TW200301969A - Photovoltaic cell and method of manufacture of photovoltaic cells - Google Patents

Photovoltaic cell and method of manufacture of photovoltaic cells Download PDF

Info

Publication number
TW200301969A
TW200301969A TW092100024A TW92100024A TW200301969A TW 200301969 A TW200301969 A TW 200301969A TW 092100024 A TW092100024 A TW 092100024A TW 92100024 A TW92100024 A TW 92100024A TW 200301969 A TW200301969 A TW 200301969A
Authority
TW
Taiwan
Prior art keywords
layer
photovoltaic
substrate
battery
device layer
Prior art date
Application number
TW092100024A
Other languages
English (en)
Other versions
TW580773B (en
Inventor
Sadeg M Faris
Original Assignee
Reveo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reveo Inc filed Critical Reveo Inc
Publication of TW200301969A publication Critical patent/TW200301969A/zh
Application granted granted Critical
Publication of TW580773B publication Critical patent/TW580773B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/30Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
    • H10F19/31Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/40Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising photovoltaic cells in a mechanically stacked configuration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/139Manufacture or treatment of devices covered by this subclass using temporary substrates
    • H10F71/1395Manufacture or treatment of devices covered by this subclass using temporary substrates for thin-film devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • H10F77/1692Thin semiconductor films on metallic or insulating substrates the films including only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • H10F77/1694Thin semiconductor films on metallic or insulating substrates the films including Group I-III-VI materials, e.g. CIS or CIGS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • H10F77/1696Thin semiconductor films on metallic or insulating substrates the films including Group II-VI materials, e.g. CdTe or CdS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

