TW200814366A - Light emitting diode body with sub micron light correcting pillar and the method of making the same - Google Patents

Light emitting diode body with sub micron light correcting pillar and the method of making the same Download PDF

Info

Publication number
TW200814366A
TW200814366A TW95134026A TW95134026A TW200814366A TW 200814366 A TW200814366 A TW 200814366A TW 95134026 A TW95134026 A TW 95134026A TW 95134026 A TW95134026 A TW 95134026A TW 200814366 A TW200814366 A TW 200814366A
Authority
TW
Taiwan
Prior art keywords
light
layer
type
emitting diode
top surface
Prior art date
Application number
TW95134026A
Other languages
Chinese (zh)
Other versions
TWI310613B (en
Inventor
jia-hao Yang
Liang-Ru Lin
hai-wen Xu
zhi-kui Xu
Gui-Cheng Zhan
kuan-ren Zhong
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW95134026A priority Critical patent/TW200814366A/en
Publication of TW200814366A publication Critical patent/TW200814366A/en
Application granted granted Critical
Publication of TWI310613B publication Critical patent/TWI310613B/zh

Links

Landscapes

  • Led Devices (AREA)

Abstract

The invention provides a light emitting diode body with sub micron light correcting pillar and the method of making the same. The light emitting diode body includes: a planar substrate ; a quantum unit formed on the substrate for emitting light by the photo-electric effect; and two pieces of electrodes for providing electrical energy to the said quantum unit. During the patterning process for the mesa area, plural light correcting pillars rising straight upward from the first type cladding layer are etched deeply in the region of non-mesa area simultaneously. By the difference of diffraction indices between the light correction pillars with height of sub micron scale and the surrounding regions, the propagation direction for light emitted from the quantum unit through the side walls of mesa area can be changed to the upward direction. Therefore the brightness and light emitting area of light emitting diode body is increased.

Description

200814366 九、發明說明: 【發明所屬之技術領域】 θ本發明是有關於-種固態發光元件及其製造方法,特 別是指一種發光二極體及其製造方法。 【先前技術】200814366 IX. Description of the Invention: [Technical Field of the Invention] θ The present invention relates to a solid-state light-emitting element and a method of manufacturing the same, and in particular to a light-emitting diode and a method of manufacturing the same. [Prior Art]

由於固態發光元件具有壽 笔堡低、反應速率快、辨識率 種類之一 ’特別是發光二極體 生活中。 命長、省電、體積小、驅動 高等優點,是新—代的光源 已廣為應用在周遭的曰常 餐閱圖卜圖2,一般’發光二極體i包含_塊基材i 、至少-層蟲晶形成在該基材U上的量子單元Η、一層笔 電層13,及二片可提供電能的電極14。 該塊基材11是由晶格常數與該量子單元相匹配的材申 構成,舉例來說,該層量子單元12是屬氮化鎵系的半導選 材料時,該塊基材n則為易於磊晶的藍寶石。Since the solid-state light-emitting element has a low life span, a fast reaction rate, and one of the types of recognition rates, especially in the life of a light-emitting diode. The advantages of long life, power saving, small size, high driving, etc., are the new-generation light source that has been widely used in the surrounding common meals. Figure 2, the general 'light-emitting diode i contains _ block substrate i, at least A layer of insect crystals forms a quantum unit 该 on the substrate U, a layer of a pen layer 13, and two electrodes 14 that provide electrical energy. The block substrate 11 is composed of a lattice constant matching the quantum unit. For example, when the layer quantum unit 12 is a gallium nitride-based semi-conductive material, the block substrate n is Easy to epitaxial sapphire.

該層量子單元12自該基材u頂面向上蟲晶形成,具病 -層包括-與該基材U連接的底部124及一塊自該底苟 124中央區域向上一體凸伸之延伸部125的第一型披覆層 121 (cladding layer)、一層自該第一型批覆層i2i之延伸旬 125頂面向上形成的活性層m (π— 一層自該诗 性層123頂面向上形成的第二型批覆層122,及一層自該| 一塑批覆層122向上形成的導電層126,該第一、二型披憑 層121、122相對該活性層123形成量子能障而可以光電效 應產生光,且該第一型批覆層121之延伸部125、活性層 5 200814366 123、第二型批覆層122與導電層126構成業界所稱的mesa 平台。 该導電層126以可透光且可使電流分散均勻的材料構 成,例如銦錫氧化物(業界習稱ITO),可使得電流橫向均 句擴散流通,從而提昇該第一、二型彼覆層121、122與活 性層123以光電效應產生光的效率。The layer of quantum cells 12 is formed from the top surface of the substrate u, and the diseased layer includes a bottom portion 124 connected to the substrate U and an extension portion 125 extending integrally from the central portion of the bottom plate 124. a cladding layer 121, a layer of active layer m formed from the top surface of the first type of cladding layer i2i, 125 (a layer formed from the top surface of the poetic layer 123) a coating layer 122, and a conductive layer 126 formed upward from the plastic cladding layer 122, the first and second type cladding layers 121, 122 form a quantum energy barrier with respect to the active layer 123 to generate light by photoelectric effect, and The extension portion 125 of the first type of cladding layer 121, the active layer 5 200814366 123, the second type cladding layer 122 and the conductive layer 126 constitute a mesa platform called the industry. The conductive layer 126 is transparent and can evenly distribute current. The material composition, such as indium tin oxide (known in the industry as ITO), allows the current to flow laterally and uniformly, thereby improving the efficiency of the first and second type of cladding layers 121, 122 and the active layer 123 to generate light by photoelectric effect. .

