TW201100475A - Composites - Google Patents

Composites Download PDF

Info

Publication number
TW201100475A
TW201100475A TW099106163A TW99106163A TW201100475A TW 201100475 A TW201100475 A TW 201100475A TW 099106163 A TW099106163 A TW 099106163A TW 99106163 A TW99106163 A TW 99106163A TW 201100475 A TW201100475 A TW 201100475A
Authority
TW
Taiwan
Prior art keywords
polymer
nanoparticles
composition
group
nanoparticles comprise
Prior art date
Application number
TW099106163A
Other languages
Chinese (zh)
Inventor
dong-sheng Mao
Zvi Yaniv
Original Assignee
Applied Nanotech Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Nanotech Holdings Inc filed Critical Applied Nanotech Holdings Inc
Publication of TW201100475A publication Critical patent/TW201100475A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Improved mechanical properties of both clay and carbon nanotube (CNT)- reinforced polymer matrix nanocomposites are obtained by pre-treating nanoparticles and thermosetting or thermoplastic polymer pellets prior to a melt compounding process. The nanoparticles are coated onto the surface of the polymer pellets by a ball-milling process. The nanoparticle thin film is formed onto the surface of the polymer pellets after the mixture is ground for acertain time.

Description

201100475 六、發明說明: 【發明所屬之技術領域】 本發明是有關具有改良機械性質的複合材料。 【先前技術】 奈米複合材料是含有在1-100奈米尺寸範圍內之粒子 的複合材料。這些材料發揮分子之微米以下(submicron 0 )的結構性質。這些諸如黏土及碳奈米管(CNTs )之粒 子通常具有優越性質、高的縱橫比及使聚合物與粒子間之 結合最大化的層合結構。添加少量之這些添加劑(0.5-5% )可以增加聚合物之很多性質,包括較高之強度、較大之 剛性、高的耐熱性、較高之抗UV性、較低之吸水率、較 低之氣體滲透率及其他改良的性質(T. D. Fornes,D. L. Hunter, and D. R. Paul, “Nylon-6 nanocomposites from Alkylammonium modified clay : The role of Alkyl tails on exfoliation,’’ Macromolecules 37, pp. 1793-1798 ( 2 0 0 4 ))0 然而,奈米粒子之分散對於強化聚合物基質奈米複合 材料是重要的。在該聚合物基質中此種奈米粒子之分散是 一難題。這就是爲何那些經奈米粒子強化之奈米複合材料 尙未達到預期的優越性質(Shamal K. Mhetre,Yong K.201100475 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a composite material having improved mechanical properties. [Prior Art] A nanocomposite is a composite material containing particles in the range of 1-100 nm. These materials exert the structural properties of the submicron 0 of the molecule. These particles, such as clay and carbon nanotubes (CNTs), generally have superior properties, a high aspect ratio, and a laminate structure that maximizes the bond between the polymer and the particles. Adding a small amount of these additives (0.5-5%) can increase many properties of the polymer, including higher strength, greater rigidity, high heat resistance, higher UV resistance, lower water absorption, and lower Gas permeability and other improved properties (TD Fornes, DL Hunter, and DR Paul, "Nylon-6 nanocomposites from Alkylammonium modified clay : The role of Alkyl tails on exfoliation,'' Macromolecules 37, pp. 1793-1798 (2 0 0 4 ))0 However, the dispersion of nanoparticles is important for strengthening polymer matrix nanocomposites. The dispersion of such nanoparticles in the polymer matrix is a problem. Particle-reinforced nanocomposites have not achieved the expected superior properties (Shamal K. Mhetre, Yong K.

Kim, Steven B. Warner, Prabir K. Patra, Phaneshwar Katangur, and Autumn Dhanote “Nanocomposites with functionalized carbon nanotubes,,5 Mat. Res. Soc. Symp. 201100475Kim, Steven B. Warner, Prabir K. Patra, Phaneshwar Katangur, and Autumn Dhanote “Nanocomposites with functionalized carbon nanotubes,,5 Mat. Res. Soc. Symp. 201100475

