TW200806718A - Composites - Google Patents

Composites Download PDF

Info

Publication number
TW200806718A
TW200806718A TW096112076A TW96112076A TW200806718A TW 200806718 A TW200806718 A TW 200806718A TW 096112076 A TW096112076 A TW 096112076A TW 96112076 A TW96112076 A TW 96112076A TW 200806718 A TW200806718 A TW 200806718A
Authority
TW
Taiwan
Prior art keywords
nylon
particles
composition
clay
nanoparticle comprises
Prior art date
Application number
TW096112076A
Other languages
English (en)
Inventor
Dongsheng Mao
Zvi Yaniv
Original Assignee
Nano Proprietary Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Proprietary Inc filed Critical Nano Proprietary Inc
Publication of TW200806718A publication Critical patent/TW200806718A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

200806718 (1) 九、發明說明 【發明所屬之技術領域】 本專利申請案係主張美國臨時專利申請案案號 60/789,3 00及60/810,394優先權,該二案件並因此倂屬本 案之參考文獻。 【先前技術】 Φ 奈米複合材料係指包含粒徑範圍介於1-100 nm之粒 子的複合材料,這些材料發揮分子的次微米結構特性。這 些粒子’例如黏土及奈米碳管(earb〇n nanotubes,CNT), 一般而言具有優異的特性、高深寬比及層狀結構,致使高 分子與粒子間的鍵結最大化。少量添加這些添加物(0.5-5%)可增加高分子材料許多特性,包括強度更高、剛性更 佳、高抗熱性、抗紫外線性更高、低吸水率、低氣體穿透 率及其他改良特性(T. D. Forties,D. L. Hunter及D. R. • Paul,“Nylon-6 nanocomposites from Alkylammonium-modified clay: The role of Alkyl tails on exfoliation/5 Macromolecules 37, pp. 1793-1798 (2004))。 然而,奈米粒子的分散對於強化以高分子爲基質之奈 米複合材料十分重要。高分子基質中之奈米粒子的分散係 爲難題。此係爲何那些以奈米粒子強化之奈米複合材料並 未如預期地達到傑出的性質(Shamal K· Mhetre,Yong K· Kim, Steven B. Warner, Prabir K. Patra, Phaneshwar Katangur ? and Autumn Dhanote “Nanocomposites with •4- .200806718 (2) functionalized carbon nanotubes,” Mat. Res. Soc. Symp Proc· Vol· 788(2004))。有硏究宣稱奈米複合材料之原位 聚合可促進奈米粒子的分散。奈米複合材料的較佳特性也 因此不知所以然地獲得。但在高分子製程中,原位聚合並 未被證實可當作令人滿意的製造方法。也有利用較爲普遍 及可量產製造的熱熔加工方法來製備那些以奈米粒子強化 高分子之奈米複合材料。