to 200A. Although will be described later, it is known that the nitrogen-containing tungsten layer 42C supplies nitrogen to the nitrogen-containing tungsten carbide layer 42B. Therefore, after the annealing, the nitrogen-containing tungsten layer 42C becomes a pure tungsten layer having no nitrogen or a tungsten layer containing a trace of nitrogen. The titanium layer 42A φ and the nitrogen-containing tungsten layer 42C are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten germanide layer 42B is formed by performing a PVD method. The PV D method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the titanium layer 42A is formed by performing a sputtering deposition method using a titanium sputtering target. The nitrogen-containing tungsten layer 4 2 C was formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten sand layer 42B is formed by performing a reactive sputtering deposition method with a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the above-described I-reactive sputtering deposition method is performed with the tungsten telluride sputtering target in the nitrogen atmosphere to allow uniform formation of the nitrogen-containing tungsten carbide layer 42B regardless of the underlying type, the PVD is used. The nitrogen-containing tungsten telluride layer 42B is formed by a method such as reactive sputtering deposition. A gate stack structure according to a seventh embodiment of the present invention includes the first conductive layer 41, the Ti/WSixNy/WNx intermediate structure 42 and the second conductive layer 43. The first conductive layer 41 includes polysilicon and the second conductive layer 43 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. In particular, the Ti/WShNy/WNx intermediate structure includes a first metal layer, a nitrogen-containing metal telluride layer, and a second metal layer. The first metal layer comprises a layer of pure gold -31 - 200828425. The second metal layer includes a nitrogen-containing metal layer. The metal telluride layer includes a nitrogen-containing metal telluride layer. For example, the first metal layer is the titanium layer 42A. The second metal layer is the nitrogen-containing tungsten layer 42C. The metal telluride layer is the nitrogen-containing tungsten germanide layer 42B. The multilayer intermediate structure according to the seventh embodiment can also be formed in other structures. The first metal layer includes a giant layer in addition to the titanium layer. The second metal layer includes a nitrogen-containing titanium tungsten (TiWNO layer in addition to the nitrogen-containing tungsten layer. The metal sand layer includes a nitrogen-containing titanium-titanium (TiSixNy) layer in addition to the nitrogen-containing crane sand layer. Or a nitrogen-containing giant telluride (TaShNy) layer. The molybdenum layer is formed by a PVD method including a sputtering deposition method, a CVD method, or an ALD method. Reactive sputtering is performed by a titanium-tungsten sputtering target in a nitrogen atmosphere. Forming the nitrogen-containing titanium tungsten layer. The nitrogen-containing titanium telluride layer is formed by reactive sputtering deposition using a titanium telluride sputtering target in a nitrogen atmosphere by sputtering with a giant telluride in a nitrogen atmosphere. The target is subjected to reactive sputtering deposition to form the nitrogen-containing telluride layer. The molybdenum layer is about 10 to 80 people thick. Preferably, the molybdenum layer has a thickness of from about 10 to about 50 A. Some of the upper portions thereof are changed to TaN by subsequent wSixNy deposition to form a metal telluride layer, and some of the lower portions thereof react with the first conductive layer 41, that is, the polysilicon layer thus forms a TaSix layer, thus having The thickness as defined above. If the thickness of the layer is large, the TaSix The thickness also increases due to its volume expansion. Further, if the thickness of the molybdenum layer is large, the macro layer can absorb dopants, for example, phosphorus or boron of the polysilicon layer 41 and thus the polysilicon layer 4 Multiple depletion occurs in 1 , resulting in deterioration of device performance. Each layer of the nitrogen-containing titanium tungsten layer and the nitrogen-containing giant telluride layer is formed to a thickness of about 20A to 200A and each layer has about 10% to 60% nitrogen. Here, the nitrogen content is appropriately adjusted in the above manner by -32-200828425. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing telluride layer cannot be successfully used as a diffusion barrier. If the nitrogen content is too high, the SiN content contained in the nitrogen-containing telluride layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element properties. The nitrogen-containing titanium tungsten layer has about 0.5 and 3 The ratio of titanium to tungsten in the range of 0. The ratio of germanium to titanium in the nitrogen-containing titanium telluride layer is in the range of about 0.5 to 3.0. The nitrogen-containing giant telluride layer has about 0.5 to 3.0. The ratio of titanium to titanium. Figure 5B depicts the invention in accordance with the invention. A gate stack φ structure of the eighth embodiment. The gate stack structure includes a first conductive layer 410, an intermediate structure 420, and a second conductive layer 403. The first conductive layer 401 includes a highly doped P- a polysilicon layer of a type of impurity (for example, boron) or an N-type impurity (for example, phosphorus). The first conductive layer 401 may also include a polysilicon layer (Si^xGex, wherein the X system is between about 0.01 and 1.0). Within the range) or a telluride layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (C〇, cobalt (Co), titanium (Ti), tungsten (W), molybdenum (Ta), One of a group consisting of Hf), zirconium (Zr) and platinum (Pt). The second conductive layer 403 includes a tungsten layer. The tungsten layer is formed to have a thickness of about 1 Å to φ 2000 A and is formed by a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten concentrated plating target.