Proc. Vol. 788 ( 2 0 0 4 ))。硏究人員已宣稱:奈米複合 材料之原位聚合可以改良奈米粒子之分散。奈米複合材料 之較佳性質以某種方式被獲得。但並未證實原位聚合是用 於聚合物產製之可接受的製造方法。此外也使用一種熔化 混煉方法,其爲一種更受歡迎且可製造之製作那些經奈米 粒子強化的聚合物奈米複合材料的方法。但結果還不令人 滿意。 【發明內容】 藉由在熔化混煉方法之前,預先處理奈米粒子及聚合 物九,獲得經黏土及碳奈米管(CNT )二者強化的聚合物 基質奈米複合材料的改良機械性。藉由球磨方法將奈米粒 子塗覆在聚合物九表面上。在該混合物硏磨一段時間後, 奈米粒子薄膜形成在該聚合物九表面上。 該球磨方法: 1. 使奈米粒子黏附在該聚合物九表面上;及 2. 藉由該聚合物九的撞擊,將該等奈米粒子的大團 破碎而在該熔化混煉方法之後進一步分散該等奈米粒子於 該聚合物基質中。 除了黏土及CNTs之外,也可以使用其他塡料,諸如 石墨粒子、碳纖維、富勒烯、碳奈米管、陶瓷粒子、或其 任何組合。 【實施方式】 -6- 201100475 提供二種事例以說明本發明之具體實例。 事例1 :尼龍1 1 /黏土奈米複合材料 由 Arkema Co_,Japan取得尼龍 11九(產品名: RILSAN Β Μ V - P 2 0 P A 1 1 )。由 S 〇 u t h e r n C1 a y P r 〇 d u c t s, us提供黏土(產品名:CLOISITE®系列93A)。彼爲一 種利用三元(ternary )銨鹽改質之天然蒙脫土。 0 參考圖2’在步驟201中,黏土及尼龍11九皆在8〇 °C下之真空爐中乾燥至少1 6小時,以將水分完全除去。 然後,將彼置於玻璃容器中以進行步驟202中之球磨方法 。圖1是典型球磨裝置之槪略作圖。此機器之速度是每分 鐘約5 0〜6 0轉。在此方法中,選擇5重量%及1 〇重量% 之黏土粉末以供實驗。混合物被硏磨至少半小時以使黏土 粒子黏附在尼龍11九表面上。可將諸如IPA、水或丙酮 之溶劑加入該混合物中。爲供比較,也使用直接混合方法 〇 。黏土及尼龍11置於塑膠袋中且用手搖動至少半小時。 在藉由球磨及直接混合方法混合該混合物之後,在步 驟203中使用HAAKE Rheomex CTW 100雙螺桿擠出機( 德國)以摻合尼龍6/黏土 /SEBS奈米複合材料。在本方法 中使用以下參數: 螺桿區1之溫度—23(TC ; 螺桿區2之溫度一 220 °C ; 螺桿區3之溫度一220°C ; 模子之溫度—230°C ; 201100475 螺桿速度—100 rpm。 用於每一操作之尼龍11九及黏土之量是1英磅,因 爲在收集該複合材料樹脂之前,雙螺桿需要使用該混合物 清潔。藉由以下射出成形方法,合成樹脂可以製成2〇個 條狀物。在擠出方法之後在步驟2 (Μ中,奈米複合材料纖 維在水中冷卻且使用Haake PP1 Pelletizer POSTEX九化ι 。在步驟205中’該奈米複合材料九在製造樣品之射出成 形方法之前在 7〇 °C下乾燥。在步驟206中使用 Mini-Jector ( Model 55,Mini-Jector Machinery C orp. Newbury, Ohio, USA)實驗室級射出成形機以製作用於步驟207中 之物理測試的衝擊條狀物。使用ASTM具體指定之模具( 用於衝擊強度測試之ASTM D256,用於撓曲模數測試之 ASTM D790)添加具有特定尺寸之樣品。以下是所用之參 數: 射出壓力一 70巴; 保壓_ 3 5巴; 保壓時間—40秒; 加熱區1之溫度一 2 2 0 °C ; 加熱區2之溫度一 2 2 0 °C ; 噴嘴溫度-2 3 0 °C ; 模具溫度一 60-8G°C。 在測試方法之前’樣品在乾燥器中乾燥以供至少40 小時之調節。使用標準3點彎曲方法定出樣品之撓曲模數 及衝擊性。 -8 - 201100475 表1顯示具有不同重量比例之尼龍1 1/黏土 /SEBS複 材料的機械性(撓曲模數及衝擊強度)。 表 1 樣品ID 預先處理 撓曲模數 (GPa) 衝擊強度 (kgf cm/cm) 淨尼龍11 0.553 尼龍11/黏土 (5重量%) 直接混合 0.928 21.2 尼龍11/黏土 (5重量%) 球磨 1.04 30.3 尼龍11/黏土 (10重量%) 直接混合 1.33 20.4 尼龍11/黏土 (10重量%) 球磨 1.35 27.8 可清楚看見:在相同黏土載量下,藉由球磨方法預先 處理之尼龍1 1 /黏土奈米複合材料的機械性質優於那些藉 由直接混合方法所製者。 事例2 :尼龍6/碳奈米管奈米複合材料 由1^£(:〇.,13卩311獲得尼龍6九(產品名:3?1018入 )。由 Southern Clay Products,US 提供黏土(產品名: CLOISITE®系·列93 A )。在此事例中所用之碳奈米管是 雙壁 CNTs(DWNTs)。由 Nanocyl,Ine.,Belgium 獲得 DWNTs。 使用如上述之與圖2相關的類似方法。cNTs及尼龍 6九二者在80°C真空爐中乾燥至少1 6小時以將水分完全 201100475 除去。然後,將彼置於玻璃容器中以進行球磨方法。在此 事例中’使用0.4重量% CNTs於尼龍6基質中。 圖3顯示淨尼龍6九(左方)及尼龍6/CNT (右方) 之照片。淨尼龍6是透明的,但彼在與CNTs —同進行球 磨方法後是黑色的,因爲CNTs是黑色的。此意爲:CNTs 被均勻地塗在尼龍6九之表面上。 在該混合物藉由球磨混合後,使用 HAAKE Rheomex CTW 1〇〇雙螺桿擠出機(德國)以摻合尼龍6/黏土/SEBS 奈米複合材料。以下是在本方法中所用之參數: 螺桿區1之溫度一 240°C ; 螺桿區2之溫度一230°C ; 螺桿區3之溫度—2 3 0 °C ; 模子之溫度—2 2 0 °C ; 螺桿速度一 1 00 rpm。 用於每一操作之尼龍6九及CNTs之量是1英磅,因 爲在收集該複合材料樹脂之前,雙螺桿需要使用該混合物 清潔。藉由以下射出成形方法,合成樹脂可以製成20個 條狀物。在濟出方法之後奈米複合材料纖維在水中冷卻且 使用 Haake PP1 Pelletizer POSTEX九化。該奈米複合材 料九在製造樣品之射出成形方法之前在70°C下乾燥。使 用 Mini-Jector ( Model 55,Mini-Jector Machinery Corp. Newbury, Ohio, US A )實驗室級射出成形機以製作用於物Proc. Vol. 788 ( 2 0 0 4 )). Researchers have claimed that in-situ polymerization of nanocomposites can improve the dispersion of nanoparticles. The preferred properties of the nanocomposite are obtained in some manner. However, it has not been confirmed that in-situ polymerization is an acceptable manufacturing method for polymer production. In addition, a melt-kneading process is used which is a more popular and manufacturable process for making polymer nano-reinforced composites that have