但其結果不甚令人滿意。 【發明內容】 經黏土及奈米碳管強化之高分子基質奈米複合材料兩 者增進之機械性質係可藉由奈米粒子與高分子顆粒熱熔加 工前之前處理來獲得。藉由球磨加工可將奈米粒子披覆至 高分子顆粒表面。奈米粒子薄膜於混合物經一定時間之硏 磨後形成至高分子顆粒表面。 球磨製程: 1. 允許奈米粒子貼附至高分子顆粒表面上;及 2. 藉由高分子顆粒之轟擊粉碎奈米粒子之大群簇,並 進一步在熱熔加工製程後分散高分子基質中之奈米粒子。 除了黏土及奈米碳管外,也可使用其他的塡充劑,例 如石墨粒子、碳纖維、碳簇、奈米碳管及陶瓷粒子。 【實施方式】 以下二例係可供闡明本發明之實施態樣。 -5- 200806718 (3) 實施例1 :尼龍1 1 /黏土奈米複合材料 尼龍1 1顆粒係獲自日本 Arkema 公司(商品名: RILSAN BMV-P20 PA11)。黏土係由美國 S o u t h e r n C 1 ay Products 所提供(商品名:Cloisite® series 93A)。其係爲 經三銨鹽修飾之天然蒙脫土。 參考第2圖,在步驟2 0 1中,黏土與尼龍1 1顆粒兩者皆 於80°C之真空爐中乾燥至少1 6小時,藉以完全消除水分。 φ 接著將其置於玻璃容器中進行步驟202之球磨製程。第1圖 係爲典型球磨裝置之示意圖。機器之速度係約每分鐘50〜 60轉。在此方法中係選用 5 wt·%及1〇 wt. %之黏土粉末來 進行測試。混合物至少硏磨半小時,藉此令所有的黏土粒 子被貼附至尼龍11顆粒之表面上。可將溶劑,例如異丙醇 、水或丙酮加入混合物中。另外也使用直接混合法以進行 比較。黏土與尼龍11接著被置入塑膠袋中,並以手搖動至 少半小時。 # 混合物經球磨及直接混合製程混合後,步驟203係利 用一部HAKKE Rheomex CTW 1〇〇雙螺桿押出機(德國)混 融尼龍1 1/黏土 / SEBS。以下參數係用於此步驟 旋擰區域1溫度-23 0°C ; 旋擰區域1溫度-220°C ; 旋摔區域1溫度_ 2 2 0 C ; 壓鑄溫度-230°C ; 旋擰速度-1 00 rpm。 因爲在每次收集複口材料樹脂前,需要使用混合物清 -6 - (4) 200806718 潔雙螺桿押出機,因此每次操作的尼龍1 1與黏土的量係爲 1磅。合成的樹脂可於後續的射出成形步驟製成20個條狀 物。在步驟2 04中,奈米複合材料纖維在押出步驟後係以 水冷卻並利用一部Haake PP1造粒機p〇STEX製成顆粒。 在步驟205中’奈米複合材料顆粒在進行射出成行步驟製 成樣品前係先以70 °C乾燥。在步驟206中,一部]^^-Jector(Model 55, Mini-Jector Machinery Corp. Newbury, φ Ohio, US A)實驗室級射出成形機係用來製造步驟207中物 性測試用之衝擊棒。樣品係利用ASTM指定鑄模(衝擊強 度測試用之ASTM D256,抗彎模數測試用之ASTM D790) 賦予特定尺寸。以下係爲使用之參數: 射出壓力-70 bar ; 保壓壓力-35 bar ; 保壓時間-40秒; 加熱區域1溫度-220°C ; # 加熱區域2溫度—220 °C ; 噴嘴溫度-23(TC ; 鑄模溫度-60-80 °C。 樣品在進行測試前係於乾燥器中乾燥至少40小時。抗 彎模數與樣品衝擊係利用標準三點彎曲法量測。 表1呈現不同重量比例之尼龍11/黏土/SEBS複合材料 之機械特性(抗彎模數與衝撃強度)。 ‘200806718 (5) 表1 樣品序號 前處理 抗彎模數(GPa) 衝擊強度 (kgf cm/cm) 純尼龍11 0.553 尼龍11/黏土 5 wt.% 直接混合 0.928 21·2 尼龍11/黏土 5 wt.% 球磨 1.04 30.3 尼龍11/黏土 10 wt.% 直接混合 1.33 20.4 尼龍11/黏土 10 wt.% 球磨 1.35 27.8