該二片電極14呈彼此相對遠離的對角線排列設置,其 中一片電極14連接在該第一型披覆層121底部124的頂面 角落上並與該第一型批覆層121相歐姆接觸,另一片電極 14則連接在該導電^ 126上並經由該導電層126而與該第 二型批覆層122相歐姆接觸,而可對該量子單元12提供電 虽自該二片電極14施加電能時,電流經過該導電> 126橫向擴散分散流通,並在通過該第一、二型披覆層^ 、122與活性層123後產生光;該量子單元12產生的光 部分自mesa平台100以垂直於該導電層i26表面方向向^ 正向射出,部分則自mesa物周面向外射出而成編 mesa平台100正向 出的光量、強度、亮度均已經足夠,所以對側向光也就 再加導引仙,任其浪費;但是,若能有效將侧向光導 垂直正向行進,將可更進—步增加發光二極體!本身的 =度與㈣’㈣也可能增加發光二極㈣ 積。The two electrodes 14 are arranged diagonally opposite to each other, and one of the electrodes 14 is connected to the top corner of the bottom 124 of the first type of cladding layer 121 and is in ohmic contact with the first type of cladding layer 121. Another electrode 14 is connected to the conductive layer 126 and is in ohmic contact with the second type of cladding layer 122 via the conductive layer 126, and the quantum unit 12 can be supplied with electricity. When power is applied from the two electrodes 14 The current flows through the conductive > 126 laterally diffused and circulates, and generates light after passing through the first and second type cladding layers 122 and 122 and the active layer 123; the light generated by the quantum unit 12 is partially vertical from the mesa platform 100 The surface of the conductive layer i26 is emitted toward the positive direction, and the portion is emitted from the surface of the mesa. The amount of light, intensity, and brightness of the mesa platform 100 are sufficient, so the lateral light is added. Guide the fairy, let it waste; however, if you can effectively move the lateral light guide vertically forward, you can further increase the light-emitting diode! The inherent degree = (4) and (4) may also increase the luminous dipole (four) product.

【發明内容】 W 6 200814366 因此’本發明之目的,即在提供一種具有高發光亮度 與大發光面積的發光二極體。 而且,本發明之另一目的,即在提供一種具有高發光 亮度與大發光面積的發光二極體的製造方法。 於是,本發明一種具有次微米光修正柱的發光二極體 ’包含一塊基材、一層量子單元,及二片電極。 該基材呈板狀。 忒層量子單元具有一層包括一與該基材連接的底部及 一自該底部的中央區域向上凸起之延伸部的第一型披覆層 、一層自該第一型批覆層之延伸部頂面向上形成的活性層 、一層自該活性層頂面向上形成的第二型批覆層,及多數 根自該第一型披覆層底部的頂面向上形成的光修正柱,該 第、一型批覆層相對該活性層成量子能障而以光電效應 產生光,且該第一型彼覆層的延伸部與該活性層、第二型 坡覆層共同形成一俯供光自頂面正向及自侧面侧向射出的 平台,該多數根光修正柱與周遭介質的折射係數差使自該 平台侧面侧向射出的光的行進方向改變,而可實質向上正 向行進。 ▲旦該二片電極分別言免置在該第一型才比覆層底部頂面上與 °亥里子單70最上層結構的頂面上,且分別與該第一、二型 批覆層相歐姆接觸而可對該量子單元提供電能。 此外,本發明之具有次微米光修正柱的發光二極體的 ‘造方法,包含以下步驟。 首先以半導體材料自-塊板狀基材向上形成一層具有 7 200814366 一層第一型批覆層、一層第二型批覆層,及一層位於該第 一、二型批覆層間之活性層的量子單元,且該第一、二型 批復層相對該活性層形成量子能障而可以光電效應產生光 接著定義該量子單元頂面成一塊第一電極區、一塊環 =該第一電極區的令央區、一塊與該中央區相間隔的第二 电極區,及一塊環圍該中央區與第二電極區的外環區。SUMMARY OF THE INVENTION W 6 200814366 Therefore, it is an object of the present invention to provide a light-emitting diode having a high light-emitting luminance and a large light-emitting area. Moreover, another object of the present invention is to provide a method of manufacturing a light-emitting diode having high light-emitting luminance and a large light-emitting area. Thus, a light-emitting diode of the present invention having a sub-micron optical correction column comprises a substrate, a quantum unit, and two electrodes. The substrate is in the form of a plate. The 忒 layer quantum unit has a first type of cladding layer including a bottom portion connected to the substrate and an extending portion extending upward from a central portion of the bottom portion, and a layer extending from the top surface of the first type of cladding layer An active layer formed thereon, a second type of coating layer formed from a top surface of the active layer, and a plurality of light-correcting columns formed from a top surface of the bottom of the first type of coating layer, the first type of coating The layer forms a quantum energy barrier with respect to the active layer to generate light by a photoelectric effect, and the extension portion of the first type of the first layer and the active layer and the second type of slope layer together form a downward supply light from the top surface and The platform that is laterally emitted from the side surface, the difference in refractive index between the plurality of light-correcting columns and the surrounding medium changes the traveling direction of the light emitted laterally from the side of the platform, and can travel substantially in the forward direction. ▲The two electrodes are respectively placed on the top surface of the top layer of the top layer of the top layer of the top layer of the top layer of the top layer and the ohmic layer of the first and second type cladding layers respectively. The quantum unit can be supplied with electrical energy by contact. Further, the method for fabricating a light-emitting diode having a submicron optical correction column of the present invention comprises the following steps. Firstly, a quantum material having a first type of coating layer of 7 200814366, a second type of cladding layer, and an active layer between the first and second type cladding layers is formed upward from the semiconductor material from the plate-shaped substrate, and The first and second type batch layers form a quantum energy barrier with respect to the active layer and can generate light by a photoelectric effect, and then define a top surface of the quantum unit into a first electrode region, a ring = a central region of the first electrode region, and a block a second electrode region spaced from the central region, and an outer ring region surrounding the central region and the second electrode region.