been strengthened with nanoparticle. But the results are not satisfactory. SUMMARY OF THE INVENTION The improved mechanical properties of a polymer matrix nanocomposite reinforced with both clay and carbon nanotubes (CNT) are obtained by pretreating the nanoparticles and the polymer 9 before the melt-kneading method. Nanoparticles were coated on the surface of the polymer nine by a ball milling method. After the mixture is honed for a while, a film of nanoparticle is formed on the surface of the polymer 9. The ball milling method: 1. adhering the nanoparticle to the surface of the polymer 9; and 2. by the impact of the polymer 9, breaking the large mass of the nanoparticle and further after the melting and kneading method The nanoparticles are dispersed in the polymer matrix. In addition to clay and CNTs, other tanning materials such as graphite particles, carbon fibers, fullerenes, carbon nanotubes, ceramic particles, or any combination thereof may be used. [Embodiment] -6- 201100475 Two examples are provided to illustrate specific examples of the present invention. Case 1: Nylon 1 1 /Clay Nanocomposite Nylon 11 9 (product name: RILSAN Β Μ V - P 2 0 P A 1 1 ) was obtained from Arkema Co_, Japan. Clay (product name: CLOISITE® Series 93A) is supplied by S 〇 u t h e r n C1 a y P r 〇 d u c t s, us. He is a natural montmorillonite that has been modified with ternary ammonium salts. 0 Referring to Figure 2', in step 201, the clay and nylon 11 are both dried in a vacuum oven at 8 ° C for at least 16 hours to completely remove moisture. Then, the glass is placed in a glass container to perform the ball milling method in step 202. Figure 1 is a schematic illustration of a typical ball milling apparatus. The speed of this machine is about 50 to 60 revolutions per minute. In this method, 5 wt% and 1 wt% clay powder were selected for the experiment. The mixture was honed for at least half an hour to adhere the clay particles to the surface of the nylon 11 nine. A solvent such as IPA, water or acetone may be added to the mixture. For comparison, the direct mixing method is also used. Clay and nylon 11 are placed in a plastic bag and shaken by hand for at least half an hour. After mixing the mixture by ball milling and direct mixing, a HAAKE Rheomex CTW 100 twin screw extruder (Germany) was used in step 203 to blend the nylon 6/clay/SEBS nanocomposite. The following parameters were used in the method: temperature of screw zone 1 - 23 (TC; temperature of screw zone 2 - 220 ° C; temperature of screw zone 3 - 220 ° C; temperature of mold - 230 ° C; 201100475 screw speed - 100 rpm. The amount of nylon 11 and clay used for each operation is 1 lb. because the twin screw needs to be cleaned with the mixture before collecting the composite resin. Synthetic resin can be made by the following injection molding method. 