其係可清楚呈現以球磨前處理之尼龍1 1 /黏土奈米複 合材料之機械特性優於那些在塡充相同黏土時採直接混合 之材料。 實施例2 :尼龍6/奈米碳管奈米複合材料 尼龍6顆粒係獲自日本UBE公司(商品名:SF1018A) 。黏土係由美國Southern Clay Products所提供(商品名: Cloisite® series 93 A)。本例中所使用之奈米碳管係爲雙壁 奈米碳管(double wall nanotubes,DWNTs)係獲自比利時 Nanocyl 公司 ° 使用類似上述關於第2圖之製程。奈米碳管與尼龍6顆 粒兩者皆於80°C之真空爐中乾燥至少1 6小時,藉以完全消 除水分。接著將其至於玻璃容器中進行球磨製程。在本例 中,使用於尼龍6基質中之奈米碳管係0.4 wt. %。 -8- .200806718 (6) 第3圖係爲純尼龍6顆粒(左)與尼龍6/奈米碳管(右)之 影像。純尼龍6係爲透明,當其與奈米碳管進行球磨步驟 後係爲黑色,其係由於奈米碳管係爲黑色。此係顯示奈米 碳管均勻地披覆至尼龍6顆粒之表面上。 混合物經球磨及直接混合製程混合後,利用一部 HAKKE Rheomex CTW 100雙螺桿押出機(德國)混融尼龍6/ 黏土/SEBS。以下參數係用於此步驟 φ 旋擰區域1溫度-240°C ; 旋擰區域1溫度-230°C ; 旋擰區域1溫度_230°C ; 壓鑄溫度-220°C ; 旋擰速度-100 rpm。 因爲在每次收集複合材料樹脂前,需要使用混合物清 潔雙螺桿押出機,因此每次操作的尼龍6與奈米碳管的量 係爲1磅。合成的樹脂可於後續的射出成形步驟製成20個 φ 條狀物。奈米複合材料纖維在押出步驟後係以水冷卻並利 用一部Haake PP1造粒機POSTEX製成顆粒。奈米複合材 料顆粒在進行射出成形步驟製成樣品前係先以70 °C乾燥。 利用]\^11卜16〇1:〇1*(]\/1〇(161 555 ]\/[1111-^〇1:〇1]\4&。111116^0;〇巧· Newbury,Ohio,USA)實驗室級射出成形機製造物性測試 用之衝撃棒。樣品係利用ASTM指定鑄模(衝撃強度測試 用之ASTM D63 8,抗彎模數測試用之ASTM D790)賦予特 定尺寸。以下係爲使用之參數: 射出壓力-70 bar ; -9- (7) 200806718 保壓壓力-35 bar ; 保壓時間-40秒; 加熱區域1溫度-23(TC ; 加熱區域2溫度-230°C ; 噴嘴溫度-240°C ; 鑄模溫度-6 0 - 8 0 °C。 爲進行比較,也取純尼龍6樣品並將其成形。樣品在 φ 進行測試前係於乾燥器中乾燥至少40小時。 表2呈現尼龍6/奈米碳管複合材料之機械特性(抗張強 度與抗彎模數)。 表2 樣品序號 抗張強度(MPa) 抗彎模數(GPa) 純尼龍6 7 6 2.5 尼龍6 /奈米碳管(〇 . 4 wt. % ) 8 1 3.0 其係可清楚呈現以球磨前處理之尼龍6/奈米碳管奈米 複合材料之機械特性優於那些純尼龍6。以熱熔加工製程 合成之尼龍6/奈米碳管奈米複合材料之機械特性劣於純尼 ft 6(Dhanote, “Nanocomposites with functionalized carbon nanotubes”,Mat. Res. Soc. Symp. Proc. Vol. 788,Lll.17.1-LI 1·17_6)。 【圖式簡單說明】 -10- 200806718 (8) 第1圖係爲球磨裝置之示意圖。 第2圖係爲製造尼龍1 1/黏土 /SEBS/複合材料樹脂之流 程圖。 第3圖左係爲純尼龍6顆粒之影像,其相較於右側之尼 龍6/奈米碳管顆粒呈現透明。 【主要元件符號說明】 2〇1 :尼龍11顆粒與黏土(於真空爐中,80它,16小時) 2〇2 :乾燥混合 2〇3 :以雙螺桿押出機熱熔加工 2 04 :擠出物以水冷卻並顆粒化 2〇5 :尼龍11奈米複合材料顆粒於真空爐中,8(Γ(:,16小時 2〇6 ·將用以射出成形製成測試樣品之顆粒進行前乾燥 207 :抗彎模數,衝擊強度測試
-11 ·