200301969 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實 、c乃式及圖式簡單說明) t 明所屬領】 PV電池 隨著未來全球能源需求增加,對於具有成本效益且可 5靠的替代能源需求增高。太陽發出之能量可提供此種替代 能源。太陽能電池或光伏打電池電池(PV電池)可將日光直 接轉成電力,可以低操作成本提供長期電力,且能量產生 時不會造成污染,故PV電池被視為由太陽獲得能量的主要 候選者。目前PV電池提供衛星及太空交通工具長期動力。 ίο pv電池也成功地用於小型地面用途。 廣泛使用太陽能電池做為較大規模電源的主要障礙包 括電池成本(製造成本及/或材料成本)、太陽能電池之操作 效率、或成本與效率二者。 C先前技術3 15 典型PV電池之操作 單接面電池 典型早接面光伏打電池中,石夕等材料被換雜原子,該 原子係來自於具有比基板(例如矽)出現電子時多一個或少 -個電池的元素’結果導致二層間的叩接面。當具有特定 ”Eg(隨著使用之材料、叩接面深度等改變)之光子碰撞 電池時’不匹配的電子鬆脫’當電子流過跨越Pn接面時形 成電^電流可收集成多種通過串聯及/或並聯陣列之電 流及電壓。 早接面太陽“池之效率通常係基於有限叫。當電 20 200301969 玖、發明說明 池曝光於太陽能光譜時,能量小 1〇 輸出無貢獻,能量高於E。的光子可促成:二致對電池的 而過渡超過Eg則大致呈熱量浪費掉。 g 矽、衍生物及其它Pv電池材料 常用太陽能電池材料包括高度純化石夕,該材料由單 鑄錠被切割成為晶圓、或生長成薄結晶板或薄結晶帶。 因鑄旋生長、切割、摻雜絲光等成本以切材:身 义要的龐大造成其成本並不實際。許多材料被浪費掉 而能量效率降低’原因在於太陽能電池厚度只需要數倍 波長。
薄板。 另一種形成薄層太陽能電池之方法涉及·融石夕壓延 又另一成形薄層太陽能電池之方法涉及沉積氣態石夕材 料成為薄膜。 5 錢用複晶電池,其特性比單晶電池更無效率,但製 造上也較價廉。 衣 矽電池典型具有最大值AM1.5,1太陽效率約為22 3% 。其它材料也用來提高效率例如帶有最大AM1.5, 1太陽效 率約22.3%之坤化鎵,但此等材料同樣也昂責。 20多接面電池 另一種提高效率的辦法係仰賴多重光譜轉換,其中數 個電池以帶隙遞減的順序堆疊。頂部電池吸收紫外光的輻 射以及對應於該電池之Eg的光子。下方電池(典型為一個 或兩個私池)接續吸收較低帶隙。藉此方式,可堆疊各種
6 200301969 玖、發明說明 5 10 15 電池(換言之,具有不同Eg值電池)而讓效率最大化,效率 大於約30%。對兩個申聯帶隙而言,理想最高效率為5〇% ,ki.56 eV及Eg2=〇.94 eV。對三個帶隙而言,理想最高 效率為56%,匕叫.75以、^2=118〜及&=〇75以。使 用多於三個帶隙的系統顯示效率的增高極為緩慢,例如於 〜隙時最大效率為72%。前述彙接電池配置本質上比單 接面電池更昂貴。囊接組態典型係生長於其它電池層頂上 或刀開生長才私轉。舉例言之,使用蟲晶剝離來製造薄 膜,其中光伏打電池可結合離型層生長而有助其剝離。但 習知生長或堆疊二或:r徊雷、、士 飞一们电池之方法,導致電池價格極為 昂貴,特別就每瓦特成本為基準而言價格昂責。進一步為 了傳輸來自彙接組態的電池之能量,必須製造互連裝置, ㈣,連裝置係位於電池堆邊緣,互連裝置為具有成本效 益的菜接太陽能電池的關鍵限制瓶頸。 如此太陽能電池業界仍然需要組合太陽能轉換效率與 可接受的製造成本來提供量產,因而降低每單位功率成本。 【潑^明内容】 前文討論及其它先前技術之問題及缺陷可藉本發明之 若干方法及裝置予以克服或改善,因而達成本發明之目的 。光伏打電池係由多層基板製成。該多層基板通常包括一 第一層,其適合讓光伏打電池形成於其令或其上,其中該 第-層選擇性附著或連結至第二層。—種成形一光伏打電 池或複數個光伏打電池之方法通常包含選擇㈣著第 至第二基板。 20 200301969 玖、發明說明 …例中,多層基板包括—適合讓光伏打電池 形成於其t或其上的第一層選擇性附著或連結至第二基板層。 5 10 15 選擇性連結通常包括一或多個強連結區以及一或多個 弱連結區。太陽能電池或始或其部分可形成於一或多弱連 ㈣内或區上。因第二層用來提供支持以及熱穩定性,故 弟層可變成及薄(例如小於1〇、5、2或甚至!微幻。如此 ,可製造薄層太陽能電池,薄層太陽能電池經常需要在苛 ㈣條件下完成,而同時維持第一基板層的機械完整性及 …70正f生^通後,可有太陽能電池或太陽能電池組成元件 之第一層易例如藉剝離或其它方便方法而由第二層去除。 α太陽月匕电池或其組成兀件係形成於第一層的弱連結區内 或區上,故於去除期間極少受影響,且較佳絲毫也未受影 響,因此極少或無需隨後的結構修復或處理。 刖文討論及其它本發明之特色及優點對熟諳技藝人士 而a由後文洋細說明部分將更為明瞭及了解。 圖式簡單說明 第1A圖不意顯示用於處理此處所述光伏打電池之一種 多層基板; 第1B圖示意顯示供用於處理此處所述光伏打電池之多 層基板之另一具體實施例; 第2-13圖顯示第1Α&ιΒ圖之結構供選擇性黏著各層之 處理技術。 第14-20圖顯示第1A&1B圖結構之多種連結幾何。 第21 -32圖顯示多種去除連結技術; 20 200301969 玖、發明說明 第33圖顯示光伏打電池組之具體實施例; 第34A-34C圖顯示彙接光伏打電池; 第35圖顯示使用彙接光伏打電池之光伏打電池組之另 一具體實施例;以及 5 帛36圖顯示光伏打電池組之彙接陣列之具體實施例。 【實施方式】 較佳實施例之詳細說明 “本發明係有關有效製造各類型太陽能電池。於討論太 # 9匕包池之才寸疋製造方式丽’首先對起始基板做討論,陳 10返於申請人共同審查中之美國專利申請案第⑽雜,號 申口月日2001年9月12日,名稱「薄膜及其製法」,以引用 方式併入此處。此種基板稱做為選擇性連結多層基板,此 土板如已知’允,午於—晶圓上處理一或多個太陽能電池 ^但允許晶圓電池層方便被去除,較佳無需機械研磨或其 匕口姓技術’因而實現比較已知太陽能電池的製造技術成 本節省且可靠等優勢。 馨 「K貝上任何太陽能電池皆可有此處之教示獲益。後文 太陽此I置」一詞將表示各類型太陽能電池。 選擇性連結裝置層的形成 20 I照第1Α圖’顯示選擇性連結之多層基板100。多層 基£板100包括一層1其具有暴露面1Β,以及一表面1Α,其 、擇^連結至-層2的表面2 Α。層2進一步包括相對面2Β 曰通$ k做為意圖處理一或多個裝置於其中或其上之 e為衣置包括但非限於如此處說明之光伏打裝置。層2 9 200301969 玖、發明說明 L $谅做為於層丨内或上處理一或多個裝置時的支持基板。 另外,現在參照第1B圖,可於多層基板的某個深度形 成甘入置氧化物層。例如嵌置氧化物層通常係形成於裝置層 1及裝置層2之界面,俾形成一種s〇I結構其包括一底基板 、一肷置氧化物層以及一半導體層。 該氧化物層可於選擇性連結裝置層至本體基板之前形 成。-具體實施例中,如熟諸技藝人士已知,氧化物層可 幵y成於期王深度。隨後氧化物層上方該層可被去除,去除 方式例如係藉裂解蔓延、離子植入接著為機械分離(例如
10 正交於結構1GG平面、平行於結構丨⑽平面、於剝離方向或 其組合之裂解蔓延);或去除方式係藉離子植人接著藉熱 、光及/或壓力誘生層分裂進行。然後被去除層(或分開衍 生層)可廷擇性連結至帶有氧化物層於其上之該基板層2頂面。 15 /氧化物層另外可於裝置層選擇性連結至本體基板之後 形成例如一具體貫施例令,氧化物層係於選擇性連結裝 置層至本體基板後,經由氧植人至期望的I置氧化物層深 度而形成。