2 strips. After the extrusion process in step 2 (in the crucible, the nanocomposite fibers are cooled in water and using Haake PP1 Pelletizer POSTEX IX. In step 205 'the nanocomposite IX is manufactured The injection molding method of the sample was dried at 7 ° C. In a step 206, a Mini-Jector (Model 55, Mini-Jector Machinery C., Newbury, Ohio, USA) laboratory-scale injection molding machine was used to prepare the steps. Impact test strips for physical testing in 207. Samples of a specific size were added using ASTM specified molds (ASTM D256 for impact strength testing, ASTM D790 for flexural modulus testing). Parameters used: injection pressure - 70 bar; holding pressure _ 3 5 bar; holding time - 40 seconds; heating zone 1 temperature - 2 2 0 ° C; heating zone 2 temperature - 2 2 0 ° C; nozzle temperature -2 3 0 °C; mold temperature is 60-8G ° C. Before the test method, the sample is dried in a desiccator for at least 40 hours. The standard 3-point bending method is used to determine the flexural modulus of the sample and Impact -8 - 201100475 Table 1 shows the mechanical properties (flexural modulus and impact strength) of nylon 1 1/clay/SEBS composites with different weight ratios. Table 1 Sample ID Pre-treated flexural modulus (GPa) Impact strength (kgf cm/cm) Net nylon 11 0.553 Nylon 11/Clay (5% by weight) Direct mixing 0.928 21.2 Nylon 11/Clay (5% by weight) Ball mill 1.04 30.3 Nylon 11/Clay (10% by weight) Direct mixing 1.33 20.4 Nylon 11/Clay (10% by weight) Ball Milling 1.35 27.8 It is clear that the mechanical properties of nylon 1 1 /Clay Nanocomposites pretreated by ball milling at the same clay loading are superior to those by direct mixing Case 2: Case 2: Nylon 6 / Carbon Nanocomposites by the tube 1 ^ £ (: square, Jie 13 311 nine obtained nylon 6 (product name: 31,018 into)?. Clay (product name: CLOISITE® series, column 93 A) is supplied by Southern Clay Products, US. The carbon nanotubes used in this case are double-walled CNTs (DWNTs). DWNTs were obtained from Nanocyl, Ine., Belgium. A similar method as described above in relation to Figure 2 is used. Both cNTs and nylon 6 were dried in a vacuum oven at 80 ° C for at least 16 hours to remove moisture completely 201100475. Then, they are placed in a glass container for the ball milling method. In this case '0.4% by weight of CNTs was used in the nylon 6 matrix. Figure 3 shows photographs of net nylon 6 nine (left) and nylon 6/CNT (right). Net nylon 6 is transparent, but it is black after the ball milling method with CNTs because the CNTs are black. This means that the CNTs are evenly applied to the surface of the nylon 6-9. After the mixture was mixed by ball milling, a HAAKE Rheomex CTW 1 〇〇 twin-screw extruder (Germany) was used to blend the nylon 6/clay/SEBS nanocomposite. The following parameters are used in the method: the temperature of the screw zone 1 is 240 ° C; the temperature of the screw zone 2 is 230 ° C; the temperature of the screw zone 3 - 2 30 ° C; the temperature of the mold - 2 2 0 ° C; screw speed is 100 rpm. The amount of nylon 6 and CNTs used for each operation was 1 pound because the twin screw needed to be cleaned with the mixture prior to collecting the composite resin. The synthetic resin can be made into 20 strips by the following injection molding method. After the exit method, the nanocomposite fibers were cooled in water and Haake PP1 Pelletizer POSTEX was used. The nanocomposite material 9 was dried at 70 ° C before the injection molding method for producing the sample. A Mini-Jector (Model 55, Mini-Jector Machinery Corp. Newbury, Ohio, US A) laboratory-scale injection molding machine was used to make the object.