該中間結構402包括含氮鈦(TiNx)層402A、含氮鎢矽 化物(WSixNO層402B及含氮鎢(WNX)層402C。更詳而言之, 該含氮鈦層4 0 2 A之氮對鈦具有某一比例(例如:在約〇 . 2 至0.8之範圍內)。在此,該含氮金屬層,亦即,該含氮鈦層 402A,具有如上述之氮比鈦之比例,以防止SiN於該含氮鈦 層402A中產生。由於在隨後之退火處理期間該含氮鈦層 402A中過多的Ti會破壞多晶矽與TiNx之間所形成的Si-N -33- 200828425 鍵並因而移除SiN,故可防止SiN的產生。此因爲ΤιΝ連結 比SiN連結更強健而變得可行。該含氮鈦層402A所形成之 厚度係約10A至150A。該含氮鈦層402A亦包括鈦氮化物 層。 該含氮鎢矽化物層402B中之矽對鎢的比例係在約0.5 與3.0間之範圍內,以及該含氮鎢矽化物層402B之氮含量 在約10%至60%之範圍內。在此,該氮含量以上述方式被適 當調整。若該氮含量太低,則接面反應會因含氮鎢矽化物層 φ 402B不能成功作爲擴散障壁而發生。另一方面,若該氮含量 太高,則包含於該含氮鎢矽化物層402B中之SiN含量會是 高的,並因而使接觸電阻變高,導致元件性能劣化。該含氮 鎢矽化物層402B亦包括鎢矽氮化物層或含某一含量/重量 比之氮的鎢矽化物層。 該含氮鎢層402C之氮對鎢具有某一比例(例如:在約 0.3至1.5之範圍內)。該含氮鎢層402C表示鎢氮化物層或 含某一含量/重量比之氮的鎢層。雖然描述於後,但是知道 • 該含氮鎢層4〇2C供應氮至該含氮鎢砂化物層4Q2B。該含 氮鎢層402C所形成之厚度約20A至200A。由於氮之供應, 該含氮鎢層402C在該退火後變成純鎢層或含微量氮之鎢 層。 藉由實施PVD法、CVD法或ALD法形成該含氮鎢層 402C。藉由實施PVD法形成該含氮鈦層4〇2A及該含氮鎢 矽化物層402B。 該PVD法以濺鍍沉積法或一反應式濺鍍沉積法進行。 例如:藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積法來形 -34- 200828425 成該含氮鈦層402 A。藉由在氮氣環境中以鎢濺鍍靶實施反 應式濺鍍沉積法來形成該含氮鎢層402C。藉由在氮氣環境 中以鎢矽化物濺鍍靶實施反應式濺鍍沉積法來形成該含氮 鎢矽化物層402B。特別地,因爲可均勻地形成該含氮鎢矽 化物層402B而與下層型態無關,所以使用該PVD法(例 如:反應式濺鍍沉積法)形成該含氮鎢矽化物層402B。 依據本發明之第八實施例的閘極堆疊結構包括該第一 導電層401、該TiNx/WSixNy/WNx中間結構402及該第二導 φ 電層403。該第一導電層401包括多晶矽及該第二導電層 403包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 特別地,以包括第一金屬層、含氮金屬矽化物層及第 二金屬層之堆疊結構形成該 TiNx/WSixNy/WNx中間結構 402。該第一及第二金屬層係含氮金屬層,以及該金屬矽化 物層係含氮金屬矽化物層。例如:該第一金屬層係該含氮 鈦層402 A。該第二金屬層係含氮鎢層402C。該金屬矽化物 層係含氮鎢矽化物層4 0 2 B。 φ 可以其它不同結構形成上述多層中間結構。例如:該 第一含氮金屬層除了該含氮鈦層之外還包括含氮鉅層。該 第二含氮金屬層除了該含氮鎢層之外還包括含氮鈦鎢層。 該含氮金屬矽化物層除了該含氮鎢矽化物層之外還包括含 氮鈦矽化物層或含氮鉅矽化物層。藉由實施包括濺鍍之 PVD法、CVD法或ALD法形成該含氮鉅層。藉由在她氣環 境中以一鈦鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮 鈦鎢層。藉由在氮氣環境中以個別鈦矽化物及鉅矽化物濺 鍍靶實施反應式濺鍍沉積法來形成該含氮鈦矽化物層.及該 -35- 200828425 含氮鉅矽化物層。該含氮鉅層所形成之厚度係約1 ο A至 8 Ο A。該含氮鈦鎢層、該含氮鈦矽化物層及該含氮钽矽化物 層之每一層所形成之厚度係20A至200A,以及每一層具有 約1 0 %與6 0 %間範圍之氮含量。在此,該氮含量以上述方式 被適當調整。若該氮含量太低,則接面反應會因含氮鈦或鉬 矽化物層不能成功作爲擴散障壁而發生。另一方面,若該氮 含重太筒,則包含於該含氣欽或組砂化物層中之SiN含量會 是高的,並因而使接觸電阻變高,導致元件性能劣化。在該 φ 含氮鈦鎢層中,鈦對鎢之比例係在約0 · 5至3.0之範圍內。 在該含氮鈦矽化物層中,矽對鈦之比例係在約0.5至3.0 之範圍內。在該含氮钽政化物層中,政對钽之比例係在約 0.5至3.0之範圍中。 第5C圖描述依據本發明之第九實施例的一閘極堆疊 結構。該閘極堆疊結構包括第一導電層4 1 1、中間結構4 1 2 及第二導電層413。該第一導電層411包括高摻雜有P-型 雜質(例如:硼(B))或1型雜質(例如:憐(?))之多晶、砍層。 0 該第一導電層4 1 1除了該多晶矽層之外,亦可包括多晶矽 鍺(Si nG ex)層’其中X係在約〇·〇ΐ與ι·〇之範圍內,或者 包括矽化物層。該矽化物層包括選自由鎳(Ni)、鉻(Cr)、鈷 (Co)、鈦(Ti)、鎢(W)、鉬(Ta)、給(Hf)、锆(Zr)及鉑(Pt)所 組成之群組中之一。 該第二導電層413包括鎢層。實施PVD法、CVD法及 ALD法中之一以形成約100A至20 00A厚之鎢層。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構4 1 2包括欽砍化物(T i S i X)層4 1 2 A、含氮欽 -36- 200828425 (TiNx)層412B、含氮鎢矽化物(wShNy)層412C及含氮鎢 (WNX)層41 2D。可依據本發明之第七及第八實施例所述之 選擇材料以不同結構形成該中間結構4丨2。 依據第九實施例之閘極堆疊結構係在對依據本發明之 第七及第八實施例的閘極堆疊結構實施退火處理後所造成 之結構。該退火包括在形成該等閘極堆疊結構後所實施之_ 各種製程(例如:間隔物形成及內層絕緣層形成)期間所伴 隨之熱處理。 * 參照第5C及5A圖以比較該中間結構412與該中間結 構42。當該鈦層42A與來自該第一導電層41之多晶矽反 應時’形成具有約1A至30A厚度之鈦矽化物層41 2A。該 鈦矽化物層21 2A中之矽對鈦的比例係在約0.5與3.0間之 範圍內。 當從該含氮鎢層42B供應氮至該鈦層42A時,造成該 含氮鈦層412B。該含氮鈦層412B具有約10A至100A範圍 之厚度且具有約0.7至1.3範圍之氮對鈦的比例。相較於在 該鈦層42A中之氮對鈦的比例,在該含氮鈦層4 1 2B中之氮 對鈦的比例從約0增加至約0.7至1.3。 該含氮鎢矽化物層4 1 2C具有大致相同於該含氮鎢矽 化物層42C之厚度及成分。詳而言之,該含氮鎢矽化物層 4 12C具有約0.5至3.0範圍之矽對鎢的比例及約10%與60% 間範圍之氮含量。該含氮鎢矽化物層4 1 2C之厚度係在約 2〇A與200A間之範圍內。 在該退火後,該含氮鎢層412D具有因該侵蝕作用而降 至約10%或更少之氮含量。元件符號WNX(D)表示該侵蝕之 -37· 200828425 含氮鎢層。該含氮鎢層4 1 2 D係約2 0 A至2 〇 0人厚。在該含 氮鎢層4 1 2D中之氮對鎢的比例係在約0.0 1與0.1 5間之範 圍內。相較於在第5A圖所述之含氮鎢層42C中之氮對鎢 的比例,在該含氮鎢層4 1 2D中之氮對鎢的比例從約0.3與 1.5間之範圍減少至約0.01至0.15之範圍。 在該鈦層42A上方形成該含氮鎢矽化物層42;6之情況 中(見第5A圖),在該退火後,在該鈦層42A與該含氮鎢矽 化物42B間之邊界區域中使該含氮鎢矽化物層42B中之微 量氮分解。結果,如第5C圖所述,該鈦層42A之上部分 變換成爲該含氮欽層412B,以及該欽層42A之下部分與來 自該第一導電層4 1之多晶矽反應,以形成該鈦矽化物層 412A。 參考第5 C及5 B圖以比較該中間結構4 1 2與該中間結 構4 02。使該含氮鈦層402A變換成爲與該鈦矽化物層41 2A 有最小反應之含氮鈦層412B。該鈦矽化物層41 2A之厚度 係在約1A至3 0A之範圍內,以及該含氮鈦層412B之厚度 係在約10A至100A之範圍內。在該含氮鈦層41 2B中之氮 對鈦的比例係在約0.7與1.3間之範圍內。該含氮鎢矽化物 層412C具有大致相同於該含氮鎢矽化物層42B之厚度及成 分。更特別地,該含氮鎢矽化物層4 1 2C中之矽對鎢的比例 係在約0.5至3.0之範圍內。該含氮鎢矽化物層412C具有 約10%至60%範圍之氮含量及形成有約20A至200A之厚 度。 在該退火後,該含氮鎢層412D具有因侵飩作用而降至 約10%或更少之氮含量。該含氮鎢層412D係約20人至200人 -38- 200828425 厚。該含氮鎢層4 1 2D中之氮對鎢的比例係在 間之範圍內。 依據第九實施例之閘極堆疊結構包括第 第二中間結構。該第一中間結構包括第一金 第一含氮金屬層,以及該第二中間結構包括 層及含氮金屬矽化物層。例如:藉由堆疊 412A及該含氮鈦層412B形成該第一中間結 該含氮鎢矽化物層412C及該含氮鎢層412C φ 間結構。 第6A圖描述依據本發明之第十實施例 構。該閘極堆疊結構包括第一導電層5 1、弓 第二導電層53。該第一導電層51包括高摻 (例如:硼)或N-型雜質(例如:磷)之多晶砂 電層51亦可包括多晶矽鍺層(Sn.xGex,其中 與1 · 0間之範圍內)或一矽化物層。例如:該 選自由鎳(Ni)、鉻(C〇、鈷(Co)、鈦(Ti)、鎢 φ 鉛(Hf) '鉻(Zr)及鉑(Pt)所組成之群組中之一 該第二導電層5 3包括鎢層。該鎢層係約 厚及藉由實施PVD法、CVD法或ALD法所 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構52包括鈦(Ti)層52A、第一 52B、含氮鎢矽化物(WSuNO層52C以及第 層52D。詳而言之,該鈦層52A之厚度係在% 之範圍內。較佳地,該鈦層52A具有約10A 度。該鈦層52A因爲藉由隨後之WNX沈積ffi 約 0.01 與 0.15 一中間結構及 屬矽化物層及 第二含氮金屬 該鈦矽化物層 構。藉由堆疊 形成該第二中 的閘極堆疊結 3間結構52及 雜有P-型雜質 層。該第一導 X係在約0.0 1 ;矽化物層包括 (W)、鉅(Ta)、 〇 100A 至 2000A :形成。該PVD 含氮鎢(WNx)層 二含氮鎢(WN0 3 10A 至約 80A 到約50A之厚 ί將其某些上部 -39- 200828425 改變爲TiN,以形成第一含氮鎢層52B,並且其某些下部與該 第一導電層51反應,亦即,該多晶矽層因而形成Ti Six層,故 具有如上述限制之厚度。若該鈦層52A之厚度是大的,則該 TiSlx層之厚度也因爲其體積擴大而增加發生隆起。此外, 若該鈦層52A之厚度是大的,則該鈦層52A可吸收多晶矽層 51之摻雜物,例如,磷或硼,因此於多晶矽層51中發生多重 空乏,導致元件性能之劣化。在該第一及第二含氮鎢層5 2B 及5 2D中之每一層的氮對鎢之比例係在約0.3與1.5間之 φ 範圍內。該第一及第二含氮鎢層之每一層視爲鎢氮化物層 或含某一含量/重量比之氮的鎢層。雖然將於之後說明,但 是知道該第一及第二含氮鎢層52B及52D供應氮至該含氮 鎢砂化物層52C。該第一及第二含氮鎢層52B及52D之每 一層具有約20人至200A之厚度。由於供應氮至該含氮鎢 矽化物層52C,在隨後退火處理後,該第一及第二含氮鎢 層5 2B及5 2D之每一層變成純鎢層或含微量氮之鎢層。 在該含氮鎢矽化物層5 2C中之矽對鎢的比例係在約 φ 〇.5與3.0間之範圍內,以及該含氮鎢矽化物層52C之氮含 量係在約1 0 %至約6 0 %之範圍內。在此,該氮含量以上述方 式被適當調整。若該氮含量太低,則接面反應會因含氮鎢矽 化物層52C不能成功作爲擴散障壁而發生。另一方面,若該 氮含量太高,則包含於該含氮鎢矽化物層52C中之SiN含量 會是高的,並因而使接觸電阻變高,導致元件性能劣化。該 含氮鎢矽化物層5 2C表示鎢矽氮化物層或含某一含量/重量 比之氮的鎢矽化物層。該含氮鎢矽化物層52C所形成之厚 度係在約20A至約200A之範圍內。 -40- .200828425 藉由實施PVD法、CVD或ALD法形成該鈦層52A及該 第一及第二含氮鎢層52B及5 2D。藉由PVD法形成該含氮 鎢矽化物層52C。.該PVD法以濺鍍沉積法或一反應式濺鍍 沉積法進行。例如··藉由以鈦濺鍍靶實施濺鍍沉積法來形 成該欽層52A。藉由在氣热環境中以鶴灑鑛祀實施反應式 濺鍍沉積法來形成該第一及第二含氮鎢層52B及52D。藉 由在氮氣環境中以鎢矽化物濺鍍靶實施反應式濺鍍沉積法 來形成該含氮鎢矽化物層52C。特別地,因爲可均勻地形 成該含氮鎢矽化物層502C而與下層型態無關,所以可使用 該PVD法(例如:反應式濺鍍沉積法),以形成該含氮鎢矽 化物層5 02C。 依據第十實施例之閘極堆疊結構包括該第一導電層 51、該Ti/WNx/WSixNy/WNx中間結構52及該第二導電層 53。該第一導電層51及該第二導電層53分別包括一多晶 矽層及鎢層,藉此形成一鎢多晶矽閘極堆疊結構。 特別地,該Ti/WNx/WShNy/WNx中間結構52包括第一 金屬層、第二金屬層、含氮金屬矽化物層及第三金屬層。 該第一金屬層包括純金屬層,然而該第二及第三金屬層包 括含氮金屬層。該含氮金屬矽化物層包括含某一含量/重量 比之氮的金屬矽化物層。例如:該第一金屬層係該鈦層 52A,以及該第二及第三金屬層分別係該第一及第二含氮鎢 層5 2B及52D。該金屬矽化物層係該含氮鎢矽化物層52C。 亦可以其它不同結構形成上述多層中間結構。例如: 該第一金屬層除了該鈦層之外還包括鉅層。該第二及第三 金屬層除了該含氮鎢層之外還包括例如含氮鈦鎢層之大致 -41- .200828425 相同材料。該含氮金屬矽化物層除了該含氮鎢矽化物層之 外速包括含鈦氮化物層或含氮鉅矽化物層。藉由實施包括 濺鍍之PVD法、CVD法或ALD法形成該組層。藉由在氮氣 環境中以駄鎢濺鍍IE實施反應式縣鍍沉積法來形成該含氮 鈦鎢層。藉由在氮氣環境中以個別鈦矽化物及鉬矽化物濺 鍍靶貫施反應式縣鍍沉積法來形成該含氮鈦矽化物層及該 含氮鉅矽化物層。該鉅層所形成之厚度係約10A至80a。 較佳地,該钽層具有約1 〇 A到約5 0 A之厚度。該鉅層因爲藉 由隨後之WNX沈積而將其某些上部改變爲TaN,以形成第二 金屬層,並且其某些下部與該第一導電層5 1反應,亦即,該 多晶砍層因而形成T a S i x層,故具有如上述限制之厚度。若 該鉅層之厚度是大的,則該TaSix層之厚度也因爲其體積擴 大而增加發生隆起。此外,若該鉅層之厚度是大的,則該鉬 層可吸收多晶矽層5 1之摻雜物,例如,磷或硼,因此於多晶 矽層5 1中發生多重空乏,導致元件性能之劣化。該含氮鈦 鎢層、該含氮鈦矽化物層及該含氮鉬矽化物層之每一層所 形成之厚度係約20人至20 0A,以及每一層具有約1〇 %與60% 間範圍之氮含量。在此,該氮含量以上述方式被適當調整。 若該氮含量太低,則接面反應會因含氮鈦或钽矽化物層不 能成功作爲擴散障壁而發生。另一方面,若該氮含量太高, 則包含於該含氮鈦或钽矽化物層中之SiN含量會是高的,並 因而使接觸電阻變高,導致元件性能劣化。在該含氮鈦鎢層 中,鈦對鎢之比例係在約0.5至3.0之範圍內。在該含氮鈦 矽化物層中,矽對鈦之比例係在約0.5至3.0之範圍內。在 該含氮組矽化物層中,矽對钽之比例係在約0.5至3.0之範 -42- ,200828425 圍內。 第6B圖描述依據本發明之第十一實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層501、中間結構502 及第二導電層503。該第一導電層501包括高摻雜有P-型 雜質(例如:硼)或N-型雜質(例如:磷)之多晶矽層。該第 一導電層5 0 1亦可包括多晶矽鍺層(S h . x G e x,其中X係在約 0 · 0 1與1.0間之範圍內)或矽化物層。例如··該矽化物層包 括選自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、鉅(Ta)、 φ 給(Hf)、銷(Zr)及鉑(Pt)所組成之群組中之一。 該第二導電層503包括鎢層。該鎢層係約100人至 2000A厚及藉由實施PVD法、CVD法或ALD法所形成。該 PVD法包括使用鎢濺鍍靶之濺鑛沉積法。 該中間結構502包括含氮鈦(TiN,)層502A、第一含氮 鎢(WNx)層5 02B、含氮鎢矽化物(WShNy)層502C及第二含 氮鎢(WN〇層5 02D。更詳而言之,該含氮鈦層5 02A之氮對 鈦具有某一比例(例如:在約0 · 2至〇. 8之範圍內)及形成有 φ 約1〇A至150A之厚度。在此,該含氮金屬層,亦即,該含氮 欽層5 0 2 A,具有如上述之氮比駄之比例,以防止s i N於該含 氮鈦層502A中產生。由於在隨後之退火處理期間該含氮鈦 層5 02A中過多的Ti會破壞多晶矽與TiNx之間所形成的 Si-N鍵並因而移除SiN,故可防止SiN的產生。此因爲ΤιΝ 連結比SiN連結更強健而變得可行。該含氮鈦層5〇2a表示 鈦氮化物層或含某一含量/重量比之氮的鈦層。 該第一及第二含氮鎢層502B及502D之每一層的氮對 鎢具有某一比例(例如:在約〇 · 3至1.5之範圍內)。該第一 -43- 200828425 及第二含氮鎢層5 0 2B及5 02D之每一層亦包括一鎢氮化物 層。雖然描述於後,但是知道該第一及第二含氮鎢層5 02B 及502D供應氮至該含氮鈦層502A及該含氮鎢矽化物層 5 02C。該第一及第二含氮鎢層502B及5 02D之每一層形成 有約20 A至200 A之厚度。由於氮之供應,該第一及第二 含氮鎢層502B及5 02D在該退火後變成純鎢層或含微量氮 之鎢層。 在該含氮鎢矽化物層5 02C中之矽對鎢的比例係在約 φ 0.5與3.0間之範圍內,以及該含氮鎢矽化物層502C之氮 含量係在約10%至約60%之範圍內。在此,氮含量以上述方 式被適當調整。若氮含量太低,則接面反應會因該含氮鎢矽 化物層502C無法成功作爲擴散障壁而發生。另一方面,若 氮含量太高,則包含於該含氮鎢矽化物層502C中之SiN含 量會是高的,並因此讓接觸電阻變高,導致元件性能劣化。 該含氮鎢矽化物層502C亦包括鎢矽氮化物層。該含氮鎢矽 化物層502C具有約20A至200A之厚度。 φ 藉由實施PVD法、CVD法或ALD法形成該第一及第二 含氮鎢層502B及502D。藉由實施PVD法形成該含氮鈦層 502A及該含氮鎢矽化物層502C。 該PVD法以濺鍍沉積法或反應式濺鍍沉積法進行。例 如:藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積法來形成 該含氮鈦層502A。藉由在氮氣環境中以鎢濺鍍靶實施反應 式濺鍍沉積法來形成該第一及第二含氮鎢層502B及502D 之每一層。藉由在氮氣環境中以鎢矽化物濺鍍靶實施反應 式濺鍍沉積法來形成該含氮鎢矽化物層502C。特別地,因 -44- 200828425 爲可均勻地形成該含氮鎢矽化物層502C而與一下層型態 無關,所以使用該PVD法(例如:反應式濺鍍沉積法)以形 成該含氮鎢矽化物層502C。 依據本發明之第十一實施例的閘極堆疊結構包括該第 一導電層501、該TiNx/WNx/WSixNy/WNx中間結構5 02及該 第二導電層5 03。該第一導電層501包括多晶矽及該第二導 電層503包括鎢,藉以形成鎢多晶矽閘極堆疊結構。 . 特別地,以包括第一金屢層、第二金屬層、含氮金屬 φ 矽化物層及第三金屬層之堆疊結構形成該 TiNx/WNJWSixNy/WNx中間結構5 02。該第一、第二及第三 金屬層係含氮金屬層,以及該含氮金屬矽化物層包含某一 含量/重量比之氮。例如:該第一金屬層係該含氮鈦層 5 02 A,以及該第二及第三金屬層分別係該第一及第二含氮 鎢層5 02B及50 2D。該金屬矽化物層係該含氮鎢矽化物層 502C。 亦可以其它不同結構形成上述多層中間結構。例如: φ 除該含氮鈦層之外,該第一金屬層還包括含氮鉅(TaNO 層。除該含氮鎢層之外,該第二及第三金屬層還包括例如 含氮鈦鎢(TiWNx)層之大致相同材料。除該含氮鎢矽化物層 之外,該含氮金屬矽化物層還包括含氮鈦矽化物(TiSixNy) 層或含氮钽矽化物(TaShNy)層。藉由實施包括濺鍍之PVD 法、CVD法或ALD法形成該含氮鉅層。藉由在氮氣環境中 以鈦鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮鈦鎢 層。藉由在氮氣環境中以個別鈦矽化物及鉬矽化物濺鍍靶 貫施反應式濺·鍍几積法來形成該含氮欽砂化物層及該含氮 -45- .200828425 钽矽化物層。該含氮钽層形成有約10A至80人之厚度。該 含氮鈦鎢層、該含氮鈦矽化物層及該含氮鉅矽化物層之每 一層形成有約20 A至200 A之厚度,以及每一層具有約1〇% 與60%間範圍之氮含量。在此,氮含量以上述方式被適當調 整。若氮含量太低,則接面反應會因該含氮鈦或钽矽化物層 無法成功作爲擴散障壁而發生。另一方面,若氮含量太高, 則包含於含氮鈦或钽矽化物層中之S i N含量會是高的,並因 此讓接觸電阻變高,導致元件性能劣化。在該含氮鈦鎢層 中,鈦對鎢之比例係在約0 · 5至3.0之範圍內。在該含氮鈦 矽化物層中,矽對鈦之比例係在約〇. 5至3.0之範圍內。在 該含氮鉅矽化物層中,矽對鉅之比例係在約〇. 5至3.0之範 圍內。 第6 C圖描述依據本發明之第十二實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層5 1 1、中間結構5 1 2 及第二導電層513。該第一導電層511包括高摻雜有P-型 雜質(例如:硼(B))或N-型雜質(例如:磷(P))之多晶矽層。 該第一導電層5 1 1除了該多晶矽層之外,亦可包括多晶砂 鍺(SinGex)層,其中X係在約〇·〇1與1.0之範圍內,或考 包括矽化物層。該矽化物層包括選自由鎳(Ni)、鉻(Cr)、站 (Co)、鈦(Ti)、鎢(W)、鉬(Ta)、給(Hf)、鍩(Z〇 及鉑(Pt)所 組成之群組中之一。 該第二導電層513包括鎢層。實施PVD法、CVD法及 ALD法中之一以形成約1〇〇A至2000人厚之鎢層。該pVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構512包括鈦矽化物(TiSi〇層512A、含氮金太 -46- 200828425 (TiNx)層512B、第一含氮鎢(WNx)層512C、含氮鎢砂化物 (WSixNy)層512D及弟一含氣鎢層512E。可依據本發明之第 十及第十一實施例所述之選擇材料以不同結構形成該中間 結構5 1 2。 依據第十二實施例之閘極堆疊結構係在對依據本發明 之第十及第十一實施例的閘極堆疊結構實施退火處理後所 造成之結構。該退火包括在形成該等閘極堆疊結構後所實 施之各種製程(例如:間隔物形成及內層絕緣層形成)期間 φ 所伴隨之熱處理。 參考第6 C及6 A圖以比較該中間結構5 1 2與該中間結 構52。當該鈦層52A與來自該第一導電層51之多晶矽反 應時,形成具有約1人至30A厚度之鈦矽化物層512A。該 鈦矽化物層5 1 2 A中之矽對鈦的比例係在約〇 . 5與3.0間之 範圍內。 當從該第一含氮鎢層52B供應氮至該鈦層52A時,造 成該含氮鈦層512B。該含氮鈦層512B具有約10A至100A φ 範圍之厚度且具有約0.7至1.3範圍之氮對鈦的比例。 在該退火後,該第一及第二含氮鎢層512C及51 2E之 每一層具有因該侵蝕作用而降至約10%或更少之氮含量。 元件符號WNx(D)表示該侵鈾之含氮鎢層。該第一及第二含 氮鎢層512C及512E之每一層係約2〇A至200A厚。在該 第一及第二含氮鎢層512C及51 2E之每一層中的氮對鎢之 比例係在約0.0 1與0.1 5間之範圍內。 該含氮鎢砂化物層5 1 2 D具有大致相同於該含氣鎢石夕 化物層52C之厚度及成分。詳而言之’該含氮鎢矽化物層 - 47- 200828425 5 1 2D具有約0.5至3.0範圍之矽對鎢的比例及約10%至60% 之氮含量。該含氮鎢矽化物層512D之厚度係在約20A與 200A間之範圍內。 參考第6C及6B圖以比較該中間結構5 1 2與該中間結 構502。在該退火處理期間,從該含氮鎢層502B供應氮至 該含氮鈦層502A。結果,使該含氮鈦層502A變換成爲與 該鈦矽化物層5 1 2 A有最小反應之含氮鈦層5 1 2 B。該鈦矽 化物層512A之厚度係在約1A至30A之範圍內,以及該含 φ 氮鈦層512B之厚度係在約10A至100A之範圍內。在該含 氮鈦層512B中之氮對鈦的比例係在約0.7與1.3間之範圍 內。 在該退火後,當侵蝕該第一及第二含氮鎢層502B及 50 2D時,該第一及第二含氮鎢層512C及512E之每一層具 有降至約1 0%或更少之氮含量。該第一及第二含氮鎢層 5 12C及5 12E之每一層係約20A至200A厚。在該第一及第 二含氮鎢層512C及512E之每一層中的氮對鎢之比例係在 φ 約0.01與0.15間之範圍內。 該含氮鎢矽化物層5 1 2D具有大致相同於該含氮鎢矽 化物層502C之厚度及成分。詳而言之,該含氮鎢矽化物層 5 1 2D具有約0.5至3.0範圍之矽對鎢的比例及約10%至60% 之氮含量。該含氮鎢矽化物層512D之厚度係在約20A與 20〇A間之範圍內。 依據第十二實施例之閘極堆疊結構包括第一中間結構 及第二中間結構。該第一中間結構包括金屬矽化物層及第 一含氮金屬層,以及該第二中間結構包括第二含氮金屬 -48- 200828425 層、含氮金屬矽化物層及第三含氮金屬層。例如:藉由堆 疊該鈦矽化物層5 1 2A及該含氮鈦層5 1 2B形成該第一中間 結構。藉由堆疊該含氮層512C、該含氮鎢矽化物層512D 及該含氮鎢層5 1 2E形成該第二中間結構。. 依據本發明之第一至第十二實施例的每一中間結構包 括含氮金屬矽化物層(例如:含氮鎢矽化物層)及亦包括多 個薄層(包含鈦、矽、鎢及氮)。藉由在氮氣環境中以鎢矽 化物濺鍍靶實施反應式濺鍍沉積法來形成該含氮鎢矽化物 φ 層。當沉積該含氮鎢矽化物層時,該反應式濺鍍沉積法之 實施使該鈦層變換成爲該鈦氮化物層。在該鈦層上方形成 該含氮鎢層之情況中,使該鈦層變換成爲該鈦氮化物層。 因爲該含氮鎢矽化物層當做非晶擴散障壁,所以當形 成該鎢層時,該鎢層具有約15μ Ω-cm之範圍內的小的特定 電阻及大晶粒尺寸。因此,因爲可形成該具有低特定電阻 之鎢層,所以該鎢層降低片電阻。 因爲當形成該含氮鎢層或該含氮鎢矽化物層時,使該 0 鈦層或該含氮鈦層變換成爲該鈦氮化物層,所以依據本發 明之第一至第十二實施例的閘極堆疊結構具有低接觸電阻 及可減少多晶矽空乏。此外,因爲在每一中間結構中包括 該含氮鎢矽化物層,所以該閘極堆疊結構具有低片電阻。 由於上述該鈦層或鈦氮化物層變換爲該鈦氮化物層之 變換,故在該等中間結構中所包括之複數層的每一層包含 氮。結果,該接觸電阻及該片電阻是低的,以及可減少每 一閘極堆疊結構之高度。此外,可允許減少因在該第一導 電層中所摻雜之雜質(例如:硼)向外擴散所造成之多晶矽 -49- 200828425 空乏效應。 第7A圖描述依據本發明之第十三實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層6 1、中間結構62 及第二導電層63。該第一導電層61包括高摻雜有P-型雜 質(例如:硼)或N-型雜質(例如:磷)之多晶矽層。該第一 導電層61亦可包括多晶较鍺層(si^xGex,其中X係在約〇.〇1 與1.0間之範圍內)或矽化物層。例如··該矽化物層包括選 自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、钽(Ta)、鈴 φ (Hf)、锆(Zr)及鉑(pt)所組成之群組中之一。 該第二導電層6 3包括鎢層。該鎢層係約1 〇 〇 A至2 0 0 0 A 厚及藉由實施PVD法、CVD法或ALD法所形成。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構62包括鈦(Τι)層62A、第一含氮鎢(WNxm 62B'鎢矽化物(WSix)層62C(其中X係在約1.5與10間之範 圍內)以及第二含氮鎢(WNX)層62D。更特別地,該鈦層62A 形成有約10A至80人範圍之厚度。較佳地,該鈦層62A具有 φ 約1〇A到約5〇A之厚度。該鈦層62A因爲藉由隨後之WNX 沈積而將其某些上部改變爲TlN,以形成含氮鎢層62B,並且 其某些下部與該第一導電層6 1反應,亦即,該多晶矽層因而 形成T i S i x層,故具有如上述限制之厚度。若該欽層6 2 A之 厚度是大的,則該TiSh層之厚度也因爲其體積擴大而增加 發生隆起。此外,若該鈦層62A之厚度是大的,則該鈦層62A 可吸收摻雜物,例如,多晶矽層61之磷或硼並因此於多晶矽 層6 1中發生多重空乏,導致元件性能之劣化。’ 該第一及第二含氮鎢層62B及62D之每一層的氮對鎢 •50- 200828425 具有某一比例(例如:在約0.3至1.5之範圍內)。該第一及 第二含氮鎢層62B及62D之每一層亦包括鎢氮化物層。雖 然描述於後’但是知道該第一及第二含氮鎢層62B及62D 具有金屬特性。該第一及第二含氮鎢層62B及62D供應氮 至該鎢矽化物層62C。該第一及第二含氮鎢層62B及62D 之每一層形成有約2〇 A至200 A之厚度。由於氮之供應, 該第一及第二含氮鎢層62B及62D在該退火後變成純鎢層 或含微量氮之鎢層。 在該含氮鎢矽化物層62C中之矽對鎢的比例係在約 0.5與3.0間之範圍內。該含氮鎢矽化物層62C形成有約20A 至100A之厚度。 藉由實施PVD法、CVD法或ALD法形成該鈦層62A、 該第一及第二含氮鎢層62B及62D及該鎢層63。藉由實施 PVD法形成該含氮鎢矽化物層62C。 該PVD法以濺鍍沉積法或反應式濺鍍沉積法進行。例 如:藉由以鈦濺鍍靶實施濺鍍沉積法來形成該鈦層62A。 藉由在氮氣環境中以鎢濺鍍靶實施反應式濺鍍沉積法來形 成該第一及第二含氮鎢層62B及62D之每一層。藉由以鎢 矽化物濺鍍靶實施反應式濺鍍沉積法來形成該含氮鎢矽化 物層62C。藉由以鎢濺鍍靶實施濺鍍沉積法來形成該鎢層 63 ° 依據本發明之第十三實施例的閘極堆疊結構包括該第 一導電層61、該Ti/WNWWSix/WNx中間結構62及該第二導 電層63。該第一導電層61包括多晶矽及該第二導電層63 包括鎢,藉此形成鎢多晶矽閘極堆疊結構。 -51- 200828425 特別地’以包括第一金屬層、第二金屬層、金屬矽化 物層及第三金屬層之堆疊結構形成該Ti/WNx/WSix/WNx中 間結構62。該第一金屬層包括純金屬層。該第二及第三金 屬層包括含氮金屬層,以及該金屬矽化物層包括純鎢矽化 物層。例如:該第一金屬層係該鈦層62A,以及該第二及 第二金屬層分別係該第一及第二含氮鎢層62B及62D。該 金屬矽化物層係該含氮鎢矽化物層62C。 亦可以其它不同結構形成上述多層中間結構。例如: φ 除該鈦層之外,該第一金屬層還包括鉬層。除該鎢矽化物 層之外,該金屬矽化物層還包括鈦矽化物(TiSh)層,其中X 係在1.5與10間之範圍內,或鉅矽化物(TaSu)層,其中X 係在1.5與10間之範圍內。除該含氮鎢層之外,該第二及 第三金屬層還包括含氮鈦鎢(TiWNx)層。藉由實施包括濺鍍 之PVD法、CVD法或ALD法形成該钽層。藉由在氮氣環境 中以鈦鎢濺鍍靶實施反應式濺鍍沉積法來形成該含氮鈦鎢 層。藉由以個別鈦矽化物及鉅矽化物濺鍍靶實施反應式濺 φ 鍍沉積法來形成該鈦矽化物層及該鉅砂化物層。該鉅層形 成有約10A至80A之厚度。較佳地,該鉅層具有約i〇A到 約50A之厚度。該鉅層因爲藉由隨後之WNX沈積而將其某 些上部改變爲TaN,以形成第二金屬層,並且其某些下部與 該第一導S層61反應,亦即,該多晶矽層因而形成TaSix層, 故具有如上述限制之厚度。若該鉅層之厚度是大的,則該 TaS“層之厚度也因爲其體積擴大而增力口發生隆起。此外, 若該組層之厚度是大的,則該鉬層可吸收摻雜物,例如,多晶 矽層6 1之磷或硼並因此於多晶矽層6 1中發生多重空乏,導 -52- 200828425 致元件性能之劣化。該含氮鈦鎢層係約20A至200A厚。 該鈦矽化物層及該鉅矽化物層之每一層形成有約20A至 200A之厚度。該含氮鈦鎢層具有約10%與60%間範圍之氮 含量。在該含氮鈦鎢層中,鈦對鎢之比例係在約0.5至3.0 之範圍內。在該鈦矽化物層中,矽對鈦之比例係在約〇. 5 至3.0之範圍內。在該鉅矽化物層中,矽對鉅之比例係在 約0.5至3.0之範圍內。 藉由實施PVD法(例如:濺鍍沉積法)在該第一含氮鎢 φ 層62B上方形成該鎢矽化物層62C。以該鎢矽化物濺鍍靶 實施該濺鍍沉積法以允許該鎢矽化物層62C之均勻形成而 與下層型態無關。 第7B圖描述在藉由實施個別化學氣相沉積(CVD)及物 理氣相沉積(PVD)法在含氮鎢層上方形成鎢矽化物層後所 配置之結構的影像。雖然藉由該CVD法沒有在該鎢氮化物 層WN上方適當地形成該鎢矽化物層CVD-WSh,但是藉由 該PVD法可在該鎢氮化物層WN上方均勻地形成該鎢矽化 φ 物層PVD-WSh。因此,因爲可在該鎢矽化物層上方形成該 具有低特定電阻之鎢層,所以可減少該鎢層之片電阻。 依據本發明之第十三實施例的閘極堆疊結構,當在該 鈦層上方形成該含氮鎢層62B時,使該鈦層變換成爲鈦氮 化物層。 依據本發明之第十三實施例,因爲在該含氮層之形成 期間使該中間結構之鈦層變換成爲該鈦氮化物層,所以該 閘極堆疊結構可獲得低接觸電阻及減少該多晶矽空乏效 應。再者,因爲該中間結構包括該鎢矽化物層,所以該閘 -53- 200828425 極堆疊結構亦可獲得低片電阻。 第7C圖描述依據本發明之第十四實施例的 結構。該閘極堆疊結構包括第一導電層6 〇 1、中圈 及第二導電層603。該第一導電層601包括高摻 雜質(例如:硼)或N_型雜質(例如··磷)之多晶矽 一'導電層601亦可包括多晶5夕錯層(Sii_x〇ex,其中 0.01與1.0間之範圍內)或矽化物層。例如··該矽 括選自由鎳(Ni)、鉻((:]:)、鈷((:〇)、鈦(1^)、鎢(^¥) 給(H f}、銷(Z r)及鉑(P t)所組成之群組中之一。 該第二導電層603包括鶴層.。該鎢層係約 2000A厚及藉由實施PVD法、CVD法或ALD法序 PVD法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構602包括含氮鈦(TiN〇層602A、 鎢(WNU)層602B、鎢矽化物(WSix)層602C及第二含 層602D。更詳而言之,該含氮鈦層602A之氮對 一比例(例如:在約0.2至0.8之範圍內)及形成有 φ 丨5〇人之厚度。在此,該含氮金屬層,亦即,該含氮食 具有如上述之氮比鈦之比例,以防止SiN於該 602A中產生。由於在隨後之退火處理期間該含氮 中過多的Ti會破壞多晶矽與TiNx之間所形成的 因而移除SiN,故可防止SiN的產生。此因爲TiN ^ 連結更強健而變得可行。該含氮鈦層602A亦包括 層。 該第一及第二含氮鎢層602B及602D之每一 鎢具有某一比例(例如:在約〇. 3至1.5之範圍內 閘極堆疊 3結構602 雜有P-型 層。該第 X係在約 化物層包 、钽(Ta)、 100A 至 ί形成。該 第一含氮 氮鎢(WNX) 鈦具有某 約10A至 长層6 0 2 A, 含氮鈦層 鈦層602A Si-N鍵並 i結比SiN 丨鈦氮化物 -層的氮對 )° 該第一 -54· 200828425 及第二含氮鎢層602B及602D之每一層亦包括鎢氮化物 層。該第一及第二含氮鎢層602B及602D供應氮至該鎢矽 化物層602C。該第一及第二含氮鎢層602B及602D之每一 層形成有約20 A至200 A之厚度。由於氮之供應,該第一 及第二含氮鎢層602 B及602D在該退火後變成純鎢層或含 微量氮之鎢層。 在鎢矽化物層602C中之矽比鎢之比例在約〇.5與3.〇 之間的範圍。該鎢矽化物層602C具有約20A到200A的厚 _ 度。 藉由實施PVD法、CVD法或ALD法形成該第一及第二 含氮鎢層602B及602D。藉由實施PVD法形成該含氮鈦層 602A及該鎢矽化物層602C。 該P,VD法以濺鍍沉積法或反應式濺鍍沉積法進行。例 如:藉由在氮氣環境中以鈦濺鍍靶實施濺鍍沉積法來形成 該含氮鈦層602A。藉由在氮氣環境中以鎢濺鍍靶實施反應 式濺鑛沉積法來形成該第一及第二含氮鎢層602B及 φ 602D。藉由以鎢矽化物濺鍍靶實施反應式濺鍍沉積法來形 成該鎢矽化物層602C。藉由以鎢濺鍍靶實施濺鍍沉積法來 形成該鎢層603。依據本發明之第十四實施例的閘極堆疊 結構包括該第一導電層601、該TiNx/WNx/WSix/WNx中間結 構6 02及該第二導電層603。該第一導電層601包括多晶矽 及該第二導電層6 0 3包括鎢,藉以形成鎢多晶矽閘極堆疊 結構。 特別地’以包括第一金屬層、第二金屬層、金屬矽化 物層及第三金屬層之堆疊結構形成該TiNx/WNx/WSix/WNx -55- 200828425 中間結構602。該第一、第二及第三金屬層係含氮金屬層, 以及該金屬砂化物層係純金屬砂化物層。例如:該第一金 屬層係該含氮鈦層602A,以及該第二及第三金屬層分別係 該第一及第二含氮鎢層602 B及602D。該金屬矽化物層係 該鎢砂化物層602C。 亦可以其它不同結構形成上述多層中間結構。例如: 除該含氮鈦層之外,該第一金屬層還包括含氮鉬(TaN〇 層。除該鎢矽化物層之外,該金屬矽化物層還包括鈦矽化 φ 物(TiSh),其中X係在約1.5與10間之範圍內,或鉅矽化 物(TaSix),其中X係在約1.5與10間之範圍內。除該含氮 鎢層之外,該第二及第三金屬層還包括含氮鈦鎢(TiWNx) / 層。藉由在氮氣環境中以钽濺鍍靶實施反應式濺鍍法來形 成該含氮鉅層。藉由在氮氣環境中以鈦鎢濺鍍靶實施反應 式濺鍍沉積法來形成該含氮鈦鎢層。藉由以個別鈦矽化物 及鉅矽化物濺鍍靶實施反應式濺鍍沉積法來形成該鈦矽化 物層及該钽矽化物層。該含氮钽層形成有約10A至150A φ 之厚度。該含氮鈦鎢層、該鈦矽化物層及該钽矽化物層之 每一層形成有約20人至200人之厚度。該含氮鈦鎢層中之 氮含量係在約1 0 %與60 %間之範圍內。在該含氮鈦鎢層中, 鈦對鎢之比例係在約0 · 5至3.0之範圍內。在該鈦矽化物層 中,矽對鈦之比例係在約0.5至3.0之範圍內。在該钽砂化 物層中,矽對钽之比例係在約0.5至3 · 0之範圍內。 在上述中間結構602中’藉由PVD法(例如:濺鍍沉積 法)在該第一含氮鎢層602B上方形成該鎢砂化物層602C。 以該鎢矽化物濺鍍靶實施該濺鍍沉積法以允許該鎢砂化物 -56- 200828425 層602C之均勻形成而與下層型態無關。 第7D圖描述依據本發明之第十五實施例的閘極堆疊 結構。該閘極堆疊結構包括第一導電層6丨丨、中間結構6丄2 及第一導電層613。該第一導電層611包括高摻雜有p -型 雜質(例如:硼(B))或N-型雜質(.例如:磷(P))之多晶矽層。 除該多晶矽層之外,該第一導電層611亦可包括多晶矽鍺 (Si^Gex)層,其中X係在約〇.〇1與1〇之範圍內,或者包 括矽化物層。該矽化物層包括選自由鎳(Ni)、鉻(Cr)、鈷 φ (Co)、鈦(Ti)、鎢(w)、鉅(Ta)、給(Hf)、锆(Zr)及鉑(Pt)所 組成之群組中之一。 該第二導電層6 1 3包括鎢層。實施PVD法、CVD法及 ALD法中之一以形成約ΐοοΑ至2000A厚之鎢層。該PVD 法包括使用鎢濺鍍靶之濺鍍沉積法。 該中間結構6 1 2包括鈦矽化物(T i S i x)層6 1 2 A、含氮鈦 (TiN〇層612B、第一含氮鎢(WNX)層612C、含氮鎢矽化物 (WSixNy)層612D及第二含氮鎢層612E。可依據本發明之第 φ 十三及第十四實施例所述之選擇材料以不同結構形成該中 間結構6 1 2。 依據本發明之第十五實施例之閘極堆疊結構係在對依 據本發明之第十三及第十四實施例的閘極堆疊結構實施退 火處理後所造成之結構。該退火包括在形成該等閘極堆疊 結構後所實施之各種製程(例如:間隔物形成及內層絕緣層 形成)期間所伴隨之熱處理。 參考第7D及7A圖以比較該中間結構6 1 2與該中間結 構62。當該鈦層62A與來自該第一導電層61之多晶矽反 -57- 200828425 應時’形成具有約1 A至3 0 A厚度之鈦矽化物層6 1 2 A。該 鈦政化物層612A中之矽對鈦的比例係在約0.5與3.0間之 範圍內。 當從該鈦層62A供應氮至該鈦層62A時,造成該含氮 鈦層612B。該含氮鈦層6128具有約10人至1〇〇人範圍之厚 度且具有約0 · 6至1.2範圍之氮對鈦的比例。 在該退火後,該第一及第二含氮鎢層61 2C及61 2E之 每一層具有因該侵蝕作用而降至約10%或更少之氮含量。 φ 元件符號WNx(D)表示該侵蝕之含氮鎢層。該第一及第二含 氮鎢層6 1 2 C及6 1 2 E之每一層係約2 〇 A至2 Ο Ο A厚。在該 第一及第二含氮鎢層61 2C及61 2E之每一層中的氮對鎢之 比例係在約0 · 0 1與0 · 1 5間之範圍內。 當分解來自該第一及第二含氮鎢層602 B及602D之氮 時,使該鎢矽化物層602C變換成爲該含氮鎢矽化物層 6 1 2D。在該含氮鎢矽化物層6 1 2D中之矽對鎢的比例係在約 0.5至3 · 0之範圍內。該含氮鎢矽化物層6 1 2 D具有約1 0 % φ 至60%之氮含量及約20A至200人之厚度。 參考第7 D及7 C圖以比較該中間結構6 1 2與該中間結 構602。在該退火處理期間,從該含氮鎢層602B供應氮至 該含氮鈦層602A。結果’使該含氮鈦層602A變換成爲與 該鈦矽化物層6 1 2A有最小反應之含氮鈦層6 1 2B。該鈦矽 化物層6 1 2 A之厚度係在約1 A至3 Ο A之範圍內,以及該含 氮鈦層612B之厚度係在約10A至100A之範圍內。在該含 氮鈦層6 1 2 B中之氮對鈦的比例係在約〇 · 7與1. 3間之範圍 內0 -58- 200828425 在該退火後,當侵鈾該第一及第二含氮鎢層602B及 602D時,該第一及第二含氮鎢層61 2C及612E之每一層具 有降至約10 %或更少之氮含量。該第一及第二含氮鎢層 612C及612E之每一層係約20A至200A厚。在該第一及第 二含氮鎢層61 2C及6 12E之每一層中的氮對鎢之比例係在 約0.0 1與0 . 1 5間之範圍內。 當侵蝕來自該第一及第二含氮鎢層602 B及602D之氮 時,使該鎢矽化物層 602C變換成爲該含氮鎢砂化物層 φ 612D。該含氮鎢矽化物層612D具有約0.5至3.0之矽對鎢 的比例及約10 %至60%之氮含量。在此,氮含量以上述方式 被適當調整。若氮含量太低,則接面反應會因該含氮鎢砂化 物層612D無法成功作爲擴散障壁而發生。另一方面,若氮 含量太高,則包含於該含氮鎢矽化物層612D中之SiN含量 會是高的,並因此讓接觸電阻變高,導致元件性能劣化。該 含氮鎢矽化物層612D之厚度係在約20人與200人間之範圍 內。 φ 依據第十五實施例之閘極堆疊結構包括第一中間結構 及第二中間結構。該第一中間結構包括金屬矽化物層及第 一含氮金屬層,以及該第二中間結構包括第二含氮金屬 層、含氮金屬矽化物層及第三含氮金屬層。例如:藉由堆 疊該鈦矽化物層6 1 2A及該含氮鈦層6 1 2B形成該第一中間 結構。藉由堆疊該含氮鎢層612C、該含氮鎢矽化物層612D 及該含氮鎢層612E形成該第二中間結構。 依據本發明之第一至第十五實施例的中間結構,可實 施以控制除了動態隨機存取記憶體(DRAM)元件之外,還可 -59- 200828425 控制快閃記憶體元件之閘極電極及許多邏輯元件之閘極電 極。 第8圖描述依據本發明之第十六實施例的快閃記憶體 元件之閘極堆疊結構。在基板7 0 1上方形成對應於閘極絕 緣層之穿隧氧化層702。在該穿隧氧化層702上方形成用於 浮動閘極FG之第一^多晶砂電極703。 在該第一多晶砂電極703上方形成介電層704,以及在 該介電層704上方形成用於控制閘極CG之第二多晶矽電 極 7 05。 在該第二多晶矽電極705上方形成選自由本發明之第 一至第十五實施例所述之各種型態的中間結構所構成之群 組中的中間結構706。該中間結構706包括依據本發明之第 一實施例的Ti/WNx/WSixNy中間結構。因此,藉由連續地堆 疊鈦層706A、含氮鎢層706B及含氮鎢矽化物層706C以形 成該中間結構7 0 6。 在該中間結構706上方形成鎢電極707及硬罩708。元 件符號W及Η/M分別表示該鎢電極707及該硬罩708。 具有如第8圖所示之中間結構706的快閃記憶體元件 之閘極堆疊結構具有低片電阻及接觸電阻。本發明之實施 例除了該閘極電極之外可應用至各種金屬內之互相連接, 例如:包括中間結構之位元線、金屬線及電容器電極。此 外,本發明之此實施例可應用至半導體元件之構成雙多晶 矽閘極之閘極堆疊結構,其中該雙多晶矽閘極係由第一閘 極堆疊結構(包括在中間結構下面所形成之摻雜有N-型雜 質的多晶矽電極及在該中間結構上方所形成之鎢電極)與 -60- 200828425 第二閘堆疊結構(包括摻雜有p-型雜質之多晶矽電極及在 該中間結構上方所形成之鎢電極)所組成。 ' 第9圖係描述依據本發明之第一至第十五實施例所形 成之每一型態的中間結構之鎢層的片電阻(Rs)之曲線圖。 該鎢層具有約40nm之厚度。 可觀察到在Ti/WNX中間結構上方藉由CVD法及PVD 法額外地施力□ WSix/WNx中間結構(亦即 ,The intermediate structure 402 includes a titanium-containing titanium (TiNx) layer 402A, a nitrogen-containing tungsten germanide (WSixNO layer 402B, and a nitrogen-containing tungsten (WNX) layer 402C. More specifically, the nitrogen-containing titanium layer 4 0 2 A nitrogen There is a certain proportion of titanium (for example: in about 〇.  2 to 0. Within the scope of 8). Here, the nitrogen-containing metal layer, that is, the nitrogen-containing titanium layer 402A, has a ratio of nitrogen to titanium as described above to prevent SiN from being generated in the nitrogen-containing titanium layer 402A. Since excessive Ti in the nitrogen-containing titanium layer 402A during the subsequent annealing treatment destroys the Si-N-33-200828425 bond formed between the polycrystalline germanium and TiNx and thus removes SiN, the generation of SiN can be prevented. This is because the ΤιΝ link is more robust than the SiN link. The nitrogen-containing titanium layer 402A is formed to have a thickness of about 10A to 150A. The nitrogen-containing titanium layer 402A also includes a titanium nitride layer. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 402B is about 0. 5 and 3. The nitrogen content of the nitrogen-containing tungsten carbide layer 402B is in the range of about 10% to 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer φ 402B cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 402B may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten germanide layer 402B also includes a tungsten germanium nitride layer or a tungsten germanide layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten layer 402C has a certain ratio of nitrogen to tungsten (for example, at about 0. 3 to 1. Within the scope of 5). The nitrogen-containing tungsten layer 402C represents a tungsten nitride layer or a tungsten layer containing a certain content/weight ratio of nitrogen. Although described later, it is known that the nitrogen-containing tungsten layer 4〇2C supplies nitrogen to the nitrogen-containing tungsten silicide layer 4Q2B. The nitrogen-containing tungsten layer 402C is formed to have a thickness of about 20A to 200A. Due to the supply of nitrogen, the nitrogen-containing tungsten layer 402C becomes a pure tungsten layer or a tungsten-containing tungsten layer after the annealing. The nitrogen-containing tungsten layer 402C is formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 4〇2A and the nitrogen-containing tungsten germanide layer 402B are formed by a PVD method. The PVD method is carried out by sputtering deposition or a reactive sputtering deposition method. For example, the nitrogen-containing titanium layer 402 A is formed by performing a sputtering deposition method using a titanium sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten layer 402C is formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 402B is formed by performing a reactive sputtering deposition method with a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten carbide layer 402B can be uniformly formed regardless of the underlying type, the nitrogen-containing tungsten germanide layer 402B is formed using the PVD method (e.g., reactive sputtering deposition method). A gate stack structure according to an eighth embodiment of the present invention includes the first conductive layer 401, the TiNx/WSixNy/WNx intermediate structure 402, and the second conductive layer 403. The first conductive layer 401 includes polysilicon and the second conductive layer 403 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. Specifically, the TiNx/WSixNy/WNx intermediate structure 402 is formed in a stacked structure including a first metal layer, a nitrogen-containing metal telluride layer, and a second metal layer. The first and second metal layers are nitrogen-containing metal layers, and the metal telluride layer is a nitrogen-containing metal halide layer. For example, the first metal layer is the nitrogen-containing titanium layer 402 A. The second metal layer is a nitrogen-containing tungsten layer 402C. The metal telluride layer is a nitrogen-containing tungsten telluride layer 4 0 2 B. φ The above-described multilayer intermediate structure can be formed by other different structures. For example, the first nitrogen-containing metal layer includes a nitrogen-containing macrolayer in addition to the nitrogen-containing titanium layer. The second nitrogen-containing metal layer includes a nitrogen-containing titanium tungsten layer in addition to the nitrogen-containing tungsten layer. The nitrogen-containing metal telluride layer includes a nitrogen-containing titanium telluride layer or a nitrogen-containing giant telluride layer in addition to the nitrogen-containing tungsten germanide layer. The nitrogen-containing macrolayer is formed by performing a PVD method including sputtering, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer is formed by performing a reactive sputtering deposition method in a gas atmosphere with a titanium tungsten sputtering target. The nitrogen-containing titanium telluride layer is formed by reactive sputtering deposition method with individual titanium telluride and giant telluride sputtering target in a nitrogen atmosphere. And the -35- 200828425 nitrogen-containing giant telluride layer. The nitrogen-containing macrolayer is formed to have a thickness of about 1 ο A to 8 Ο A. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer and the nitrogen-containing telluride layer has a thickness of 20A to 200A, and each layer has a nitrogen range of between about 10% and 60%. content. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing titanium or molybdenum telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen contains a heavy cylinder, the SiN content contained in the gas-containing or group-containing sand layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. In the φ nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is about 0.5 to 3. Within the range of 0. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is about 0. 5 to 3. Within the range of 0. In the nitrogen-containing bismuth compound layer, the ratio of political confrontation is about 0. 5 to 3. In the range of 0. Fig. 5C depicts a gate stack structure in accordance with a ninth embodiment of the present invention. The gate stack structure includes a first conductive layer 41 1 , an intermediate structure 4 1 2 , and a second conductive layer 413 . The first conductive layer 411 includes a polycrystalline, chopped layer highly doped with a P-type impurity (e.g., boron (B)) or a type 1 impurity (e.g., pity (?)). The first conductive layer 4 1 1 may include, in addition to the polysilicon layer, a polycrystalline germanium (Si nG ex) layer, wherein the X system is in the range of about 〇·〇ΐ and ι·〇, or includes a germanide layer. . The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), molybdenum (Ta), (Hf), zirconium (Zr), and platinum (Pt). One of the groups formed. The second conductive layer 413 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is performed to form a tungsten layer of about 100 A to 200 Å thick. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 4 1 2 includes a chic compound (T i S i X) layer 4 1 2 A, a nitrogen-containing -36-200828425 (TiNx) layer 412B, a nitrogen-containing tungsten germanide (wShNy) layer 412C, and a nitrogen-containing tungsten (WNX) layer 41 2D. The intermediate structure 4丨2 may be formed in a different structure according to the selection materials described in the seventh and eighth embodiments of the present invention. The gate stack structure according to the ninth embodiment is a structure resulting from annealing treatment of the gate stack structures according to the seventh and eighth embodiments of the present invention. The annealing includes subsequent heat treatment during various processes (e.g., spacer formation and formation of the inner insulating layer) performed after forming the gate stack structures. * Refer to Figures 5C and 5A to compare the intermediate structure 412 with the intermediate structure 42. When the titanium layer 42A reacts with the polysilicon from the first conductive layer 41, a titanium germanide layer 41 2A having a thickness of about 1 A to 30 A is formed. The ratio of germanium to titanium in the titanium germanide layer 21 2A is about 0. 5 and 3. Within the range of 0. When nitrogen is supplied from the nitrogen-containing tungsten layer 42B to the titanium layer 42A, the nitrogen-containing titanium layer 412B is caused. The nitrogen-containing titanium layer 412B has a thickness in the range of about 10A to 100A and has a thickness of about 0. 7 to 1. The ratio of nitrogen to titanium in the range of 3. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 4 1 2B is increased from about 0 to about 0, as compared to the ratio of nitrogen to titanium in the titanium layer 42A. 7 to 1. 3. The nitrogen-containing tungsten carbide layer 4 1 2C has substantially the same thickness and composition as the nitrogen-containing tungsten carbide layer 42C. In detail, the nitrogen-containing tungsten telluride layer 4 12C has about 0. 5 to 3. The ratio of 0 to tungsten in the range of 0 and the nitrogen content in the range between about 10% and 60%. The thickness of the nitrogen-containing tungsten telluride layer 4 1 2C is in the range of between about 2 Å and 200 Å. After the annealing, the nitrogen-containing tungsten layer 412D has a nitrogen content which is reduced to about 10% or less due to the etching. The component symbol WNX(D) indicates the etched -37·200828425 nitrogen-containing tungsten layer. The nitrogen-containing tungsten layer 4 1 2 D is about 20 A to 2 〇 0 people thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2D is about 0. 0 1 and 0. Within the range of 1 to 5 rooms. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2D is from about 0. Compared with the ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 42C described in FIG. 5A. 3 and 1. The range of 5 is reduced to about 0. 01 to 0. The scope of 15. Forming the nitrogen-containing tungsten telluride layer 42; 6 over the titanium layer 42A (see FIG. 5A), after the annealing, in a boundary region between the titanium layer 42A and the nitrogen-containing tungsten germanide 42B A trace amount of nitrogen in the nitrogen-containing tungsten telluride layer 42B is decomposed. As a result, as described in FIG. 5C, the titanium layer 42A is partially transformed into the nitrogen-containing layer 412B, and a portion below the seed layer 42A is reacted with the polysilicon from the first conductive layer 41 to form the titanium. Telluride layer 412A. Referring to Figures 5C and 5B, the intermediate structure 4 1 2 and the intermediate structure 04 are compared. The nitrogen-containing titanium layer 402A is converted into a nitrogen-containing titanium layer 412B having a minimum reaction with the titanium germanide layer 41 2A. The thickness of the titanium telluride layer 41 2A is in the range of about 1A to 30A, and the thickness of the nitrogen-containing titanium layer 412B is in the range of about 10A to 100A. The ratio of nitrogen to titanium in the nitrogen-containing titanium layer 41 2B is about 0. 7 and 1. Within the range of 3 rooms. The nitrogen-containing tungsten germanide layer 412C has a thickness and composition substantially the same as the nitrogen-containing tungsten germanide layer 42B. More specifically, the ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 4 1 2C is about 0. 5 to 3. Within the range of 0. The nitrogen-containing tungsten carbide layer 412C has a nitrogen content in the range of about 10% to 60% and a thickness of about 20A to 200A. After the annealing, the nitrogen-containing tungsten layer 412D has a nitrogen content reduced to about 10% or less due to the apocution effect. The nitrogen-containing tungsten layer 412D is about 20 to 200 people -38 to 200828425 thick. The ratio of nitrogen to tungsten in the nitrogen-containing tungsten layer 4 1 2D is in the range between. The gate stack structure according to the ninth embodiment includes a second intermediate structure. The first intermediate structure includes a first gold first nitrogen-containing metal layer, and the second intermediate structure includes a layer and a nitrogen-containing metal telluride layer. For example, the first intermediate junction of the nitrogen-containing tungsten germanide layer 412C and the nitrogen-containing tungsten layer 412C φ structure is formed by stacking 412A and the nitrogen-containing titanium layer 412B. Fig. 6A depicts a tenth embodiment in accordance with the present invention. The gate stack structure includes a first conductive layer 51 and a second conductive layer 53. The polycrystalline sand layer 51 of the first conductive layer 51 comprising a highly doped (e.g., boron) or N-type impurity (e.g., phosphorus) may also include a polycrystalline germanium layer (Sn. xGex, which is within a range of 1 · 0) or a telluride layer. For example, the one selected from the group consisting of nickel (Ni), chromium (C 〇, cobalt (Co), titanium (Ti), tungsten φ lead (Hf) 'chromium (Zr), and platinum (Pt) The second conductive layer 53 includes a tungsten layer. The tungsten layer is about thick and comprises a sputtering deposition method using a tungsten sputtering target by performing a PVD method, a CVD method, or an ALD method. The intermediate structure 52 includes titanium (Ti a layer 52A, a first 52B, a nitrogen-containing tungsten germanide (WSuNO layer 52C, and a second layer 52D. In detail, the thickness of the titanium layer 52A is in the range of %. Preferably, the titanium layer 52A has about 10A. The titanium layer 52A is about 0 by the deposition of ffi by the subsequent WNX. 01 and 0. 15 an intermediate structure and a telluride layer and a second nitrogen-containing metal. The gate stack structure 3 and the impurity P-type impurity layer in the second are formed by stacking. The first lead X is at about 0. 0 1 ; the telluride layer includes (W), giant (Ta), and 〇 100A to 2000A: formed. The PVD nitrogen-containing tungsten (WNx) layer has two nitrogen-containing tungsten (WN0 3 10A to about 80A to about 50A thick ί, some of its upper portion -39-200828425 is changed to TiN to form the first nitrogen-containing tungsten layer 52B, and Some of the lower portions thereof react with the first conductive layer 51, that is, the polysilicon layer thus forms a Ti Six layer, and thus have a thickness as defined above. If the thickness of the titanium layer 52A is large, the thickness of the TiSlx layer Also, the ridge is increased because of its volume expansion. Further, if the thickness of the titanium layer 52A is large, the titanium layer 52A can absorb the dopant of the polysilicon layer 51, for example, phosphorus or boron, and thus in the polysilicon layer 51. Multiple depletion occurs, resulting in deterioration of device performance. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 5 2B and 5 2D is about 0. 3 and 1. Within 5 φ range. Each of the first and second nitrogen-containing tungsten layers is regarded as a tungsten nitride layer or a tungsten layer containing a certain content/weight ratio of nitrogen. Although will be described later, it is known that the first and second nitrogen-containing tungsten layers 52B and 52D supply nitrogen to the nitrogen-containing tungsten carbide layer 52C. Each of the first and second nitrogen-containing tungsten layers 52B and 52D has a thickness of from about 20 to 200 Å. Since nitrogen is supplied to the nitrogen-containing tungsten carbide layer 52C, each of the first and second nitrogen-containing tungsten layers 5 2B and 5 2D becomes a pure tungsten layer or a tungsten-containing tungsten layer after the subsequent annealing treatment. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 5 2C is about φ 〇. 5 and 3. The nitrogen content of the nitrogen-containing tungsten carbide layer 52C is in the range of from about 10% to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 52C cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 52C may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten telluride layer 5 2C represents a tungsten germanium nitride layer or a tungsten germanide layer containing a certain content/weight ratio of nitrogen. The nitrogen-containing tungsten telluride layer 52C is formed to have a thickness in the range of from about 20 Å to about 200 Å. -40- . 200828425 The titanium layer 52A and the first and second nitrogen-containing tungsten layers 52B and 52D are formed by a PVD method, a CVD or an ALD method. The nitrogen-containing tungsten telluride layer 52C is formed by a PVD method. . The PVD method is carried out by sputtering deposition or a reactive sputtering deposition method. For example, the seed layer 52A is formed by performing a sputtering deposition method on a titanium sputtering target. The first and second nitrogen-containing tungsten layers 52B and 52D are formed by performing a reactive sputtering deposition method in a gas-heat environment with a sprinkler. The nitrogen-containing tungsten telluride layer 52C is formed by performing a reactive sputtering deposition method using a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since the nitrogen-containing tungsten carbide layer 502C can be uniformly formed regardless of the underlying type, the PVD method (for example, reactive sputtering deposition method) can be used to form the nitrogen-containing tungsten germanide layer 5 02C. The gate stack structure according to the tenth embodiment includes the first conductive layer 51, the Ti/WNx/WSixNy/WNx intermediate structure 52, and the second conductive layer 53. The first conductive layer 51 and the second conductive layer 53 respectively comprise a polysilicon layer and a tungsten layer, thereby forming a tungsten polysilicon gate stack structure. In particular, the Ti/WNx/WShNy/WNx intermediate structure 52 includes a first metal layer, a second metal layer, a nitrogen-containing metal telluride layer, and a third metal layer. The first metal layer comprises a layer of pure metal, whereas the second and third layers of metal comprise a layer of nitrogen-containing metal. The nitrogen-containing metal telluride layer includes a metal telluride layer containing nitrogen in a certain amount/weight ratio. For example, the first metal layer is the titanium layer 52A, and the second and third metal layers are the first and second nitrogen-containing tungsten layers 5 2B and 52D, respectively. The metal telluride layer is the nitrogen-containing tungsten germanide layer 52C. The above multilayer intermediate structure may also be formed by other different structures. For example: the first metal layer comprises a giant layer in addition to the titanium layer. The second and third metal layers comprise, for example, a substantially -41- layer of a nitrogen-containing titanium tungsten layer in addition to the nitrogen-containing tungsten layer. 200828425 The same material. The nitrogen-containing metal telluride layer includes a titanium-containing nitride layer or a nitrogen-containing giant telluride layer in addition to the nitrogen-containing tungsten germanide layer. The set of layers is formed by performing a PVD method including sputtering, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive-state plating deposition method by sputtering IE with strontium-tungsten in a nitrogen atmosphere. The nitrogen-containing titanium telluride layer and the nitrogen-containing giant telluride layer are formed by a single-time titanium oxide and molybdenum telluride sputtering target deposition method in a nitrogen atmosphere. The macrolayer is formed to a thickness of about 10A to 80a. Preferably, the layer of tantalum has a thickness of from about 1 〇A to about 50 Å. The macro layer is changed to TaN by some of its upper portion by subsequent WNX deposition to form a second metal layer, and some of its lower portion reacts with the first conductive layer 51, that is, the polycrystalline layer Thus, a layer of T a S ix is formed, and thus has a thickness as defined above. If the thickness of the giant layer is large, the thickness of the TaSix layer also increases due to its volume expansion. Further, if the thickness of the macro layer is large, the molybdenum layer can absorb the dopant of the polysilicon layer 51, for example, phosphorus or boron, so that multiple depletion occurs in the polysilicon layer 51, resulting in deterioration of device performance. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer, and the nitrogen-containing molybdenum telluride layer has a thickness of about 20 to 200 A, and each layer has a range of about 1% to 60%. Nitrogen content. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may not occur as a diffusion barrier due to the nitrogen-containing titanium or telluride layer. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or telluride layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is about 0. 5 to 3. Within the range of 0. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is about 0. 5 to 3. Within the range of 0. In the nitrogen-containing group telluride layer, the ratio of lanthanum to lanthanum is about 0. 5 to 3. 0 of the range -42-, 200828425. Fig. 6B depicts a gate stack structure in accordance with an eleventh embodiment of the present invention. The gate stack structure includes a first conductive layer 501, an intermediate structure 502, and a second conductive layer 503. The first conductive layer 501 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 510 may also include a polysilicon layer (S h .  