Claims (1)

  1. .200806718 (1) 十、申請專利範圍 1. 一種方法,其包含利用一球磨裝置混合奈米粒子與 尼龍顆粒。 2. 如申請專利範圍第1項所述之方法,其中前述尼龍 顆粒係尼龍11顆粒。 3. 如申請專利範圍第1項所述之方法,其中前述尼龍 包含尼龍6顆粒。 φ 4.如申請專利範圍第1項所述之方法,其中前述奈米 粒子包含黏土奈米粒子。 5 .如申請專利範圍第1項所述之方法,其中前述奈米 粒子包含奈米碳管。 6. 如申請專利範圍第1項所述之方法,其中前述奈米 粒子包含石墨粒子。 7. 如申請專利範圍第1項所述之方法,其中前述奈米 粒子包含碳纖維。 φ 8 .如申請專利範圍第1項所述之方法,其中前述奈米 粒子包含碳簇。 9.如申請專利範圍第1項所述之方法,其中前述奈米 粒子包含陶瓷粒子。 1 〇.如申請專利範圍第1項所述之方法,其中以球磨裝 置混合後之尼龍顆粒被奈米粒子覆蓋。 11. 一種物質組合物’其包含表面附著有奈米粒子之 尼龍顆粒。 12. 如申請專利範圍第11項所述之組合物,其中前述 -12- ‘200806718 (2) 尼龍顆粒係尼龍Π顆粒。 1 3 .如申請專利範圍第1 1項所述之組合物,其中前述 尼龍顆粒包含尼龍6顆粒。 1 4 .如申請專利範圍第1 1項所述之組合物,其中前述 奈米粒子包含黏土奈米粒子。 1 5 .如申請專利範圍第1 1項所述之組合物,其中前述 奈米粒子包含奈米碳管。 φ 1 6 .如申請專利範圍第1 1項所述之組合物,其中前述 奈米粒子包含石墨粒子。 1 7.如申請專利範圍第1 1項所述之組合物,其中前述 奈米粒子包含碳纖維。 1 8 .如申請專利範圍第1 1項所述之組合物,其中前述 奈米粒子包含碳簇。 1 9 .如申請專利範圍第1 1項所述之組合物,其中前述 奈米粒子包含陶瓷粒子。 φ 20.如申請專利範圍第1 1項所述之組合物,其中前述 尼龍顆粒以球磨裝置混合後被奈米粒子覆蓋。 -13-
TW096112076A 2006-04-05 2007-04-04 Composites TW200806718A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78930006P 2006-04-05 2006-04-05
US81039406P 2006-06-02 2006-06-02
US11/695,877 US20070276077A1 (en) 2006-04-05 2007-04-03 Composites

Publications (1)

Publication Number Publication Date
TW200806718A true TW200806718A (en) 2008-02-01

Family

ID=38750312

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096112076A TW200806718A (en) 2006-04-05 2007-04-04 Composites

Country Status (4)