理測試的衝擊條狀物。使用ASTM具體指定之模具(用於 抗張強度測試之ASTM D63 8,用於撓曲模數測試之ASTM -10- 201100475 D7 90 )模製出具有特定尺寸之樣品。以下是所用之參數 射出壓力一 70巴; 保壓一3 5巴; 保壓時間一 40秒; 加熱區1之溫度一 23 0°C ; 加熱區2之溫度一 23 0°C ; 噴嘴溫度一 2 4 0 °C ; 模具溫度一60-80°C。 爲供比較,也模製淨尼龍6樣品。在測試方法之前, 該樣品在乾燥器中乾燥以供至少40小時之調節。表2顯 示尼龍6/CNT奈米複合材料之機械性質(抗張強度及撓 曲模數)。 表 2 樣品ID 抗張強度(MPa) 撓曲模數(GPa) 淨尼龍ό 76 2.5 尼龍6/CNT(0.4重量%) 81 3.0 〇 可以清楚見到:藉由球磨方法所預先處理之尼龍 6/CNT奈米複合材料的機械性質優於淨尼龍6者。藉由熔 化混煉方法所合成之尼龍6/CNT奈米複合材料維持比淨 尼龍 6 爲差之機械性質(Dhanote, “Nanocomposites with functionalized carbon nanotubes5,, Mat. Res. S 〇 c. S ymp.The impact strip of the test. Samples of a particular size were molded using ASTM specified molds (ASTM D63 8 for tensile strength testing, ASTM -10-201100475 D7 90 for flexural modulus testing). The following parameters are used for the injection pressure of 70 bar; holding pressure of 3-5 bar; holding time of 40 seconds; heating zone 1 temperature of 23 0 ° C; heating zone 2 temperature of 230 ° C; nozzle temperature one 2 4 0 °C; mold temperature is 60-80 °C. For comparison, a net nylon 6 sample was also molded. Prior to the test method, the sample was dried in a desiccator for at least 40 hours of conditioning. Table 2 shows the mechanical properties (tensile strength and flexural modulus) of the nylon 6/CNT nanocomposite. Table 2 Sample ID Tensile strength (MPa) Flexural modulus (GPa) Net nylon ό 76 2.5 Nylon 6/CNT (0.4% by weight) 81 3.0 〇 It can be clearly seen: nylon 6/ pretreated by ball milling method The mechanical properties of CNT nanocomposites are superior to those of net nylon. The nylon 6/CNT nanocomposite synthesized by the melt-kneading method maintains a mechanical property worse than that of the net nylon 6 (Dhanote, "Nanocomposites with functionalized carbon nanotubes 5,, Mat. Res. S 〇 c. S ymp.