x G e x, where X is about 0 · 0 1 and 1. Within the range of 0) or the telluride layer. For example, the telluride layer includes a material selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), giant (Ta), φ (Hf), and pin (Zr). And one of the groups consisting of platinum (Pt). The second conductive layer 503 includes a tungsten layer. The tungsten layer is about 100 to 2000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a splash deposition method using a tungsten sputtering target. The intermediate structure 502 includes a titanium-containing titanium (TiN) layer 502A, a first nitrogen-containing tungsten (WNx) layer 502B, a nitrogen-containing tungsten germanide (WShNy) layer 502C, and a second nitrogen-containing tungsten (WN layer 502D). More specifically, the nitrogen-containing titanium layer 205A has a certain ratio of nitrogen to titanium (for example, at about 0. 2 to 〇.  Within the range of 8) and formed with a thickness of φ of about 1〇A to 150A. Here, the nitrogen-containing metal layer, i.e., the nitrogen-containing layer 50 2 A, has a ratio of nitrogen to cerium as described above to prevent s i N from being generated in the nitrogen-containing titanium layer 502A. Since excessive Ti in the nitrogen-containing titanium layer 205A during the subsequent annealing treatment breaks the Si-N bond formed between the polysilicon and TiNx and thus removes SiN, the generation of SiN can be prevented. This is because the ΤιΝ link is more robust than the SiN link. The nitrogen-containing titanium layer 5?2a represents a titanium nitride layer or a titanium layer containing a certain content/weight ratio of nitrogen. Each of the first and second nitrogen-containing tungsten layers 502B and 502D has a certain ratio of nitrogen to tungsten (for example, at about 〇·3 to 1. Within the scope of 5). Each of the first -43-200828425 and the second nitrogen-containing tungsten layers 5 0 2B and 5 02D also includes a tungsten nitride layer. Although described later, it is known that the first and second nitrogen-containing tungsten layers 205B and 502D supply nitrogen to the nitrogen-containing titanium layer 502A and the nitrogen-containing tungsten sulphide layer 502C. Each of the first and second nitrogen-containing tungsten layers 502B and 502D is formed to have a thickness of about 20 A to 200 Å. The first and second nitrogen-containing tungsten layers 502B and 502D become a pure tungsten layer or a tungsten layer containing a trace of nitrogen after the annealing due to the supply of nitrogen. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 502C is about φ 0. 5 and 3. The nitrogen content of the nitrogen-containing tungsten carbide layer 502C is in the range of from about 10% to about 60%. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 502C cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 502C may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The nitrogen-containing tungsten germanide layer 502C also includes a tungsten germanium nitride layer. The nitrogen-containing tungsten carbide layer 502C has a thickness of about 20A to 200A. φ The first and second nitrogen-containing tungsten layers 502B and 502D are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 502A and the nitrogen-containing tungsten carbide layer 502C are formed by a PVD method. The PVD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the nitrogen-containing titanium layer 502A is formed by sputtering deposition using a titanium sputtering target in a nitrogen atmosphere. Each of the first and second nitrogen-containing tungsten layers 502B and 502D is formed by performing a reactive sputtering deposition method using a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten telluride layer 502C is formed by performing a reactive sputtering deposition method with a tungsten telluride sputtering target in a nitrogen atmosphere. In particular, since -44-200828425 is uniformly formed into the nitrogen-containing tungsten germanide layer 502C regardless of the underlying type, the PVD method (for example, reactive sputtering deposition method) is used to form the nitrogen-containing tungsten. Telluride layer 502C. A gate stack structure according to an eleventh embodiment of the present invention includes the first conductive layer 501, the TiNx/WNx/WSixNy/WNx intermediate structure 502, and the second conductive layer 503. The first conductive layer 501 includes a polysilicon and the second conductive layer 503 includes tungsten to form a tungsten polysilicon gate stack structure. .  Specifically, the TiNx/WNJWSixNy/WNx intermediate structure 502 is formed in a stacked structure including a first gold layer, a second metal layer, a nitrogen-containing metal φ telluride layer, and a third metal layer. The first, second and third metal layers are nitrogen-containing metal layers, and the nitrogen-containing metal telluride layer contains nitrogen in a certain content/weight ratio. For example, the first metal layer is the nitrogen-containing titanium layer 052 A, and the second and third metal layers are the first and second nitrogen-containing tungsten layers 052B and 50 2D, respectively. The metal telluride layer is the nitrogen-containing tungsten germanide layer 502C. The above multilayer intermediate structure may also be formed by other different structures. For example: φ In addition to the nitrogen-containing titanium layer, the first metal layer further includes a nitrogen-containing giant (TaNO layer. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further include, for example, nitrogen-containing titanium tungsten. The (TiWNx) layer is substantially the same material. In addition to the nitrogen-containing tungsten germanide layer, the nitrogen-containing metal telluride layer further includes a nitrogen-containing titanium telluride (TiSixNy) layer or a nitrogen-containing germanide (TaShNy) layer. The nitrogen-containing giant layer is formed by performing a PVD method including sputtering, a CVD method or an ALD method, and the nitrogen-containing titanium tungsten layer is formed by performing a reactive sputtering deposition method with a titanium-tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing zirconia layer and the nitrogen-containing-45- are formed by a reactive sputtering and plating method in a nitrogen atmosphere with individual titanium telluride and molybdenum telluride sputtering targets. 200828425 Telluride layer. The nitrogen-containing tantalum layer is formed to a thickness of about 10 to 80 people. Each of the nitrogen-containing titanium tungsten layer, the nitrogen-containing titanium telluride layer, and the nitrogen-containing giant telluride layer is formed to a thickness of about 20 A to 200 A, and each layer has a range of between about 1% and 60%. Nitrogen content. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing titanium or telluride layer cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing titanium or telluride layer may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is between about 0.5 and 3. Within the range of 0. In the nitrogen-containing titanium telluride layer, the ratio of niobium to titanium is about 〇.  5 to 3. Within the range of 0. In the nitrogen-containing giant telluride layer, the ratio of lanthanum to giant is in about 〇.  5 to 3. Within the scope of 0. Fig. 6C depicts a gate stack structure in accordance with a twelfth embodiment of the present invention. The gate stack structure includes a first conductive layer 51, an intermediate structure 51 and a second conductive layer 513. The first conductive layer 511 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron (B)) or an N-type impurity (e.g., phosphorus (P)). The first conductive layer 51 1 may include a polycrystalline silicon germanium (SinGex) layer in addition to the polycrystalline germanium layer, wherein the X system is about 〇·〇1 and 1. Within the range of 0, or including the telluride layer. The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), station (Co), titanium (Ti), tungsten (W), molybdenum (Ta), (Hf), lanthanum (Z 〇 and platinum (Pt) One of the group consisting of. The second conductive layer 513 includes a tungsten layer. One of a PVD method, a CVD method, and an ALD method is performed to form a tungsten layer of about 1 〇〇A to 2000 Å thick. The pVD method A sputtering deposition method using a tungsten sputtering target is included. The intermediate structure 512 includes a titanium germanide (TiSi layer 512A, a nitrogen-containing gold-46-200828425 (TiNx) layer 512B, a first nitrogen-containing tungsten (WNx) layer 512C, a nitrogen-containing tungsten sand compound (WSixNy) layer 512D and a gas-containing tungsten layer 512E. The intermediate structure 5 1 2 can be formed in different structures according to the selection materials described in the tenth and eleventh embodiments of the present invention. The gate stack structure of the twelfth embodiment is a structure resulting from annealing treatment of the gate stack structures according to the tenth and eleventh embodiments of the present invention. The annealing includes after forming the gate stack structures. Heat treatment accompanying φ during various processes (eg, spacer formation and inner insulating layer formation) implemented. Refer to Sections 6 C and 6 A is for comparing the intermediate structure 51 to the intermediate structure 52. When the titanium layer 52A reacts with the polysilicon from the first conductive layer 51, a titanium germanide layer 512A having a thickness of about 1 to 30 A is formed. The ratio of bismuth to titanium in the titanium telluride layer 5 1 2 A is about 〇.  5 and 3. Within the range of 0. When nitrogen is supplied from the first nitrogen-containing tungsten layer 52B to the titanium layer 52A, the nitrogen-containing titanium layer 512B is formed. The nitrogen-containing titanium layer 512B has a thickness ranging from about 10A to 100A φ and has about 0. 7 to 1. The ratio of nitrogen to titanium in the range of 3. After the annealing, each of the first and second nitrogen-containing tungsten layers 512C and 51 2E has a nitrogen content reduced to about 10% or less due to the erosion. The component symbol WNx(D) represents the nitrogen-containing tungsten layer of the uranium. Each of the first and second nitrogen-containing tungsten layers 512C and 512E is about 2 Å to 200 Å thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 512C and 51 2E is about 0. 0 1 and 0. Within the range of 1 to 5. The nitrogen-containing tungsten carbide layer 5 1 2 D has substantially the same thickness and composition as the gas-containing tungsten carbide layer 52C. In detail, the nitrogen-containing tungsten telluride layer - 47 - 200828425 5 1 2D has about 0. 5 to 3. The ratio of 0 to tungsten in the range of 0 and the nitrogen content of about 10% to 60%. The thickness of the nitrogen-containing tungsten germanide layer 512D is in the range of between about 20A and 200A. Referring to Figures 6C and 6B, the intermediate structure 51 is compared to the intermediate structure 502. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten layer 502B to the nitrogen-containing titanium layer 502A. As a result, the nitrogen-containing titanium layer 502A is transformed into a nitrogen-containing titanium layer 5 1 2 B which has a minimum reaction with the titanium germanide layer 5 1 2 A. The titanium telluride layer 512A has a thickness in the range of about 1A to 30A, and the φ-containing titanium nitride layer 512B has a thickness in the range of about 10A to 100A. The ratio of nitrogen to titanium in the titanium-containing titanium layer 512B is about 0. 7 and 1. Within the range of 3 rooms. After the annealing, when the first and second nitrogen-containing tungsten layers 502B and 50 2D are eroded, each of the first and second nitrogen-containing tungsten layers 512C and 512E has a reduction of about 10% or less. Nitrogen content. Each of the first and second nitrogen-containing tungsten layers 5 12C and 5 12E is about 20A to 200A thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 512C and 512E is about φ about 0. 01 and 0. Within the range of 15 rooms. The nitrogen-containing tungsten carbide layer 5 1 2D has substantially the same thickness and composition as the nitrogen-containing tungsten carbide layer 502C. In detail, the nitrogen-containing tungsten telluride layer 5 1 2D has about 0. 5 to 3. The ratio of 0 to tungsten in the range of 0 and the nitrogen content of about 10% to 60%. The thickness of the nitrogen-containing tungsten carbide layer 512D is in the range of between about 20 A and 20 A. The gate stack structure according to the twelfth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal -48-200828425 layer, a nitrogen-containing metal telluride layer, and a third nitrogen-containing metal layer. For example, the first intermediate structure is formed by stacking the titanium germanide layer 5 1 2A and the nitrogen-containing titanium layer 5 1 2B. The second intermediate structure is formed by stacking the nitrogen-containing layer 512C, the nitrogen-containing tungsten carbide layer 512D, and the nitrogen-containing tungsten layer 5 1 2E. .  Each of the intermediate structures according to the first to twelfth embodiments of the present invention includes a nitrogen-containing metal telluride layer (for example, a nitrogen-containing tungsten germanide layer) and also includes a plurality of thin layers (including titanium, tantalum, tungsten, and nitrogen). ). The nitrogen-containing tungsten telluride φ layer is formed by performing a reactive sputtering deposition method using a tungsten ruthenium sputter target in a nitrogen atmosphere. When the nitrogen-containing tungsten telluride layer is deposited, the reactive sputtering deposition method converts the titanium layer into the titanium nitride layer. In the case where the nitrogen-containing tungsten layer is formed over the titanium layer, the titanium layer is converted into the titanium nitride layer. Since the nitrogen-containing tungsten germanide layer acts as an amorphous diffusion barrier, when the tungsten layer is formed, the tungsten layer has a small specific resistance and a large grain size in the range of about 15 μ Ω-cm. Therefore, since the tungsten layer having a low specific resistance can be formed, the tungsten layer lowers the sheet resistance. Since the 0-titanium layer or the nitrogen-containing titanium layer is transformed into the titanium nitride layer when the nitrogen-containing tungsten layer or the nitrogen-containing tungsten germanide layer is formed, the first to twelfth embodiments according to the present invention The gate stack structure has low contact resistance and can reduce polysilicon vacancies. Furthermore, since the nitrogen-containing tungsten germanide layer is included in each of the intermediate structures, the gate stack structure has a low sheet resistance. Since the titanium layer or the titanium nitride layer is transformed into the titanium nitride layer, each of the plurality of layers included in the intermediate structures contains nitrogen. As a result, the contact resistance and the sheet resistance are low, and the height of each gate stack structure can be reduced. In addition, it is allowed to reduce the polysilicon 矽-49-200828425 depletion effect caused by the outward diffusion of impurities (e.g., boron) doped in the first conductive layer. Fig. 7A depicts a gate stack structure in accordance with a thirteenth embodiment of the present invention. The gate stack structure includes a first conductive layer 61, an intermediate structure 62, and a second conductive layer 63. The first conductive layer 61 includes a polysilicon layer highly doped with a P-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The first conductive layer 61 may also include a polycrystalline germanium layer (si^xGex, wherein the X system is about 〇. 〇1 and 1. Within the range of 0) or the telluride layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), tantalum (Ta), bell φ (Hf), zirconium (Zr). And one of the groups consisting of platinum (pt). The second conductive layer 63 includes a tungsten layer. The tungsten layer is about 1 〇 〇 A to 2,000 Å thick and is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 62 includes a titanium (ITO) layer 62A, a first nitrogen-containing tungsten (WNxm 62B' tungsten germanide (WSix) layer 62C (where the X system is about 1. Within the range of 5 and 10) and the second nitrogen-containing tungsten (WNX) layer 62D. More specifically, the titanium layer 62A is formed to have a thickness ranging from about 10A to 80 people. Preferably, the titanium layer 62A has a thickness of φ of from about 1 〇A to about 5 Å. The titanium layer 62A is changed to T1N by some of its upper portion by subsequent WNX deposition to form a nitrogen-containing tungsten layer 62B, and some of its lower portion reacts with the first conductive layer 61, that is, the polycrystalline layer Thus, the TiSix layer is formed, and thus has a thickness as defined above. If the thickness of the layer 6 2 A is large, the thickness of the TiSh layer also increases due to its volume expansion. In addition, if the thickness of the titanium layer 62A is large, the titanium layer 62A can absorb dopants, for example, phosphorus or boron of the polysilicon layer 61 and thus multiple depletion in the polysilicon layer 61, resulting in deterioration of device performance. . The nitrogen of each of the first and second nitrogen-containing tungsten layers 62B and 62D has a certain ratio to tungsten •50-200828425 (for example, at about 0. 3 to 1. Within the scope of 5). Each of the first and second nitrogen-containing tungsten layers 62B and 62D also includes a tungsten nitride layer. Although described later, it is known that the first and second nitrogen-containing tungsten layers 62B and 62D have metallic properties. The first and second nitrogen-containing tungsten layers 62B and 62D supply nitrogen to the tungsten germanide layer 62C. Each of the first and second nitrogen-containing tungsten layers 62B and 62D is formed to have a thickness of about 2 Å to 200 Å. The first and second nitrogen-containing tungsten layers 62B and 62D become a pure tungsten layer or a tungsten-containing tungsten layer after the annealing due to the supply of nitrogen. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 62C is about 0. 5 and 3. Within the range of 0. The nitrogen-containing tungsten carbide layer 62C is formed to a thickness of about 20 Å to 100 Å. The titanium layer 62A, the first and second nitrogen-containing tungsten layers 62B and 62D, and the tungsten layer 63 are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing tungsten telluride layer 62C is formed by performing a PVD method. The PVD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the titanium layer 62A is formed by performing a sputtering deposition method using a titanium sputtering target. Each of the first and second nitrogen-containing tungsten layers 62B and 62D is formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The nitrogen-containing tungsten germanide layer 62C is formed by performing a reactive sputtering deposition method using a tungsten telluride sputtering target. The tungsten layer 63 is formed by sputtering deposition using a tungsten sputtering target. The gate stack structure according to the thirteenth embodiment of the present invention includes the first conductive layer 61 and the Ti/WNWWSix/WNx intermediate structure 62. And the second conductive layer 63. The first conductive layer 61 includes polysilicon and the second conductive layer 63 includes tungsten, thereby forming a tungsten polysilicon gate stack structure. -51- 200828425 Specifically, the Ti/WNx/WSix/WNx intermediate structure 62 is formed in a stacked structure including a first metal layer, a second metal layer, a metal telluride layer, and a third metal layer. The first metal layer comprises a layer of pure metal. The second and third metal layers comprise a nitrogen-containing metal layer, and the metal germanide layer comprises a pure tungsten germanide layer. For example, the first metal layer is the titanium layer 62A, and the second and second metal layers are the first and second nitrogen-containing tungsten layers 62B and 62D, respectively. The metal telluride layer is the nitrogen-containing tungsten germanide layer 62C. The above multilayer intermediate structure may also be formed by other different structures. For example: φ In addition to the titanium layer, the first metal layer further includes a molybdenum layer. In addition to the tungsten germanide layer, the metal telluride layer further comprises a titanium telluride (TiSh) layer, wherein the X system is at 1. Within the range of 5 and 10, or the layer of giant salium (TaSu), where X is at 1. Within the range of 5 and 10. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further comprise a layer of nitrogen-containing titanium tungsten (TiWNx). The tantalum layer is formed by performing a PVD method including sputtering, a CVD method, or an ALD method. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method with a titanium tungsten sputtering target in a nitrogen atmosphere. The titanium germanide layer and the giant sand layer are formed by performing a reactive sputtering φ plating deposition method on individual titanium telluride and giant telluride sputtering targets. The giant layer is formed to have a thickness of about 10A to 80A. Preferably, the macrolayer has a thickness of from about i〇A to about 50A. The macro layer is changed to TaN by some of its upper portion by subsequent WNX deposition to form a second metal layer, and some of its lower portion reacts with the first conductive layer S, that is, the polycrystalline layer is formed. The TaSix layer has a thickness as defined above. If the thickness of the giant layer is large, the thickness of the TaS layer is also increased due to the expansion of the volume. Further, if the thickness of the layer is large, the molybdenum layer can absorb the dopant. For example, phosphorus or boron of the polycrystalline germanium layer 6 1 and thus multiple depletions occur in the polycrystalline germanium layer 61, and the degradation of the device performance is caused by the -52-200828425. The nitrogen-containing titanium tungsten layer is about 20 A to 200 A thick. Each layer of the layer and the giant telluride layer is formed to a thickness of about 20 A to 200 A. The nitrogen-containing titanium tungsten layer has a nitrogen content ranging between about 10% and 60%. In the nitrogen-containing titanium tungsten layer, the titanium pair The ratio of tungsten is about 0. 5 to 3. Within the range of 0. In the titanium telluride layer, the ratio of bismuth to titanium is about 〇.  5 to 3. Within the range of 0. In the giant telluride layer, the ratio of 矽 to giant is about 0. 5 to 3. Within the range of 0. The tungsten germanide layer 62C is formed over the first nitrogen-containing tungsten φ layer 62B by performing a PVD method (for example, a sputtering deposition method). The sputtering deposition method is carried out with the tungsten germanide sputtering target to allow uniform formation of the tungsten germanide layer 62C regardless of the underlying type. Figure 7B depicts an image of the structure disposed after formation of a tungsten germanide layer over a nitrogen-containing tungsten layer by performing individual chemical vapor deposition (CVD) and physical vapor deposition (PVD) methods. Although the tungsten germanide layer CVD-WSh is not formed properly over the tungsten nitride layer WN by the CVD method, the tungsten germanium oxide can be uniformly formed over the tungsten nitride layer WN by the PVD method. Layer PVD-WSh. Therefore, since the tungsten layer having a low specific resistance can be formed over the tungsten germanide layer, the sheet resistance of the tungsten layer can be reduced. According to the gate stack structure of the thirteenth embodiment of the invention, when the nitrogen-containing tungsten layer 62B is formed over the titanium layer, the titanium layer is converted into a titanium nitride layer. According to the thirteenth embodiment of the present invention, since the titanium layer of the intermediate structure is transformed into the titanium nitride layer during formation of the nitrogen-containing layer, the gate stack structure can obtain low contact resistance and reduce the polysilicon enthalpy effect. Moreover, since the intermediate structure includes the tungsten germanide layer, the gate-53-200828425 pole stack structure can also obtain a low sheet resistance. Fig. 7C depicts the structure of the fourteenth embodiment in accordance with the present invention. The gate stack structure includes a first conductive layer 6 〇 1, a middle ring, and a second conductive layer 603. The first conductive layer 601 includes a poly-doped (eg, boron) or N-type impurity (eg, phosphorus) polycrystalline germanium-' conductive layer 601 may also include a polycrystalline 5 sigma layer (Sii_x〇ex, where 0 . 01 and 1. Within the range of 0) or the telluride layer. For example, the selection is selected from nickel (Ni), chromium ((:]:), cobalt ((: 〇), titanium (1^), tungsten (^¥) to (H f}, pin (Z r) And one of the groups consisting of platinum (P t ). The second conductive layer 603 comprises a crane layer. . The tungsten layer is about 2000 Å thick and is subjected to a PVD method, a CVD method or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 602 includes a nitrogen-containing titanium (TiN layer 602A, a tungsten (WNU) layer 602B, a tungsten germanide (WSix) layer 602C, and a second containing layer 602D. More specifically, the nitrogen of the nitrogen-containing titanium layer 602A For a ratio (for example: at about 0. 2 to 0. Within the range of 8) and formed with a thickness of φ 丨 5 〇. Here, the nitrogen-containing metal layer, i.e., the nitrogen-containing food, has a ratio of nitrogen to titanium as described above to prevent SiN from being produced in the 602A. Since excessive Ti in the nitrogen-containing nitrogen during the subsequent annealing treatment destroys the formation between the polycrystalline germanium and TiNx and thus removes SiN, the generation of SiN can be prevented. This is made possible by the stronger TiN ^ link. The nitrogen-containing titanium layer 602A also includes a layer. Each of the first and second nitrogen-containing tungsten layers 602B and 602D has a certain proportion (for example, at about 〇.  3 to 1. In the range of 5, the gate stack 3 structure 602 is mixed with the P-type layer. The Xth system is formed in a composite layer, tantalum (Ta), and 100A to ί. The first nitrogen-containing tungsten-nitrogen (WNX) titanium has a certain 10A to long layer 60 2 A, a titanium-containing titanium layer titanium layer 602A Si-N bond and a nitrogen ratio of the SiN 丨 titanium nitride-layer) Each of the first-54·200828425 and the second nitrogen-containing tungsten layers 602B and 602D also includes a tungsten nitride layer. The first and second nitrogen-containing tungsten layers 602B and 602D supply nitrogen to the tungsten carbide layer 602C. Each of the first and second nitrogen-containing tungsten layers 602B and 602D is formed to a thickness of about 20 A to 200 Å. The first and second nitrogen-containing tungsten layers 602 B and 602D become a pure tungsten layer or a tungsten layer containing a trace of nitrogen after the annealing due to the supply of nitrogen. The ratio of germanium to tungsten in the tungsten germanide layer 602C is about 〇. 5 and 3. Between the range. The tungsten germanide layer 602C has a thickness of about 20A to 200A. The first and second nitrogen-containing tungsten layers 602B and 602D are formed by performing a PVD method, a CVD method, or an ALD method. The nitrogen-containing titanium layer 602A and the tungsten germanide layer 602C are formed by performing a PVD method. The P, VD method is carried out by a sputtering deposition method or a reactive sputtering deposition method. For example, the nitrogen-containing titanium layer 602A is formed by sputtering deposition using a titanium sputtering target in a nitrogen atmosphere. The first and second nitrogen-containing tungsten layers 602B and φ 602D are formed by performing a reactive sputtering deposition method with a tungsten sputtering target in a nitrogen atmosphere. The tungsten germanide layer 602C is formed by performing a reactive sputtering deposition method using a tungsten telluride sputtering target. The tungsten layer 603 is formed by sputtering deposition using a tungsten sputtering target. A gate stack structure according to a fourteenth embodiment of the present invention includes the first conductive layer 601, the TiNx/WNx/WSix/WNx intermediate structure 602, and the second conductive layer 603. The first conductive layer 601 includes polysilicon and the second conductive layer 603 includes tungsten to form a tungsten polysilicon gate stack structure. Specifically, the TiNx/WNx/WSix/WNx-55-200828425 intermediate structure 602 is formed in a stacked structure including a first metal layer, a second metal layer, a metal telluride layer, and a third metal layer. The first, second and third metal layers are nitrogen-containing metal layers, and the metal sand layer is a pure metal sand layer. For example, the first metal layer is the nitrogen-containing titanium layer 602A, and the second and third metal layers are the first and second nitrogen-containing tungsten layers 602 B and 602D, respectively. The metal telluride layer is the tungsten silicide layer 602C. The above multilayer intermediate structure may also be formed by other different structures. For example: in addition to the nitrogen-containing titanium layer, the first metal layer further includes a nitrogen-containing molybdenum (TaN〇 layer. In addition to the tungsten germanide layer, the metal telluride layer further includes titanium germanium oxide (TiSh), The X system is about 1. Within the range of 5 and 10, or Tasix, where X is about 1. Within the range of 5 and 10. In addition to the nitrogen-containing tungsten layer, the second and third metal layers further include a nitrogen-containing titanium tungsten (TiWNx) / layer. The nitrogen-containing macrolayer was formed by performing a reactive sputtering method with a ruthenium sputtering target in a nitrogen atmosphere. The nitrogen-containing titanium tungsten layer was formed by performing a reactive sputtering deposition method using a titanium tungsten sputtering target in a nitrogen atmosphere. The titanium germanide layer and the germanide layer are formed by performing a reactive sputtering deposition method on individual titanium germanide and giant telluride sputtering targets. The nitrogen-containing tantalum layer is formed to have a thickness of about 10A to 150A φ. Each of the nitrogen-containing titanium tungsten layer, the titanium germanide layer, and the vaporized layer is formed to a thickness of about 20 to 200 people. The nitrogen content of the nitrogen-containing titanium tungsten layer is in the range of between about 10% and 60%. In the nitrogen-containing titanium tungsten layer, the ratio of titanium to tungsten is about 0.5 to 3. Within the range of 0. In the titanium germanide layer, the ratio of germanium to titanium is about 0. 5 to 3. Within the range of 0. In the eucalyptus layer, the ratio of bismuth to bismuth is about 0. Within the range of 5 to 3 · 0. The tungsten silicide layer 602C is formed over the first nitrogen-containing tungsten layer 602B by a PVD method (e.g., sputtering deposition method) in the intermediate structure 602 described above. The sputter deposition method is performed with the tungsten telluride sputter target to allow uniform formation of the tungsten sand compound - 56 - 200828425 layer 602C regardless of the underlying type. Fig. 7D depicts a gate stack structure in accordance with a fifteenth embodiment of the present invention. The gate stack structure includes a first conductive layer 6丨丨, an intermediate structure 6丄2, and a first conductive layer 613. The first conductive layer 611 includes a highly doped p-type impurity (for example, boron (B)) or an N-type impurity (. For example: a polycrystalline germanium layer of phosphorus (P). In addition to the polysilicon layer, the first conductive layer 611 may also include a polysilicon (Si^Gex) layer, wherein the X system is about 〇. Within the range of 〇1 and 1〇, or including a telluride layer. The telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt φ (Co), titanium (Ti), tungsten (w), giant (Ta), (Hf), zirconium (Zr), and platinum ( One of the groups consisting of Pt). The second conductive layer 613 includes a tungsten layer. One of the PVD method, the CVD method, and the ALD method is performed to form a tungsten layer of about ΐοοΑ to 2000A thick. The PVD method includes a sputtering deposition method using a tungsten sputtering target. The intermediate structure 6 1 2 includes a titanium telluride (TiSix) layer 6 1 2 A, a nitrogen-containing titanium (TiN〇 layer 612B, a first nitrogen-containing tungsten (WNX) layer 612C, a nitrogen-containing tungsten telluride (WSixNy) The layer 612D and the second nitrogen-containing tungsten layer 612E. The intermediate structure 612 can be formed in different structures according to the selection materials described in the φ thirteenth and fourteenth embodiments of the present invention. According to the fifteenth embodiment of the present invention The gate stack structure is a structure caused by annealing the gate stack structures according to the thirteenth and fourteenth embodiments of the present invention. The annealing is performed after forming the gate stack structures. Heat treatment accompanying various processes (eg, spacer formation and formation of inner insulating layer). Referring to Figures 7D and 7A to compare the intermediate structure 612 with the intermediate structure 62. When the titanium layer 62A is derived from The polysilicon of the first conductive layer 61 is reversed -57-200828425 to form a titanium telluride layer 6 1 2 A having a thickness of about 1 A to 30 A. The ratio of tantalum to titanium in the titanium chemostat layer 612A is About 0. 5 and 3. Within the range of 0. When nitrogen is supplied from the titanium layer 62A to the titanium layer 62A, the titanium-containing titanium layer 612B is caused. The nitrogen-containing titanium layer 6128 has a thickness ranging from about 10 to 1 且 and has a thickness of from about 0.6 to about 1. 2 range of nitrogen to titanium ratio. After the annealing, each of the first and second nitrogen-containing tungsten layers 61 2C and 61 2E has a nitrogen content reduced to about 10% or less by the etching. The φ element symbol WNx(D) represents the eroded nitrogen-containing tungsten layer. Each of the first and second nitrogen-containing tungsten layers 6 1 2 C and 6 1 2 E is about 2 〇 A to 2 Ο Ο A thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 61 2C and 61 2E is in the range of about 0 · 0 1 and 0 · 15 . When the nitrogen from the first and second nitrogen-containing tungsten layers 602 B and 602D is decomposed, the tungsten germanide layer 602C is transformed into the nitrogen-containing tungsten germanide layer 6 1 2D. The ratio of germanium to tungsten in the nitrogen-containing tungsten germanide layer 6 1 2D is about 0. Within the range of 5 to 3 · 0. The nitrogen-containing tungsten telluride layer 6 1 2 D has a nitrogen content of about 10% φ to 60% and a thickness of about 20A to 200 people. Referring to Figures 7D and 7C, the intermediate structure 612 is compared to the intermediate structure 602. During the annealing treatment, nitrogen is supplied from the nitrogen-containing tungsten layer 602B to the nitrogen-containing titanium layer 602A. As a result, the nitrogen-containing titanium layer 602A was converted into a nitrogen-containing titanium layer 6 1 2B having a minimum reaction with the titanium germanide layer 6 1 2A. The thickness of the titanium telluride layer 6 1 2 A is in the range of about 1 A to 3 Å A, and the thickness of the nitrogen-containing titanium layer 612B is in the range of about 10 A to 100 Å. The ratio of nitrogen to titanium in the titanium-containing titanium layer 6 1 2 B is about 〇·7 and 1.  0 -58- 200828425 Within the range of 3, after the annealing, when the first and second nitrogen-containing tungsten layers 602B and 602D are invaded, each of the first and second nitrogen-containing tungsten layers 61 2C and 612E Has a nitrogen content that drops to about 10% or less. Each of the first and second nitrogen-containing tungsten layers 612C and 612E is about 20A to 200A thick. The ratio of nitrogen to tungsten in each of the first and second nitrogen-containing tungsten layers 61 2C and 6 12E is about 0. 0 1 and 0.  Within the range of 1 to 5. When the nitrogen from the first and second nitrogen-containing tungsten layers 602 B and 602D is eroded, the tungsten germanide layer 602C is transformed into the nitrogen-containing tungsten carbide layer φ 612D. The nitrogen-containing tungsten germanide layer 612D has about 0. 5 to 3. The ratio of zero to tungsten and about 10% to 60% of nitrogen. Here, the nitrogen content is appropriately adjusted in the above manner. If the nitrogen content is too low, the junction reaction may occur because the nitrogen-containing tungsten carbide layer 612D cannot be successfully used as a diffusion barrier. On the other hand, if the nitrogen content is too high, the SiN content contained in the nitrogen-containing tungsten carbide layer 612D may be high, and thus the contact resistance becomes high, resulting in deterioration of element performance. The thickness of the nitrogen-containing tungsten carbide layer 612D is in the range of between about 20 and 200 people. φ The gate stack structure according to the fifteenth embodiment includes a first intermediate structure and a second intermediate structure. The first intermediate structure includes a metal telluride layer and a first nitrogen-containing metal layer, and the second intermediate structure includes a second nitrogen-containing metal layer, a nitrogen-containing metal telluride layer, and a third nitrogen-containing metal layer. For example, the first intermediate structure is formed by stacking the titanium germanide layer 6 1 2A and the nitrogen-containing titanium layer 6 1 2B. The second intermediate structure is formed by stacking the nitrogen-containing tungsten layer 612C, the nitrogen-containing tungsten germanide layer 612D, and the nitrogen-containing tungsten layer 612E. The intermediate structure according to the first to fifteenth embodiments of the present invention can be implemented to control the gate electrode of the flash memory device in addition to the dynamic random access memory (DRAM) component. And the gate electrode of many logic components. Fig. 8 is a view showing a gate stack structure of a flash memory device in accordance with a sixteenth embodiment of the present invention. A tunneling oxide layer 702 corresponding to the gate insulating layer is formed over the substrate 707. A first polycrystalline sand electrode 703 for the floating gate FG is formed over the tunnel oxide layer 702. A dielectric layer 704 is formed over the first polysilicon electrode 703, and a second polysilicon electrode 507 for controlling the gate CG is formed over the dielectric layer 704. An intermediate structure 706 selected from the group consisting of intermediate structures of the various types described in the first to fifteenth embodiments of the present invention is formed over the second polysilicon electrode 705. The intermediate structure 706 includes a Ti/WNx/WSixNy intermediate structure in accordance with a first embodiment of the present invention. Therefore, the intermediate structure 706 is formed by continuously stacking the titanium layer 706A, the nitrogen-containing tungsten layer 706B, and the nitrogen-containing tungsten sulphide layer 706C. A tungsten electrode 707 and a hard mask 708 are formed over the intermediate structure 706. The symbol W and Η/M represent the tungsten electrode 707 and the hard cover 708, respectively. The gate stack structure of the flash memory device having the intermediate structure 706 as shown in Fig. 8 has a low sheet resistance and a contact resistance. Embodiments of the present invention can be applied to interconnections in various metals in addition to the gate electrode, for example, a bit line including an intermediate structure, a metal line, and a capacitor electrode. Furthermore, this embodiment of the invention can be applied to a gate stack structure of a semiconductor device that constitutes a dual polysilicon gate, wherein the double poly gate gate is composed of a first gate stack structure (including doping formed under the intermediate structure) a polycrystalline germanium electrode having an N-type impurity and a tungsten electrode formed over the intermediate structure) and a second gate stack structure of -60-200828425 (including a polycrystalline germanium electrode doped with a p-type impurity and formed over the intermediate structure) The tungsten electrode is composed of. Fig. 9 is a graph showing the sheet resistance (Rs) of the tungsten layer of each type of intermediate structure formed in accordance with the first to fifteenth embodiments of the present invention. The tungsten layer has a thickness of about 40 nm. It can be observed that the WSix/WNx intermediate structure is additionally applied by the CVD method and the PVD method over the Ti/WNX intermediate structure (ie,