20 a 可衍生自夕種來源,包括晶圓或流體材料沉積 而形成溥膜及/或基板結構。若起始物料係呈晶圓形式, 則任-種習知處理皆可用於衍生層⑷或層2。_如層2由 晶圓組成’層1包含同一晶圓或不同晶圓的一部份。組成 層1的晶圓部分可衍生自機械減薄(例如機械研磨、切削、 拋光;化學機械拋光:抛光樓止;或包括前述至少一種的 組合卜裂解蔓延、離子植入接著為機械分離(例如正交於 10 200301969 玖、發明說明 結構100平面、平行於結構1〇〇平面、於剝離方向或其組合 之裂解蔓延)、離子植入接著為熱、光及/或壓力誘生層分 裂、化學餘刻等。此外,層1及層2之任-者或二者可例如 藉化學氣相沉積、磊晶生長法等沉積或生長。 5 概略言之,為了形成選擇性連結的多層基板10〇,層! 、層2或層1及2二者經處理而界定弱連結區5及強連結區6 。然後將二層連結在一起,其中弱連結區5係於允許處理 有用的裝置或結構之條件。如此有助於移開帶有有用裝置 馨 (如光伏打電池)之層1,而對有用裝置損傷極小或完全消除。 10 通常層1與層2相容。換言之,層1及2組成相容之熱、 機械及/或結晶性質。若干較佳具體實施例中,層1與2為 相同材料。當然可採用不同材料,但較佳選擇相容材料。 層1之一或多區界定用作為其内或其上可形成一或多 個結構(如光伏打裝置)的基板區。此等區可具有任何期望 15樣式,容後詳述。然後層1之選定區經處理來將連結最小 化,形成弱連結區5。另外,層2對應區可經處理(與層丨之 · 處理同時或另外處理)來將連結減至最低。其它替代之道 包括於選定用來形成結構體區域以外區處理層丨及/或層2 ’因而增強於強連結區6之連結強度。 2〇 處理層1及/或層2後,將二層對準且連結。連結可藉 任-種適當方法連結,容後詳述。此外對準可為機械、光 學或其組合。須了解於此階段之對準可能並無特殊限制, 只要通常無任何結構體形成於層1上即可。但若層1及2皆 經過處理,則對準要求將選定基板區的變化減至最低。 11 200301969 玖、發明說明 多層基板100係形成為使用者可使用習知製造技術或 其它相關業界發展而已知的技術用來處理任何結構體或裝 置。某些製造技術造成基板受到極端條件,例如高溫、高 Μ、苛性化學品或其組合。如此,多I基板⑽較佳係成 形為可忍受此等條件。 有用結構體或裝置可成形於區3内或上,區3部分或實 質叠置弱連結區5。如此,部分或實質疊置強連結區6之區 4通$未f有任何結構體於其内或其上。於形成有用裝置 如光伏打裝置於多層基板⑽之層i内或上時,隨後將層i 解除連結。解除連結可採用任一種已知技術,例如剝離或 由層2卸下層1,而热需直接讓有用的裝置接觸到有害的離 層技術。由於此等裝置通常並未形成於區4内或區4上,故 等區或可接又解除連結處理,例如離子植入及/或敍刻 而未損吾成开> 於區3内或上的結構體。 15 連結區的形成 20
為了形成弱連結區5,表面1A、2A或二表面可於弱連 結區5所在位置接受處理而實質未形成連結或形成弱連結 。另外,弱連結區5可保持未處理,因而強連結區6受處理 而誘生強連結。區4部分或實質疊置強連結區6。為了形成 強連結區4,纟面1A、2A或二表面可於強連結以的所在 位置接受處理。另夕卜,強連結區6可保留未經處理,因而 處理弱連結區5而誘生弱連結。進-步區5及6二者可接受 不同處理技術’其中該等處理於定性或定量方面有差異。 於處理一或二組弱連結區5及強連結區6後,層丨與〕連 12 200301969 玖、發明說明 結在一起而形成實質上完整的多層基板1〇Q。如所形成的 多層基板100可於光伏打裝置或其它有用的裝置於其内或 其上處理期間接觸苛刻環境,該等裝置特別係於層1區3内 或區3上處理。 「弱連結」或「弱鍵結」等詞通常表示二層間或部分 二層間之連結例如方便藉解除連結技術克服,解除連結技 術例如為剝離、其它機械分離、熱、光、壓力、真空或包 括前述解除連結技術中之至少一者的組合。此種解除連結 技術極少有損層丨及2,特別有損弱連結區5附近。 ίο 15 一或二組弱連結區5及強連結區6之處理可藉多種方法 執行。處理之主要方面為弱連結區5比強連結區6更為容易 解除連結(於隨後解除連結步射更胃解料結,容後詳 述)。如此減少或防止於解除連結期間對區3造成損傷,區 3包括太陽能電池或光伏打電池於其内或其上。此外,涵 ㈣連結區6特別於電池處理期間提升多層基板⑽之機械 元整性。如此當層1連 埂u層1内或層1上之太陽能電池或光 伏打電池被移除時,可最小化或完全去除層】之隨後處理。 —一或二組弱連結區5及強連結區6之處理可藉多種方法 執行。處理之主要方而或& 為弱連…區5比強連結區6更為容县 解除連結(於隨後解除連結步財更易解除連結容= 述)。如此減少或防止於解除 鮮丨示連結期間對區3造成損傷,區 3包括有用的結構於其上。 此外,涵括強連結區6特別於結 構處理期間提升多層基板1〇〇 ° 又钺槭元整性。如此當層1遠 同層1内或層1上之有用的0士 的、、,構破移除時,可最小化或完全 20 200301969 玖、發明說明 去除層1之隨後處理。 強連結區對弱連結區之連結強度比(SB/WB)通常係大 於1。依據強連結區及弱連結區之特定組態,以及強連結 區及弱連結區之相對面積而定,SB/WB值可趨近於無限大 5 換S之,若強連結區面積夠大且夠強可維持處理期間之 機械及熱%、疋性,則弱連結區之連結強度可趨近於零。但 SB/WB比有顯著變化,強連結強度(典型為矽及矽衍生物 如氧化矽晶圓)如技藝界之教示可由約5〇〇毫焦耳/平方米 (mj/m2)至超過5000毫焦耳/平方米(例如參考q y. 丁〇吨,& G〇eSle,半導體晶圓連結,科學與技術,104-118頁,約翰 威利父子公司,紐約州紐約,1999年,以引用方式併入此 處)。但依據材料、弱連結區内或區上欲處理的光伏打電 池颂型、選用的連結與解除連結技術、強連結面積比弱連 結面積、曰曰曰圓上的強連結與弱連结組態或樣式等*定,弱 連、、。強度甚至艾化更顯著。例如若使用離子植入做為各層 解除連結步驟,則於離子植入後及/或相關植入區的微氣 泡逸出後,有用的弱連結區連結強度可媲強連結區連結強 士此依據遥用之解除連結技術,以及可能欲形成於弱 連、、'口區之有用結構或裝置的選擇而定,連結強度比 20通$係大於1且較佳大於2、5、1 〇或以上。 進仃一或二組弱連結區5及強連結區6之特定處理類型 通系係依據選用之材料決定。此外,層认2之連結強度的 選擇至少部分係依據選用的處理方法決定。此外,隨後之 解除連結係依據多項目素而$,例如處理技術、連結技術 14 200301969 玖、發明說明 、材料、有用結構的類型或存在、或包含至少一種前述因 數的組合。某些具體實施例中,選用的處理、連結以及隨 後解除連結的組合(換言之,可由終端使用者於區3形成: 用結構體而進行,或另外做為高階裝置的中間組成元件而 5進行),可免除裂解傳播將層i與層2解除連結、或機械減 薄來去除層2,或較佳免除裂解傳播與機械減薄二者。如 此下方基板可供再度使用而極少或無需額外處理,否則根 據白矣教不’衣解傳播或機械減薄損傷層2,若未經相當 處理則層2大致變無用。 1〇 一項處理技術仰賴弱連結區5與強連結區6間之表面粗 度變化。表面粗度可於表面1A(第4圖)、表面2a(第5峨 表面1A及2 A修改。通常弱連結區5之表面粗度7(第*及$ 圖)比強連結區6更高。半導體材料中,例如弱連結區5具 有表面粗度大於約0.5奈朱,強連結區4具有較低表面粗度 b通吊係小於約〇·5奈米。另一例巾,弱連結區5具有表面粗 度大於約1奈米’而強連結區4具有較低表面粗度,通常係 低於約1奈米。又一例中,弱連結區5具有表面粗度大於約 5奈米,而強連結區4具有較低表面粗度,通常係低於約5 奈米。表面粗度可藉蝕刻(例如氫氧化鉀或氫氟酸溶液)或 2〇沉積處理[如健化學氣相沉積(LpcVD)或電聚增強之化學 氣相’儿積(PECVD)]修改。表面粗度關聯之連結強度進一步 凡正„兒明於例如Gui等人,「藉表面粗度控制之選擇性晶圓 連結」,電化學學會期刊,148(4)G225-G228(2〇〇1),以引 用方式併入此處。 15 200301969 玫、發明說明 以類似方式(其中於第4及5圖具有類似情況之區域標 示以類似參考編號),多孔區7可形成於弱連結區5,而強 連結區6維持未經處理。如此,由於多孔性質故,層1極少 與弱連結區5所在位置連結至層2。孔隙度可於表面1 a(第4 5圖)、表面2A(第5圖)或表面1A及2A二者修改。通常弱連結 區5於多孔區7具有比強連結區6更高的孔隙度(第4及5圖)。 另一項處理技術係仰賴選擇性蝕刻弱連結區5[於表面 1A(第4圖)、2A(第5圖)或1A及2A二者],接著於經過|虫刻 區沉積光阻或其它含碳材料(例如包括以聚合物為主之可 1 0 77解材料)。再度有類似情況區可參照第4及5圖標示以相 同參考編號區域。當層丨與2連結時,較佳係於足夠分解載 體材料之μ度連結,弱連結區5包括多孔碳材,故弱連結 區5之層1與2間之連结比起強連、结區6之層丄與2間之連結極 马被弱。熟諳技藝人士了解視情況而定 為微弱。 選用之分解材料