Proc. Vol_ 7 8 8, L11.17.1_L11_17.6)。 -11 - 201100475 在上述情況中可以使用其他類型之聚合物(包括但不 限於熱塑性及熱固性聚合物)以代替尼龍6及尼龍11或 與之倂用。 如本文所述可使用之熱塑性聚合物包括但不限於聚碳 酸酯類、聚醯胺類、聚酯類(諸如聚對苯二甲酸丁二酯及 聚對苯二甲酸乙二酯)、聚醚類、熱塑性聚胺基甲酸酯類 、聚縮醛類、氟化聚合物類(諸如聚偏二氟乙烯)、聚醚 砸類、聚烯烴類(諸如聚乙烯及聚丙烯)、聚醯亞胺類、 聚丙烯酸酯類(聚甲基丙烯酸甲酯)、聚苯醚類、聚苯硫 醚類、聚醚酮類、聚芳基醚酮類、苯乙烯聚合物(諸如聚 苯乙烯)、苯乙烯共聚物(諸如苯乙烯丙烯腈共聚物)、 丙烯酸酯橡膠、丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯 或其任何組合。 如本文可使用之熱固性聚合物包括但不限於環氧樹脂 、酚醛塑料、氰酸酯類(CEs )、雙順丁烯二醯亞胺類( BMIs )、聚醯亞胺類或其任何組合。奈米粒子諸如黏土 或CNTs可藉由硏磨方法塗覆在熱固九表面上。然後將該 九加熱以在某一溫度下形成熔化的液體且固化以形成奈米 複合材料。在該固化方法之前提供另外之混合諸如攪拌或 超音波作用。在室溫下爲液態之熱固性聚合物(諸如 EP ON® Resin 828環氧樹脂)可冷卻至較低溫度以形成固 態材料。然後該固態材料可以破碎成九。相較於在室溫下 爲固態之聚合物’在室溫下爲液態之聚合物可以在較低溫 度下進行硏磨方法。 -12- 201100475 【圖式簡單說明】 圖1說明一種球磨裝置之槪略作圖; 圖2說明一種製造尼龍1 1/黏土 /苯乙烯-乙烯/丁烯-苯 乙烯(S EB S ) /複合材料樹脂的流程圖;及 圖3所示爲左方淨尼龍6九(其是透明的)對比於右 ^ 方尼龍6/CNT九之照片。 〇Proc. Vol_ 7 8 8, L11.17.1_L11_17.6). -11 - 201100475 Other types of polymers (including but not limited to thermoplastic and thermoset polymers) may be used in the above cases in place of or in addition to nylon 6 and nylon 11. Thermoplastic polymers that can be used as described herein include, but are not limited to, polycarbonates, polyamines, polyesters (such as polybutylene terephthalate and polyethylene terephthalate), polyethers. Classes, thermoplastic polyurethanes, polyacetals, fluorinated polymers (such as polyvinylidene fluoride), polyether oximes, polyolefins (such as polyethylene and polypropylene), polyimine Classes, polyacrylates (polymethyl methacrylate), polyphenylene ethers, polyphenylene sulfides, polyether ketones, polyaryl ether ketones, styrene polymers (such as polystyrene), benzene Ethylene copolymer (such as styrene acrylonitrile copolymer), acrylate rubber, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride or any combination thereof. Thermoset polymers as may be used herein include, but are not limited to, epoxy resins, phenolics, cyanate esters (CEs), bis-methyleneimine (BMIs), polyimines, or any combination thereof. Nanoparticles such as clay or CNTs can be applied to the thermoset nine surface by a honing method. The nine is then heated to form a molten liquid at a certain temperature and solidified to form a nanocomposite. Additional mixing such as agitation or ultrasonication is provided prior to the curing process. A thermoset polymer that is liquid at room temperature (such as EP ON® Resin 828 epoxy) can be cooled to a lower temperature to form a solid material. The solid material can then be broken into nine. The honing method can be carried out at a lower temperature than a polymer which is solid at room temperature, which is liquid at room temperature. -12- 201100475 [Simplified description of the drawings] Figure 1 illustrates a schematic diagram of a ball milling device; Figure 2 illustrates a manufacturing of nylon 1 1 / clay / styrene - ethylene / butylene - styrene (S EB S ) / composite A flow chart of the material resin; and Figure 3 shows a photograph of the left net nylon 6 nine (which is transparent) compared to the right side nylon 6/CNT nine. 〇