Ti/WNx/CVD-WSix/WNx 結構及’Ti/WNx/PVD-WSh/WNx 結構) • 及施力□ WSixNy層(亦即,Ti/WNx/WSixNy結構)之情況中,減 少該鶴電極之片電阻。然而,因爲藉由CVD法無法在WNx 層上方適當地成長WSix層,所以需要藉由PVD法(例如: 濺鍍沉積法)在WN,層上方形成該WSh層。藉由使用鎢矽 化物濺鍍靶及氮氣之反應式濺鍍沉積法實施該WSixNy層之 形成。 將比較該 Ti/WNx/CVD-WSix/WNx中間結構、該 Ti/WNx/PVD-WSix/WNx 中間結構及該 Ti/WNx/WSixNy 中間結 φ 構之鎢電極的片電阻。該鎢電極之片電阻只在應用該 Ti/WNx/PVD-WSix/WNx中間結構之情況中是較低的,以及該 Ti/WNx/WSixNy中間結構係相同於應用WSix/WNx中間結構 之情況。在藉由該CVD法施加該WSix層之情況中,無法 在該WNx層上方均句地形成該”3:^層。結果’在該WNx 層上方產生結塊,因而增加該片電阻。相反地’若使用該 利用WSix濺鍍靶之濺鍍沉積法或該反應式濺鍍沉積法,則 可均勻地形成該 W S i X擴散層,藉此減少該鶴電極之片電 阻。 -61- 200828425 第10A至10C圖使用第3A圖所示之閘極堆疊結構來 描述閘極圖案化製程。第3A圖中所識別之相同元件符號在 此表示相同元件。 參考第10A圖,在基板800上方形成閘極絕緣層801, 其中在該基板80 1中實施離子佈植製程以形成隔離層、井 區及通道。 在該閘極絕緣層80 1上方形成圖案化第一導電層2 1。 在該圖案化第一導電層21上方形成中間結構22。在該中 φ 間結構22上方形成圖案化第二導電層23。 該圖案化第一導電層21包括高摻雜有P-型雜質(例 如:硼)或N-型雜質(例如:磷)之多晶矽層。該圖案化第一 導電層21亦可包括多晶矽鍺層(Si uGe,,其中X係在約0.01 與1 .〇間之範圍內)或矽化物層。例如:該矽化物層包括選 自由鎳(Ni)、鉻(C〇、鈷(Co)、鈦(Ti)、鎢(W)、钽(Ta)、給 (Hf)、鉻(Z〇及鉑(Pt)所組成之群組中之一。 該中間結構22包括圖案化鈦層(Ti) 22 A、圖案化含氮鎢 φ (WN〇層22B及圖案化含氮鎢矽化物(WSixNy)層22C。 該圖案化第二導電層23包括鎢層。藉由實施PVD法、 CVD法或ALD法形成該鎢層。該?¥0法包括使用鎢濺鍍靶 之濺鍍沉積法。 在該圖案化第二導電層23上方形成硬罩8 02。可省略 該硬罩802之形成。該硬罩802包括氮化砂(ShN4)。 實施閘極圖案化製程,以形成該所述之閘極堆疊結 構。特別地,雖然未顯示,但是使用由光阻層所形成之蝕 刻障壁閘極遮罩(未顯示)來實施第一圖案化製程,以蝕刻 -62- 200828425 硬罩層、第二導電層、包括該中間結構22之鈦層、含氮鎢 層及含氮鎢矽化物層的複數層及第一導電層之一部分。結 果,在該閘極絕緣層8 0 1及該基板8 0 0上方形成包括該硬 罩802、該圖案化第二導電層23、該中間結構22及該圖案 化第一導電層2 1之結構。 參考第10B圖,移除該閘極遮罩,然後,實施前間隔 物製程,以防止該圖案化第二導電層23 (亦即,鎢層)及該 中間結構22之非均勻蝕刻及氧化。例如:形成Si3N4層803 .φ 做爲前間隔物層。 Λ參考第10C圖,實施第二閘極圖案化製程,以蝕刻該 Si 3Ν4層803及該圖案化第一導電層21之一部分。在第二 閘極圖案化製程期間,使用乾式飩刻法蝕刻該Si3N4層803 之一部分’以在該閘極堆疊結構之側壁上形成間隔物 803A。使用該等間隔物8〇3A做爲蝕刻障壁以蝕刻該圖案化 第一導電層2 1。元件符號2 1 A表示電極(例如:多晶矽電 極)。 φ 可將使用如上述前間隔物層之第一及第二閘極圖案化 製程應用至依據本發明之第二至第十五實施例的閘極堆疊 結構。 第1 1圖使用第3 A圖所示之閘極堆疊結構描述另一閘 極圖案化製程。第1 〇 A至丨0C圖所使用之相同元件符號在 此表示相同元件。 在基板800上方形成閘極絕緣層801,其中在該基板 8 00中實施離子佈植製程以形成隔離層、井區及通道。在 該閘極絕緣層8 0 1上方·形成圖案化第一導電層2 1 b。在該 -63- 200828425 圖案化第一導電層2 1 B上方形成中間結構2 2。在該中間結 構22上方形成圖案化第二導電層23。 該圖案化第一導電層21B包括高摻雜有p -型雜質(例 如:硼)或N -型雜質(例如:磷)之多晶矽層。該圖案化第一 導電層21B亦可包括多晶砂錯層(.Sii^xGex,其中X係在約 0 · 0 1與1.0間之範圍內)或矽化物層。例如:該矽化物層包 括選自由鎳(Ni)、鉻(Cr)、鈷(Co)、鈦(Ti)、鎢(W)、钽(Ta)、 給(Hf)、鉻(Zr)及鉑(Pt)所組成之群組中之一。 φ 該中間結構22包括圖案化鈦層(Ti)22A、圖案化含氮鎢 (WNX)層22B及圖案化含氮鎢矽化物(WShNO層22C。 該圖案化第二導電層23包括鎢層。藉由實施PVD法、 CVD法或ALD法形成該鎢層。該PVD法包括使用鎢濺鍍靶 之濺鍍沉積法。 在該圖案化第二導電層23上方形成硬遮罩802。可省 赂該硬遮罩802之形成。該硬遮罩802包括氮化矽(Si3N4)。 實施閘極圖案化製程,以形成該所述之閘極堆疊結構。特 φ 別地,雖然未顯示,但是使用由光阻層所形成之飩刻障壁 閘極遮罩(未顯示)來同時蝕刻硬罩層、第二導電層、包括 該中間結構22之鈦層、含氮鎢層及含氮鎢矽化物層的複數 層及第一導電層之部分。結果,在該閘極絕緣層801及該 基板800上方形成包括該硬罩802、該圖案化第二導電層 23、該中間結構22及該圖案化第一導電層21B之結構。選 擇立即實施鈾刻而不使用前間隔物層之閘極圖案化製程’ 以取代使用該前間隔物層之包含兩個步驟的閘極圖案化製 程。可將不使用該前間隔物層之閘極圖案化製程應用至依 -64- 200828425 據本發明之第二至第十五實施例的閘極堆疊結構。 依據本發明之實施例,由在鎢電極與多晶矽電極間所 配置之多個薄層(包含鈦、鎢、矽及氮或每一層包含氮)所 構成之中間.結構可允許獲得和 poly-Si/WNx/W 及 poly-Si/WNx/WSh/W中間結構一樣低之片電阻。因此,可 減少閘極堆疊結構之高度,因而可容易地獲得製程整合。 由於硼穿透或硼向外擴散之減少,可減少多晶矽空乏 效應,以及因此,可增加PM0SFET之操作電流。此外,在 該鎢電極與該多晶矽電極間可獲得非常低接觸電阻,因而 有利於高速元件之製造。 至於形成用以製造高速/高密度/低功率記憶體元件之 鎢多晶砍閘極的方法,可藉由實施由多個薄膜(包含鈦、 鎢、矽及氮,或每一薄膜包含氮)所構成之中間結構以獲得 低接觸電阻及低多晶矽空乏效應。 雖然已參考該等特定實施例來描述本發明,但是熟習 該項技藝者將明顯易知在不脫離下面請求項所界定之本發 明的精神及範圍內可實施各種變更及修改。 【圖式簡單說明】 第1 A至1 C圖描述典型鎢多晶矽閘極之閘極堆疊結構。 第2A圖係描述每一型態之中間結構在鎢與多晶矽間 之接觸電阻的曲線圖。 第2B圖係描述每一型態之閘極堆疊結構的硼濃度之 深度輸廓的曲線圖。 第2C圖係描述每一型態之中間結構的片電阻之曲線 圖。 -65- 200828425 第3 A圖描述依據本發明之第一實施例的閘極堆疊結 構。 第3B圖係在藉由物理氣相沉積(PVD)法在鎢氮化物層 之上部分上方形成鎢矽氮化物層後所獲得之影像。 第3C圖描述依據本發明之第二實施例的閘極堆疊結 構。 第3D圖描述依據本發明之第三實施例的閘極堆疊結 構。 φ 第3 E圖描述在退火製程後之閘極堆疊結構的影像。 第4A圖描述依據本發明之第四實施例的閘極堆疊結 構。 第4B圖描述依據本發明之第五實施例的閘極堆疊結 構。 第4C圖描述依據本發明之第六實施例的閘極堆疊結 構。 第5 A圖描述依據本發明之第七實施例的閘極堆疊結 • 構 ° 第5 B圖描述依據本發明之第八實施例的閘極堆疊結 構。 第5 C圖描述依據本發明之第九實施例的閘極堆疊結 構。 第6 A圖描述依據本發明之第十實施例的閘極堆疊結 構。 第6B圖描述依據本發明之第十一實施例的閘極堆疊 結構。 -66- 200828425 第6C圖描述依據本發明之第十二實施例的閘極堆疊 結構。 第7A圖描述依據本發明之第十三實施例的閘極堆疊 結構。 第7B圖描述在藉由實施個別化學氣相沉積(Cvd)及物 理氣相沉積(PVD)法在含氮鎢層上方形成鎢矽化物層後所 配置之結構的影像。 第7 C圖描述依據本發明之第十四實施例的閘極堆疊 _ 結構。 第7 D圖描述依據本發明之第十五實施例的閘極堆疊 結構。 第8圖描述依據本發明之第十六實施例的閘極堆疊結 構。 第9圖係描述依據本發明之實施例的每一型態之中間 結構的鎢電極之片電阻之曲線圖。 第10A至10C圖係描述依據本發明之實施例的閘極圖 φ 案化方法以獲第3 A圖所述之閘極堆疊結構的剖面圖。 第1 1圖係使用第3A圖所示之閘極堆疊結構描述閘極 圖案化方法之剖面圖。 【主要元件符號說明】 11 多晶矽層 12 鎢氮化物(WN)層 13 鎢(W)層 14 鎢矽化物(WSix)層 21 第一導電層 -67· 200828425Ti/WNx/CVD-WSix/WNx structure and 'Ti/WNx/PVD-WSh/WNx structure) • And force application □ WSixNy layer (ie, Ti/WNx/WSixNy structure), reduce the crane electrode Chip resistance. However, since the WSix layer cannot be appropriately grown over the WNx layer by the CVD method, it is necessary to form the WSH layer over the layer by the PVD method (for example, sputtering deposition method). The formation of the WSixNy layer was carried out by reactive sputtering deposition using a tungsten ruthenium sputter target and nitrogen. The sheet resistance of the Ti/WNx/CVD-WSix/WNx intermediate structure, the Ti/WNx/PVD-WSix/WNx intermediate structure, and the Ti/WNx/WSixNy intermediate junction φ tungsten electrode will be compared. The sheet resistance of the tungsten electrode is only low in the case of applying the Ti/WNx/PVD-WSix/WNx intermediate structure, and the Ti/WNx/WSixNy intermediate structure is the same as in the case of applying the WSix/WNx intermediate structure. In the case where the WSix layer is applied by the CVD method, the "3:^ layer cannot be formed uniformly over the WNx layer. As a result, agglomeration is generated over the WNx layer, thereby increasing the sheet resistance. Conversely 'If the sputtering deposition method using the WSix sputtering target or the reactive sputtering deposition method is used, the WS i X diffusion layer can be uniformly formed, thereby reducing the sheet resistance of the crane electrode. -61- 200828425 The 10A to 10C diagram describes the gate patterning process using the gate stack structure shown in Fig. 3A. The same component symbols identified in Fig. 3A denote the same components herein. Referring to Fig. 10A, a gate is formed over the substrate 800. a pole insulating layer 801, wherein an ion implantation process is performed in the substrate 80 1 to form an isolation layer, a well region, and a via. A patterned first conductive layer 2 1 is formed over the gate insulating layer 80 1 . An intermediate structure 22 is formed over the first conductive layer 21. A patterned second conductive layer 23 is formed over the intermediate φ structure 22. The patterned first conductive layer 21 includes a highly doped P-type impurity (for example, boron). Or polymorphism of N-type impurities (eg phosphorus) The patterned first conductive layer 21 may also include a polysilicon layer (Si uGe, wherein X is in the range of about 0.01 and 1.) or a germanide layer. For example, the germanide layer includes a layer selected from Nickel (Ni), chromium (C〇, cobalt (Co), titanium (Ti), tungsten (W), tantalum (Ta), (Hf), chromium (Z〇 and platinum (Pt) The intermediate structure 22 includes a patterned titanium layer (Ti) 22 A, a patterned nitrogen-containing tungsten φ (WN 〇 layer 22B, and a patterned nitrogen-containing tungsten lanthanide (WSixNy) layer 22C. The patterned second conductive layer 23 includes a tungsten layer. The tungsten layer is formed by performing a PVD method, a CVD method, or an ALD method. The method includes a sputtering deposition method using a tungsten sputtering target. A hard layer is formed over the patterned second conductive layer 23. The cover 802. The formation of the hard cover 802 may be omitted. The hard cover 802 includes silicon nitride (ShN4). A gate patterning process is performed to form the gate stack structure. In particular, although not shown, However, the first patterning process is performed using an etch barrier gate mask (not shown) formed by the photoresist layer to etch the -62-200828425 hard mask layer, the second conductor An electrical layer, a titanium layer including the intermediate structure 22, a plurality of layers of a nitrogen-containing tungsten layer and a nitrogen-containing tungsten germanide layer, and a portion of the first conductive layer. As a result, the gate insulating layer 810 and the substrate 80 The structure including the hard mask 802, the patterned second conductive layer 23, the intermediate structure 22, and the patterned first conductive layer 21 is formed over 0. Referring to FIG. 10B, the gate mask is removed, and then, A pre-spacer process is performed to prevent non-uniform etching and oxidation of the patterned second conductive layer 23 (i.e., the tungsten layer) and the intermediate structure 22. For example, a Si3N4 layer 803.φ is formed as a front spacer layer. Referring to FIG. 10C, a second gate patterning process is performed to etch the Si 3 Ν 4 layer 803 and a portion of the patterned first conductive layer 21. During the second gate patterning process, a portion of the Si3N4 layer 803 is etched using a dry etch to form spacers 803A on the sidewalls of the gate stack. The spacers 8〇3A are used as an etch barrier to etch the patterned first conductive layer 21. The symbol 2 1 A represents an electrode (for example, a polysilicon electrode). φ The first and second gate patterning processes using the front spacer layer as described above can be applied to the gate stack structure according to the second to fifteenth embodiments of the present invention. Figure 11 depicts another gate patterning process using the gate stack structure shown in Figure 3A. The same component symbols used in the first to fourth OC diagrams denote the same components. A gate insulating layer 801 is formed over the substrate 800, wherein an ion implantation process is performed in the substrate 800 to form an isolation layer, a well region, and a via. A patterned first conductive layer 2 1 b is formed over the gate insulating layer 80 1 . An intermediate structure 2 2 is formed over the patterned first conductive layer 2 1 B from the -63-200828425. A patterned second conductive layer 23 is formed over the intermediate structure 22. The patterned first conductive layer 21B includes a polysilicon layer highly doped with a p-type impurity (e.g., boron) or an N-type impurity (e.g., phosphorus). The patterned first conductive layer 21B may also include a polycrystalline sand stagger layer (.Sii^xGex, wherein the X system is in a range between about 0. 01 and 1.0) or a vaporized layer. For example, the telluride layer comprises a layer selected from the group consisting of nickel (Ni), chromium (Cr), cobalt (Co), titanium (Ti), tungsten (W), tantalum (Ta), (Hf), chromium (Zr), and platinum. One of the groups consisting of (Pt). φ The intermediate structure 22 includes a patterned titanium layer (Ti) 22A, a patterned nitrogen-containing tungsten (WNX) layer 22B, and a patterned nitrogen-containing tungsten germanide (WShNO layer 22C. The patterned second conductive layer 23 includes a tungsten layer. The tungsten layer is formed by performing a PVD method, a CVD method, or an ALD method. The PVD method includes a sputtering deposition method using a tungsten sputtering target. A hard mask 802 is formed over the patterned second conductive layer 23. The hard mask 802 is formed. The hard mask 802 includes tantalum nitride (Si3N4). A gate patterning process is performed to form the gate stack structure. Specifically, although not shown, it is used. An etched barrier gate mask (not shown) formed by the photoresist layer simultaneously etches the hard mask layer, the second conductive layer, the titanium layer including the intermediate structure 22, the nitrogen-containing tungsten layer, and the nitrogen-containing tungsten germanide layer a plurality of layers and portions of the first conductive layer. As a result, the hard mask 802, the patterned second conductive layer 23, the intermediate structure 22, and the patterning layer are formed over the gate insulating layer 801 and the substrate 800. The structure of a conductive layer 21B. The uranium engraving is selected immediately without using the front spacer layer. a pole patterning process' to replace the two-step gate patterning process using the front spacer layer. A gate patterning process that does not use the front spacer layer can be applied to the invention according to the invention -64-200828425 The gate stack structure of the second to fifteenth embodiments. According to an embodiment of the present invention, a plurality of thin layers (including titanium, tungsten, tantalum, and nitrogen or each layer included) disposed between the tungsten electrode and the polysilicon electrode The intermediate structure of nitrogen) allows for a sheet resistance as low as that of the poly-Si/WNx/W and poly-Si/WNx/WSh/W intermediate structures. Therefore, the height of the gate stack structure can be reduced, thereby Easily obtain process integration. Due to the reduction of boron penetration or boron out-diffusion, the polysilicon vacancy effect can be reduced, and therefore, the operating current of the PMOS transistor can be increased. Further, very low contact can be obtained between the tungsten electrode and the polysilicon electrode. Resistor, thus facilitating the manufacture of high speed components. As for the method of forming a tungsten polycrystalline gate for manufacturing high speed/high density/low power memory components, it can be implemented by a plurality of thin films (including titanium Intermediate structure of tungsten, tantalum and nitrogen, or each film comprising nitrogen) to achieve low contact resistance and low polysilicon vacancy effect. Although the invention has been described with reference to the specific embodiments, those skilled in the art will It is apparent that various changes and modifications can be made without departing from the spirit and scope of the invention as defined in the following claims. [FIG. 1A-1C] FIG. 1A to 1C depict a gate stack structure of a typical tungsten polysilicon gate. Figure 2A is a graph depicting the contact resistance between tungsten and polysilicon in the intermediate structure of each type. Figure 2B is a graph depicting the depth profile of the boron concentration for each type of gate stack structure. Figure 2C is a graph depicting the sheet resistance of the intermediate structure of each type. -65- 200828425 Figure 3A depicts a gate stack structure in accordance with a first embodiment of the present invention. Fig. 3B is an image obtained by forming a tungsten germanium nitride layer over a portion above the tungsten nitride layer by physical vapor deposition (PVD). Fig. 3C depicts a gate stack structure in accordance with a second embodiment of the present invention. Fig. 3D depicts a gate stack structure in accordance with a third embodiment of the present invention. φ Figure 3E depicts an image of the gate stack structure after the annealing process. Fig. 4A depicts a gate stack structure in accordance with a fourth embodiment of the present invention. Fig. 4B depicts a gate stack structure in accordance with a fifth embodiment of the present invention. Fig. 4C depicts a gate stack structure in accordance with a sixth embodiment of the present invention. Fig. 5A depicts a gate stack junction in accordance with a seventh embodiment of the present invention. Fig. 5B depicts a gate stack structure in accordance with an eighth embodiment of the present invention. Fig. 5C depicts a gate stack structure in accordance with a ninth embodiment of the present invention. Fig. 6A depicts a gate stack structure in accordance with a tenth embodiment of the present invention. Fig. 6B depicts a gate stack structure in accordance with an eleventh embodiment of the present invention. -66- 200828425 Figure 6C depicts a gate stack structure in accordance with a twelfth embodiment of the present invention. Fig. 7A depicts a gate stack structure in accordance with a thirteenth embodiment of the present invention. Figure 7B depicts an image of the structure disposed after formation of a tungsten germanide layer over a nitrogen-containing tungsten layer by performing individual chemical vapor deposition (Cvd) and physical vapor deposition (PVD) methods. Figure 7C depicts a gate stack _ structure in accordance with a fourteenth embodiment of the present invention. Fig. 7D depicts a gate stack structure in accordance with a fifteenth embodiment of the present invention. Fig. 8 depicts a gate stack structure in accordance with a sixteenth embodiment of the present invention. Fig. 9 is a graph showing the sheet resistance of a tungsten electrode of an intermediate structure of each type according to an embodiment of the present invention. 10A through 10C are cross-sectional views showing a gate stack structure according to an embodiment of the present invention to obtain a gate stack structure as shown in Fig. 3A. Fig. 1 is a cross-sectional view showing the gate patterning method using the gate stack structure shown in Fig. 3A. [Main component symbol description] 11 Polysilicon layer 12 Tungsten nitride (WN) layer 13 Tungsten (W) layer 14 Tungsten germanide (WSix) layer 21 First conductive layer -67· 200828425