八、;、後自忒畺子單元之外環區向下移除一塊深度至該第 型批覆層上半部的塊域,使對應該外環區留存之結構成 ^數根個別聳立的光修正柱,„,對應該中央區留存之 結構構成一個供内部以光電效應產生的光可自頂面正向及 自側面側向射出的平台。 再移除對應該第二電極區所形成的光修正柱。 _最後在該量子單元了頁面對應第—電極區的位置及該第 :型批覆層裸露出之頂面對應該第二電極區的位置上以導 电材料分卿成二片電極,即製得該具有次微米光修正柱 的發光二極體。 本卷明的功效在於在圖案化出mesa平台的過程中, 步成'出多數根自該第一型披覆層底底部向上聳立的光 =柱’藉由此等高度屬次微米尺度之光修正柱與其周遭 質的折射係數差’而可使對應自mesa平台側周面射出的 :光的行進方向改變’而實質垂直正向行進,進而增加 p 一極體的發光亮度與發光面積。 8 200814366 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内今中’類似的元件是以相同的編號來表示。 "參閱圖3、圖4,本發明一種具有次微米光修正柱的發 光二極體2的一第一較佳實施例,是包含一塊基材2ι、一 層屋晶形成在該基材21上的量子單元22,及二片用以提供 電能的電極23。 該塊基材21是由晶格常數與該量子單元22相匹配的 材料構成並成板狀,舉例來說,該量子單元22是屬氮化鎵 系的半導體材料時,該基材21則為易於磊晶的藍寶石。 該量子單元22具有一層包括一與該基材21連接的底 部224及一自該底部22之中央區域向上一體凸伸之延伸部 25的弟型披覆層221、一層自該第一型批覆層“I之延 伸部225頂面向上形成的活性層223、一層自該活性層223 頂面向上形成的第二型批覆層222,及多數根自該第一型披 後層221底部224頂面向上形成的光修正柱3,該第一、二 型批覆層221、222相對該活性層223成量子能障而以光電 效應產生光,該第一型批覆層221之延伸部225、活性層 223第一型批覆層222構成一可供光自頂面及側周面向外 射出的平台(即業界所稱的mesa平台1〇〇)。 芩閱圖5、圖6,該多數根光修正柱3的平均高度介於 9 200814366 1x10-〜2〇χ1〇-、,平均徑寬介於〇1χ1〇_7〜9χΐ〇Λη,分布密 度介於1〜2·5χ103 ( -2,每一根光修正柱3並包括一截 與該第-型批覆層221之構成結構相同並自該第—型批覆 層221底部224頂面一體向上凸伸的底段31、一截與該活 性層223之構成結構相同並自該底段31頂面—體向上凸伸 的中段32,及-截與該第二型批覆層222之構成結構相同 並自該中段32頂面-體向上凸伸的頂段%,然而受限於實 際製程(請容後再述),該每一根光修正柱3可能僅具有一 截或部分的底段31,或具有—截底段31與一截完整/及或 部分的中段32,或具有一截底段31、一截中段32與一截 完整/及或部分的頂段33,然而,無論該多數根光修正柱3 實際的結構為何,其與周遭介質(即空氣)的折射係數差 可使自該第一型批覆層221之延伸部225、活性層223、第 二型批覆層222構成之平台側周面向外射出的側向光的行 進方向改變,而實質向上正向行進。 參閱圖3、圖4,該二片電極23呈彼此相對遠離的對 角線排列设置,其中一片電極23連接在該第一型披覆層 221底部224頂面的角落上,並與該第一型批覆層221相歐 姆接觸,另一片電極23則連接在該第二型批覆層222頂面 的角落上,並與該第二型批覆層222相歐姆接觸,而可對 該量子單元22提供電能。 當自該二片電極23施加電能時,電流分散流通過該量 子單元22,而使該量子單元22以光電效應產生光子,進而 使该發光二極體2發光;該量子單元22產生的光,部分自 10 200814366 對應mesa平台100向外正向射出;部分則對應自㈣⑽平 台100側周面向外射出而成側向光,且因為該多數根光修 iMi 3 #周遭空氣介質形成類似於波導共振腔腔體與路徑 的效果’使此等側向光遵循菲料反射折射原理在此腔體 與路徑中不斷地修正改變入射角與反射角,最終以實質垂 直於A第一型批覆;| 222頂面方向正向行進,從而使得該 發光二極體2的發光面積,不但包含對應⑽平台頂面的 區域,同日守增加了該第一型批覆層221底部224頂面的區 域,且,同時使得該發光二極體2的發光亮度,不但包含 原本對應自mesa平台頂面正向射出的正向光亮度,同時也 增加了該些原本為側向光但被導引正向行進而成正向光的 發光亮度,參閱圖7,經過比較,發光二極體2的發光亮度 在各不同發光波長的條件下,均有效提昇約5/4倍以上。 上述本發明具有次微米光修正柱3的發光二極體2,在 配合以下的製程說明後,當可更加清楚的明白。 參閱圖8,製備上述發光二極體2時,是先進行步驟 71,以氮化鎵矽半導體材料自一塊板狀的藍寶石基材21向 上依序蟲晶形成一層第一型批覆層221、活性層223、第一 型批覆層222,使該第一、二型批覆層221、222相對該活 性層223形成量子能障而構成一可以光電效應產生光的旦 子單元21 〇 、里 接著以步驟72,在該量子單元21頂面(即第二層抵覆 層222表面)定義出一塊第一電極區、一塊環圍該第一^ 極區的中央區、一塊與該中央區相間隔的第二 11 200814366 -塊環圍該中央區與第二電極區的外環區。 ⑽一。後進行步知73,應用黃光微影技術先遮覆該塊量子 早疋21中央區與第―、二電極區後,自該外環區頂面向下 錢刻,除-塊深度至該第_型批覆層⑵上半部的塊域, j衣區對應留存之結構成該多數根個別聳立的光修正柱3 5守對應中央區留存之結構即構成光可自頂面正向及 自侧面側向射出的平台(即mesa平台100)。 此步驟可以應用以為業界所熟知的乾蝕刻技術,例如 通入氮氣(n2)、曱烷(Ch4)、氬氣(Α〇、氯(⑻、氯 化朋(BC13)、氟化碳(Cp4)、氟化石夕(SF6)等單一或混合 J 、、離子餘刻、感應麵合式電漿姓刻,或感應離子飿 刻,或使用氫氯酸(HC1)、硝酸(HN03)、氫氧化鉀(K0H)、 氫氧化鈉(Na0H)、硫酸(H2S〇4)、磷酸(H3P04)等單一或混合 各液之濕蝕刻技術進行,由於此等蝕刻技術以為業界所周 知,且並非本發明創作重點所在,故在此不多加詳細贅述 〇 接著進行步驟74,同樣應用黃光微影技術先遮覆該塊 中央區224、外環區與第一電極區後,自該第二電極區頂面 向下移除對應此區域的多數根光修正柱3。 最後進行步驟75,在該第一電極區與該第一型批覆層 221對應该弟二電極區的位置上,以導電材料分別形成二片 與v玄第一型批復層222與該第一型批覆層221相歐姆接觸 的電極23,並在一種鈍態氣氛下以1〇〇〜8〇(rc處理〇.5〜8〇 分鐘,使所成的二片電極23的導電材料融合,即完成該具 12 200814366 有次微米光修正柱3的發光二極體2的製備。 參閱圖9、® 10,本發明一種具有次微米光修正柱3 的發光二極體2的一第二較佳實施例,是與該第一較佳實 施例所述的發光二極體2相似,其不同處僅在於該層量子 單元22更具有一層形成在第二型批覆層222上的導電層4 ,是以可ϋ光且可使電流分散均勻的㈣,例如鋼錫氧化 物(業界習稱ΠΌ)構成,而可使得以電極23施加電能時 ,電流均勻地橫向擴散流通,從而提昇該量子單元22的内 部量子效率,由於其他結構均與該第一較佳實施例中所述 者相似,在此不再重複贅述。 參閱圖11,上述發光二極體2的製備,則是先進行步 驟81,以氮化鎵矽半導體材料自一塊板狀的藍寶石基材21 向上依序磊晶形成一層第一型批覆層221、活性層、第 一型批覆層222,並使得該第一、二型批覆層221、222相 對該活性層223形成量子能障而可以光電效應產生光。 接著進行步驟82,在8xl(T3T〇rr以下的真空環境壓力 ,亚在預定含氧比例之混合氣體的氣氛下,利用例如蒸鍍 義鑛準刀子雷射鍍膜專極為成熟的技術,以錮錫氧化 物形成在第二型批覆層222上形成導電層4,完成量子單元 22的製作。 然後進行步驟83,在該量子單元22頂面(即導電層4 表面)表面定義出一塊第一電極區、一塊環圍該第一電極 區的中央區、——塊與該中央區相間隔的第二電極區,及一 塊環圍該中央區與第二電極區的外環區。 13 2008143668. Afterwards, a block depth is removed from the outer ring zone of the die unit to a block domain of the upper half of the first type of cladding layer, so that the structure corresponding to the outer ring zone is formed into a plurality of individual light Correction column, „, the structure that is reserved for the central area constitutes a platform for the internal photoelectric effect to be emitted from the top surface and from the side side. The light formed by the corresponding second electrode area is removed. Correcting the column. _ Finally, in the position corresponding to the first electrode region of the page of the quantum cell and the exposed top of the first type of cladding layer facing the second electrode region, the conductive material is divided into two electrodes. That is, the light-emitting diode having the sub-micron light-correcting column is obtained. The effect of the present invention is that in the process of patterning the mesa platform, the step of forming a plurality of roots rises from the bottom of the first type of coating layer. The light = column 'by the height of the sub-micron-scale light-corrected column and the refractive index difference of its surrounding mass' can be made corresponding to the side of the mesa platform: the direction of travel of light changes 'substantially vertical forward Travel, which in turn increases the p-pole The above-mentioned and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the accompanying drawings. Before the present invention is described in detail, it is noted that in the following description, 'like elements are denoted by the same reference numerals. " Referring to Figures 3 and 4, the present invention has a sub-micron optical correction column. A first preferred embodiment of the light-emitting diode 2 is a quantum unit 22 comprising a substrate 2, a layer of house crystals formed on the substrate 21, and two electrodes 23 for supplying electrical energy. The substrate 21 is formed of a material having a lattice constant matched with the quantum unit 22, and is formed into a plate shape. For example, when the quantum unit 22 is a gallium nitride-based semiconductor material, the substrate 21 is easy to be polished. Crystal sapphire. The quantum unit 22 has a layer 224 including a bottom portion 224 connected to the substrate 21 and an extension portion 25 extending upward from the central portion of the bottom portion 22, and a layer from the first type The active layer 223 formed by the top surface of the extension portion 225 of the cladding layer 225, a second type of cladding layer 222 formed from the top surface of the active layer 223, and a plurality of roots 224 from the bottom of the first type of the rear layer 221 The first and second type cladding layers 221 and 222 are formed into a quantum energy barrier with respect to the active layer 223 to generate light by a photoelectric effect, and the extension portion 225 of the first type cladding layer 221 and the active layer are formed. The first type of cladding layer 222 of the first type 223 forms a platform for the light to be emitted from the top surface and the side surface of the side surface (that is, the mesa platform referred to in the industry). Referring to FIG. 5 and FIG. 6, the average height of the plurality of light-correcting columns 3 is between 9 200814366 1x10-~2〇χ1〇-, and the average diameter is between 〇1χ1〇_7~9χΐ〇Λη, and the distribution density is Each of the optical correction columns 3 includes a section identical to that of the first-type cladding layer 221 and protrudes upwardly from the top surface of the bottom portion 224 of the first-type cladding layer 221 at 1 to 2·5χ103 (−2). The bottom section 31, the middle section 32 which is identical in structure to the active layer 223 and protrudes upward from the top surface of the bottom section 31, and the section structure is the same as that of the second type cladding layer 222 and The top section of the middle section 32 is upwardly convex, but is limited by the actual process (please be described later), and each of the light correction columns 3 may have only one or a portion of the bottom section 31, or Having a truncated bottom section 31 and a section of the complete/and or partial section 32, or having a truncated bottom section 31, a section of midsection 32 and a section of complete/and or partial section 33, however, regardless of the majority of the light Correcting the actual structure of the column 3, the difference in refractive index from the