16 200301969 玖、發明說明 另一項處理技術包括使用含有固體成分以及可分解成 分料漿於表面ΙΑ、2A或1八及2八二者上。固體成分例如為 氧化鋁、氧化矽(SiO^)、其它固態金屬或金屬氧化物、或 其匕可將層1與2之連結最小化的材料。可分解成分例如為 5聚乙烯醇(PVA)或其它適當之可分解聚合物。通常料漿8施 用至表面1A(第2圖)、2A(第3圖)或1A&2A:表面之弱連結 區5。隨後層1及2較佳係於惰性環境下加熱來分解聚合物 。如此多孔結構(由料漿的固體組分組成的多孔結構)留在 弱連結區5,而當連結時,層丨與2不會連結於弱連結區5。 1〇 又另一項處理技術涉及蝕刻弱連結區5表面。此種蝕 刻步驟期間,柱9界定於弱連結區5於表面丨八(第8圖)、2a( 第9圖)或1A及2A二表面上。柱可藉選擇性蝕刻界定而留下 柱。柱形狀可為二角形、稜柱形、矩形、半球形或其它適 當形狀。另外,柱可生長或沉積於蝕刻區。由於弱連結區 15 5可供材料連結的連結位置較少,故弱連結區5之總連結強 度遠比強連結區6之連結強度更微弱。 又另一項處理技術涉及涵括無效區丨〇(第丨2及13圖), 例如藉蝕刻、切削或二者(依據使用的材料決定)形成無效 區10於弱連結區5於層1(第12圖)及層2(第13圖)。如此,當 20第一層1連結至第二層2時,無效區10比其強連結區6將減 小連結,如此有助於隨後的解除連結。 另一項處理技術涉及使用一或多種金屬區8於表面1A( 第2圖)、2A(第3圖)或1A及2A二者之弱連結區5。例如金屬 包括但非限於銅、金、鉑或其任一種組合或任一種合金可 17 200301969 玖、發明說明 "L積於弱連結區5。當層W2連結時,弱連結區5將微弱連 結。強連結區可維持未經處理(其中連結強度差異提供有 關弱連結區5及強連結區6之強連結對弱$結比),或可如 如文或佼文所述處理來增強黏著性。 5 又一項處理技術涉及使用一或多種黏結促進劑U於表 面1A(第1〇圖)、2A(第11圖)或1A&2A二者之強連結區6。 適當黏著促進劑包括但非限於例如Ti〇(x)、氧化麵或其它 黏著促進劑。另外黏著促進劑τ實質上用於全部表面^及 /或2 Α其中金屬材料係置於弱連結區之黏著促進劑與表 1〇面1A與2A間(依據黏著促進劑所在位置決定)。因此當連結 時,金屬材料將防止弱連結區5有強力連結,而留在強連 結區6之黏著促進劑將促進強力連結。 又另一項處理技術涉及提供各個疏水區及/或親水區 。例如因矽等材料可能於室溫自發連結,故親水區對強連 15結區6特別有用。疏水與親水連結技術為已知,於室溫以 及於升高溫度皆為已知例如述於Q Y. T〇ng,U. ,半 導體晶圓連結,科學與技術,49_135頁,約翰威利父子公 司,紐約州紐約,1999年,以引用方式併入此處。 又另一項技術涉及經過選擇性照射的一或多剝脫層。 2〇例如一或多剝脫層可位於表面1A及/或2A。未經照射時, 剝脫層之作用如同黏著劑。當弱連結區5曝光照射如紫外 光照射時,黏著特性最小化。有用的結構可形成於弱連結 區5内或區上,隨後紫外光照射步驟或其它解除連結技術 可用來於強連結區6分離層1與2。 18 200301969 玫、發明說明 另一處理技術包括植入離子12(第6及7圖)俾當熱處理 時形成複數個微氣泡13於層1(第6圖)、層2(第7圖)或層1及 2二者於弱區3。因此當層1與2連結時,弱連結區5之連結 將比強連結區6之連結少,因此隨後有助於層丨與2於弱連 5 結區5等解除連結。 另一項處理技術包括離子植入步驟接著為蝕刻步驟。 具月豆貝ie例中,此項技術係經由實質上於全部表面1 b使 用離子植入進行。隨後弱連結區5經選擇性蝕刻。此種方 · 法係參照去除缺陷之損傷選擇性蝕刻做說明,參考 10 Simpson等人,「植入誘生磷化銦之選擇性化學蝕刻」,電 化學與固態函件,4(3)G26-G27,以引用方式併入此處。 另項處理技術可貫現一或多層選擇性位於具有輻射 吸收特性及/或反射特性之弱連結區5及/或強連結區6,該 技術係基於窄或寬頻帶波長範圍。舉例言之,選擇性位於 15強連結區6之一或多層當暴露於某種輻射波長時具有黏著 特性,因此該層吸收輻射,且連結層丨與2於強連結區6。 · 熱諳技蟄人士了解可採用其它處理技術,以及包含至少一 種前述技術的組合。採樣之任一項處理之關鍵特色係形成 或夕弱連結區及一或多強連結區,提供⑽㈣連結強度 20 比大於1。 連結區幾何 於層1與2界面之弱連結區5及強連結區6之幾何可依據 下列因不改笑,该等因素包括但非限於成形於區3上或内 的光伏打電池或其它有用結構體類型、選用的解除連結/ 19 200301969 玖、發明說明 連〜類型、選用的處理技術及其它因素。區5、6可為同心 (弟14、16及18圖)、條狀(第15圖)、輻射狀(第17圖)、棋盤 狀(第20圖)、棋盤狀與環狀的組合(第…圖)或其任一種組 合。當然熟諳技藝人士了解可選用任一種組合。此外弱連 結面積比強連結面積比可有變化。通常該比例提供充分連 結(亦即於強連結區6充分連結),#不致於有❹層結構 1〇〇之完整性特別於結構體處理期間的完整性。較佳比值
也讓可供結構體處理用之有用區(亦即弱連結區5)最大化。 選擇性連結 10 實質上如前述於弱連結區5及/或強連結區6所在位置 15 處理表面_2Α之一或二表面後,層丨與2連結在一起而 形成實質完整的整體多層基板1〇〇。層可藉多項技術 及/或物理現象之-連結在—起,該技術及/或物理現象包 括但非限於聽、融合、陽離子性、真空、凡得瓦爾力、 化學黏著、疏水現象、親水現象、氫鍵、庫倫力、毛細力 20 、極短範1S力或包含前述至少—項連結技術及/或物理現 象的組合。當然熟!f技藝人士顯然易知連結技術及/或物 理現象部分係依據採m多項處理技術、欲成形於其 上或其内之光伏打裝置及/或其它有用的結構體之類別或 存在、預期採用之解除連結方法或其它因數決定。 多層基板10 0 (有或無嵌置氧化物層)如此用#為开彡ϋ 伏打電池之起始基板,特別形成於區3内或區3上,其實質 上或部分疊置於表面;^與2八界面的弱連結區5。除了光伏 打電池外,可組合形成的其它有用的結構體包括—或多種
20 200301969 玖、發明說明 主動或被動元件、裝置、實作、哭豆、 μ态具、通迢、其它有用的 結構體或包含前述至少一種有用的姓m 々里负用的結構體之任一種組合。 解除連結 5 於一或多個光伏打電池或包括其它有用的結構體之組 合已經形成於層1之-或多個選定區3後,層i可藉多種方 法解除連結。須了解由於結構體係形成於區3内或上,區3 部分或實質上疊置於弱連結區5,故層i的解除連結可減少
或絲毫也未造成對結構體解除連結時典型造錢損傷,例 如結構缺陷或崎變。 10 $除連結可藉多種已知技術達成。通常解除連結至少 部分係依據處理技術、連結技術、材料、有用結構體的存 在或類型、或其它因素決定。