21 A 21 B 22 22A 22B 22C 23 31 32 32A 3 2B 33 41 42 42A 42B 42C 43 51 52 52 A 52B 52C 52D 53 電極 圖案化第一導電層 · 中間結構 鈦層 含氮鎢(WNx)層 含氮鎢矽化物(WShNy)層 第二導電層 第一導電層 中間結構 鈦層 含氮鎢矽化物(WSixNy)層 第二導電層 第一導電層 中間結構 鈦層 含氮鎢矽化物(WSixNy)層 含氮鎢(WNX)層 第二導電層 第一導電層 中間結構 鈦(T i)層 第一含氮鎢(WNX)層 含氮鎢矽化物(WSixNy)層 第二含氮鎢(WN〇層 第二導電層 -68- 20082842521 A 21 B 22 22A 22B 22C 23 31 32 32A 3 2B 33 41 42 42A 42B 42C 43 51 52 52 A 52B 52C 52D 53 Electrode patterned first conductive layer · Intermediate structure Titanium layer Nitrogen-containing tungsten (WNx) layer containing nitrogen Tungsten telluride (WShNy) layer second conductive layer first conductive layer intermediate structure titanium layer nitrogen-containing tungsten germanide (WSixNy) layer second conductive layer first conductive layer intermediate structure titanium layer nitrogen-containing tungsten germanide (WSixNy) layer Nitrogen tungsten (WNX) layer second conductive layer first conductive layer intermediate structure titanium (T i) layer first nitrogen-containing tungsten (WNX) layer nitrogen-containing tungsten germanide (WSixNy) layer second nitrogen-containing tungsten (WN layer Two conductive layers -68- 200828425