surrounding medium (i.e., air) may be from the extension 225 of the first type of cladding layer 221 The traveling direction of the lateral light emitted from the outer side of the platform side of the active layer 223 and the second type of cladding layer 222 is changed, and proceeds substantially in the forward direction. Referring to FIG. 3 and FIG. 4, the two electrodes 23 are relatively far away from each other. Diagonally arranged, wherein a piece of the electrode 23 is connected to a corner of the top surface of the bottom portion 224 of the first type of cladding layer 221, and is in ohmic contact with the first type of cladding layer 221, and the other electrode 23 is connected thereto. The corner of the top surface of the second type of cladding layer 222 is in ohmic contact with the second type of cladding layer 222, and the quantum unit 22 can be supplied with electrical energy. When electrical energy is applied from the two electrodes 23, the current dispersion flow passes. The quantum unit 22 causes the quantum unit 22 to generate photons by photoelectric effect, thereby causing the light-emitting diode 2 to emit light; the light generated by the quantum unit 22 is partially emitted from the 10 200814366 corresponding to the mesa platform 100; Corresponding to the (4) (10) side of the platform 100 side of the circumferential surface of the lateral light, and because the majority of the light repair iMi 3 # surrounding air medium to form an effect similar to the waveguide resonator cavity and path 'to make these lateral light According to the principle of spectroscopic refraction, the incident angle and the reflection angle are continuously modified in the cavity and the path, and finally the material is forwardly oriented in a direction perpendicular to the top surface of the A type; 222, so that the light emitting diode The light-emitting area of 2 not only includes the area corresponding to the top surface of the platform (10), but also increases the area of the top surface of the bottom portion 224 of the first type of cladding layer 221, and at the same time, the light-emitting brightness of the light-emitting diode 2 not only includes the original Corresponding to the positive light intensity emitted from the top surface of the mesa platform, and also increasing the brightness of the forward light which is originally directed to the lateral light but guided forward, see Figure 7, after comparison, the light is emitted The luminance of the polar body 2 is effectively increased by about 5/4 times or more under the conditions of different emission wavelengths. The above-described light-emitting diode 2 of the present invention having the sub-micron optical correction column 3 can be more clearly understood after the following description of the process. Referring to FIG. 8, when the above-mentioned light-emitting diode 2 is prepared, step 71 is first performed to form a first-type cladding layer 221 from a plate-shaped sapphire substrate 21 by a gallium nitride germanium semiconductor material. The layer 223 and the first type of cladding layer 222 are formed such that the first and second type cladding layers 221 and 222 form a quantum energy barrier with respect to the active layer 223 to form a dendrite unit 21 which can generate light by photoelectric effect, and then step 72 a first electrode region, a central region surrounding the first electrode region, and a second portion spaced from the central region are defined on a top surface of the quantum unit 21 (ie, a surface of the second layer of the resist layer 222) 11 200814366 - The block encircles the outer ring zone of the central zone and the second electrode zone. (10) One. After step-by-step 73, the yellow light lithography technique is applied to cover the central region of the quantum early 疋21 and the first and second electrode regions, and then the top surface of the outer ring region is face-to-face, except for the block depth to the _ type The block domain of the upper half of the blanket layer (2), the structure corresponding to the retained area of the j-cloth area is the light-correcting column of the plurality of roots, and the structure of the light-correcting column 3 5 constituting the remaining area of the central area is formed from the top surface and from the side. The platform that is launched (ie the mesa platform 100). This step can be applied to dry etching techniques well known in the art, such as nitrogen (n2), decane (Ch4), argon (helium, chlorine ((8), chlorinated (BC13), carbon fluoride (Cp4)). , single or mixed J, ionic residual, inductive surface-type plasma, or inductive ion engraving, or use hydrochloric acid (HC1), nitric acid (HN03), potassium hydroxide ( Wet etching technique of single or mixed liquid such as K0H), sodium hydroxide (Na0H), sulfuric acid (H2S〇4), phosphoric acid (H3P04), etc., because these etching techniques are well known in the industry, and are not the focus of the present invention. Therefore, the detailed description is not repeated here, and then step 74 is performed. The yellow light lithography technique is also applied to cover the central region 224, the outer ring region and the first electrode region, and then the top surface of the second electrode region is removed downward. The majority of the light correction column 3 in this area is finally step 75, in the position of the first electrode region and the first type of cladding layer 221 corresponding to the second electrode region, two pieces of conductive material are respectively formed with v Xuandi The first type of batch layer 222 is ohmic to the first type of cladding layer 221 Touching the electrode 23, and in a passive atmosphere, 1 〇〇 to 8 〇 (rc treatment 〇. 5~8 〇 minutes, the conductive material of the formed two electrodes 23 is fused, that is, the completion of the device 12 200814366 has Preparation of the light-emitting diode 2 of the sub-micron optical correction column 3. Referring to Figures 9, 10, a second preferred embodiment of the light-emitting diode 2 having the sub-micron optical correction column 3 of the present invention is The light-emitting diode 2 of the first preferred embodiment is similar except that the layer of quantum cells 22 further has a conductive layer 4 formed on the second type of cladding layer 222, which is light-receivable and The fourth current is uniformly dispersed, for example, steel tin oxide (known in the industry), and when the electric energy is applied to the electrode 23, the current is uniformly diffused laterally, thereby increasing the internal quantum efficiency of the quantum unit 22, due to other The structure is similar to that described in the first preferred embodiment, and details are not described herein again. Referring to FIG. 11, the light-emitting diode 2 is prepared by first performing step 81 to a gallium nitride germanium semiconductor material. From a plate-shaped sapphire substrate 21 upwards The crystal forms a first type of cladding layer 221, an active layer, and a first type of cladding layer 222, and causes the first and second type cladding layers 221 and 222 to form a quantum energy barrier with respect to the active layer 223 to generate light by a photoelectric effect. Proceeding to step 82, in 8xl (T3T 〇rr vacuum ambient pressure, sub-in the atmosphere of a predetermined oxygen-containing mixed gas atmosphere, using a highly mature technique such as vapor deposition of a quasi-knife laser coating, bismuth tin oxide Forming a conductive layer 4 on the second type of cladding layer 222 to complete the fabrication of the quantum unit 22. Then proceeding to step 83, defining a first electrode region on the surface of the top surface of the quantum unit 22 (ie, the surface of the conductive layer 4), A central region surrounding the first electrode region, a second electrode region spaced apart from the central region, and an outer ring region surrounding the central region and the second electrode region. 13 200814366