-13--13-

Claims (1)

201100475 七、申請專利範圍: 1. 一種方法,其包含: 摻合預定之相對重量%濃度之奈米粒子與聚合物九; 及 混合該等奈米粒子與該聚合物九及溶劑,使該等奈米 粒子充分塗覆在聚合物九表面上,以致在混合後實質維持 該預定之相對重量%,其中該等聚合物九係選自由熱塑性 聚合物及熱固性聚合物組成之群組。 2 .如申請專利範圍第1項之方法,其中該等熱塑性聚 合物係選自由聚碳酸酯類、聚醯胺類、聚酯類、聚醚類、 熱塑性聚胺基甲酸酯類、聚縮醛類、氟化聚合物、聚醚颯 類、聚烯烴類、聚醯亞胺類、聚丙烯酸酯類、聚苯醚類、 聚苯硫醚類、聚醚酮類、聚芳基醚酮類 '苯乙烯聚合物、 苯乙烯共聚物、丙烯酸酯橡膠、丙烯腈-丁二烯-苯乙烯嵌 段共聚物、聚氯乙烯或其任何組合組成之群組。 3 .如申請專利範圍第1項之方法,其中該等熱固性聚 合物係選自由環氧樹脂、酚醛塑料、氰酸酯類、雙順丁烯 二醯亞胺類、聚醯亞胺類或其任何組合組成之群組。 4.如申請專利範圍第1項之方法,其中該等奈米粒子 包含黏土奈米粒子。 5 .如申請專利範圍第1項之方法,其中該等奈米粒子 包含碳奈米管。 6 .如申請專利範圍第1項之方法,其中該等奈米粒子 包含石墨粒子。 -14- 201100475 7 .如申請專利範圍第1項之方法’其中該等奈米粒子 包含碳纖維。 8 ·如申請專利範圍第1項之方法’其中該等奈米粒子 包含富勒烯。 9.如申請專利範圍第1項之方法’其中該等奈米粒子 包含陶瓷粒子。 1 〇.如申請專利範圍第1項之方法’其中利用球磨裝 0 置進行該混合。 11. 一種包含表面黏附奈米粒子之聚合物丸的物質組 成物,其中該等聚合物九係選自由熱塑性聚合物及熱固性 聚合物組成之群組。 1 2 ·如申請專利範圍第1 1項之組成物,其中該等熱塑 性聚合物係選自由聚碳酸酯類、聚醯胺類、聚酯類、聚醚 類、熱塑性聚胺基甲酸酯類、聚縮醛類、氟化聚合物、聚 醚颯類、聚烯烴類、聚醯亞胺類、聚丙烯酸酯類、聚苯醚 Q 類、聚苯硫醚類、聚醚酮類、聚芳基醚酮類、苯乙烯聚合 物、苯乙烯共聚物、丙烯酸酯橡膠、丙烯腈-丁二烯-苯乙 烯嵌段共聚物、聚氯乙烯或其任何組合組成之群組。 13. 如申請專利範圍第11項之組成物,其中該等熱固 性聚合物係選自由環氧樹脂、酚醛塑料、氰酸酯類、雙順 丁烯二醯亞胺類、聚醯亞胺類或其任何組合組成之群組。 14. 如申請專利範圍第U項之組成物,其中該等奈米 粒子包含黏土奈米粒子。 1 5 .如申請專利範圍第11項之組成物,其中該等奈米 -15- 201100475 粒子包含碳奈米管。 1 6 .如申請專利範圍第1 1項之組成物,其中該等奈米 粒子包含石墨粒子。 1 7 .如申請專利範圍第1 1項之組成物,其中該等奈米 粒子包含碳纖維。 1 8 .如申請專利範圍第1 1項之組成物,其中該等奈米 粒子包含富勒烯。 1 9 .如申請專利範圍第1 1項之組成物,其中該等奈米 粒子包含陶瓷粒子。 2 0 .如申請專利範圍第1 1項之組成物,其中該等聚合 物九在使用該球磨裝置混合後被該等奈米粒子覆蓋。 2 1 .如申請專利範圍第1項之方法,其另外包含在混 合該等奈米粒子與該等聚合物九及該溶劑之後,將該等奈 米粒子塗覆在該等聚合物九之整個表面上。 22. 如申請專利範圍第1項之方法,其另外包含在混 合該等奈米粒子與該等聚合物九及該溶劑之後,將該混合 物擠出。 23. 如申請專利範圍第1項之方法,其中該等奈米粒 子包含多壁碳奈米管。 2 4 .如申請專利範圍第1項之方法,其中該預定之相 對重量%濃度是0.4。 25·如申請專利範圍第1項之方法,其中該預定之相 對重量%濃度是5。 2 6 ·如申請專利範圍第1項之方法,其中該預定之相 -16- 201100475 對重量%濃度是ίο201100475 VII. Patent Application Range: 1. A method comprising: blending a predetermined relative weight % concentration of nano particles with a polymer IX; and mixing the nano particles with the polymer IX and a solvent to enable the The nanoparticles are sufficiently coated on the surface of the polymer nine such that the predetermined relative weight percent is substantially maintained after mixing, wherein the polymers are selected from the group consisting of thermoplastic polymers and thermoset polymers. 2. The method of claim 1, wherein the thermoplastic polymer is selected from the group consisting of polycarbonates, polyamines, polyesters, polyethers, thermoplastic polyurethanes, polyacetals Classes, fluorinated polymers, polyether oximes, polyolefins, polyimines, polyacrylates, polyphenylene ethers, polyphenylene sulfides, polyether ketones, polyaryl ether ketones' A group consisting of a styrene polymer, a styrene copolymer, an acrylate rubber, an acrylonitrile-butadiene-styrene block copolymer, polyvinyl chloride, or any combination thereof. 3. The method of claim 1, wherein the thermosetting polymer is selected from the group consisting of epoxy resins, phenolic plastics, cyanate esters, bis-maleimide, polyethylenimine or A group of any combination. 4. The method of claim 1, wherein the nanoparticles comprise clay nanoparticles. 5. The method of claim 1, wherein the nanoparticles comprise carbon nanotubes. 6. The method of claim 1, wherein the nanoparticles comprise graphite particles. -14- 201100475 7. The method of claim 1, wherein the nanoparticles comprise carbon fibers. 8. The method of claim 1, wherein the nanoparticles comprise fullerenes. 9. The method of claim 1, wherein the nanoparticles comprise ceramic particles. 1 〇. The method of claim 1 wherein the mixing is performed using a ball mill. 11. A composition of matter comprising polymer pellets having surface-bound nanoparticles, wherein the polymers are selected from the group consisting of thermoplastic polymers and thermoset polymers. 1 2 The composition of claim 1 wherein the thermoplastic polymer is selected from the group consisting of polycarbonates, polyamines, polyesters, polyethers, thermoplastic polyurethanes, Polyacetals, fluorinated polymers, polyether oximes, polyolefins, polyimines, polyacrylates, polyphenylene ethers Q, polyphenylene sulfides, polyether ketones, polyaryls A group consisting of an ether ketone, a styrene polymer, a styrene copolymer, an acrylate rubber, an acrylonitrile-butadiene-styrene block copolymer, polyvinyl chloride, or any combination thereof. 13. The composition of claim 11, wherein the thermosetting polymer is selected from the group consisting of epoxy resins, phenolics, cyanate esters, bis-methyleneimine, polyethylenimines or A group consisting of any combination thereof. 14. The composition of claim U, wherein the nanoparticles comprise clay nanoparticles. 1 5. The composition of claim 11, wherein the nano-15-201100475 particles comprise carbon nanotubes. The composition of claim 11 wherein the nanoparticles comprise graphite particles. The composition of claim 11 wherein the nanoparticles comprise carbon fibers. 18. The composition of claim 11, wherein the nanoparticles comprise fullerenes. The composition of claim 11 wherein the nanoparticles comprise ceramic particles. The composition of claim 11 wherein the polymer ninth is covered by the nanoparticle after being mixed using the ball milling device. 2 1. The method of claim 1, further comprising, after mixing the nanoparticles and the polymer 9 and the solvent, coating the nanoparticles with the entire polymer On the surface. 22. The method of claim 1, further comprising extruding the mixture of the nanoparticles and the polymer 9 and the solvent. 23. The method of claim 1, wherein the nanoparticles comprise multi-walled carbon nanotubes. The method of claim 1, wherein the predetermined relative weight % concentration is 0.4. 25. The method of claim 1, wherein the predetermined relative weight % concentration is 5. 2 6 · The method of claim 1, wherein the predetermined phase -16-201100475 is ίο
TW099106163A 2009-03-11 2010-03-03 Composites TW201100475A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US40208909A 2009-03-11 2009-03-11