61 第一導電層 62 中間結構 62A 鈦(Τι)層 62B 第一含氮鎢(WNX)層 62 C 鎢矽化物(WSi〇層 62D 第二含氮鎢(WNX)層 63 第二導電層 201 第一導電層 202 中間結構 202A 含氮鈦(ΤιΝχ)層 20 2 B 含氮鎢(WNX)層 202C 含氮鎢矽化物(WSixNy)層 203 第二導電層 211 第一導電層 212 中間結構 212A 鈦矽化物層 212B 含氮鈦(1:1仏)層 212C 含氮鎢(11)層 21 2D 含氮鎢矽化物(WSuNy)層 213 第二導電層 301 第一導電層 3 02 中間結構 3 0 2 A 含氮鈦(ΤιΝχ)層 302B 含氮鎢矽化物(WShNy)層 303 第二導電層 -69- 200828425 導電層 結構 化物(TiSu)層 鈦(1^仏)層 鎢矽化物(WShNy)層 導電層 導電層 結構61 first conductive layer 62 intermediate structure 62A titanium (Τι) layer 62B first nitrogen-containing tungsten (WNX) layer 62 C tungsten germanide (WSi germanium layer 62D second nitrogen-containing tungsten (WNX) layer 63 second conductive layer 201 A conductive layer 202 intermediate structure 202A nitrogen-containing titanium (TiO 2 ) layer 20 2 B nitrogen-containing tungsten (WNX) layer 202C nitrogen-containing tungsten germanide (WSixNy) layer 203 second conductive layer 211 first conductive layer 212 intermediate structure 212A titanium germanium Layer 212B Nitrogen-containing titanium (1:1 仏) layer 212C Nitrogen-containing tungsten (11) layer 21 2D Nitrogen-containing tungsten lanthanide (WSuNy) layer 213 Second conductive layer 301 First conductive layer 3 02 Intermediate structure 3 0 2 A Nitrogen-containing titanium (ITO) layer 302B nitrogen-containing tungsten germanide (WShNy) layer 303 second conductive layer-69- 200828425 conductive layer structure (TiSu) layer titanium (1^仏) layer tungsten germanide (WShNy) layer conductive layer Conductive layer structure