然後進行步驟84,應用黃光微影技術,先遮覆中央區 與苐一、一電極區後,自該外環區頂面向下餘刻移除一塊 深度至該第一型批覆層221上半部的塊域,而使得對應該 外環區225所留存之結構成該多數根個別聳立的光修正柱3 ’同時’對應中央區留存之結構即構成光可自頂面正向及 自側面側向射出的平台(即mesa平台);之後,在真空 環境壓力下,將此半成品置於鈍態氣氛中,利用高溫擴散 爐或快速升溫爐進行透明導電層4表面晶粒的改質。 之後,進行步驟85,同樣應用黃光微影技術,先遮覆 -亥塊中央區、外環區與第—電極區後,自該第二電極區頂 面向下移除對應此區域的光修正柱3。 最後進行步驟86,在該第一電極區與該第一型批覆層 221對應該第二電極區的位置上分別形成二片與該導電層* 與該第-型批覆層221相歐姆接觸的電極23,並在一種純 態氣氛下以100〜80(rc處理〇5〜8〇分鐘,使所成的二片電 極23的導電材料融合’即完成該具有次微米光修正柱3的 發光二極體2的製備。 上述的說明可知,本發明主要是在圖案化出mesa :1〇〇的同時,在非mesa平台的區域深飯刻形成多數根 第31批復層221底部224頂面向上—體聳立且高度屬 微^度的光修正柱3,藉著此些光修正柱3與其周遭介 j工乳)的折射係數差,形成類似於波導共振腔腔體與 仅的效果’進而可以導引自咖以平台刚側周面向外成 向射出的側以’遵循菲料反射折射原理在腔體與路 14 200814366 中不斷地修正改變入射角與反射角,最終以實質垂直於該 底部224頂面的方向向上正向行進,不但可以增加發光二 極體2的發光面積,同時也增加了正向行進的光量,而增 強發光二極體2的發光亮度與強度,確實達到本發明的創 作目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一剖視示意圖,說明一習知的發光二極體; 圖2是一俯視圖,辅助說明圖1之發光二極體; 圖3是一剖視示意圖,說明本發明具有次微米光修正 柱的發光二極體的一第一較佳實施例; 圖4是一俯視圖,輔助說明圖3之發光二極體; 圖5是一 SEM照片圖,說明圖3之發光二極體之多數 根光修正柱態樣; 圖6是一剖視示意圖,說明圖5之多數根光修正柱與 周遭空氣介質配合修正光的行進; 圖7是一實驗折線圖,說明圖3之本發明具有次微米 光修正柱的發光二極體與一般發光二極體的亮度比較結果 圖8是一流程圖,說明圖3之發光二極體的製造過程 15 200814366 圖9是一剖視示意圖,說明本發明具有次微米光修正 柱的發光二極體的一第二較佳實施例; 圖10是一俯視圖,辅助說明圖8之發光二極體;及 圖11是一流程圖,說明圖8之發光二極體的製造過程Then, in step 84, the yellow light lithography technique is applied to cover the central region and the first and first electrode regions, and then remove a depth from the top surface of the outer ring region to the upper half of the first type of cladding layer 221. The block domain is such that the structure corresponding to the outer ring region 225 is such that the majority of the light-correcting columns 3' at the same time are corresponding to the central region, and the light can be emitted from the top surface and from the side. The platform (ie, the mesa platform); after that, under the pressure of the vacuum environment, the semi-finished product is placed in a passive atmosphere, and the surface of the transparent conductive layer 4 is modified by a high-temperature diffusion furnace or a rapid heating furnace. After that, step 85 is performed, and the yellow light lithography technique is also applied. After the central region, the outer ring region and the first electrode region of the block are covered, the light correction column 3 corresponding to the region is removed from the top surface of the second electrode region. . Finally, in step 86, two electrodes which are in ohmic contact with the conductive layer* and the first-type cladding layer 221 are respectively formed at positions where the first electrode region and the first-type cladding layer 221 correspond to the second electrode region. 23, and in a pure atmosphere with 100~80 (rc treatment 〇 5~8 〇 minutes, the conductive material of the two electrodes 23 is fused) to complete the light-emitting diode with the sub-micron light-correcting column 3 Preparation of the body 2. As can be seen from the above description, the present invention mainly forms a mesa:1〇〇 while forming a plurality of roots in the non-mesa platform region. The 31st batch 221 bottom 224 top face-up body The light-correcting column 3 which is towering and highly microscopically, by which the refractive index difference between the light-correcting column 3 and its surrounding medium is different, forms a cavity-like cavity and only the effect 'and can be guided From the side of the plane that is just out of the side of the platform, the side that is projected outwards is constantly corrected in the cavity and the way 14 200814366 to change the incident angle and the reflection angle, and finally to be substantially perpendicular to the top surface of the bottom 224. The direction is going forward and forward, not only To increase the light emitting area of the light emitting diode 2, also increases the amount of light traveling forward, and enhanced emission luminance intensity light-emitting diode 2, as indeed hit a purpose of the present invention. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a conventional light-emitting diode; FIG. 2 is a plan view for explaining the light-emitting diode of FIG. 1; FIG. 3 is a cross-sectional view showing the present invention. A first preferred embodiment of the invention has a light-emitting diode having a sub-micron optical correction column; FIG. 4 is a top view of the light-emitting diode of FIG. 3; FIG. 5 is a SEM photograph showing the light of FIG. Figure 6 is a cross-sectional view showing the majority of the light-correcting column of Figure 5 in combination with the surrounding air medium to correct the travel of the light; Figure 7 is an experimental line diagram illustrating Figure 3 FIG. 8 is a flow chart illustrating the manufacturing process of the light-emitting diode of FIG. 3 . FIG. 9 is a cross-sectional view of the light-emitting diode of the present invention having a sub-micron optical correction column and a general light-emitting diode. FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 10 is a plan view of a light-emitting diode of FIG. 8 for assistance in explaining a light-emitting diode of FIG. 8; FIG. 11 is a flow chart illustrating the second preferred embodiment of the present invention; The LED of Figure 8 has been fabricated