概略參照第21-32圖,解除連結技術係依據於所述深 度(通常係等於層1厚度)欲形成微氣泡的離子或粒子植入技 15術決定。離子或粒子可衍生自氧、氫、氦或其它粒子14。 植入接著為曝光於強電磁輻射、熱、光(例如紅外線或紫 外線)、壓力或包含前述至少一種的組合,俾造成粒子或 離子形成微氣泡15,且最終膨脹而離層層丨及2。植入以及 視需要採用之熱、光及/或壓力也可接著為機械分離步驟( 20第23、26、29、32圖),例如於正交於層1及2平面之方向 、平行層1及2平面方向、相對於層平面之另一種夾角 、於剝離方向(於第23、26、29、32圖以虛線指示)或其組 合進行機械分離。分離薄層用之離子植入之進一步細節例 如述於Cheung等人,美國專利第6,〇27,988號,名稱「藉電 21 200301969 玖、發明說明 漿浸沒式離子植入由本體基板分離薄膜之方法」,以引用 方式併入此處。 特別參照第21-23及24-26圖,層呢間之界面可被選 擇性植入,特別於強連結區6植入而形成微氣泡17。藉此 方式,於區3(帶有一或多個有用結構體於其中或其上)之粒 子16之植入最小化,如此減少對區3之一或多個有用的結 構體可能造成的可修護或不可修護的傷害。選擇性植入可 經由選擇性離子束掃描強連結區4(第24_ 第進行。選擇性離子束掃描表示機械=^〇3〇(
10 15 20 及/或裝置用來導向欲植人的離子或粒子。如熟諳技藝人 士已知,可採用多種裝置及技術來進行選擇性掃描,料 技術包括但非限於聚焦離子束及電磁波束。此外,多種遮 罩材料以及技術也為業界人士眾所周知。 參照第27-29圖,植入可實質跨全部表面18或26進行 。依據標靶及植入材料以及期望植入深度而定可植入適當 高度。如此若層2比層i遠更厚,則通過表面2β進行植入不 口只IV、,但右層2為適當植入厚度⑼如於可行的植入能量 範圍内職佳通過表㈣進行植人。如此減少或消除 可能對區3之-或多個有料結構體造成可修復或不可修 復的損傷。
—具體實施例中且參照第18圖及第3〇_32圖,強連結 區6形成於層界面的外周邊。如此,為了將層⑻解 除連結’離子18例如可通過區4植入而於層丨與〗之界面形 成微氣泡。較錢㈣擇性掃描,其中結構1⑼可旋轉(以 22 200301969 玖、發明說明 箭頭20指示),掃描裝置21可旋轉(以箭頭22指示)或採用其 組合。本具體實施例中,又另一項優勢為提供終端使用者 選擇形成於其中或其上之有用結構體的選擇彈性。強連結 區6尺寸(亦即寬度)適合維持多層基板1〇()之機械及熱完整 5性。較佳強連結區6之尺寸最小化,如此將供結構處理用 的弱連結區5面積最大化。例如強連結區6可占8吋晶圓約工 微米。 此外,層1與2解除連結可藉其它習知方法例如蝕刻( 平行於表面蝕刻)引發,例如形成經由強連結區6之蝕刻。 1〇此種具體實施例中,處理技術特別相容,例如其中強連結 區6係使用氧化物層處理,氧化物層具有比本體材料(換言 之,層1及2)遠更高的蝕刻選擇性。弱連結區5較佳無需蝕 刻來於弱連結區5所在位置將層丨與2解除連結,由於其選 用的處理或未經處理可阻止於連結步驟中層丨連結至層2。 15 另外裂解傳播可用來引發層1與層2的解除連結。再度 解除連結僅要求於強連結區6所在位置,原因在於弱連結 區5的連結有限。此外,解除連結如習知,可藉蝕刻(正交 於表面蝕刻)引發,較佳限於區4所在位置(亦即部分或實質 疊置強連結區6)。 -〇 另一具體實施例中,現在參照第85圖,顯示解除連結 方法。該方法包括提供多層基板;於貿8區處理一或多個 有用結構體(圖中未顯示);於诎區較佳以錐角(例如仏度 角)蝕刻去除;讓裝置層較佳只有被蝕刻的SB區接受低能 量離子植入,·以及剝離或以其它方式方便去除位在wB區 23 200301969 玖、發明說明 的裝置層部分。注意雖钦σ g _ …、/、,;、貝不WB區的二裝置層部分被 去除’但須了解如此也可用 也】用於輔助於一裝置層部分的離刑 °WB區之錐料可以機械方式輔助層1的去除。較佳⑽ 用比穿透原先裝置層厚度需要的植入能遠更低的植入能。 材料 層1及2可為相同或相显枓 飞相異材枓,包括但非限於塑膠(如 聚破酸醋)、金屬、半導體、絕緣體、單晶、非晶、益曰 、有機材料、或包含前述各類型材料中之至少-者的电Γ 10 。例如,特定類型材料包括石夕(如單晶、複晶、無晶、: 晶石夕及其衍生物例Si〇2)、GaAs、InP、 case、CdTe、SlGe、GaAsp、GaN、Sic、G義心
、AlGaSb、InGaAs、A 1XT
ZnS、A1N、™、其它 IHA-VA族材 料、仙族材料、VU族材料、藍寳石、石英(晶體或玻璃) 15 、鑽石、氧切及/或基於㈣鹽之材料、液晶材料、聚 合材料(絕緣、傳導性或半傳導性)或包含前述至少一種材 料之任—種組合。當然其它類型材料組合可由此處所述方 法提供具有預定組成之多層基板100獲益。 多層基板之優點 20 ^本發明以及結果所得多層基板之主要優點或由多層基 板:生而侍之薄膜為結構體形成於區3内或上,區3係部分 或貝質*置於弱連結區5。如此實質上減少或消除當層1由 層2移開時對光伏打電池或其它結構體造成損傷的可能。 解除連結步驟通常需要塵擠(例如帶有離子植入)、施力、 匕將層1與2解除連結所需技術。由於某些具體實施例 24 200301969 玖、發明說明 10 15 中’結構體係位於區3内或上,該區3無需局部壓播、施力 或其它處理㈣而可能可修復或不可修復地損傷結構體, 故可私開層1以及付生之結構體而無需隨後處理來修復結 構體。部分或實質疊置強連結區6之區4通常未帶有結構體 ’因此區4可接叉壓擠或施力而不會對結構體造成損傷。 層1可呈自撐膜或被支持膜形式移開。例如常採用操 縱架附著於層1 ’讓層1可由層2移開,而仍然保留由操縱 架所支持。通常操縱架可用來隨後放置薄膜或薄膜部分( 例如帶有-或多個有用結構體)於期望基板、另一經處理 的薄膜上或另外就留在操縱架架上。此種操縱架為業界已 知。一種操縱架述於PCT申請案第PCT/US02/3 1348號,申 σ月曰2002年1G月2日,名稱「操縱脆性物件之裝置及方法 及其製造方法」,全文以引用方式併入此處。 本方去之項優點為組成層2之材料可再度使用以及 回收利用。單-晶圓例如可用於藉任—種已知方法衍生層 1 °竹生層1可如前述連結至其餘部分(層2)。當薄膜被解除 連Ά ’處理重複’❹層2其餘部分獲得薄膜來用作為 其次使用的層1。如此重複至不再可行或不再實用利用層2 剩餘部分來衍生層1薄膜為止。
20 於夕層基板内或上之光伏打電池的處理。 太陽能電池或光伏打電池可成形於區3内或上,區3係 。刀或貝貝宜置弱連結區5。如此部分或實質疊置強連結 區:之區4通常不帶有電池於其内或其上。因此如此處所述 夕層基板1 GO係成形為任何類型太陽能電池或光伏打電 25 200301969 玖、發明說明 白可使用J知製造技術或其它隨著多種相關技術的發展 將變已知的技術處理。某些製造技術造成基板接觸極端條 件,例如高溫、高壓、苛刻化學品或其組合。因此多層基 板100較佳係形成為可忍受此等條件。 5 10 15 20 於處理多層基板100之層1内或上的太陽能電池或光伏 打電池後,層丨可被解除連結。解除連結可藉任一種已知 技衡例如剝離,而無需讓太陽能電池直接接觸有害離層技 術。因太陽能電池通常未形成於區4内或上,故區4可接受 解除連結處理例如離子植入,而不會對成形於區3内或上 的電池造成損傷。 使用前述多層基板進行處理,帶有太陽能電池或光伏 打书池之解除連結後該層包含極薄層。因帶有電池之層係 支持於谷易解除連結的基板上,故比較厚則微米之電池 ,該層厚度可薄至5微米或甚至2微米。 一純打電池包括任何用於直接太陽能_電力轉換的任 一種裝置。至目前為止光伏打電池的限制係有關製造成本 過高、無法用於全球最大規模的電力需求。預期任何已知 類型的光伏打電池、或光伏打電池業界未來將發展出的電 池皆可根據本發明處理。光伏打電池類別包括但非限於pn 接面;背面場;紫;製作結構;V字形溝槽多重接面;有 钱,基於光合成的能量轉換。 典型pn接面光伏打電池包括一個淺pn接面形成於經由 使用原子摻雜基板(欲解除連結該層)所形成的表面(例如藉 擴散形成),該原子絲自於比基板的元素多❹一㈣ 26 200301969 玖、發明說明 子的該種元素。金屬或其它傳統材料用於形成正面電阻接 觸條或紙、以及覆蓋整個背面的背電阻接觸。如此於弱連 結區’可形成pn接面且經過金屬化。弱連結區(於層i、層 2或二者)可於摻雜前經過金屬化。於處理後,該層可如; 5述經過解除連結,可移開太陽能電池或光伏打電池而極少 或未造成傷害。 另-具體實施例中,視需要使用之層可結合於電池,