Country Link
US (1) US20070276077A1 (zh)
JP (1) JP5048053B2 (zh)
TW (1) TW200806718A (zh)
WO (1) WO2008057623A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283403B2 (en) * 2006-03-31 2012-10-09 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US8129463B2 (en) * 2006-03-31 2012-03-06 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US20110160346A1 (en) * 2006-03-31 2011-06-30 Applied Nanotech Holdings, Inc. Dispersion of carbon nanotubes by microfluidic process
US20080090951A1 (en) * 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
US8445587B2 (en) * 2006-04-05 2013-05-21 Applied Nanotech Holdings, Inc. Method for making reinforced polymer matrix composites
KR101449048B1 (ko) * 2008-10-14 2014-10-13 현대자동차주식회사 자동차 엔진 커버용 폴리아미드6 수지 조성물
EP2228406A1 (en) 2009-03-13 2010-09-15 Bayer MaterialScience AG Improved mechanical properties of epoxy filled with functionalized carbon nanotubes
ES2352628B1 (es) * 2009-07-09 2011-12-30 Consejo Superior De Investigaciones Científicas (Csic) Materiales nanocompuestos de poliamidas y fulerenos inorgánicos con propiedades térmicas tribológicas y mecano-dinámicas mejoradas y su aplicación como recubrimientos.
US8545167B2 (en) * 2009-08-26 2013-10-01 Pratt & Whitney Canada Corp. Composite casing for rotating blades
US9902819B2 (en) * 2009-09-14 2018-02-27 The Regents Of The University Of Michigan Dispersion method for particles in nanocomposites and method of forming nanocomposites
FR2991333B1 (fr) * 2012-06-04 2015-04-03 Arkema France Utilisation de nanocharges carbonees a tres faible taux pour le renfort mecanique de materiaux composites eventuellement charges
ES2551283B2 (es) * 2014-05-16 2016-04-18 Universidad De Cádiz Procedimiento de elaboración de materiales de partida para fabricación aditiva
US11391297B2 (en) 2017-11-09 2022-07-19 Pratt & Whitney Canada Corp. Composite fan case with nanoparticles
CN115960370A (zh) * 2022-12-27 2023-04-14 江苏扬农锦湖化工有限公司 一种水性环氧树脂及其制备方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096556A (en) * 1990-06-25 1992-03-17 Ppg Industries, Inc. Cationic microgels and their use in electrodeposition
US5565505A (en) * 1993-06-30 1996-10-15 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US5604269A (en) * 1993-12-27 1997-02-18 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
WO1995018165A1 (en) * 1993-12-27 1995-07-06 Henkel Corporation Self-dispersing curable epoxy resins and coatings
US5565506A (en) * 1994-03-01 1996-10-15 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US5854313A (en) * 1994-09-28 1998-12-29 Takeda Chemical Industries, Ltd. Fine particles of high heat resistant polymer and epoxy esters
US5750595A (en) * 1994-12-29 1998-05-12 Henkel Corporation Self-dispersing curable epoxy resin dispersions and coating compositions made therefrom
US6140045A (en) * 1995-03-10 2000-10-31 Meso Scale Technologies Multi-array, multi-specific electrochemiluminescence testing
TW555852B (en) * 1995-03-10 2003-10-01 Meso Scale Technologies Llc Electrochemiluminescence assay apparatuses, cassettes and kits and methods of making and using the same
US5719201A (en) * 1995-03-30 1998-02-17 Woodbridge Foam Corporation Superabsorbent hydrophilic isocyanate-based foam and process for production thereof
US5969030A (en) * 1995-07-24 1999-10-19 Basf Corporation Waterborne coating compositions containing hydrophobically modified emulsions
EP0755946A3 (en) * 1995-07-24 1997-10-01 Basf Corp Method for the preparation of hydrophobic emulsion polymers, the polymers thus obtained and the aqueous coating compositions containing these polymers
US5569715A (en) * 1995-07-24 1996-10-29 Basf Corporation Process for obtaining hydrophobically modified emulsion polymers and polymers obtained thereby
US5760108A (en) * 1996-10-22 1998-06-02 Henkel Corporation Self-dispersing curable epoxy resin esters, dispersions thereof and coating compositions made therefrom
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6770583B2 (en) * 1997-03-14 2004-08-03 The United States Of America As Represented By The Secretary Of The Navy Transistion metal containing ceramic with metal nanoparticles
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US7073201B2 (en) * 2001-09-21 2006-07-11 Denki Kagaku Kogyo Kabushiki Kaisha Aqueous Adhesive
US20020068161A1 (en) * 2000-07-14 2002-06-06 Board Of Control Of Michigan Technological University Wood-based composite board and method of manufacture
CA2442273A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Carbon nanotubes in structures and repair compositions
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
US6524777B1 (en) * 2001-08-30 2003-02-25 Eastman Kodak Company Method of activating a protective layer on a photographic element employing an organic solvent in the wash solution
US20030099798A1 (en) * 2001-11-29 2003-05-29 George Eric R. Nanocomposite reinforced polymer blend and method for blending thereof
US6846345B1 (en) * 2001-12-10 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds
US7162302B2 (en) * 2002-03-04 2007-01-09 Nanoset Llc Magnetically shielded assembly
US6864418B2 (en) * 2002-12-18 2005-03-08 Nanoset, Llc Nanomagnetically shielded substrate
JP4208722B2 (ja) * 2002-03-04 2009-01-14 ウィリアム・マーシュ・ライス・ユニバーシティ 単層カーボンナノチューブを分離する方法
WO2003078315A2 (en) * 2002-03-20 2003-09-25 Facultes Universitaires Notre-Dame De La Paix Nanocomposites: products, process for obtaining them and uses thereof
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
DE60321805D1 (de) * 2002-07-15 2008-08-07 Henkel Ag & Co Kgaa Selbstabscheidende mit ungesättigtem monomer modifizierte epoxy dispersion
JP4480368B2 (ja) * 2002-09-13 2010-06-16 大阪瓦斯株式会社 ナノスケールカーボンを含有する樹脂組成物、導電性ないし制電性樹脂成形体、導電性ないし制電性樹脂コーティング組成物及び帯電防止膜及びこれらの製造法
US6800946B2 (en) * 2002-12-23 2004-10-05 Motorola, Inc Selective underfill for flip chips and flip-chip assemblies
JP4342929B2 (ja) * 2002-12-26 2009-10-14 昭和電工株式会社 導電性組成物用炭素質材料及びその用途
US7300958B2 (en) * 2003-05-20 2007-11-27 Futaba Corporation Ultra-dispersed nanocarbon and method for preparing the same
US7923500B2 (en) * 2003-08-21 2011-04-12 Rensselaer Polytechnic Institute Nanocomposites with controlled electrical properties
JP4403265B2 (ja) * 2003-09-05 2010-01-27 国立大学法人信州大学 粉体の混合方法
US7005550B1 (en) * 2004-01-22 2006-02-28 The United States Of America As Represented By The Secretary Of The Air Force Arylcarbonylated vapor-grown carbon nanofibers
JP4546749B2 (ja) * 2004-03-09 2010-09-15 帝人テクノプロダクツ株式会社 導電性芳香族ポリアミド樹脂組成物及びそれを用いてなる導電性芳香族ポリアミド樹脂成形体
US7862624B2 (en) * 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US7296576B2 (en) * 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
US7078683B2 (en) * 2004-10-22 2006-07-18 Agilent Technologies, Inc. Nanowire target support and method
US20060270790A1 (en) * 2005-05-26 2006-11-30 Brian Comeau Carbon-nanotube-reinforced composites for golf ball layers