16 20081436616 200814366

【主要元件符號說明】 100 mesa平台 23 電極 1 發光二極體 3 光修正柱 11 基材 31 底段 12 量子單元 32 中段 121 第一型批覆層 33 頂段 122 第二型批覆層 4 導電層 123 活性層 71 步驟 124 底部 72 步驟 125 延伸部 73 步驟 13 導電層 74 步驟 14 電極 75 步驟 2 發光二極體 81 步驟 21 基材 82 步驟 22 量子單元 83 步驟 221 第一型批覆層 84 步驟 222 第二型批覆層 85 步驟 223 活性層 86 步驟 224 底部 225 延伸部 17[Main component symbol description] 100 mesa platform 23 electrode 1 light-emitting diode 3 light-correcting column 11 substrate 31 bottom section 12 quantum unit 32 middle section 121 first-type cladding layer 33 top section 122 second-type cladding layer 4 conductive layer 123 Active layer 71 Step 124 Bottom 72 Step 125 Extension 73 Step 13 Conductive layer 74 Step 14 Electrode 75 Step 2 Light-emitting diode 81 Step 21 Substrate 82 Step 22 Quantum unit 83 Step 221 First-type cladding layer 84 Step 222 Second Type batch coating 85 Step 223 Active layer 86 Step 224 Bottom 225 Extension 17