通常係用來吸收或反射紫外線波長。此外也可涵括膽固醇 性液aa層來吸收或反射紅外線波長。 1〇 除前述Pn接面電池外,其它類型的太陽能電池也可於 多層基板100上處理。一種可成形於弱連結區内或區上的 太陽能電池為「背面場」(BSF)型電池。此型電池中正面 係如前述形成。電池背面非含有金屬電阻接觸,反而背面 包括極為重度摻雜區田比鄰於該電接點。此種推雜區可於連 15 結層1及2於弱連結區之前形成。
又另一類型可於弱連結區内或上處理之電池稱做為「 紫」電池,該型電池以較低表面摻雜濃度或較小接面深度 製造。此型電池於高光子能量提供改良反應。 又 又另一類型可於弱連結區内或上處理的電池稱做為「 2〇製作結構」電池’其帶有稜柱狀表面。稜柱狀表面可由 (100)-定向石夕表面接受異向性|虫刻製造。 X用日守,入射於 稜柱該侧之光將被反射至另一稜柱而非鉍户 托禎,可大為提高 操作效率。 電池稱做V字形 另一類型可於弱連結區内或上處理的 27 200301969 玖、發明說明 溝^夕重接面太陽能電池,其中各叩η(或p叩)梯形二極體 凡件係串聯連結。二極體元件形狀可藉經由熱生長的二氧 化石夕層異向性蝕刻(1〇0)矽而與界定。 當然熟諳技藝人士 了解此等及其它已知類型以及未來 5將發展的太陽能電池類型可於多層基板100之弱連結區内 或上處理。 現在參照第33圖,太陽能電池組100包括電池;Π0Α、 及110C。各電池包括金屬化層及叩接面,係如前述形 成。電池110Α、η〇Β及110c於電池之一遠端側(換言之, 10對各個電池皆為同侧)上的的頂面112A、112B、112C(換言 之,太陽能捕捉面)堆疊且連結至該層。此種組態可獲得 大型太陽能捕捉表面積,特別該面積比較太陽能電池組 _之厚度而言為相當大。電池可支持於廉價撓性基板上 ,該等基板例如玻璃、聚碳酸酯、玻璃、塑膠、聚胺基甲 15酸酯、木材、紙張、金屬(例如帶有絕緣體)。 >第34A圖,彙接太陽能電池3〇〇通常可使用複數個 太陽能電池組340、350及36〇形成,各個電池適合做不同 光講範圍的轉換。頂電池組340吸收紫外線轄射以及對應 电池Eg之光子。中間電池組35〇吸收比電池組mo更低的 ▼隙匕。取下方電池組360吸收比電池組3 50之帶隙Eg更低 的π隙Eg。藉此方式,較大部分帶隙可被轉成能量。不同 弘池(換言之,具有不同Ε§值電池)可堆疊而獲得最高效率 ,高於約30%效率。 各兒池組互連,傳輸產生的電能之一組公用輸出端子 28 200301969 玖、發明說明 。各層間之互連可位於各層間。於該層側邊或二者。使用 ’909申請案所述技術以及PCT申請案第pCT/us〇2/3i348號 所述操縱架(申請日2002年1〇月2日,名稱「操縱脆性物件 之衣置及方法,及其製造方法」,該案全文以引用方式併 5入此處),可以成本效益且可靠的方式概略基於習知系統 形成各層間的互連裝置。例如於以機械方式堆疊之彙接太 陽能電池,多種太陽能電池疊層而形成光譜寬廣的光伏打 電池。現在參照第34B圖,顯示Si/InGaP薄膜機械堆疊彙 · 接太陽能電池之基本架構。薄膜InGaP太陽能電池將安裝 於夕底私池上。最理想地,讓頂電池吸收太陽能光譜之藍 光部分最大化。此外,接觸樣式以及抗反射塗層設計較佳 最理想化俾最小化於電池表面的光封阻。此外,機械堆疊 彙接太陽能電池需以最少效率耗損構成,該等效率耗損係 由於薄膜的處理損傷或不良光學輕合所造成。使用此處所 15不於多層基板之弱連結區處理光伏打電池技術,以及使用 適當操縱架裝置’可減少或消除操縱損傷以及不良光學搞 φ 合等問題。 現在芩妝第34C圖說明單晶彙接太陽能電池。特定言 ,”、、員示單日日IilxGa丨_xAs/InxGai_xP-on-Ge彙接電池結構供 2〇舉例說明。用於單晶彙接太陽能電池,個別串級元件間的 互連典型係使用位障接面進行(如第34C圖所示),位障接 面的操作需要高度摻雜程度。此種接面將有助於電池間電 磁的流動,前及後電接點將提供電流的收集。 >…、第35圖,使用數個彙接太陽能電池3⑼形成彙接 29 200301969 玖、發明說明 太陽月匕兒池組。彙接太陽能池3〇〇 , , *心圖所述(有關 整組彙接太陽 例如因太陽能 可形成不同的 早光譜轉換電池)對準且連結至頂面邊緣。使用此種組態 王月豆結構可極薄,例如厚度小於1 5微米 月匕包池組400可視需要支持於廉價基板上 電池層極薄且具撓性,故可使賴性基板 另一具體實施例中,現在參照第36圖 θ H 现个丨口J的 1W電池組540、55〇及56〇,各自預期用於概略不同的 頻寬間隙(換言之,如夂 、 芩知弟33圖所述)。然後將各層堆疊 及互連而形成彙接太陽能電池組500。 ίο 15 20 用於形成太陽能電池之材料通常可為業界已知以及前 有關夕層基板各層所述的任_種材料。通常具有帶隙1 至一 π之半導體可考慮做為太陽能電池材料。此等材料包 括但非限於矽(單晶、複晶、非晶薄膜)、III-V半導體、 GaAs、inp、CdTe、Cuins。等以及包含前述至少一 者的、、且:。此外,有機材料可用於有機光伏打電池而形成 :子月b I成i何所f要的激光結構,例如福樂林斯 鋒職s)、料性聚合物、潘特辛(卿⑽)、液晶 六-周六苯并冠稀(HPBC)、二㈣笨染料,此等材料可單 獨或彼此組合或組合其它適當材料使用。 薄膜太陽能電池中,支持層包括電性主動或被動基板 如玻㈣、塑知、陶莞、金屬、石磨或冶金石夕。如此如此處 所述,-個太陽能電池或太陽能電池組可形成於製造用支 持基板的弱連結區,以θ 及Ik後解除連結且黏著或以其它方 式置於終端使用之支持層。 30 200301969 玖、發明說明 熟諳技藝人士顯然易知介於材料成本與期望效率間必 須求得平衡。但採用此處所述技術,由於可使用極薄層太 陽能電池,故可實質減低材料成本,讓平衡有利地朝:有 較大光譜轉換效率之較高成本太陽能材料。 5 4發明可獲得實質效果。由於製造方法允許使用極 薄層材料,以及解除連結後允許再度使用基板,因而可以 極低成本達成超過40%效率。 雖然此處已經顯示及說明較佳具體實施例,但可未悖 離本發明之精髓及範圍對其做出多種修改及取代。如此= 10 了解本發明已經供舉例說明而非限制性。 L圖式簡單明3 第1A圖示意顯示用於處理此處所述光伏打電池之一種 多層基板; 第1B圖示意顯示供用於處理此處所述光伏打電池之多 15 層基板之另一具體實施例; 第2-1 3圖顯示第1A及1B圖之結構供選擇性黏著各層之 處理技術。 第14-20圖顯示第1A及1B圖結構之多種連結幾何。 第21 -32圖顯示多種去除連結技術; 20 第33圖顯示光伏打電池組之具體實施例; 第34A-34C圖顯示彙接光伏打電池; 弟3 5圖顯示使用果接光伏打電池之光伏打電池組之另 一具體實施例,·以及 第36圖顯示光伏打電池組之彙接陣列之具體實施例。 31 200301969 玖、發明說明 【圖式之主要元件代表符號表】 1,2…層 18...離子 1A-B,2A-B...表面 20,22…箭頭 3,4…區 21…掃描裝置 5...弱連結區 100…多層基板,太陽能電池組 6…強連結區 110A-C...電池 7...多孔區 112A-C...頂面 8...料漿,金屬區 300…彙接太陽能電池 9...柱 340,350,360...太陽能電池組 10...無效區 400,500…彙接太陽能電池組 11...黏著促進劑 540,550,560...太陽能電池組 12…植入離子 SB...強連結 13,15,17...微氣泡 WB...弱連結 14,16…粒子 32