鈦(;111)層 鎢矽化物(WSiXNy)層Titanium (;111) layer tungsten germanide (WSiXNy) layer

鎢(WNX)I 導電層 導電層 結構Tungsten (WNX) I conductive layer conductive layer structure

311 第一 312 中間 312A 鈦矽 3 12B 含氮 312C 含氮 313 第二 401 第一 402 中間 402A 含氮 40 2B 含氮 402C 含氮 403 第二 411 第一 412 中間 412A 鈦矽 412B 含氮 4 12C 含氮 412D 含氮 化物(1^13〇層 鈦(TiNx)層 鎢矽化物(WShNy)層 鎢(,1)層 413 第二導電層 501 第一 502 中間 502A 含氮 502B 第一 502C 含氮 502D 第二 導電層 結構 鈦(TiNx)i 含氮鎢(,1)層 鎢矽化物(WSixNy)層 含氮鎢(WNX)層 -70-311 First 312 Intermediate 312A Titanium 矽 3 12B Nitrogen 312C Nitrogen 313 Second 401 First 402 Intermediate 402A Nitrogen 40 2B Nitrogen 402C Nitrogen 403 Second 411 First 412 Intermediate 412A Titanium 矽 412B Nitrogen 4 12C Nitrogen 412D Nitride (1^13 Titanium Titanium (TiNx) Titanium Telluride (WShNy) Titanium (1) Layer 413 Second Conductive Layer 501 First 502 Intermediate 502A Nitrogen 502B First 502C Nitrogen 502D Two conductive layer structure titanium (TiNx) i nitrogen-containing tungsten (, 1) layer tungsten germanide (WSixNy) layer containing nitrogen tungsten (WNX) layer -70-