Claims (1)

200814366 十、申請專利範圍: 1 · 一種具有次微米光修正柱的發光二極體,包含: 一塊板狀基材; 一層量子單元,並具有一層包括一與該基材連接的 底部及一自該底部的中央區域向上凸起之延伸部的第一 型彼覆層、一層自該第一型批覆層之延伸部頂面向上形 成的活性層、一層自該活性層頂面向上形成的第二型批 覆層,及多數根自該第一型彼覆層底部的頂面向上形成 的光修正柱,該第一、二型批覆層相對該活性層成量子 能障而以光電效應產生光,且該第一型披覆層的延伸部 與該活性層、第二型披覆層共同形成一個供光自頂面正 向及自侧面側向射出的平台,該多數根光修正柱與周遭 介質的折射係數差使自該平台側面侧向射出的光的行進 方向改變,而可實質向上正向行進;及 二片電極,分別設置在該第一型批覆層底部頂面上 與該量子單元最上層結構的頂面上,且分別與該第一、 二型批覆層相歐姆接觸而可對該量子單元提供電能。 2·依據申請專利範圍第〗項所述之具有次微米光修正柱的 發光二極體,其中,該多數根光修正柱的平均高度介於 ΐχΐο_7〜2〇xi(r7m,平均徑寬介於 〇 ΐχΐ〇_7〜9χΐ〇·ν,分 布密度介於1〜2·5χ1〇3 ( # -2。 3·依據申請專利範圍第2項所述之具有次微米光修正柱的 發光一極體,該量子單元更包含一層導電層,是以透明 且可導電的材料自該第二型批覆層頂面向上形成,且盘 18 200814366 該第一型披覆層的延伸部、該活性層、第二型披覆層共 同形成該供光射出的平台。 4·依據申請專利範圍第3項所述之具有次微米光修正桎的 發光二極體,其中,該每一根光修正柱具有一截與該第 一型批覆層之構成結構相同並自該第一型批覆層底部頂 面一體向上凸伸的底段。 5·依據申請專利範圍第4項所述之具有次微米光修正柱的 發光二極體,其中,該每一根光修正柱還具有一截與該 活性層之構成結構相同並自該底段頂面一體向上凸伸的 中段。 6·依據申明專利範圍第5項所述之具有次微米光修正柱的 發光二極體’其中,該每-根光修正柱還具有-戴與該 第二型批覆層之構成結構相同並自該中段頂面一體向上 凸伸的頂段。 7· —種具有次微米光修正柱的發光二極體的製造方法, 含: (a )以半|體材料自一塊板狀基材向上形成一層具有 一層第一型批覆層、一層第二型批覆層,及一層 位於該第一、二型批覆層間之活性層的量子單元 且4第一、二型批覆層相對該活性層形成量子 旎P爭而可以光電效應產生光; (M S義該量子單元頂面成一塊第一電極區、一塊環 圍該第一電極區的中央區、一塊與該中央區相間 隔的第一電極區,及一塊環圍該中央區與第二電 19 200814366 極區的外環區; (C)自該量子單元之外環區向下移除一塊深度至該第 一型批覆層上半部的塊域,使對應該外環區留存 之結構成多數根個別聳立的光修正柱,同時,對 應該中央區留存之結構構成一個供内部以光電效 應產生的光可自頂面正向及自侧面側向射出的平 台; (d )移除對應該第二電極區所形成的光修正柱;及 (e)在該量子單元頂面對應第一電極區的位置及該第 一型批覆層裸露出之頂面對應該第二電極區的位 置上以導電材料分別形成二片電極,製得該具有 次微米光修正柱的發光二極體。 8·依據申請專利範圍第7項所述之具有次微米光修正柱的 發光二極體的製造方法,其中,該步驟(c )是直接以 蝕刻方式成形出該塊域,並使得構成的多數根光修正柱 的平均高度介於IxlO·7〜2〇χ1〇Λη,平均徑寬介於〇 1χ 1〇·7〜9xl(T7m,分布密度介於 ^2 5x^3 ( _2。 9·依據申請專利範圍第7項所述之具有次微米光修正柱的 發光二極體的製造方法,其中,該步驟(e )還在一種 鈍恶氣氛下以100〜800°C處理0.5〜80分鐘,使構成二片 電極的導電材料融合。 10·依據申請專利範圍第7項所述之具有次微米光修正柱的 务光二極體的製造方法,其中,該步驟(a)還在該第 二型批覆層上以透明且可導電的材料形成一層導電層。 20 200814366 第10項所迷 造方法,其中 ’是將此半成 1〜800分鐘, 11 ·依據申請專利範圍 的發光二極體的製 該多數光修正柱後 以100〜800°C處理 面晶粒改質。 之具有次微米光修正柱 ,該步驟(c )成形出 品置於一種鈍態氣氛下 使该留存之道^@ 田廿IV電層的表 21200814366 X. Patent application scope: 1 · A light-emitting diode having a sub-micron optical correction column, comprising: a plate-shaped substrate; a quantum unit having a layer including a bottom connected to the substrate and a self-contained a first type of the upper portion of the bottom portion of the bottom portion, an active layer formed from the top surface of the extension portion of the first type of cladding layer, and a second type formed from the top surface of the active layer a coating layer, and a plurality of light-correcting columns formed from a top surface of the bottom portion of the first-type cladding layer, the first and second-type cladding layers forming a quantum energy barrier with respect to the active layer to generate light by a photoelectric effect, and the The extension portion of the first type of cladding layer together with the active layer and the second type of cladding layer forms a platform for light to be emitted from the top surface and from the side surface, and the plurality of light correction columns and the surrounding medium are refracted. The difference in coefficient causes the direction of travel of the light emitted laterally from the side of the platform to change, and can travel substantially in the forward direction; and the two electrodes are respectively disposed on the top surface of the bottom portion of the first type of cladding layer and the quantum unit The top surface of the layer structure, but may provide electrical power and respectively the quantum unit and the first and second phase-type ohmic contact layer Pifu. 2. The light-emitting diode having a sub-micron light-correcting column according to the scope of the patent application, wherein the average height of the plurality of light-correcting columns is ΐχΐο_7~2〇xi (r7m, the average diameter is between 〇ΐχΐ〇_7~9χΐ〇·ν, distribution density is between 1~2·5χ1〇3 (# -2. 3. According to the scope of claim 2, the light-emitting diode with sub-micron optical correction column The quantum unit further includes a conductive layer formed of a transparent and electrically conductive material from the top surface of the second type of cladding layer, and the disk 18 200814366 the extension of the first type of cladding layer, the active layer, The two types of coating layers jointly form the light-emitting platform. 4. The light-emitting diode having the sub-micron optical correction enthalpy according to claim 3, wherein each of the light-correcting columns has a section a bottom portion which is identical in structure to the first type of cladding layer and protrudes upwardly from the top surface of the bottom portion of the first type of cladding layer. 5. The luminescence with a sub-micron optical correction column according to item 4 of the patent application scope a diode, wherein each of the light repairs The column further has a middle section which is identical to the structure of the active layer and protrudes upwardly from the top surface of the bottom section. 6. The light-emitting diode having the sub-micron optical correction column according to claim 5 of the patent scope Wherein, each of the light-correcting columns further has a top section which is identical in structure to the second type of cladding layer and protrudes upwardly from the top surface of the middle section. 7· a sub-micron optical correction column The manufacturing method of the light emitting diode comprises: (a) forming a layer of a first type of coating layer and a layer of a second type of coating layer from a plate-shaped substrate with a semi-body material, and one layer is located at the first and second layers. The quantum unit of the active layer between the types of cladding layers and the first and second type of cladding layers form a quantum 旎P with respect to the active layer to generate light by photoelectric effect; (MS means that the top surface of the quantum unit is a first electrode region and a piece a central region surrounding the first electrode region, a first electrode region spaced from the central region, and an outer ring region surrounding the central region and the second electrical region 19 200814366; (C) from the quantum Outside the unit A block depth is removed to the upper half of the first type of cladding layer, so that the structure corresponding to the outer ring area is a plurality of individual light-correcting columns, and at the same time, a structure is reserved for the central area. a light generated by the photoelectric effect from the top surface and from the side of the side; (d) removing the light correction column formed corresponding to the second electrode region; and (e) on the top surface of the quantum unit Corresponding to the position of the first electrode region and the exposed top of the first type of cladding layer facing the second electrode region, respectively forming two electrodes with a conductive material to obtain the light emitting diode with the submicron light correction column 8. The method for manufacturing a light-emitting diode having a sub-micron optical correction column according to claim 7, wherein the step (c) directly forms the block region by etching, and causes the composition The average height of most of the light-correcting columns is between IxlO·7~2〇χ1〇Λη, and the average diameter is between 〇1χ 1〇·7~9xl (T7m, and the distribution density is between ^2 5x^3 ( _2. 9. The method of manufacturing a light-emitting diode having a sub-micron optical correction column according to claim 7, wherein the step (e) is further processed at a temperature of 100 to 800 ° C in a dull atmosphere. For 80 minutes, the conductive materials constituting the two electrodes were fused. 10. The method of manufacturing a light-emitting diode having a sub-micron optical correction column according to claim 7, wherein the step (a) further comprises a transparent and electrically conductive material on the second type of cladding layer. A conductive layer is formed. 20 200814366 The method of claim 10, wherein 'the half is made into 1 to 800 minutes, 11 · The majority of the light-correcting column is made according to the patented range of the light-emitting diode, and the surface crystal is processed at 100 to 800 ° C Granules are modified. There is a sub-micron optical correction column, and the step (c) is formed by placing the product in a passive atmosphere to make the remaining path ^@田廿IV electrical layer of the table 21
TW95134026A 2006-09-14 2006-09-14 Light emitting diode body with sub micron light correcting pillar and the method of making the same TW200814366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95134026A TW200814366A (en) 2006-09-14 2006-09-14 Light emitting diode body with sub micron light correcting pillar and the method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95134026A TW200814366A (en) 2006-09-14 2006-09-14 Light emitting diode body with sub micron light correcting pillar and the method of making the same

