TWI322518B - - Google Patents

Download PDF

Info

Publication number
TWI322518B
TWI322518B TW95145960A TW95145960A TWI322518B TW I322518 B TWI322518 B TW I322518B TW 95145960 A TW95145960 A TW 95145960A TW 95145960 A TW95145960 A TW 95145960A TW I322518 B TWI322518 B TW I322518B
Authority
TW
Taiwan
Prior art keywords
layer
light
vertical
emitting diode
type
Prior art date
Application number
TW95145960A
Other languages
Chinese (zh)
Other versions
TW200826314A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW95145960A priority Critical patent/TW200826314A/en
Publication of TW200826314A publication Critical patent/TW200826314A/en
Application granted granted Critical
Publication of TWI322518B publication Critical patent/TWI322518B/zh

Links

Description

1322518 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種固態發光元件及其製造方法,特 別是指一種垂直導通式發光二極體及其製造方法。 【先前技術】 發光二極體依施加電能後電流擴散的方式做區分,可 分成將電流視為「水平擴散」的水平導通式發光二極體, 以及電流視為「垂直注入」的垂直導通式發光二極體二種 〇 參閱圖1,就目前的垂直導通式發光二極體i來說,其 結構包含一塊板狀的基材丨丨、一塊與該基材丨丨接合( bounding)並可以光電效應產生光的量子單元12,及一片 與該量子單元12形成歐姆接觸的電極13。 該基材11是以可導電的金屬或是合金為材料構成,並 與子單元12形成歐姆接觸以作為電極使用,而可配合 該片電極13配合共同對該量子單元12提供電能使其以光 電效應發光。 該量子單元12具有一層以透明並可供電流橫向擴散流 通的材料形成且與該基材U接合的電流擴散層121、一層 連接在該電流擴散層121上的第二型批覆層122 (即ptype cladding layer)、一層與第二型披覆層122相間隔並該電極 連接的第一型批覆層123 (即n_type cladding layer),及一 層夾設在該第一、二型批覆層123、122之間的活性層i24 (active layer),該第一、二型批覆層123、122相對該活性 5 1322518 層124形成置子能障而可當電流通過時以光電效應產生光 子。 當自该電極13以及作為另一電極使用之基材n配合施 加電此時,電流經過該電流擴散層121橫向擴散後垂直流 通過該第-、二型批覆層123、122與活性層124,而以光 電效應產生光子,進而使該垂直導通式發光二極體1向外 發光。 此外,為了提昇垂直導通式發光二極體丨的整體發光 亮度’會例如在量子單元12中形成可增加光取出率(Hght extraction efficiency)的視窗層(wind〇w 丨叮er),或是於基 材η上設計增加可反射光的反射層(反射鏡)等結構,由 於此等結構多半已為業界所周知,故在此不再多加詳細贅 述。(圖中未示出此等結構) π整體說來,目前的垂直導通式發光二極體i,由於該量 子單兀12產生的光自該第一型批覆| 123頂面向外射出時 ’會因為部分光行進角度的限制而再全反射回元件内部, 所以會造成内熱’而導致元件壽命減少,另外,也會呈現 出發光亮度不夠的缺點。 雖然,已有多篇技術文獻提出例如粗化該光欲行進射 出的表面,進而提$光向外發散的tb率,讀昇發光亮度 、同時減夕產生全内反射的光的比率以減少内熱的產 仁疋,此等粗化方式雖然確實可以提昇内部產生的光 二卜發政的比率,但是穿出頂面的光卻仍是成多方向的不 則订進’因此就元件而言,發光亮度雖,然有所提昇,但 6 1322518 是發光亮度不夠均勻、發光不夠集中的缺點卻仍然存在。 因此,目前的垂直導通式發光二極體1仍有待改善。 【發明内容】 因此,本發明之目的,即在提供一種發光均勻且集中 的垂直導通式發光二極體。 此外,本發明之另一目的,即在提供一種發光均勻且 集中之垂直導通式發光二極體的製造方法。 • 於是,本發明高亮度發光二極體,包含一塊板狀基材 -、一層量子單元,及一片電極^ 該塊板狀基材是可導電。 该層量子單元與該塊基板接合並可以光電效應產生光 ,具有相間隔的一層第一型彼覆層與一層第二型披覆層, 及一層形成在該第一、二型披覆層之間的活性層,該第一 一型披覆層相對該活性層形成量子能障,該第一型彼覆層 包括一層與該活性層連接的蝕刻停止部,及一層具有多數 # 根自該蝕刻停止部一體凸伸出且高度介於次微米 尺度之光 修正柱的柱叢部’該柱叢部的多數根光修正柱與周遭介質 的折射係&差使該量子單元產生的光在4于進間I生散射的 機率增加,進而實質正向向外行進。 _肩片電極與該量子單元相毆姆接觸,且可與該基板共 同對該量子單^提供電能使該量子單元發光。 再者’垂直導通式發光二極體的製造方法,包含以下 步驟。 首先在一塊磊晶基板上形成一層量子單元,該量子單 7 元依序具有一層第一型批覆層、一層活性層,及一層第二 型批覆層’且該第-、二型批覆層相對該活性層成量子能 障而以光電效應產生光。 同時’可備製一塊可導電的基材。 然後將形成有量子單元的磊晶基板以該量子單元與備 製的該基材彼此加壓接合後;移除該磊晶基板。 再自移除磊晶基板後的半成品所裸露出的頂面向下蝕 刻,而使該第一型批覆層留存之結構成一層與該活性層連 接的蝕刻停止部,及一層包括多數根一體自該蝕刻停止部 頂面延伸出且咼度屬於次微米尺度之光修正柱的柱叢部。 最後’移除該柱叢部預定區塊中的多數根光修正柱, 並在該區塊中以導電材料形成一片電極,完成該垂直導通 式發光二極體的製作。 本發明的功效在於深蝕刻第一型披覆層以形成出多數 根尚度屬次微米尺度之光修正柱,藉由此等光修正柱與周 遭介質的相配合可增加光行進時產生散射的次數以改變光 的行進方向’使元件產生向外發散行進的光的行進方向被 改變而實質正向向上行進,進而使元件的發光集中且均勻 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 1322518 明内容中,類似的元件是以相同的編號來表示。 參閱圖2、圖3,本發明垂直導通式發光二極體2之一 較佳實施例,是包含有一塊矩形板狀的基材3、一層接合( bonding )在忒基材3上的量子單元4,及一片與該量子單 元4形成歐姆接觸的電極5。 該塊基材3主要是以可導電的金屬或是合金為材料構 成,並與該量子單元4形成歐姆接觸以作為電極使用,以1322518 IX. Description of the Invention: [Technical Field] The present invention relates to a solid-state light-emitting element and a method of manufacturing the same, and in particular to a vertical-conducting light-emitting diode and a method of manufacturing the same. [Prior Art] The light-emitting diode is distinguished by the manner in which the current is diffused after the application of the electric energy, and can be divided into a horizontal-conducting light-emitting diode in which the current is regarded as "horizontal diffusion", and a vertical conduction method in which the current is regarded as "vertical injection". Referring to FIG. 1 , in the case of the current vertical-conducting light-emitting diode i, the structure comprises a plate-shaped substrate 丨丨, and a piece is bounded with the substrate and can be The photoelectric effect produces a quantum unit 12 of light and an electrode 13 that forms an ohmic contact with the quantum unit 12. The substrate 11 is made of a conductive metal or an alloy, and is in ohmic contact with the sub-unit 12 for use as an electrode, and can cooperate with the sheet electrode 13 to supply electric energy to the quantum unit 12 to be photoelectrically Effect luminescence. The quantum unit 12 has a current diffusion layer 121 formed of a material transparent and capable of laterally diffusing current flow and bonded to the substrate U, and a second type of cladding layer 122 connected to the current diffusion layer 121 (ie, ptype) a cladding layer, a first type of cladding layer 123 spaced apart from the second type of cladding layer 122 and connected to the electrode, and a layer sandwiched between the first and second types of cladding layers 123 and 122 The active layer i24 (active layer), the first and second type cladding layers 123, 122 form a barrier energy barrier with respect to the active layer 5 1322518 layer 124 and can generate photons by photoelectric effect when current passes. When electric current is applied from the electrode 13 and the substrate n used as the other electrode, current flows laterally through the current diffusion layer 121 and then vertically flows through the first and second type cladding layers 123, 122 and the active layer 124. The photon is generated by the photoelectric effect, and the vertical-conducting light-emitting diode 1 is caused to emit light outward. In addition, in order to increase the overall light-emitting luminance of the vertical-conducting light-emitting diodes, for example, a window layer (wind〇w 丨叮er) capable of increasing the Hugh extraction efficiency may be formed in the quantum unit 12, or A structure such as a reflective layer (mirror) that can reflect light is designed on the substrate η. Since most of these structures are well known in the art, detailed descriptions thereof will not be repeated here. (The structure is not shown in the figure) π As a whole, the current vertical-conducting light-emitting diode i, since the light generated by the quantum single-turn 12 is emitted from the top of the first type of cladding | 123 Because the partial light travel angle is limited and then totally reflected back inside the component, internal heat is caused, which leads to a decrease in the life of the component. In addition, it also has the disadvantage of insufficient brightness of the light. Although there have been a number of technical documents suggesting, for example, roughening the surface on which the light is intended to travel, thereby increasing the tb rate at which the light is diverging outward, reading the luminance of the light, and simultaneously reducing the ratio of the light that generates total internal reflection to reduce the inside. The heat of the production of glutinous rice, although these roughening methods can indeed improve the ratio of light generated inside the light, but the light that wears the top surface is still in multiple directions, so the order is Although it has improved, 6 1322518 is a shortcoming that the brightness of the light is not uniform enough and the light is not concentrated enough. Therefore, the current vertical conduction light-emitting diode 1 still needs to be improved. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a vertical-conducting light-emitting diode that emits light uniformly and concentrated. Further, another object of the present invention is to provide a method of manufacturing a vertically-conductive light-emitting diode which emits light uniformly and concentrated. • Thus, the high-intensity light-emitting diode of the present invention comprises a plate-shaped substrate, a quantum unit, and a piece of electrode. The plate-shaped substrate is electrically conductive. The quantum unit of the layer is bonded to the substrate and can generate light by photoelectric effect, and has a first type of first layer and a second type of cladding layer, and a layer is formed on the first and second type cladding layers. An active layer, the first type of cladding layer forms a quantum energy barrier with respect to the active layer, the first type of cladding layer includes a etch stop portion connected to the active layer, and a layer has a majority of The portion of the column of the light-correcting column of the submicron-scale protrusion is integrally protruded and has a height of a plurality of light-correcting columns of the column portion and a refractive system of the surrounding medium. The light generated by the quantum unit is 4 The probability of scattering into the I is increased, and then substantially forward outward. The shoulder electrode is in phase contact with the quantum unit, and the quantum unit can be supplied with electrical energy to cause the quantum unit to emit light. Further, the method for producing a vertical conduction light-emitting diode includes the following steps. First, a quantum unit is formed on an epitaxial substrate, and the quantum single 7 element sequentially has a first type of cladding layer, an active layer, and a second type of cladding layer 'and the first and second type cladding layers are opposite to the The active layer forms a quantum energy barrier and produces light with a photoelectric effect. At the same time, a conductive substrate can be prepared. The epitaxial substrate on which the quantum unit is formed is then press-bonded to the substrate and the prepared substrate, and the epitaxial substrate is removed. And removing the exposed top surface of the semi-finished product after the epitaxial substrate is removed, and the structure of the first type of cladding layer remains as an etch stop portion connected to the active layer, and the layer includes a plurality of roots The top surface of the etch stop is extended and the enthalpy is a sub-micron-scale column of the light-correcting column. Finally, a plurality of light-correcting columns in the predetermined block of the pillar portion are removed, and a piece of the electrode is formed of a conductive material in the block to complete the fabrication of the vertical-conducting light-emitting diode. The effect of the invention is to etch the first type of cladding layer to form a light-correcting column with a plurality of roots of sub-micron scale, whereby the matching of the light-correcting column with the surrounding medium can increase the scattering of light during traveling. The number of times to change the direction of travel of the light 'the direction of travel of the light that causes the element to diverge outwardly is changed to travel substantially in the forward direction, thereby concentrating and uniformizing the illumination of the element. [Embodiment] The foregoing and other technical aspects of the present invention The features and functions of the present invention will be apparent from the following detailed description of the preferred embodiments. Before the present invention is described in detail, it is to be noted that in the following description, the similar elements are denoted by the same reference numerals. Referring to Figures 2 and 3, a preferred embodiment of the vertical-conducting light-emitting diode 2 of the present invention comprises a substrate 3 having a rectangular plate shape and a quantum unit bonded to the germanium substrate 3. 4, and an electrode 5 forming an ohmic contact with the quantum unit 4. The block substrate 3 is mainly made of a conductive metal or an alloy and is in ohmic contact with the quantum unit 4 for use as an electrode.