Also Published As

Publication number Publication date
WO2008057623A2 (en) 2008-05-15
WO2008057623A3 (en) 2008-07-31
JP2009542823A (ja) 2009-12-03
JP5048053B2 (ja) 2012-10-17
US20070276077A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
TW200806718A (en) Composites
Jin et al. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess
Prashantha et al. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition
Prashantha et al. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties
Zhang et al. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites
Wu et al. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites
Pan et al. A study on attapulgite reinforced PA6 composites
KR101802545B1 (ko) 탄소 나노튜브 및 그라핀을 함유하는 열가소성 및/또는 엘라스토머성 복합 재료
JP2010540687A (ja) 複合材料の製造方法
Jogi et al. Study of mechanical and crystalline behavior of polyamide 6/hytrel/carbon nanotubes (CNT) based polymer composites
Mosalman et al. The effect of tio2 nanoparticles on mechanical properties of poly methyl methacrylate nanocomposites (research note)
TW201219447A (en) Polymer compositions comprising poly(arylether ketone)s and graphene materials
Zhao et al. Morphology and thermomechanical properties of natural rubber vulcanizates containing octavinyl polyhedral oligomeric silsesquioxane
Karami et al. Morphological and mechanical properties of polyamide 6/nanodiamond composites prepared by melt mixing: effect of surface functionality of nanodiamond
US20140018469A1 (en) Composite material containing carbon nanotubes and particles having a core-shell structure
Kaynan et al. Electrically conductive high-performance thermoplastic filaments for fused filament fabrication
TW200804475A (en) Carbon nanotube reinforced polymer
Aldousiri et al. Effect of layered silicate reinforcement on the structure and mechanical properties of spent polyamide-12 nanocomposites
Mad Desa et al. The effect of natural rubber toughening on mechanical properties of poly (lactic acid)/multiwalled carbon nanotube nanocomposite
US8445587B2 (en) Method for making reinforced polymer matrix composites
TW201100475A (en) Composites
Mohammadi et al. Organically modified-grafted mica (OMGM) nanoparticles for reinforcement of polypropylene
Bose et al. Development of core‐shell structure aided by SiC‐coated MWNT in ABS/LCP blend
Nouparvar et al. The effect of organoclay contents on morphological characterization, mechanical and thermal properties of epoxidized natural rubber-50 toughened polyamide 6 nanocomposites
Nayak et al. Effect of polyphosphazene and modified carbon nanotubes on the morphological and thermo-mechanical properties of polyphenylene sulfide and liquid crystalline polymer blend system