Publications (2)

Publication Number Publication Date
TW200814366A true TW200814366A (en) 2008-03-16
TWI310613B TWI310613B (en) 2009-06-01

Family

ID=44768537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95134026A TW200814366A (en) 2006-09-14 2006-09-14 Light emitting diode body with sub micron light correcting pillar and the method of making the same

Country Status (1)

Country Link
TW (1) TW200814366A (en)

Also Published As

Publication number Publication date
TWI310613B (en) 2009-06-01

Similar Documents

Publication Publication Date Title
TWI396299B (en) Thin-film led chip and method of manufacturing thin film led chip
TWI479678B (en) Light emitting device
US7419912B2 (en) Laser patterning of light emitting devices
US8753909B2 (en) Light-emitting device and manufacturing method thereof
US9166105B2 (en) Light emitting device
US9070827B2 (en) Optoelectronic device and method for manufacturing the same
KR20070063731A (en) Method of fabricating substrate with nano pattern and light emitting device using the substrate
TW201248725A (en) Epitaxial substrate with transparent cone, LED, and manufacturing method thereof.
KR101233768B1 (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
TW201103166A (en) Light-emitting device and manufacturing method thereof
KR101539994B1 (en) Edge light emitting diode and method of fabricating the same
KR20160092635A (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
TWI322518B (en)
TW200814366A (en) Light emitting diode body with sub micron light correcting pillar and the method of making the same
Ku et al. Improvement of light extraction for AlGaN-based near UV LEDs with flip-chip bonding fabricated on grooved sapphire substrate using laser ablation
TWI313520B (en)
CN103325910A (en) Manufacturing method and multi-tooth tool of LED surface strengthening light emergent structure based on micro cutting
CN101364623A (en) Vertically conducting LED and manufacturing method thereof
CN105720009A (en) Light-emitting diode and manufacturing method thereof
CN113594318B (en) High-brightness light-emitting diode chip and manufacturing method thereof
US20130256718A1 (en) Light emitting device and manufacturing method thereof
TWI393270B (en) Light-emitting diode chip and fabrication method thereof
TWI443866B (en) Light-emitting diode and manufacturing method thereof
CN101154700A (en) LED with sub-micron light amending column and its manufacturing method
CN105428493A (en) GaN-based LED and preparation method thereof