Claims (1)

  1. 200301969 拾、申請專利範圍 1. 一種光伏打電池結構,包含: 一 pri接面形成於太陽能電池材料層之一或多區上 ,其中該太陽能電池材料層可由支持層移開。 2. 如申請專利範圍第之光伏打電池,其中該太陽能電 5 池材料層以及支持層大致為相同材料。 兒 3. 如申a青專利軏圍第i項之光伏打電池,其中該太陽能電 池材料層係於Pn接面形成前連結至該支持層。 4·如申4專利粑圍第丨項之光伏打電池,其中該太陽能電 池材料層係於pn接面形成前選擇性連結至該支持層。 1〇 5·-種光伏打電池組,包含—個如巾請專利範圍第i項之 第一光伏打電池以及一個如申請專利範圍第丨項之第二 光伏打電池,各個光伏打電池包括—太陽能捕捉面、 月面、一第一遠端以及一第二遠端,其中該第一光 伏打電池之太陽能捕捉面之第一遠端係連結至該第二 15 光伏打電池背面之第二遠端。 6.如申請專利範圍第5項之光伏打電池組,進一步包含— · 第一光伏打兒池,其中該第二光伏打電池之太陽能捕 捉面之第一延端係連結至該第三光伏打電池之背面之 弟二遠端。 2〇 7· 一種製造光伏打電池之方法,包含: 於延擇性位置連結一光伏打電池層至一基板層, 俾界疋-或多個弱連結區以及一或多個強連結區; 處理於該一或多個弱連結區之一或多個光伏打電 池0 33 200301969 拾、申請專利範圍 &如中請專利範圍第7項之方法,進一步包含經由將該一 或夕個強連結區解除連結而移開該一或多個光伏打電 池。 5 9•如申請專利範圍第8項之方法,進一步包含移開基板層 5 之一層’以及連結該被移開之基板層至其餘基板層於 k擇f生所在位置’俾界定—或多個弱連結區以及一或 夕個強連結區,因而回收利用基板層。 10· —種製造光伏打電池之方法,包含: · 提供一種多層基板,其具有一裝置層以及一基板 10 層,該裝置層選擇性連結至該基板層,俾界定一或多 個弱連結區以及一或多個強連結區; 於I置層於一或多個弱連結區處理一或多個光伏 打電池; 經由將強連結區解除連結而由基板層移開裝置層 15 ,隨後允許移開裝置層,而對裝置層中經過處理的光 伏打電池極少或絲毫也未造成損傷。 · 11. 如申請專利範圍第7或10項之方法,其中該光伏打電池 包含一種選自ρη接面、背面場、紫、製作結構、V字形 溝槽多重接面、有機、基於光合成之能量轉換以及包 20 含前述至少一種的組合組成的組群之電池。 12. —種製造光伏打電池之方法,包含: 提供一第一多層基板其具有一第一裝置層以及一 第一基板層,該第一裝置層選擇性連結至該第一基板 層而界疋或多個弱連結區以及一或多個強連結區; 34 200301969 拾、申請專利範匿 處理於第一裝置層位於一或多個弱連結區之第一 光伏打電池; 經由將強連結區解除連結而由第一基板層移開第 一裝置層,隨後允許㈣第一 t置層❿對第一裝置層 5 之經處理的級打電池極少或絲亳也未造成損傷; 提供一第三多層基板其具有一第二裝置層以及一 第二基板層,該第二裝置層選擇性連結至該第二基板
    層而界定-或多個弱連結區以及_或多個強連結區; 處理於第二裝置層位於-或多個弱連結區之第二 10 光伏打電池; 經由將強連結區解除連結而由第二基板層移開第 二裝置層’隨後允許移開第二裝置層而對第二裝置層 之經處理的光伏打電池極少或絲毫也未造成損傷;以及 於各層遠端邊緣堆疊且連結第一裝置層至第二裝 15 置層俾形成一個光伏打電池組。
    13· —種製造彙接光伏打電池之方法,包含: 提供-個具有帶隙Eg⑴之如申請專利範圍第7、1〇 或11項之方法製成的第一光伏打電池;以及 堆疊具有帶隙Eg(2)之如申請專利範圍第7、⑺或U 2〇 '員之方法製成的第二光伏打電池至該第-光伏打電池 頂上,其中Eg⑴係比Eg⑺更強力,因而提供一種囊接 光伏打電池。 35
TW092100024A 2002-01-02 2003-01-02 Photovoltaic cell and method of manufacture of photovoltaic cells TW580773B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34612802P 2002-01-02 2002-01-02