200828425 503 511 512 5 12A 5 1 2 B 5 12C 512D 5 12E200828425 503 511 512 5 12A 5 1 2 B 5 12C 512D 5 12E

601 602 602A 602B 602C 602D 603601 602 602A 602B 602C 602D 603

612 612A 612B 6 1 2 C 612D 612E 613 第二導電層 第一導電層 中間結構 鈦矽化物(TiSix)層 含氮鈦(TiN〇層 第一含氮鎢(WNX)層 含氮鎢矽化物(WShNy)層 第二含氮鎢層 第二導電層 第一導電層 中間結構 含氮鈦(ΊΠΝχ)層' 第一含氮鎢(WN〇層 鎢矽化物(W Six)層 第二含氮鎢(WNX:^ 第二導電層 第一導電層 中間結構 鈦矽化物(TiSix)^ 含氮鈦(TiNx)層 第一含氮鎢(WN〇層 含氮鎢矽化物(WShNy)層 第二含氮鎢層 第二導電層 基板 -71- 701 200828425 702 穿隧氧化層 703 第一多晶矽電極 704 介電層 705 第二多晶矽電極 706 中間結構 706A 鈦層 706B 含氮鎢層 70 6C 含氮鎢矽化物層 707 鶴電極 708 硬罩 800 基板 801 閘極絕緣層 802 硬罩 803 S i 3 N 4 層 803 A 間隔物 CG 控制閘極 FG 浮動閘極 H/M 硬罩 Rc 接觸電阻 Rs 片電阻 W 鶴電極 -72-612 612A 612B 6 1 2 C 612D 612E 613 Second Conductive Layer First Conductive Layer Intermediate Structure Titanium Telluride (TiSix) Layer Nitrogen Titanium (TiN〇 Layer First Nitrogen Containing Tungsten (WNX) Layer Nitrogen Tungsten Telluride (WShNy) Layer second nitrogen-containing tungsten layer second conductive layer first conductive layer intermediate structure nitrogen-containing titanium (ΊΠΝχ) layer 'first nitrogen-containing tungsten (WN〇 layer tungsten germanide (W Six) layer second nitrogen-containing tungsten (WNX) :^ Second conductive layer First conductive layer Intermediate structure Titanium telluride (TiSix) ^ Nitrogen-containing titanium (TiNx) layer First nitrogen-containing tungsten (WN〇 layer Nitrogen-containing tungsten telluride (WShNy) layer Second nitrogen-containing tungsten layer Second conductive layer substrate-71-701 200828425 702 Tunneling oxide layer 703 First polysilicon electrode 704 Dielectric layer 705 Second polysilicon electrode 706 Intermediate structure 706A Titanium layer 706B Nitrogen-containing tungsten layer 70 6C Nitrogen-containing tungsten Object layer 707 Crane electrode 708 Hard cover 800 Substrate 801 Gate insulating layer 802 Hard cover 803 S i 3 N 4 Layer 803 A Spacer CG Control gate FG Floating gate H/M Hard cover Rc Contact resistance Rs Sheet resistance W Crane Electrode-72-

Claims (1)

200828425 十、申請專利範圍: 1. 一種製造半導體元件之方法,該方法包含: 於基板上方形成第一導電層; 於該第一導電層上方形成中間結構’其中該中間結構係 形成堆疊結構’包含至少第一金屬層與含氮金屬矽化物 層;及 於該中間結構上方形成第二導電層。 2. 如申請專利範圍第1項之方法,其中形成該中間結構包 φ 含於該第一導電層上方依序堆疊第一金屬層、第二金屬 層及含氮金屬砂化物層。 3 ·如申請專利範圍第1項之方法,其中形成該中間結構包 含於該第一導電層上方依序堆疊第一金屬層、含氮金屬 矽化物層、及第二金屬層。 4 ·如申請專利範圍第1項之方法,其中形成該中間結構包 含依序堆疊第一金屬層、第二金屬層、含氮金屬矽化物 層、及第三金屬層。 5. 如申η靑專利軸圍弟1項之方法,其中該第一金屬層包含 純金屬層與含氮金屬層之一。 6. 如申請專利範圍第5項之方法,其中該純金屬層包含鈦 層與钽層之一 ’及該含氮金屬層包含含氮鈦層與含氮鉬 層之一 ° 7 ·如申請專利範圍第5項之方法’其中該純金屬層係形成 約10 A 到約5 0 A的厚度。 8·如申請專利範圍第5項之方法,其中氮對該含氮金屬層 -73- 200828425 中金屬之原子比例範圍從約0.2到約0.8。 9. 如申請專利範圍第2項之方法,其中該第二金屬層包含 含氮鎢層與含氮鈦鎢層之一。 10. 如申請專利範圍第3項之方法,其中該第二金屬層包含 含氮鎢層與含氮鈦鎢層之一。 1 1.如申請專利範圍第4項之方法,其中該第二金屬層與該 第三金屬層之每層包含含氮鎢層與含氮鈦鎢層之一。 12.如申請專利範圍第1項之方法,其中該含氮金屬矽化物 # 層係藉由於氮氣環境中以金屬矽化物濺鍍靶實施反應式 濺鍍沈積法形成。 1 3 ·如申請專利範圍第1項之方法,其中該含氮金屬矽化物 層包含含氮鎢矽化物層、含氮鈦矽化物層、及含氮鉅矽 化物層之一。 14.如申請專利範圍第13項之方法,其中該含氮金屬矽化 物層具有約10%到約60%的氮含量,且其矽比金屬之原子 比例範圍從約0.5到約3.0。 ® 1 5 .如申請專利範圍第1項之方法,其中該第一導電層包含 從由多晶矽層、多晶矽鍺層及矽化物層所組成之群組中 選擇的一種,且該第二導電層包含鎢層。 16·—種製造半導體元件之方法,該方法包含: 於基板上方形成第一導電層; 於該第一導電層上方形成中間結構,其中該中間結構係 成堆疊結構,包含第一金屬層、第二金屬層、金屬矽化 物層、及第’三金屬層;及 -74- 200828425 於該中間結構上方形成第二導電層。 1 7 .如申請專利範圍第1 6項之方法’其中該金屬矽 係藉由實施反應式濺鍍沈積法形成。 1 8 .如申請專利範圍第1 6項之方法,其中該金屬矽 包含從由鎢矽化物層、鈦矽化物層、及鉬矽化物 成之群組中選擇的一種。 1 9 .如申請專利範圍第1 6項之方法,其中該第一、 及第三金屬層之每層包含含氮金屬層。 # 20.如申請專利範圍第19項之方法,其中該第二金 第三金屬層之每層包含含氮鎢層與含氮鈦鎢層之_ 2 1 .如申請專利範圍第2 0項之方法’其中該含氮鎢 約1 0 %到約6 0 %的氮含量,且氮比鎢之原子比例範 0.3 到約 1. 5。 2 2 .如申請專利範圍第1 9項之方法,其中該第一金 有氮比金屬之原子比例範圍從約〇. 2到約0 · 8。 2 3 .如申請專利範圍第1 9項之方法,其中該第一金 0 含含氮鈦層與含氮鉬層之一。 24.如申請專利範圍第16項之方法,其中該第一金 含鈦層與鉬層之一。 25 .如申請專利範圍第1 6項之方法,其中該第一導 含從由多晶砍層、多晶砂鍺層及政化物層所組成 中選擇的一種,且該第二導電層包含鎢層。 化物層 化物層 層所組 第二、 屬層與 —- 〇 層具有 圍從約 屬層具 屬層包 屬層包 電層包 之群組 -75-200828425 X. Patent application scope: 1. A method for manufacturing a semiconductor device, the method comprising: forming a first conductive layer over a substrate; forming an intermediate structure above the first conductive layer, wherein the intermediate structure forms a stacked structure At least a first metal layer and a nitrogen-containing metal telluride layer; and a second conductive layer formed over the intermediate structure. 2. The method of claim 1, wherein the intermediate structure package φ is formed to sequentially stack the first metal layer, the second metal layer and the nitrogen-containing metal sand layer above the first conductive layer. 3. The method of claim 1, wherein the intermediate structure comprises forming a first metal layer, a nitrogen-containing metal telluride layer, and a second metal layer sequentially over the first conductive layer. 4. The method of claim 1, wherein the intermediate structure comprises sequentially stacking the first metal layer, the second metal layer, the nitrogen-containing metal halide layer, and the third metal layer. 5. The method of claim 1, wherein the first metal layer comprises one of a pure metal layer and a nitrogen-containing metal layer. 6. The method of claim 5, wherein the pure metal layer comprises one of a titanium layer and a tantalum layer and the nitrogen-containing metal layer comprises one of a nitrogen-containing titanium layer and a nitrogen-containing molybdenum layer. The method of clause 5 wherein the pure metal layer forms a thickness of from about 10 A to about 50 A. 8. The method of claim 5, wherein the atomic ratio of nitrogen to the metal of the nitrogen-containing metal layer -73-200828425 ranges from about 0.2 to about 0.8. 9. The method of claim 2, wherein the second metal layer comprises one of a nitrogen-containing tungsten layer and a nitrogen-containing titanium tungsten layer. 10. The method of claim 3, wherein the second metal layer comprises one of a nitrogen-containing tungsten layer and a nitrogen-containing titanium tungsten layer. 1 1. The method of claim 4, wherein each of the second metal layer and the third metal layer comprises one of a nitrogen-containing tungsten layer and a nitrogen-containing titanium tungsten layer. 12. The method of claim 1, wherein the nitrogen-containing metal telluride # layer is formed by a reactive sputtering deposition method using a metal telluride sputtering target in a nitrogen atmosphere. The method of claim 1, wherein the nitrogen-containing metal telluride layer comprises one of a nitrogen-containing tungsten telluride layer, a nitrogen-containing titanium telluride layer, and a nitrogen-containing giant telluride layer. 14. The method of claim 13 wherein the nitrogen-containing metal telluride layer has a nitrogen content of from about 10% to about 60% and the atomic ratio of germanium to metal ranges from about 0.5 to about 3.0. The method of claim 1, wherein the first conductive layer comprises one selected from the group consisting of a polysilicon layer, a polysilicon layer, and a germanide layer, and the second conductive layer comprises Tungsten layer. a method of manufacturing a semiconductor device, the method comprising: forming a first conductive layer over a substrate; forming an intermediate structure over the first conductive layer, wherein the intermediate structure is in a stacked structure, including a first metal layer, a second metal layer, a metal telluride layer, and a 'third metal layer; and -74-200828425 form a second conductive layer over the intermediate structure. 17. The method of claim 16, wherein the metal is formed by performing a reactive sputtering deposition method. 18. The method of claim 16, wherein the metal ruthenium comprises one selected from the group consisting of a tungsten ruthenide layer, a titanium ruthenide layer, and a molybdenum telluride. The method of claim 16, wherein each of the first and third metal layers comprises a nitrogen-containing metal layer. The method of claim 19, wherein each of the second metal third metal layer comprises a nitrogen-containing tungsten layer and a nitrogen-containing titanium tungsten layer _ 2 1 as claimed in claim 20 5。 The method of the nitrogen-containing tungsten is from about 10% to about 60% of the nitrogen content, and the atomic ratio of nitrogen to tungsten is from 0.3 to about 1.5. 2 2. The method of claim 19, wherein the first gold has a nitrogen to metal atomic ratio ranging from about 0.2 to about 0.8. The method of claim 19, wherein the first gold 0 comprises one of a nitrogen-containing titanium layer and a nitrogen-containing molybdenum layer. 24. The method of claim 16, wherein the first gold comprises one of a titanium layer and a molybdenum layer. 25. The method of claim 16, wherein the first conductor comprises one selected from the group consisting of a polycrystalline chopped layer, a polycrystalline clam layer, and a clathrate layer, and the second conductive layer comprises tungsten Floor. The second layer, the genus layer, and the 〇 layer have a group surrounding the cladding layer of the subordinate layer.
TW096146218A 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure TWI488223B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060134326 2006-12-27
KR1020070041288A KR100844940B1 (en) 2006-12-27 2007-04-27 Semiconductor device with multi layer diffusion barrier and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW200828425A true TW200828425A (en) 2008-07-01
TWI488223B TWI488223B (en) 2015-06-11

Family

ID=39611685

Family Applications (3)

Application Number Title Priority Date Filing Date
TW096136856A TWI349956B (en) 2006-12-27 2007-10-02 Semiconductor device with gate stack structure
TW101107806A TWI447790B (en) 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure
TW096146218A TWI488223B (en) 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW096136856A TWI349956B (en) 2006-12-27 2007-10-02 Semiconductor device with gate stack structure
TW101107806A TWI447790B (en) 2006-12-27 2007-12-05 Method for fabricating semiconductor device with gate stack structure

Country Status (4)

Country Link
KR (1) KR100844940B1 (en)
CN (2) CN100550306C (en)
DE (1) DE102007060238B4 (en)
TW (3) TWI349956B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639227B (en) 2015-01-07 2018-10-21 聯華電子股份有限公司 Memory device and method for fabricating the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581318B (en) * 2015-06-03 2017-05-01 華邦電子股份有限公司 Gate conductor and fabrication method thereof
US9461137B1 (en) * 2015-09-11 2016-10-04 Applied Materials, Inc. Tungsten silicide nitride films and methods of formation
CN107845632A (en) * 2016-09-21 2018-03-27 联华电子股份有限公司 Dynamic random access memory
CN107221495B (en) * 2017-06-05 2018-07-20 睿力集成电路有限公司 A kind of semiconductor device structure and preparation method thereof
KR102446864B1 (en) * 2018-03-19 2022-09-23 삼성전자주식회사 Manufacturing method of a semiconductor device
US11075274B2 (en) 2019-01-18 2021-07-27 Micron Technology, Inc. Conductive line construction, memory circuitry, and method of forming a conductive line construction
EP4199110A4 (en) 2021-01-14 2024-04-10 Changxin Memory Tech Inc Manufacturing method for semiconductor structure, and two semiconductor structures
CN112864240B (en) * 2021-01-14 2022-05-31 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and two semiconductor structures

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908934B1 (en) 1997-10-07 2008-12-31 Texas Instruments Incorporated Method of manufacturing a gate electrode
US6271590B1 (en) * 1998-08-21 2001-08-07 Micron Technology, Inc. Graded layer for use in semiconductor circuits and method for making same
JP2000091441A (en) * 1998-09-16 2000-03-31 Sony Corp Semiconductor device and manufacture thereof
KR20020002176A (en) * 2000-06-29 2002-01-09 박종섭 Method for manufacturing gate electrode of semiconductor device
US6774442B2 (en) * 2000-07-21 2004-08-10 Renesas Technology Corp. Semiconductor device and CMOS transistor
JP4651848B2 (en) * 2000-07-21 2011-03-16 ルネサスエレクトロニクス株式会社 Semiconductor device, manufacturing method thereof, and CMOS transistor
KR100351907B1 (en) * 2000-11-17 2002-09-12 주식회사 하이닉스반도체 method for forming gate electrode semiconductor device
JP3781666B2 (en) * 2001-11-29 2006-05-31 エルピーダメモリ株式会社 Method for forming gate electrode and gate electrode structure
JP4191000B2 (en) * 2003-10-06 2008-12-03 エルピーダメモリ株式会社 Semiconductor device and manufacturing method thereof
JP2005197308A (en) * 2003-12-26 2005-07-21 Toshiba Corp Nonvolatile semiconductor storage device
US7030012B2 (en) * 2004-03-10 2006-04-18 International Business Machines Corporation Method for manufacturing tungsten/polysilicon word line structure in vertical DRAM
US20060228876A1 (en) * 2005-04-08 2006-10-12 Infineon Technologies Ag Method of manufacturing a semiconductor device
KR100618895B1 (en) * 2005-04-27 2006-09-01 삼성전자주식회사 Semiconductor device having polymetal gate electrode and method for manufacturing the saem
JP4690120B2 (en) * 2005-06-21 2011-06-01 エルピーダメモリ株式会社 Semiconductor device and manufacturing method thereof
KR20060134326A (en) 2005-06-22 2006-12-28 주식회사 하이닉스반도체 Apparatus for generating plasma and fabrication method for phase shift mask thereby
KR100625795B1 (en) * 2005-08-25 2006-09-18 주식회사 하이닉스반도체 Gate of semiconductor device and method for forming the same
JP2007109010A (en) 2005-10-13 2007-04-26 Fujitsu Ltd Data storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639227B (en) 2015-01-07 2018-10-21 聯華電子股份有限公司 Memory device and method for fabricating the same

Also Published As

Publication number Publication date
CN101257040A (en) 2008-09-03
CN101211771A (en) 2008-07-02
KR20080061224A (en) 2008-07-02
DE102007060238B4 (en) 2009-10-22
CN100550306C (en) 2009-10-14
TWI447790B (en) 2014-08-01
CN101257040B (en) 2013-10-30
TWI349956B (en) 2011-10-01
KR100844940B1 (en) 2008-07-09
TW200828424A (en) 2008-07-01
DE102007060238A1 (en) 2009-01-29
TW201250804A (en) 2012-12-16
TWI488223B (en) 2015-06-11

Similar Documents

Publication Publication Date Title
TW200828425A (en) Method for fabricating semiconductor device with gate stack structure
US9064854B2 (en) Semiconductor device with gate stack structure
US6583052B2 (en) Method of fabricating a semiconductor device having reduced contact resistance
US8629062B2 (en) Method for forming tungsten film having low resistivity and good surface roughness and method for forming wiring of semiconductor device using the same
US7030012B2 (en) Method for manufacturing tungsten/polysilicon word line structure in vertical DRAM
JP5604540B2 (en) Method for manufacturing semiconductor device having polymetal gate electrode
CN101154576A (en) Method of forming tungsten polymetal gate having low resistance
KR100669141B1 (en) Ohmic layer and method for forming the same, semiconductor device having the ohmic layer and method for manufacturing the same
US6514841B2 (en) Method for manufacturing gate structure for use in semiconductor device
JP4533155B2 (en) Semiconductor device and manufacturing method thereof
JP2005285809A (en) Semiconductor device and its fabrication process
US20090200672A1 (en) Method for manufacturing semiconductor device
US20060128125A1 (en) Gate Electrodes and the Formation Thereof
TW200419680A (en) Nitride and polysilicon interface with titanium layer
GB2344693A (en) Tungsten silicide nitride as an electrode for tantalum pentoxide devices
JP3361971B2 (en) Metal nitride conversion method and semiconductor device manufacturing method
KR101212568B1 (en) Gate stack of semiconductor device and manufacturing method thereof
KR20090032893A (en) Method for manufacturing semiconductor device
KR100380153B1 (en) Method of manufacturing semiconductor device
KR100744642B1 (en) Metal line of semiconductor device, gate electrode of semiconductor device and method forming the gate electrode