同時配合該片電極5共同對該量子單元4提供電能使其以 光電效應發光。At the same time, the sheet electrode 5 is supplied together to supply electric energy to the quantum unit 4 to emit light by photoelectric effect.

該塊基材3具有-層以可導電且可導熱的材料構成的 基底層3卜及一層以可導電且可導熱並具有高折射係數的 材料構成而與該基底層31連接的反射層32,該基底層Η 又包括-層中央層體311 ’及分別形成在該中央層體^相 反兩界面上的複數堆覆膜體312,該反射層32則由至少一 層反射膜體321堆疊組成;較佳地,該中央層體3ιι是選自 石夕 '銅 '銘、碳 '鑽石 '氮化铭、氮化鎖等材料其中之一 所構成’該堆覆膜體312、反射膜體321則是分別選自例如 鉻、鈀、鉑、鈦、鎳、銅、辞、鎂、鋁、銀、金,及/或此 等金屬所組成的合金為材料所構成,藉由此等不同厚度、 元素種類所形成的多數金屬及/或合金膜體而可與該量^單 元4穩固地接合,並可導電、導熱,以及反射該量^單元* 發出且朝向該基材3方向行進的光,以增加該垂直導通式 發光二極It 2向上的整體發光率。在本例中,則是以銅^ 材料構成中央層體3U ’再依序以鉻、麵、金為材料在其上 9 1322518 界面上形成厚度分別是40〇A、40〇A、20000A的三層堆覆 膜體312,以及依序以鉻、鎳、金為材料在下界面形成厚度 分別是300A、10000A、50A的三層堆覆臈體312,構成該 層基底層31’並依序以鉻、鋁、鉑、鈦、金/錫、金為材料 ,在該基底層31上形成厚度分別是10〇A、2000A、2000入 、600A、20000A、100人的六層反射膜體321構成該層反射 層32,進而組成該塊基材3為例說明。The block substrate 3 has a base layer 3 made of a conductive and heat-conductive material and a reflective layer 32 connected to the base layer 31 by a material which is electrically conductive and thermally conductive and has a high refractive index. The base layer Η further includes a layer central layer body 311 ′ and a plurality of stacked film bodies 312 respectively formed on the opposite ends of the central layer body, and the reflective layer 32 is composed of at least one reflective film body 321 stacked; Preferably, the central layer body 3 ιι is selected from one of materials such as Shi Xi 'copper ' Ming, carbon 'diamond' nitriding, nitriding lock, etc. 'The stacking film body 312 and the reflecting film body 321 are Each of which is selected from the group consisting of, for example, chromium, palladium, platinum, titanium, nickel, copper, rhodium, magnesium, aluminum, silver, gold, and/or an alloy of such metals, is formed of a material such as different thicknesses and element types. The majority of the formed metal and/or alloy film body can be firmly bonded to the unit 4, and can conduct electricity, conduct heat, and reflect the amount of light emitted by the unit* toward the substrate 3 to increase The vertical conductivity of the two-pole light-emitting diode It 2 is upward. In this example, the central layer body 3U' is made of copper material, and then three layers of thicknesses of 40 〇A, 40 〇A, and 20,000 Å are formed on the upper surface of the 13 1322518 by chrome, surface, and gold. The layer stacking film body 312 and the three layers of the stacked body 312 having a thickness of 300 A, 10000 A, and 50 A, respectively, are formed by using chromium, nickel, and gold as materials, and the base layer 31 ′ is formed and sequentially chrome Aluminum, platinum, titanium, gold/tin, gold as a material, and a six-layer reflective film body 321 having a thickness of 10 〇A, 2000 A, 2000 Å, 600 A, 20000 A, and 100 persons is formed on the base layer 31 to constitute the layer. The reflective layer 32, which in turn constitutes the bulk substrate 3, is exemplified.

該層量子單元4具有一層以透明且可供電流橫向擴散 流通的材料(例如銦錫氧化物)形成而與該基材3之反射 層32相接觸地接合的電流擴散層41、一層連接在該電流擴 散層上的第二型批覆層42 (即卜咖一小The quantum unit 4 has a layer of a current diffusion layer 41 formed of a material transparent to the current and capable of laterally diffusing and flowing (for example, indium tin oxide) to be in contact with the reflective layer 32 of the substrate 3, and a layer connected thereto. a second type of cladding layer 42 on the current diffusion layer (ie, a small coffee cup

-層與該第二型彼覆層42相間隔並該電極5連接的第一型 批覆層43 (即n_type cladding layer )、一層夹設在該第一、 二型批覆層43、42之間的活性層44,及一層形成在該第一 -里披覆層43、42與活性層44側周面以限制光漏射的 遮覆臈45,該第一 '二型披覆層43、42相對該活性層44 形成量子能障而可當電流通過時以光電效應產生光子,該 遮覆膜45是以氧化石夕(Si〇2)為材料,厚度在祕~ 以防止側周面的漏光’進而增加元件 光效率。 ㈣覆層43包括—層與該活性層44連接的姓 J分止P 43^ & —層具有多數根自該姓刻停止部如一體 it凸伸且南度介於次微米尺度(約在1〇〇〇A〜2000〇A)之 光修正柱視的枝叢部433,該桂叢部433是經由深㈣所 10 成型(製造方法請容後再續),而藉由該多數根光修 正柱432肖周遭介質(此時是空氣)的折射係數差形 成類似於波導共振腔腔體與路徑的效果,使該量子單元4 以光電效應產生並對應穿出第一型披覆層43頂面的光發生 散射的機率增加,進而實質向上正向行進,以提昇元件的 發光亮度。 該片電極5設置在該第-型披覆層43的蝕刻停止部 431上並與4第一型批覆層43相歐姆接觸,是由敍、金、 鉻、鋁、鈦、鎳等金屬元素所成的金屬及/或合金膜體堆疊 構成’且厚度在l〇A至3〇〇〇〇a之間,而可與該基材3共同 配合對該量子單元4提供電能;在此,是以鉻、鉑、金三 種金屬材料’由下至上依序以4〇〇入、、2〇〇〇〇人的厚 度形成的三層金屬膜體51堆疊構成為例說明。 當自電極5與基材3施加電能時,電流經過該電流擴 散層41橫向分散流通後垂直流通過該第一、二型彼覆層们 、42與活性層44而以光電效應產生光;產生的光,部分朝 向該基材3方向行進,而被該基材3的反射層32反射而朝 向電極5方向行進;部分向該量子單元4側周面方向行進 的光,則由遮覆膜36限制而不向外洩漏,進而可在元件内 4匕過户數次内反射與折射後朝向電極5方向行進;部分 直接朝向該電極5方向行進的光,以及被反射、折射而朝 向該電極5方向行進的光,則藉由該多數根光修正柱432 與周遭空氣介質形成類似於波導共振腔腔體與路徑的效果 ’使此等光遵循光的反射折射原理而在此腔體與路徑中不 11 1322518 斷地修正改變入射角與反射角,而以增加散射次數的過程 ,進而實質向上正向射出,以提昇發光二極體的發光亮度 同時’光在元件内部行進及經過多次反射、折射行進 而轉化成的内熱,則經過該基材3的反射層32、基底層 直接傳導散逸至外界,而以高散熱效率進而*高電子電洞 的結合效率’提昇整體的發光效率。a first type of cladding layer 43 (ie, n_type cladding layer) separated from the second type of cladding layer 42 and connected to the electrode 5, and a layer interposed between the first and second type cladding layers 43 and 42 The active layer 44, and a layer of a cover layer 45 formed on the side surface of the first-inner cladding layer 43, 42 and the active layer 44 to limit light leakage, the first 'type 2 cladding layers 43, 42 are opposite The active layer 44 forms a quantum energy barrier and can generate photons by a photoelectric effect when the current passes. The mask 45 is made of oxidized stone (Si〇2) and has a thickness of ~ to prevent leakage of the side peripheral surface. In turn, the component light efficiency is increased. (4) The coating 43 includes a layer J and a connecting point of the active layer 44. The group has a plurality of roots from the stop of the surname, such as an integral portion, and the south is on a submicron scale (about 1〇〇〇A~2000〇A) The light correction column sees the branch 433, which is formed by the deep (four) 10 (the manufacturing method is to be continued later), and the majority light Correcting the difference of the refractive index of the medium surrounding the column 432 (in this case, air) is similar to the effect of the waveguide cavity and the path of the waveguide, so that the quantum unit 4 is generated by the photoelectric effect and correspondingly passes through the top of the first type of cladding layer 43. The probability of scattering of the surface light increases, and thus proceeds substantially upwards and forwards to enhance the luminance of the element. The sheet electrode 5 is disposed on the etching stop portion 431 of the first type cladding layer 43 and is in ohmic contact with the first type first cladding layer 43 and is made of a metal element such as gold, chromium, aluminum, titanium or nickel. The formed metal and/or alloy film stack is formed to have a thickness between 10A and 3〇〇〇〇a, and the quantum unit 4 can be supplied with electric energy in cooperation with the substrate 3; A three-layer metal film body 51 in which three kinds of metal materials of chromium, platinum, and gold are formed by a thickness of 4 inches from the bottom to the top, and is illustrated as an example. When electric energy is applied from the electrode 5 and the substrate 3, a current is laterally dispersed and circulated through the current diffusion layer 41, and then vertically flows through the first and second types of cladding layers 42, 42 and the active layer 44 to generate light by a photoelectric effect; The light travels partially toward the substrate 3, and is reflected by the reflective layer 32 of the substrate 3 to travel toward the electrode 5; the portion of the light traveling toward the peripheral surface of the quantum unit 4 is covered by the mask 36. Restricted without leaking outward, and then traveling toward the electrode 5 after being reflected and refracted within a plurality of times within the element; partially traveling directly toward the direction of the electrode 5, and being reflected and refracted toward the electrode 5 The light traveling in the direction is formed by the majority of the light-correcting column 432 and the surrounding air medium to form an effect similar to the waveguide cavity and the path of the waveguide, so that the light follows the principle of reflection and refraction of light in the cavity and the path. No 11 1322518 Correction changes the angle of incidence and the angle of reflection, and increases the number of scattering times, and then substantially upwards and forwards to enhance the brightness of the light-emitting diode while the light travels inside the element. After the internal heat converted by the multiple reflection and refraction travel, the reflective layer 32 and the base layer of the substrate 3 are directly conducted and dissipated to the outside, and the high heat dissipation efficiency and the high efficiency of the combination of the high electron holes are improved. Luminous efficiency.

上述本發明的垂直導通式發光二極體的較佳實施例, 在經過以下的製造方法的說明後,當可更加清楚的明白。The preferred embodiment of the above-described vertical-conducting light-emitting diode of the present invention can be more clearly understood after the following description of the manufacturing method.

參閱圖4,上述的垂直導通式發光二極體的製作,是先 進行步驟6卜選用晶格常數與氮化鎵系半導體材料相匹配 的藍寶石材料作為蟲晶用的蟲晶基板,依序向上蟲晶成長 j層第-型批覆層43 (即n型披覆層)、活性層44,及第 —型批覆層42(即Ρ型披覆層),接著在不大於8xl0-T〇rr 2真工W壓力下且在預定含氧比例的氣氛中,利用例 材或濺鍍或是準分子雷射鍍膜等方式以銦錫氧化物為 第-型披覆層42上形成該層電流擴散層41,且在形 $層電流擴散層41之後,隨即在真空環境壓力下,且在 :二,體之組合的氣氛中,以高溫進行該層電流擴 式二〜粒的改f;較,接著以例如蒸鐘或濺鑛方 的製備。Μ材料形成該層遮覆帛45,完成該量子單元4 行步驟62H圖5 ’而在進行步驟61的同時,可以同步進 傷1該塊可㈣的基材3 ;此步驟62是依序先進 12 1322518 二丁:=步驟71 ’選擇鋼作為該層t央層體3ιι,然後進行次步 ’分別選擇鉻、麵、金為材料在該層令央層體3ιι的 上以蒸鍍或疋濺鍍方式形成厚度分別《_a、40〇a 、20000A的三層堆覆膜體3]2,以及鉻、錄、金為材料在 該層中央層體311的下界面,同樣以蒸鍍或是雜方式形成 厚度分別是3〇〇A、10_A、5〇A的三層堆覆膜體312構 成該基觸31,接著再進行次步驟73,依序以絡、銘、始Referring to FIG. 4, the above-mentioned vertical-conducting light-emitting diode is produced by first performing step 6 and selecting a sapphire material whose lattice constant is matched with a gallium nitride-based semiconductor material as a crystal substrate for insect crystals, in order. The worm crystal grows a j-layer type-type cladding layer 43 (ie, an n-type cladding layer), an active layer 44, and a first-type cladding layer 42 (ie, a ruthenium-type cladding layer), followed by no more than 8×10 −T 〇rr 2 The layer of current diffusion layer is formed on the first type of cladding layer 42 by indium tin oxide using a sample or sputtering or excimer laser coating under a pressure of a predetermined W and in a predetermined oxygen-containing atmosphere. 41, and after forming the layer current diffusion layer 41, then under the vacuum environment pressure, and in the atmosphere of the combination of two, the combination of the current expansion of the layer is performed at a high temperature; Preparation by, for example, a steaming or splashing side. The germanium material forms the layer to cover the crucible 45, and the quantum unit 4 is completed in step 62H and FIG. 5'. While the step 61 is performed, the substrate 3 of the block (4) can be simultaneously wounded; the step 62 is advanced in order. 12 1322518 二丁:=Step 71 'Select steel as the layer of the central layer of the body 3 ιι, then carry out the second step 'select chrome, face, gold as the material in the layer of the central layer of the body 3d by evaporation or splatter The plating method forms a three-layer stacking film body 3] of thickness _a, 40 〇a, 20000 A, and chrome, recording, and gold are materials at the lower interface of the central layer body 311 of the layer, and are also vapor-deposited or miscellaneous. By forming a three-layer stacking film body 312 having thicknesses of 3〇〇A, 10_A, and 5〇A, respectively, the base contact 31 is formed, and then performing a sub-step 73, followed by the network, the inscription, and the beginning.

、鈦、金/錫、金為材料,在該層基底層31上以蒸鑛或是減 鐘方式形成厚度分収100A、2〇〇〇A、2〇〇〇A、_a、 20000A、祕的六層反射膜體321構成該層反射層32後 ,進仃次步驟74,在選自純性氣體之組合的氣氛中,以 i〇(rc~8〇(TC的溫度作用〇.5〜80分鐘,使該等堆覆膜體扣 、反射膜II 321的構成材料進行融合’完成該塊基材3的 製備。 參閱圖4,然後進行步驟63,將該步驟61製得之成品 ,以量子單元4的電流擴散層41,與該步驟62備製的基材 3的反射層32相接觸地彼此加壓接合。 在此要另外加以說明的是’為了讓該基材3與兮量子 單元4接合的更加穩固,在備製基材3的過程中,也可以 將構成該反射層321的某些層反射膜體321形山上 形成在該量子 單元4的電流擴散層41上’再加壓接合兩者,由於此等以, titanium, gold / tin, gold as a material, on the base layer 31 of this layer by distillation or minus the clock to form a thickness of 100A, 2〇〇〇A, 2〇〇〇A, _a, 20000A, secret After the six-layer reflective film body 321 constitutes the reflective layer 32 of the layer, the step 74 is performed in an atmosphere selected from the group consisting of pure gases, i 〇 (rc~8〇 (temperature effect of TC. 〜5~80) In a minute, the constituent materials of the stack of film and the reflective film II 321 are fused together to complete the preparation of the block substrate 3. Referring to Fig. 4, then step 63 is performed, and the finished product obtained in step 61 is quantum. The current diffusion layer 41 of the cell 4 is press-bonded to each other in contact with the reflective layer 32 of the substrate 3 prepared in the step 62. It is to be additionally explained herein that the substrate 3 and the germanium quantum unit 4 are provided. The bonding is more stable. In the process of preparing the substrate 3, some of the layer reflective film bodies 321 constituting the reflective layer 321 may be formed on the current diffusion layer 41 of the quantum unit 4. Both, due to this

蒸鍍、濺鍍或是其他鍍覆膜體的方式,堆疊沾批A •a· 對象變化、 種類方式眾多,在此不--舉例說明詳述。 接著繼續進行步驟64 ’將該步驟63製得夕# 成ασ的遙晶 13 1322518 基板移除,而將該量子單元 Ψ · ο- ^ Β®, ^ λ. 型披覆層43底面裸靈 出來,此步驟實施的方式 保路 4k η > J: 5 B alt 用化學银刻、濕钱刻、乾 蝕刻甚至疋機械研磨等, 粍 兮丟曰Ate 此反 匕疋採用化學钱刻方式移除 該磊日日基板,避免破壞該第一 除 ,A ^ ^ 玉筏覆層43的結構。 接者進行步驟65,自嘴+驟〇 美拓德的矣“ 步驟64製得之成品移除該磊晶 基板後的表面向下深蝕刻, 便該第一型批覆層43留在 釔構成該層蝕刻停止部43丨, ^ ^ 及該層包括多數根光修正柱Evaporation, sputtering or other methods of plating the film, stacking the batch A • a · object changes, a variety of ways, not here - detailed description. Then proceeding to step 64', the step 63 is made to remove the crystallized crystal 13 1322518 substrate into ασ, and the bottom surface of the quantum unit Ψ · ο- ^ Β®, ^ λ. The way to implement this step is to protect the road 4k η > J: 5 B alt with chemical silver engraving, wet money engraving, dry etching or even mechanical grinding, etc., 粍兮 曰 Ate This ruthenium is removed by chemical money engraving The Lei Day substrate avoids damaging the structure of the first division, A ^ ^ maize coating 43. The process proceeds to step 65, from the mouth + the 矣 〇 拓 矣 矣 矣 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤The layer etch stop portion 43A, ^^ and the layer includes a plurality of light correction columns

432的柱叢部433。 配σ參閱圖6,此步驟65是弈 '隹> A止 冲疋先進仃次步驟81,先在 除磊晶基板後的該第一型披覆声 , 趿復層43表面,以氧化物為材料 形成-層❹1保護層;接著以次步驟82自該㈣保護層向 下冰蝕刻’且深度需達到自該第一型披覆層43表面起向下 ιοοοΑ·〜2〇ο〇Α·,而成都屮兮思&亡丨& 凤玉出該層蝕刻停止部431,及該層包括 多數根光修正柱432的柱叢部433。The column portion 433 of 432. Referring to FIG. 6 , this step 65 is a step 81 隹 隹 A A 疋 疋 疋 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 Forming a layer 保护 1 protective layer for the material; then etching down from the (four) protective layer in a sub-step 82 and the depth is required to be from the surface of the first type of cladding layer 43 downward ιοοο Α The eclipse & 丨 丨 &; 凤 出 该 该 该 该 该 该 该 该 该 该 该 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

β較佳地’進行次步驟81形絲刻保護層的氧化物可以 是例如二氧化碎 '氧化鈦、氧化鎳,及銦錫氧化物等,用 以作為後續進行深㈣時2的保護層;次步驟82則可應用 例如離子㈣技術、感應麵合式電漿技術或感應離子技術 的乾蝕刻方式,並通入氮氣(Nj、氨氣(CHj、氬氣(心 )、氯氣(C12)、氯化硼(BCD、氟化碳(eh)、氣化硫( SF6)等氣體及/或上述依不同比例之混合氣體為蝕刻氣體進 行;或採用濕蝕刻方式以氫氯酸(Ηα )、硝酸(HN〇s )、 氫氧化鉀(ΚΟΗ )、氫氧化鈉(NaOH )、硫酸(h2S04 )、磷 酸(HsPO4)及/或上述依不同比例之混合溶液進行。 14 J圖4,然後再進行步驟66,移除對應形成該電極5 之的先修正柱’並在該區財依序形成20_Α金的金 屬膜體5!、^翻的金屬膜體51與細入路的金屬膜體 5一 1而堆疊構成該電極5 ’完成本發明之該垂直導通式發光 二極體2之較佳實施例的製作。较佳 preferably 'performing the oxide of the step 81 shaped wire protective layer may be, for example, dioxide dioxide 'titanium oxide, nickel oxide, and indium tin oxide, etc., as a protective layer for subsequent deep (four) time 2; Sub-step 82 can be applied by dry etching such as ion (four) technology, inductive surface-matching plasma technology or induced ion technology, and nitrogen gas (Nj, ammonia (CHj, argon (heart), chlorine (C12), chlorine) Boron (BCD, carbon fluoride (eh), vaporized sulfur (SF6) and other gases and / or the above mixed gas in different proportions as etching gas; or wet etching to hydrochloric acid (Ηα), nitric acid ( HN〇s), potassium hydroxide (ΚΟΗ), sodium hydroxide (NaOH), sulfuric acid (h2S04), phosphoric acid (HsPO4) and/or the above mixed solutions in different ratios. 14 J Figure 4, then proceed to step 66 And removing the first modified column ' corresponding to the electrode 5 and forming the metal film body 5 of the 20_sheet metal in the region, and the metal film body 51 and the thin metal film body 5 - 1 are stacked. Forming the electrode 5' to complete the vertical conduction light-emitting diode 2 of the present invention Produced good example of embodiment.

、,由上述說明可知,本發明主要是提出一種垂直導通式 發光—極體2 ’藉由深㈣形成的多數光修正柱432與周遭 空氣介質形成類似於波導共振腔㈣與路徑的效果,而可 修正所發出之光行進的人㈣與反㈣,增加散射的次數 ,使光實質向上正向行進,進而相對提昇垂直導通式發光 二極體2的發光亮度;此外,並同時藉由構成該基材3之 基底層31、反射層32等結構,而可多次將光内折射、内反 射後導向正向向外發射,以輔助提昇元件的發光效率;再 者,在導引光進行多次内折射、内反射所產生的内熱,也 可藉由基材3而直接傳導散逸至外界,進而使元件得以高As can be seen from the above description, the present invention mainly proposes that a plurality of optical correction columns 432 formed by deep (four) of the vertical-conducting light-emitting body 2' and the surrounding air medium form an effect similar to the waveguide resonant cavity (four) and the path, and Correcting the person (4) and the inverse (4) of the emitted light, increasing the number of scatterings, causing the light to travel substantially upwards and forwards, thereby relatively increasing the luminance of the vertical-conducting LED 2; and, at the same time, by constituting The substrate layer 31 of the substrate 3, the reflective layer 32 and the like, and the light can be internally refracted and internally reflected to be forwardly and outwardly emitted to assist the illuminating efficiency of the lifting element; The internal heat generated by the internal refraction and internal reflection can also be directly transmitted to the outside through the substrate 3, thereby making the component high.

散熱的效率提高電子電洞的結合效率,而提昇整體的發光 效率。 再由本發明製造方法的說明中可知,本發明垂直導通 式發光二極體2的光修正柱432,必須是以氧化物,特別是 例如二氧化矽、氧化鈦、氧化鎳,及銦錫氧化物作為第一 型抵覆層43進行深蝕刻時的保護層,才能在不損傷第一型 批覆層43的結構下深蝕刻至次微米尺度而成型出的結果, 並非是目前諸多文獻所提出之簡單隨機蝕刻粗化的結果; 另外’再藉由完整的基材製作以及與量子單元接合的過程 ,而可同步解決—般垂直導通式發光二㈣i在作動時常 見的散熱以及電流擴散問題’進而有效提昇元件的 光效率。 綜上所述,本發明主要是提出-種具有可以增加光散 射機率之光修正柱432的垂直導通式發光:極體2,以及該 垂直導通式發光二極體2的製造方法,而可確實改善目: 垂直導通式發光二極體i之發光亮度不夠均勻、發二不二 集中的缺點,達到本發明的創作目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一剖視示意圖’說明習知的垂直導通式發光二 極體的結構; 圖2是一剖視示意圖,說明本發明垂直導通式發光二 極體之一較佳實施例的結構; 圖3是一局部放大圖,說明圖2垂直導通式發光二極 體之多數光修正柱修正光的行進方向; 圖4是一流程圖,說明圖2垂直導通式發光二極體之 一較佳實施例的製造方法; 圖5是一流程圖,說明圖4之製造方法中,實施步驟 62的次步驟過程;及 圖6是一流程圖,說明圖4之製造方法中,實施步驟 16 1322518 65的次步驟過程。 1322518The efficiency of heat dissipation increases the efficiency of the combination of the electron holes and improves the overall luminous efficiency. Further, as is apparent from the description of the manufacturing method of the present invention, the light-correcting column 432 of the vertical-conducting light-emitting diode 2 of the present invention must be an oxide, particularly, for example, cerium oxide, titanium oxide, nickel oxide, and indium tin oxide. The result of the deep etching to the submicron scale without damaging the structure of the first type cladding layer 43 as the protective layer for the deep etching of the first type resist layer 43 is not the simple one proposed in many documents. The result of random etching roughening; in addition, 'by the complete substrate fabrication and the process of bonding with the quantum cell, the simultaneous vertical conduction light-emitting two (four) i common heat dissipation and current diffusion problem during operation' is effective Improve the light efficiency of the component. In summary, the present invention mainly proposes a vertical-conducting light-emitting body having a light-correcting column 432 capable of increasing the light-scattering probability: a polar body 2, and a manufacturing method of the vertical-conducting light-emitting diode 2, but Improvement: The vertical light-emitting diode II has the disadvantages of insufficient brightness and uniformity of light emission, and achieves the purpose of the invention. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are all It is still within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing the structure of a conventional vertical-conducting light-emitting diode; FIG. 2 is a cross-sectional view showing a preferred one of the vertical-conducting light-emitting diodes of the present invention. FIG. 3 is a partially enlarged view showing the direction of travel of a plurality of light-correcting columns of the vertical-conducting light-emitting diode of FIG. 2; FIG. 4 is a flow chart illustrating the vertical-conducting light-emitting diode of FIG. FIG. 5 is a flow chart illustrating a sub-step process of performing step 62 in the manufacturing method of FIG. 4; and FIG. 6 is a flow chart illustrating the manufacturing method of FIG. Perform the sub-step procedure of step 16 1322518 65. 1322518

【主要元件符號說明】 2 垂直導通式發光二 5 極體 51 3 基材 61 31 基底層 62 311 中央層體 63 312 堆覆膜體 64 32 反射層 65 321 反射膜體 66 4 量子單元 71 41 電流擴散層 72 42 第二型批覆層 73 43 第一型彼覆層 74 431 蝕刻停止部 81 432 光修正柱 82 433 柱叢部 83 44 活性層 45 遮覆膜 電極 金屬膜體 步驟 步驟 步驟 步驟 步驟 步驟 次步驟 次步驟 次步驟 次步驟 次步驟 次步驟 次步驟 18[Main component symbol description] 2 Vertically-conducting light-emitting diode 5 pole body 51 3 Substrate 61 31 Base layer 62 311 Center layer body 63 312 Stacking film body 64 32 Reflecting layer 65 321 Reflecting film body 66 4 Quantum unit 71 41 Current Diffusion layer 72 42 Second type cladding layer 73 43 First type cladding layer 74 431 Etching stop part 81 432 Light correction column 82 433 Column bundle part 83 44 Active layer 45 Masking film electrode Metal film body Steps Steps Steps Step steps Sub-steps, sub-steps, sub-steps, sub-steps, sub-steps, step 18

Claims (1)

1322518 十、申請專利範圍: 1. 一種垂直導通式發光二極體,包含: 一塊板狀基材,是可導電; 一層量子單元’與該基板接合並可以光電效應產生 光’具有相間隔的一層第一型披覆層與一層第二型披覆 層,及一層形成在該第一、二型披覆層之間的活性層, 該第一、二型彼覆層並相對該活性層形成量子能障,該 - 第一型彼覆層包括一層與該活性層連接的蝕刻停止部, 及一層具有多數根自該蝕刻停止部底面一體凸伸出且高 度介於次微米尺度之光修正柱的柱叢部,該柱叢部的多 數根光修正柱與周遭介質的折射係數差使該量子單元產 生的光在行進間發生散射的機率增加;及 一片電極’與該量子單元相毆姆接觸,且可與該基 板共同對該量子單元提供電能使該量子單元發光。 2. 依據申請專利範圍第丨項所述之垂直導通式發光二極體 _ ,其中,該塊基材具有一層以可導電且可導熱的材料構 成的基底層,及一層以可導電且可導熱並具有高折射係 數的材料構成而與該基底層連接的反射層。 3. 依據申請專利範圍第2項所述之垂直導通式發光二極體 其中,該基底層包括一層中央層體,及分別形成在該 中央層體相反兩界面上的複數堆覆膜體,該反射層包括 至;一層反射膜體,且該中央層體是選自由下列所構成 的群組中的物質為材料所構成:♦、銅、銘、碳、鑽石 、氮化鋁、氮化鎂,該複數堆覆膜體是分別選自由下列 19 1322518 所構成的群組中的物質為材料所構成:絡、鈀、鉑、鈦 、鎳、銅、鋅、鎂、鋁、銀、金,及此等之一組合,該 反射膜體是分別選自由下列所構成的群組中的物質為材 料所構成:鉻、把、鉑、鈦、鎳、銅、鋅、鎂、鋁、銀 、金,及此等之一組合。 4.依據申請專利範圍第3項所述之垂直導通式發光二極體 ’其中’該量子單元還具有一層以透明且可供電流橫向 擴散流通的材料構成並形成在該第二型披覆層上而與該 基材相連接的電流擴散層。 5·依據申請專利範圍第4項所述垂直導通式發光二極體, 其中’該量子單元還具有一層形成在側周面上以防止漏 光的遮覆膜。 6· 種垂直導通式發光二極體的製造方法,包含: (a)在一塊磊晶基板上形成一層量子單元,該量子單 元依序具有一層第一型批覆層、一層活性層,及 層第二型批覆層,且該第一、二型批覆層相對 該活性層成量子能障而以光電效應產生光; b 備製一塊可導電的基材; 將該步驟(a )製得的成品以該量子單元與該步驟 (b)備製的基材彼此加壓接合; (d) (e) 移除步驟該(c)製得之成品的磊晶基板; 自該步驟(d )製得的成品之移除該磊晶基板後 的I子單元表面向下餘刻,而使該第一型批覆層 留存之結構成一層與該活性層連接的蝕刻停止部 20 ’及一層包括多數根一體自該蝕刻停止部頂面延 伸出且问度屬於次微米尺度之光修正柱的柱叢部 ;及 (f)移除該叢部預定區塊中的多數根光修正柱,並 在該區塊中以導電材料形成一片電極,製得該垂 直導通式發光二極體。 7.依據中4專利範圍第6項所述之垂直導通式發光二極體 的製造方法’其中’該步驟(a)形成的量子單元還具有 層以透明且可供電流橫向擴散流通的材料形成在該第 二型彼覆層上的電流擴散層。 8·依據中請專利範圍第6或7項所述之垂直導通式發光二 極體的製造方法,其中,該步驟(a)形成的量子單元還 具有一層以氧化矽為材料形成在該第一、二型披覆層與 活性層側周面以防止漏光的遮覆膜。 9.依據申請專利範圍第6項所述之垂直導通式發光二極體 的製造方法’其中’該步驟(b)具有以下次步驟: (bl)選自下列所構成的群組中的物質為材料作為一中 央層體:矽、銅、鋁、碳、鑽石、氮化鋁 '氮化 鎂, (b2 )選自由下列所構成之群組為材料在該中央層體相 反兩面分別形成製至少一層堆覆層體:鉻、鈀、 銘、鈦、鎳、銅、鋅、錢、紹、銀、金,及此等 之組合’使該中央層體與該等堆覆層體構成一層 基底層, 21 (b3)選自由下列所構成之群組為材料,在該基底層其 中一表面上形成至少一層反射膜體,使該至少一 層反射膜體構成一層反射層,進而使得該基底層 與該反射層構成一塊可導電、導熱並可以反射光 的基材。 依據申叫專利範圍第9項所述之垂直導通式發光二極體 的製造方法,其中,該步驟(b)還具有一次步驟(b4) 是在選自純性氣體之組合的氣氛中,以l〇〇£»C〜8〇〇。〇 的⑽度作用〇·5〜80分鐘,使該等堆覆層體、反射膜體的 構成材料進行融合。 i·依據申4專利範圍第6項所述之垂直發光二極體的製造 方法,其中,該步驟(f)是選自由下列所構成之群組為 材料形成該電極:鉑/金、鉻/鋁/鉻/金、鉻/鋁/鈦/金、鉻 /鋁/鎳/金、鉻/鋁/鉑/金,及此等之組合。 12·依據申請專利範圍第6項所述之垂直導通式發光二極體 的製造方法,其中,該步驟(e)具有以下次步驟: (el )在該第一型彼覆層表面以氧化物形成一層蝕刻保 護層;及 ()自該敍刻保護層表面向下蝕刻,且深度為自該第 一型披覆層表面起向下1〇〇〇Α~2000〇Α,而使該 第型批覆層留存之結構成一層與該活性層連接 的#刻停止部’及一層包括多數根光修正柱的柱 叢部。 13.依據申請專利範圍第12項所述之垂直導通式發光二極 22 1322518 體的製造方法’其中,形成之該蝕刻保護層厚度是介於 500〜10000 A 。 U.依據申請專利範圍第13項所述之垂直導通式發光二極 體的製造方法,其中,該氧化物是選自由下列所構成的 群組:氧化物是選自由下列所構成的群組:二氧化矽、 氧化鈦、氧化鎳,及銦錫氧化物。 15. 依據申請專利範圍第12項所述之垂直導通式發光二極 體的製造方法,其中,該步驟(e2)是以感應耦合式電 聚技術’並通入選自由下列所構成之群組中的物進行: 氮、氨、氬、氣、氣化硼、氟化碳、氟化硫,及此等之 組合。 16. 依據申請專利範圍第12項所述之垂直導通式發光二極 體的製造方法,其中,該步驟(e2 )是以選自由下列所 構成之群組的物直接蝕刻進行:氫氯酸、硝酸、氫氧化 钟、氫氧化鈉、硫酸、磷酸、王水,及此等之組合。1322518 X. Patent application scope: 1. A vertical-conducting light-emitting diode comprising: a plate-shaped substrate electrically conductive; a quantum unit 'bonded to the substrate and capable of generating light by photoelectric effect' having a layer spaced apart a first type of coating layer and a second type of coating layer, and an active layer formed between the first and second type coating layers, the first and second types of the first layer and the second layer forming a quantum with respect to the active layer The energy barrier, the first type of cladding layer includes a etch stop portion connected to the active layer, and a layer having a plurality of light-correcting columns integrally protruding from the bottom surface of the etch stop portion and having a height of submicron dimensions. In the column portion, the difference between the refractive index of the plurality of light-correcting columns of the column portion and the surrounding medium causes an increase in the probability of scattering of light generated by the quantum unit during traveling; and a piece of the electrode is in close contact with the quantum unit, and The quantum unit can be supplied with electrical energy together with the substrate to cause the quantum unit to emit light. 2. The vertical-conducting light-emitting diode according to the scope of the patent application, wherein the substrate has a base layer made of a material that is electrically conductive and thermally conductive, and one layer is electrically conductive and thermally conductive. And a material having a high refractive index and a reflective layer connected to the base layer. 3. The vertical-conducting light-emitting diode according to claim 2, wherein the base layer comprises a central layer body, and a plurality of stacked film bodies respectively formed on opposite interfaces of the central layer body, The reflective layer comprises: a reflective film body, and the central layer body is made of a material selected from the group consisting of: ♦, copper, inscription, carbon, diamond, aluminum nitride, magnesium nitride, The plurality of stacked film bodies are respectively selected from the group consisting of the following 19 1322518: complex, palladium, platinum, titanium, nickel, copper, zinc, magnesium, aluminum, silver, gold, and the like. Or a combination of the materials, wherein the reflective film body is made of a material selected from the group consisting of chromium, palladium, platinum, titanium, nickel, copper, zinc, magnesium, aluminum, silver, gold, and One of these combinations. 4. The vertical-conducting light-emitting diode according to claim 3, wherein the quantum unit further has a layer of a material transparent and capable of laterally diffusing current flow and formed on the second type of cladding layer. A current spreading layer connected to the substrate. 5. The vertical-conducting light-emitting diode according to claim 4, wherein the quantum unit further has a cover film formed on the side peripheral surface to prevent light leakage. 6. A method for fabricating a vertical-conducting light-emitting diode, comprising: (a) forming a quantum unit on an epitaxial substrate, the quantum unit sequentially having a first type of cladding layer, an active layer, and a layer a type II batch coating, and the first and second type cladding layers form a quantum energy barrier with respect to the active layer to generate light by a photoelectric effect; b preparing an electrically conductive substrate; and the finished product obtained by the step (a) is The quantum unit and the substrate prepared in the step (b) are press-bonded to each other; (d) (e) removing the epitaxial substrate of the finished product obtained in the step (c); obtained from the step (d) After the removal of the finished epitaxial substrate, the surface of the I subunit is left down, and the structure of the first type of cladding layer is left in an etch stop portion 20' connected to the active layer, and the layer includes a plurality of The top surface of the etch stop extends and asks for a column portion of the sub-micron-scale light-correcting column; and (f) removes a plurality of light-correcting columns in the predetermined block of the plexus, and is in the block Forming a piece of electrode with a conductive material to obtain the vertical conductive light Polar body. 7. The method of manufacturing a vertical-conducting light-emitting diode according to item 6 of the fourth patent scope, wherein the quantum unit formed by the step (a) further has a layer formed of a material transparent and capable of laterally diffusing and flowing. A current spreading layer on the second type of cladding layer. The method for manufacturing a vertical-conducting light-emitting diode according to the sixth or seventh aspect of the invention, wherein the quantum unit formed in the step (a) further has a layer formed of yttrium oxide as the material. a type II coating layer and a side surface of the active layer to prevent light leakage. 9. The method of manufacturing a vertical-conducting light-emitting diode according to claim 6, wherein the step (b) has the following steps: (bl) a substance selected from the group consisting of The material serves as a central layer body: bismuth, copper, aluminum, carbon, diamond, aluminum nitride 'magnesium nitride, (b2) is selected from the group consisting of: the material is formed on the opposite sides of the central layer body to form at least one layer a stack of cladding: chromium, palladium, indium, titanium, nickel, copper, zinc, money, sau, silver, gold, and combinations thereof, such that the central layer and the layers of the layer form a base layer, 21 (b3) is selected from the group consisting of: forming at least one reflective film body on one surface of the base layer, such that the at least one reflective film body constitutes a reflective layer, thereby causing the base layer and the reflection The layers form a substrate that is electrically conductive, thermally conductive, and that reflects light. The method for manufacturing a vertical-conducting light-emitting diode according to claim 9, wherein the step (b) further has a step (b4) in an atmosphere selected from the group consisting of pure gases, L〇〇£»C~8〇〇. The (10) degree of 〇 is 5 to 80 minutes, and the constituent materials of the stacked layer and the reflective film are fused. The method for manufacturing a vertical light-emitting diode according to the sixth aspect of the invention, wherein the step (f) is a material selected from the group consisting of: platinum/gold, chromium/ Aluminum/chromium/gold, chrome/aluminum/titanium/gold, chrome/aluminum/nickel/gold, chrome/aluminum/platinum/gold, and combinations of these. 12. The method of manufacturing a vertical-conducting light-emitting diode according to claim 6, wherein the step (e) has the following steps: (el) an oxide on the surface of the first type of cladding layer Forming an etch protection layer; and () etching downward from the surface of the etched protective layer, and the depth is from 1 〇〇〇Α to 2000 向下 from the surface of the first type of cladding layer, and the first type is made The structure retained by the blanket layer is a layer of a stop portion connected to the active layer and a column portion including a plurality of light-correcting columns. 13. The method of manufacturing a vertical-conducting light-emitting diode 22 1322518 body according to claim 12, wherein the etching protection layer is formed to have a thickness of 500 to 10000 Å. U. The method for producing a vertical-conventional light-emitting diode according to claim 13, wherein the oxide is selected from the group consisting of: the oxide is selected from the group consisting of: Cerium oxide, titanium oxide, nickel oxide, and indium tin oxide. 15. The method of manufacturing a vertical-conducting light-emitting diode according to claim 12, wherein the step (e2) is an inductively coupled electro-polymerization technique and is passed into a group selected from the group consisting of The work is carried out: nitrogen, ammonia, argon, gas, boronized carbide, carbon fluoride, sulfur fluoride, and combinations thereof. 16. The method of manufacturing a vertical-conventional light-emitting diode according to claim 12, wherein the step (e2) is directly etched from a group selected from the group consisting of: hydrochloric acid, Nitric acid, hydrazine hydroxide, sodium hydroxide, sulfuric acid, phosphoric acid, aqua regia, and combinations of these. 23twenty three
TW95145960A 2006-12-08 2006-12-08 Vertical conductive LED and manufacture method thereof TW200826314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95145960A TW200826314A (en) 2006-12-08 2006-12-08 Vertical conductive LED and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95145960A TW200826314A (en) 2006-12-08 2006-12-08 Vertical conductive LED and manufacture method thereof

Publications (2)

Publication Number Publication Date
TW200826314A TW200826314A (en) 2008-06-16
TWI322518B true TWI322518B (en) 2010-03-21

Family

ID=44772352

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95145960A TW200826314A (en) 2006-12-08 2006-12-08 Vertical conductive LED and manufacture method thereof

Country Status (1)

Country Link
TW (1) TW200826314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458132B (en) * 2012-05-22 2014-10-21

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201322481A (en) * 2011-11-18 2013-06-01 Genesis Photonics Inc Solid-state light emitting device
TWI462339B (en) * 2011-11-21 2014-11-21 Ritedia Corp Light-emitting diode having diamond-like carbon layer and manufacturing method and application thereof
CN104377287B (en) * 2013-08-14 2017-04-26 展晶科技(深圳)有限公司 Light-emitting diode and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458132B (en) * 2012-05-22 2014-10-21

Also Published As

Publication number Publication date
TW200826314A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
TWI324401B (en) Fabrication method of high-brightness light emitting diode having reflective layer
TWI282635B (en) GaN-based light-emitting diode and luminous device
TWI284431B (en) Thin gallium nitride light emitting diode device
TWI230473B (en) Semiconductor light emitting device and manufacturing method thereof
TWI363440B (en) Light-emitting device, light-emitting diode and method for forming a light-emitting device
TWI279933B (en) Semiconductor luminescent device and manufacturing method therefor
TW200810161A (en) GaN based LED with improved light extraction efficiency and method for making the same
JP2002217450A (en) Semiconductor light-emitting device and method of manufacturing the same
TW200908490A (en) Photonic crystal laser and method for manufacturing photonic crystal laser
TW200908369A (en) Light-emitting diode and manufacturing method thereof
TW201225334A (en) Optoelectronic device and method for manufacturing the same
TW200423421A (en) Improved LED efficiency using photonic crystal structure
TW200915603A (en) Light-emitting chip device with high thermal conductivity
TW200412679A (en) GaN-based LED vertical device structure and the manufacturing method thereof
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
TW200847492A (en) Semiconductor light-emitting device and method for manufacturing the same
JP2007103689A (en) Semiconductor light emitting device
TW201230390A (en) Light-emitting diode, light-emitting diode lamp and illuminating device
TW200534512A (en) Fabrication of reflective layer on semiconductor light emitting diodes
TWI230472B (en) Semiconductor light emitting device and the manufacturing method thereof
TW200929758A (en) Electric excitation surface emitting lasers with transparent electrodes and crack-free AlN/GaN reflector, and the fabrication method thereof
TWI322518B (en)
TWI240443B (en) Light-emitting diode and method for manufacturing the same
US20130341661A1 (en) Semiconductor light emitting element
TW201015752A (en) Light emitting diode chip and fabricating method thereof