Publications (1)

Publication Number Publication Date
TW201100475A true TW201100475A (en) 2011-01-01

Family

ID=42728669

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099106163A TW201100475A (en) 2009-03-11 2010-03-03 Composites

Country Status (2)

Country Link
TW (1) TW201100475A (en)
WO (1) WO2010104710A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902819B2 (en) * 2009-09-14 2018-02-27 The Regents Of The University Of Michigan Dispersion method for particles in nanocomposites and method of forming nanocomposites
CN105711094B (en) * 2016-03-15 2019-05-07 东华大学 A kind of 3 D-printing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099798A1 (en) * 2001-11-29 2003-05-29 George Eric R. Nanocomposite reinforced polymer blend and method for blending thereof
US7094367B1 (en) * 2002-08-13 2006-08-22 University Of Florida Transparent polymer carbon nanotube composites and process for preparation
DE10312494A1 (en) * 2003-03-20 2004-10-07 Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) Carbon nanostructures and methods of making nanotubes, nanofibers, and carbon-based nanostructures
WO2004091571A2 (en) * 2003-04-08 2004-10-28 New Jersey Institute Of Technology (Njit) Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
US20060216508A1 (en) * 2005-03-24 2006-09-28 3M Innovative Properties Company Polymer nanocomposite having surface modified nanoparticles and methods of preparing same
US20080152913A1 (en) * 2006-12-22 2008-06-26 3M Innovative Properties Company Method of making compositions including particles

Also Published As

Publication number Publication date
WO2010104710A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5048053B2 (en) Composite
Lee et al. Highly improved interfacial affinity in carbon fiber-reinforced polymer composites via oxygen and nitrogen plasma-assisted mechanochemistry
Prashantha et al. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition
Jogi et al. Study of mechanical and crystalline behavior of polyamide 6/hytrel/carbon nanotubes (CNT) based polymer composites
Babal et al. Depression in glass transition temperature of multiwalled carbon nanotubes reinforced polycarbonate composites: effect of functionalization
Mosalman et al. The effect of tio2 nanoparticles on mechanical properties of poly methyl methacrylate nanocomposites (research note)
Rajesh et al. Effect of injection molding parameters on nanofillers dispersion in masterbatch based PP-clay nanocomposites
Bagotia et al. Systematic study of dynamic mechanical and thermal properties of multiwalled carbon nanotube reinforced polycarbonate/ethylene methyl acrylate nanocomposites
WO2012131265A1 (en) Composite material containing carbon nanotubes and particles having a core-shell structure
Kaynan et al. Electrically conductive high-performance thermoplastic filaments for fused filament fabrication
Kausar Polyamide 1010/polythioamide blend reinforced with graphene nanoplatelet for automotive part application
CN105111703A (en) Preparation method of conductive polylactic acid composite for thermal fusion 3D printing
Haider et al. Research advancement in high-performance polyamides and polyamide blends loaded with layered silicate
TW201100475A (en) Composites
Natarajan et al. Comparison of MA-g-PP effectiveness through mechanical performance of functionalised graphene reinforced polypropylene
US8445587B2 (en) Method for making reinforced polymer matrix composites
Narimani et al. Electrical and steady shear rheological behaviour of polypropylene composites reinforced with single-walled carbon nanotubes
KR20130036114A (en) A method for preparing carbon nano tube reinforced polypropylene
Park et al. Surface modification of carbon nanotubes for high-performance polymer composites
Elleithy et al. Different factors affecting the mechanical and thermo-mechanical properties of HDPE reinforced with micro-CaCO3
Tasdemir Mechanical properties of pslypropylene biocomposites with sea weeds
Yadav et al. Preparation and characterization of wood plastic composite reinforced by organoclay
Pal et al. Rubber blend nanocomposites
Bose et al. Development of core‐shell structure aided by SiC‐coated MWNT in ABS/LCP blend
Huang et al. Nanocavities double the toughness of graphene–polycarbonate composite