Publications (2)

Publication Number Publication Date
TW200301969A true TW200301969A (en) 2003-07-16
TW580773B TW580773B (en) 2004-03-21

Family

ID=23358084

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092100024A TW580773B (en) 2002-01-02 2003-01-02 Photovoltaic cell and method of manufacture of photovoltaic cells

Country Status (8)

Country Link
US (1) US20050217717A1 (zh)
EP (1) EP1468456A1 (zh)
JP (1) JP2005514795A (zh)
KR (1) KR20040070297A (zh)
CN (1) CN1639879A (zh)
AU (1) AU2003202858A1 (zh)
TW (1) TW580773B (zh)
WO (1) WO2003058725A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493515B (zh) * 2009-03-31 2015-07-21 英特爾公司 用於顯示器裝置之整合式光伏打電池

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673399B2 (en) * 2002-05-07 2014-03-18 Nanoptek Corporation Bandgap-shifted semiconductor surface and method for making same, and apparatus for using same
US20080283121A1 (en) * 2002-05-07 2008-11-20 Nanoptek Corporation Bandgap-shifted semiconductor surface and method for making same, and apparatus for using same
US7485799B2 (en) * 2002-05-07 2009-02-03 John Michael Guerra Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
US7995871B2 (en) * 2002-05-07 2011-08-09 Nanoptek Corporation Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
US10374120B2 (en) * 2005-02-18 2019-08-06 Koninklijke Philips N.V. High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
DE102005025937B4 (de) * 2005-02-18 2009-11-26 Austriamicrosystems Ag Lichtempfindliches Bauelement mit erhöhter Blauempfindlichkeit, Verfahren zur Herstellung und Betriebsverfahren
JP5364368B2 (ja) * 2005-04-21 2013-12-11 エイオーネックス・テクノロジーズ・インコーポレイテッド 基板の製造方法
JP5324222B2 (ja) * 2005-08-22 2013-10-23 キュー・ワン・ナノシステムズ・インコーポレイテッド ナノ構造およびそれを実施する光起電力セル
JP2008112847A (ja) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
US20090278233A1 (en) * 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US8153892B2 (en) * 2007-09-13 2012-04-10 Silicon China (HK) Ltd. Internal light trapping method and structure using porous monocyrstalline silicon films for photovoltaic applications
JP2011503847A (ja) 2007-11-02 2011-01-27 ワコンダ テクノロジーズ, インコーポレイテッド 結晶質薄膜光起電力構造およびその形成方法
US20090162970A1 (en) * 2007-12-20 2009-06-25 Yang Michael X Material modification in solar cell fabrication with ion doping
US20100116329A1 (en) * 2008-06-09 2010-05-13 Fitzgerald Eugene A Methods of forming high-efficiency solar cell structures
ES2399798T3 (es) * 2008-07-03 2013-04-03 Imec Módulo fotovoltaico y procesado del mismo
US20100051932A1 (en) * 2008-08-28 2010-03-04 Seo-Yong Cho Nanostructure and uses thereof
US20100282304A1 (en) * 2008-11-18 2010-11-11 Industrial Technology Research Institute Solar cell and method of manufacturing the same
US20110132445A1 (en) * 2009-05-29 2011-06-09 Pitera Arthur J High-efficiency multi-junction solar cell structures
US20110120549A1 (en) * 2009-11-20 2011-05-26 Auria Solar Co., Ltd. Thin film solar cell and manufacturing method threof, method for increasing carrier mobility in semiconductor device, and semiconductor device
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
CN102339892A (zh) * 2010-07-20 2012-02-01 中晶(香港)有限公司 陶瓷衬底的层薄膜器件及生产方法
US8778724B2 (en) * 2010-09-24 2014-07-15 Ut-Battelle, Llc High volume method of making low-cost, lightweight solar materials
US8604330B1 (en) 2010-12-06 2013-12-10 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
CN102336525B (zh) * 2011-09-19 2014-08-20 成都旭双太阳能科技有限公司 一种保证非晶硅电池前板玻璃表面刻蚀均匀性的工艺
KR101860919B1 (ko) * 2011-12-16 2018-06-29 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US10090430B2 (en) 2014-05-27 2018-10-02 Sunpower Corporation System for manufacturing a shingled solar cell module
USD1009775S1 (en) 2014-10-15 2024-01-02 Maxeon Solar Pte. Ltd. Solar panel
USD933584S1 (en) 2012-11-08 2021-10-19 Sunpower Corporation Solar panel
US9947820B2 (en) 2014-05-27 2018-04-17 Sunpower Corporation Shingled solar cell panel employing hidden taps
US9780253B2 (en) 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
US20140124014A1 (en) 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
US9082911B2 (en) 2013-01-28 2015-07-14 Q1 Nanosystems Corporation Three-dimensional metamaterial device with photovoltaic bristles
US9954126B2 (en) 2013-03-14 2018-04-24 Q1 Nanosystems Corporation Three-dimensional photovoltaic devices including cavity-containing cores and methods of manufacture
US20140264998A1 (en) 2013-03-14 2014-09-18 Q1 Nanosystems Corporation Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles
US11942561B2 (en) 2014-05-27 2024-03-26 Maxeon Solar Pte. Ltd. Shingled solar cell module
US11482639B2 (en) 2014-05-27 2022-10-25 Sunpower Corporation Shingled solar cell module
DE102014112430A1 (de) * 2014-08-29 2016-03-03 Ev Group E. Thallner Gmbh Verfahren zur Herstellung eines leitenden Mehrfachsubstratstapels
USD933585S1 (en) 2014-10-15 2021-10-19 Sunpower Corporation Solar panel
USD896747S1 (en) 2014-10-15 2020-09-22 Sunpower Corporation Solar panel
USD913210S1 (en) 2014-10-15 2021-03-16 Sunpower Corporation Solar panel
USD999723S1 (en) 2014-10-15 2023-09-26 Sunpower Corporation Solar panel
US10861999B2 (en) 2015-04-21 2020-12-08 Sunpower Corporation Shingled solar cell module comprising hidden tap interconnects
CN110828591B (zh) 2015-08-18 2023-05-02 迈可晟太阳能有限公司 太阳能面板
RS63786B1 (sr) 2015-12-15 2022-12-30 Medicell Technologies Llc Kompozicije za stimulisanje matičnih ćelija i postupci za lečenje melazme
US10673379B2 (en) 2016-06-08 2020-06-02 Sunpower Corporation Systems and methods for reworking shingled solar cell modules
DE102017100929B4 (de) * 2017-01-18 2025-12-04 Pictiva Displays International Limited Verfahren zur Herstellung eines organischen elektronischen Bauelements
CN109256442B (zh) * 2018-11-15 2020-05-22 安徽省华腾农业科技有限公司 薄膜电池的制备方法及薄膜电池
CN115219758A (zh) * 2022-06-23 2022-10-21 桂林电子科技大学 一种毫伏级电压测量光纤传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938938A (en) * 1956-07-03 1960-05-31 Hoffman Electronics Corp Photo-voltaic semiconductor apparatus or the like
US4658086A (en) * 1985-06-03 1987-04-14 Chevron Research Company Photovoltaic cell package assembly for mechanically stacked photovoltaic cells
JP3381443B2 (ja) * 1995-02-02 2003-02-24 ソニー株式会社 基体から半導体層を分離する方法、半導体素子の製造方法およびsoi基板の製造方法
JPH11195775A (ja) * 1997-12-26 1999-07-21 Sony Corp 半導体基板および薄膜半導体素子およびそれらの製造方法ならびに陽極化成装置
TW437078B (en) * 1998-02-18 2001-05-28 Canon Kk Composite member, its separation method, and preparation method of semiconductor substrate by utilization thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493515B (zh) * 2009-03-31 2015-07-21 英特爾公司 用於顯示器裝置之整合式光伏打電池

Also Published As

Publication number Publication date
WO2003058725A1 (en) 2003-07-17
KR20040070297A (ko) 2004-08-06
US20050217717A1 (en) 2005-10-06
TW580773B (en) 2004-03-21
EP1468456A1 (en) 2004-10-20
AU2003202858A1 (en) 2003-07-24
JP2005514795A (ja) 2005-05-19
CN1639879A (zh) 2005-07-13

Similar Documents

Publication Publication Date Title
TW200301969A (en) Photovoltaic cell and method of manufacture of photovoltaic cells
US7759220B2 (en) Method and structure for fabricating solar cells using a layer transfer process
CN104247047B (zh) 多结太阳能电池装置的制造
US7846759B2 (en) Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
US7811900B2 (en) Method and structure for fabricating solar cells using a thick layer transfer process
JP5070112B2 (ja) 光起電力装置及び光起電力装置の製造方法
US7967936B2 (en) Methods of transferring a lamina to a receiver element
KR20150097648A (ko) 얇은-규소 태양 전지의 금속-포일-보조식 제조
TWI602315B (zh) 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法
US8518724B2 (en) Method to form a device by constructing a support element on a thin semiconductor lamina
US8536448B2 (en) Zener diode within a diode structure providing shunt protection
CN104205364B (zh) 多结太阳能电池装置的制造
CN108604613B (zh) 具有嵌入式镜面的工程衬底
EP3411898B1 (en) Engineered substrate
US20100167454A1 (en) Double-sided donor for preparing a pair of thin laminae
CN104247048A (zh) 多结太阳能电池装置的制造
KR20130143100A (ko) 얇은 반도체 라미나 상에 지지 요소를 구성함으로써 장치를 형성하는 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees