SI21104A - Power plant, dam or similar water management facility flow area with enhanced dissipation effect - Google Patents

Power plant, dam or similar water management facility flow area with enhanced dissipation effect Download PDF

Info

Publication number
SI21104A
SI21104A SI200100302A SI200100302A SI21104A SI 21104 A SI21104 A SI 21104A SI 200100302 A SI200100302 A SI 200100302A SI 200100302 A SI200100302 A SI 200100302A SI 21104 A SI21104 A SI 21104A
Authority
SI
Slovenia
Prior art keywords
flow field
dissipation
shaft
profile
field according
Prior art date
Application number
SI200100302A
Other languages
Slovenian (sl)
Other versions
SI21104B (en
Inventor
Du�an CIUHA
Original Assignee
Du�an CIUHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du�an CIUHA filed Critical Du�an CIUHA
Priority to SI200100302A priority Critical patent/SI21104B/en
Priority to US10/496,969 priority patent/US20050111916A1/en
Priority to PCT/SI2002/000026 priority patent/WO2003046292A1/en
Priority to EP02789136A priority patent/EP1451412A1/en
Priority to AU2002354398A priority patent/AU2002354398A1/en
Publication of SI21104A publication Critical patent/SI21104A/en
Priority to HR20040581A priority patent/HRP20040581A2/en
Publication of SI21104B publication Critical patent/SI21104B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Revetment (AREA)
  • Hydraulic Turbines (AREA)

Abstract

The aim of the presented invention is to provide an effective dissipation or neutralisation of excessive kinetic energy in any hydropower plant flow area or other water management facility even with relatively small level differences and relatively large flows, meaning extremely low values of the so-called Froude number and under negligible reduction of the visible transverse cross section of any flow area, be it during design of new water management facilities or even just based on an economically viable reconstruction of any existing facility. This way the riverbed and banks of any stream under the transverse area can be protected against enormous erosion. The flow area of the hydropower plant, dam or similar water management facility consists of a fortified cascade base (2), which is - seen from the flow direction - located directly under/after the overflow (1) and if necessary terminated by a terminal threshold (3), while at the sides it is limited by at least vertical or slant lateral walls (4', 4''). If necessary, such an area can be equipped with a suitable gate (6) or similar locking device. The cascade base with overflow (1) and a terminal threshold (3) along with the specified lateral walls (4', 4'') feature a uniform compact construction for managing hydraulic pressure and phenomena between the dammed area of any stream, which is located above or before the specified flow area and between the river bed with corresponding banks after or under the throughput are. According to the invention there is in the area of at least one lateral wall (4', 4'') of each flow area at least one dissipation beam (5', 5'') anticipated, which is looking in the flow direction and reaching sidewise to the cross section of the flow area.

Description

Pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkomFlow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect

Izum v splošnem spada na področje gradbeništva, namreč urejanja vodotokov, še zlasti pa na področje priprav za disipacijo oz. izničenje odvečne kinetične energije.The invention generally falls within the field of construction, namely, the regulation of watercourses, and in particular the field of preparation for dissipation or water. annihilation of excess kinetic energy.

Pri tem izum temelji na problemu, kako v vsakokratnem pretočnem polju hidroelektrarne, jezu ali drugega vodnogospodarskega objekta celo pri razmeroma majhnih višinskih razlikah in razmeroma velikih pretokih, torej pri izjemno nizkih vrednostih takoimenovanega Froude-ovega števila, in ob zanemarljivem zmanjšanju svetlega prečnega prereza vsakokratnega pretočnega polja bodisi pri načrtovanju novih vodnogospodarskih objektov ali celo zgolj na osnovi ekonomsko sprejemljive sanacije vsakokratnega že obstoječega objekta doseči učinkovito disipacijo oz. izničenje odvečne kinetične energije ter na ta način obvarovati strugo in brežine vsakokratnega vodotoka pod pretočnim poljem pfed enormno erozijo.The invention is based on the problem of how in each flow field of a hydroelectric plant, dam or other water management facility, even at relatively small height differences and relatively large flows, ie at extremely low values of the so-called Froude number, and with a negligible decrease in the bright cross-section of each flow fields, either when designing new water management facilities or even solely on the basis of economically acceptable rehabilitation of each existing facility to achieve efficient dissipation or the elimination of excess kinetic energy, thus protecting the riverbeds and banks of each watercourse under a flowing field pfed enormous erosion.

Vodnogospodarski objekti, namreč hidroelektrarne, jezovi in podobni, običajno sestojijo iz določenega števila takoimenovanih pretočnih polj, pri čemer se vsako pretočno polje nahaja med vertikalno ali poševno postavljenima bočnima stenama, s katerima je omejeno v prečni smeri glede na smer pretoka. V vzdolžni smeri se pretočno polje razprostira vse od območja zgornje gladine vode, t.j. območja nad jezom oz. nad zapornico, pa vse do območja spodnje gladine vode, t.j. območja pod zaključkom takoimenovanega podslapja. Zaradi vsakokrat razpoložljive višinske razlike med zgornjo in spodnjo gladino se pri pretoku vode skozi pretočno polje del potencialne energije pretakajoče se vode pretvori v kinetično energijo, ki ima izjemno močan vpliv na pretočne razmere, vrsto oz. obliko toka in še zlasti na erozijo. Zato pri vodnogospodarskih objektih vselej obstoji potreba po izničenju odvečnega dela kinetične energije, torej po disipaciji, ker bi odvečna energija sicer povzročala enormne erozijske učinke v strugi in na brežinah ne zgolj v območju neposredno za/pod pretočnim poljem, marveč še tudi na precejšnji oddaljenosti od le-tega. Sproščanje viška kinetične energije, t.j. disipacija, se praviloma vrši v vodnem skoku v utrjenem, erozijsko odpornem območju, namreč v podslapju.Water management structures, namely hydroelectric power plants, dams and the like, usually consist of a number of so-called flow fields, each flow field located between vertically or obliquely positioned sidewalls, with which it is restricted in the transverse direction with respect to the flow direction. In the longitudinal direction, the flow field extends all the way from the upper water surface, i.e. areas above the dam or. above the dam, all the way to the lower water level, i.e. areas below the termination of the so-called sub-basin. Due to the always available height difference between the upper and lower levels, during the flow of water through the flow field, part of the potential energy of the flowing water is converted into kinetic energy, which has an extremely strong influence on the flow conditions, type or type. the shape of the stream and especially the erosion. Therefore, there is always a need for the elimination of excess kinetic energy, ie dissipation, for water management facilities, since excess energy would cause enormous erosion effects in the river bed and on the banks, not only in the area directly behind / under the flow field, but also at a considerable distance from it. Release of excess kinetic energy, i.e. dissipation, as a rule, occurs in a water jump in a hardened, erosion-resistant zone, namely in the sub-basin.

Strokovnjakom s tega področja je znano, da je mogoče s pravilno zasnovo vzdolžnega prereza pretočnega polja vzpostaviti hidravlične razmere, ki v predvidenih okvirih višinskih razlik in pretokov preprečujejo ali vsaj karseda minimizirajo nastajanje neželenih učinkov erozije zaradi deleža kinetične energije. Tako je npr. zelo pomembna zasnova pretočnega praga, kakršen je npr. opisan v EP 0 477 745. Ključnega pomena je tudi zasnova takoimenovanega podslapja, t.j. primemo urejene, obdelane oz. betonirane poglobitve med območjem neposredno pod jezom, torej za omenjenim pragom, in nad rečno strugo ki je na voljo za/pod jezom, hidroelektrarno ali podobnim vodnogospodarskim objektom. Treba pa je upoštevati, da je vzdolžni profil pretočnega polja vendarle vselej izračunan in zgrajen za določene pogoje obratovanja, ki pa so v praksi lahko zelo spremenljivi. Problemi nastopijo pri enormnih povečanjih pretočnih količin, ker se pri tako spremenjenih pogojih (povečani pretočni količini vode in razen tega tudi pri povečani razliki med spodnjo in zgornjo gladino) tudi delež neizničene kinetične energije občutno poveča in ogroža spodnjo strugo reke pod vodnogospodarskim objektom.It will be appreciated by those skilled in the art that the proper design of a longitudinal cross-section of the flow field allows the establishment of hydraulic conditions that prevent or at least minimize the generation of adverse effects of erosion due to kinetic energy in the envisaged frames of height differences and flows. Thus, e.g. a very important design of a flow threshold, such as a. described in EP 0 477 745. The design of the so-called sub-basement, i.e. we accept edited, processed or. concreted recesses between the area directly below the dam, ie beyond the said threshold, and above the river bed available for / under the dam, hydroelectric power plant or similar water management facility. However, it should be borne in mind that the longitudinal profile of the flow field is nevertheless always calculated and constructed for certain operating conditions, which in practice can be highly variable. Problems occur with enormous increases in flow rates, because under such changed conditions (increased flow rate of water and, moreover, with an increased difference between the lower and upper levels), the proportion of non-depleted kinetic energy also significantly increases and threatens the river bed below the water management facility.

Za zagotavljanje karseda učinkovite disipacije, torej izničenja deleža odvečne oz. neželene kinetične energije vodnega toka, je znana cela vrsta ukrepov. Tako je prijavitelju znano, da so v območje podslapja v pričakovanju povečanih disipacijskih učinkov nameščali večtonske betonske bloke, ki pa jih je ob povečanju pretočnih količin zaradi intenzivnih padavin vodni tok izvrgel iz območja podslapja in odnesel navzdol po strugi pod vodnogospodarskim objektom.To ensure the most efficient dissipation, ie the elimination of the excess or of the unwanted kinetic energy of the water course, a whole host of measures are known. Thus, it is known to the applicant that, in anticipation of increased dissipation effects, multi-ton concrete blocks were installed in the sub-basin area, which, in the case of increased flow volumes due to heavy rainfall, ejected the stream from the sub-basin area and carried it down the river basin below the water management facility.

Nadalje je npr. iz US 09/072,836 (WO 99/57377) znano, da je mogoče pretočno polje neposredno nad omenjeno poglobitvijo t.j. podslapjem opremiti s kaskadami. Tak ukrep je lahko do določene mere učinkovit le pri dovolj veliki višinski razliki med zgornjo in spodnjo gladino vode oz. pri razmeroma veliki globini podslapja. Kadar gre za večje višinske razlike, so na voljo tudi druge rešitve, ki izboljšajo disipacijo oz. izničenje viškov kinetične energije. Znano je npr. da v območje podslapja vgradijo takoimenovane razbijače, namreč nekakšne konzolno vpete vertikalne ali poševne stebre oz. zobe, ki štrlijo in dna podslapja, ali rešetke ali takoimenovane glavnike, preko katerih pada tok oz. si mora skoznje utirati pot. Slednje je med drugim opisano tudi v US 5,032,038. Pretakanje vode preko tovrstnih priprav, s katerimi je v splošnem mogoče naknadno opremiti tudi že obstoječe vodnogospodarske objekte ter jih na ta način do neke mere sanirati, dejansko lahko povzroči določeno disipacijo, vendar le v primeru zadostnega pretoka pri zadostni višinski razliki, torej v območju še dovolj visokega Froudeovega števila. Tako teoretični izračuni kot tudi izsledki iz prakse kažejo, da pri manjših višinskih razlikah oz. pod spodnjo mejno vrednostjo Froude-ovega števila tovrstni ukrepi izgubijo sleherni učinek in namen. Tovrstna problematika je opisana tudi v strokovni literaturi ter v nekaterih objavah znanstvenih člankov, npr.Furthermore, e.g. from US 09 / 072,836 (WO 99/57377) it is known that a flow field may be directly above said recess, i.e. I can equip stunts. Such a measure can be effective to a certain extent only with a sufficiently large height difference between the upper and lower water levels, or. at relatively high depth sub-bases. For larger altitude differences, there are other solutions available that improve dissipation. annihilation of excess kinetic energy. It is known e.g. to install so-called breakers in the sub-basement area, namely, some cantilever vertical or oblique columns or. teeth that protrude and the bottom sub-bases, or the grilles or so-called combs through which the current or it must pave the way. The latter is described, inter alia, in US 5,032,038. Flowing water through such devices, which in general can be retrofitted to existing water management facilities and thus remediated to some extent, can actually cause some dissipation, but only if there is sufficient flow at a sufficient height difference, so in the area still a high enough Froude number. Both theoretical calculations and practical results show that with smaller height differences or. below the Froude number limit, such measures lose all effect and purpose. This kind of problem is also described in the scientific literature and in some publications of scientific articles, e.g.

1. Peterka A..J. - Spillway tests confirm model-prototype conformance (Engineering MonographNo. 16, Denver, Colorado, 1954);1. Peter A..J. - Spillway tests confirm model-prototype conformance (Engineering MonographNo. 16, Denver, Colorado, 1954);

2. Schroder W., Euler G., Knauf D. - Grundlagen des Wasserbaus (Wasserbau, Wemer Verlag, 1994);2. Schroder W., Euler G., Knauf D. - Grundlagen des Wasserbaus (Wasserbau, Wemer Verlag, 1994);

3. Novak P., Moffat A.I.B., Nalluri C., Narayanan R. - Hydraulic structures (Chapman & Hall, Hampshire, England)3. Novak P., Moffat A.I.B., Nalluri C., Narayanan R. - Hydraulic structures (Chapman & Hall, Hampshire, England)

4. Aisenbrey A.J., Hayes R.B., Warren H.J., Winsett D.L., Young R.B.4. Aisenbrey A.J., Hayes R.B., Warren H.J., Winsett D.L., Young R.B.

Design of small channel structures (United States Department of the Interior, Denver, Colorado, 1978);Design of small channel structures (United States Department of the Interior, Denver, Colorado, 1978);

5. Design of gravity dams (United States Department of the Interior, Denver, Colorado, 1976);5. Design of Gravity Dams (United States Department of the Interior, Denver, Colorado, 1976);

6. Design of small dams (United States Department of the Interior, Denver, Colorado, Third Edition, 1987).6. Design of small dams (United States Department of the Interior, Denver, Colorado, Third Edition, 1987).

Pri vodotokih z razmeroma velikim pretokom in majhnim padcem (majhno višinsko razliko), ki so karakteristični po nizkem Froude-ovem številu, potrebne disipacije s prej omenjenimi ukrepi nikakor ni mogoče zagotoviti. Edini način, s katerim bi bilo vsaj teoretično to mogoče doseči, bi bilo umetno povečevanje padca s poglabljanjem podslapja. S tovrstnim ukrepom je realno mogoče računati kvečjemu pri načrtovanju novih vodnogospodarskih objektov. Sanacija obstoječih objektov na ta način namreč zaradi potrebnega razbijanja ogromnih količin betona v podslapju, poglabljanja in ponovnega betoniranja niti približno ne more biti racionalna. Treba pa je vedeti, da tudi načrtovanje novega objekta z zadosti poglobljenim podslapjem pomeni enormno povečanje investicijske vrednosti objekta. Tak ukrep dejansko terja že temeljenje na bistveno večji globini kot sicer, hkrati pa tudi temu primemo višjo, trdnejšo konstrukcijo objekta.For waters with relatively high flow and low drop (small height difference), characterized by low Froude numbers, the necessary dissipation by the above measures cannot be guaranteed. The only way that could at least theoretically be achieved would be to artificially magnify the fall by deepening the sub-basin. Such a measure can realistically be counted on when designing new water management facilities. The rehabilitation of existing structures in this way, because of the necessary breaking down of huge quantities of concrete in the sub-basement, deepening and re-concreting, cannot even be rational. However, it should be borne in mind that the design of a new facility with a sufficiently deep sub-basement also means an enormous increase in the investment value of the facility. Such a measure actually requires a foundation at a much greater depth than usual, but at the same time accepts a taller, firmer structure of the object.

Pričujoči izum se torej ukvaija s pretočnim poljem hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta, sestoječim iz utrjenega podslapja, ki je gledano v smeri toka - razporejeno neposredno pod/za prelivom in po potrebi zaključeno z zaključnim pragom ter ob straneh omejeno z vsaj v bistvu vertikalnima ali poševnima bočnima stenama. Po potrebi je v območju takšnega pretočnega polja predvidena tudi primerna zapornica ali podobna zapiralna naprava. Omenjeno podslapje s prelivom in po potrebi z zaključnim pragom skupaj z omenjenima bočnima stenama tvori enovito, kompaktno konstrukcijo za obvladovanje hidravličnih obremenitev in pojavov med zajezenim območjem vsakokratnega vodotoka, ki se nahaja nad oz. pred omenjenim pretočnim poljem, ter med rečno strugo s pripadajočima brežinama za oz. pod pretočnim območjem. Po izumu je v območju vsaj ene od bočnih sten vsakokratnega pretočnega polja predvidena vsaj ena vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda. Prednostno je v območju vsake od bočnih sten vsakokratnega pretočnega polja predvidena vsaj po ena, še zlasti prednostno kar vsakokrat po ena, vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda.The present invention is therefore addressed by the flow field of a hydroelectric plant, dam or similar water management facility, consisting of a fortified sub-basin, viewed in the direction of flow - arranged directly below / after the overflow and, if necessary, terminated by a closing threshold and bounded by at least substantially vertical sides but oblique side rocks. Where appropriate, a suitable barrier or similar closure device is provided in the area of such flow field. Said sub-basement with overflow and, if necessary, with a sill, together with the said sidewalls, forms a uniform, compact structure for handling hydraulic loads and phenomena between the impounded area of the respective watercourse above or above. in front of the said flowing field, and between the river bed and the associated banks for or. below the flow area. According to the invention, in the region of at least one of the side walls of the respective flow field, at least one substantially flowing dissipation beam extending in the direction of the flow field from the side is provided. Preferably, at least one is provided in the area of each side wall of each flow field, and in particular preferably one at a time, at least substantially in the direction of flow, and in the brightness of the flow field from the side, the dissipation shaft extends.

Po izumu sta smotrno predvideni vsaj dve premočrtno ali - enkrat ali tudi celo večkrat - lomljeno zasnovani disipacijski gredi, ki potekata vse od območja preliva bodisi horizontalno v smeri toka ali poševno vzpenjajoče ali spuščajoče se glede na horizontalno ravnino ter segata vse do zaključka podslapja ali celo do izteka zaključnega praga. Ti disipacijski gredi sta razporejeni vsaj v bistvu v smeri toka in bodisi med seboj vzporedno ali druga glede na drugo poševno, tako da se v smeri toka druga drugi približujeta ali druga od druge oddaljujeta.According to the invention, at least two rectilinear or - once or even repeatedly - fracturedly designed dissipation shafts extending from the overflow area either horizontally in the direction of flow or obliquely ascending or descending relative to the horizontal plane and extending to the end of the sub-basin or even the end, are reasonably provided. until the expiration of the closing threshold. These dissipation shafts are arranged at least substantially in the direction of the flow and either in parallel or in relation to each other obliquely, so that in the direction of the flow they approach each other or distance from each other.

Prečni profil vsakokratne grede je lahko bodisi kvadraten profil ali vsaj v bistvu pravilen krožen profil ali tudi pokončen ali sploščen pravokotni profil.The transverse profile of each beam can be either a square profile or at least a substantially correct circular profile, or an upright or flattened rectangular profile.

Nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina grede v bistvu hiperbolično izdolbljeni, medtem ko je stranska površina grede ravna in gladka ter vsaj v bistvu vertikalna.Further, the respective dissipation beam may be designed with a transverse profile, which is undercut at least substantially rectangular or square, in which the lower and upper surfaces of the shaft are substantially hyperbolically hollowed, while the lateral surface of the shaft is flat and smooth and at least substantially vertical.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja in zgornja površina grede ravni in gladki ter horizontalni, stranska površina grede pa je sicer ravna in gladka, vendar pa upoševljena navzven in navzdol.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the lower and upper surfaces of the shaft are flat and smooth and horizontal, while the lateral surface of the shaft is straight and smooth, but taken outwards and downwards .

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, pri katerem sta spodnja in zgornja površina grede vsaj v bistvu hiperbolično razširjeni v smeri proti pripadajoči bočni steni, medtem ko je stranska površina grede ravna in gladka ter popolnoma vertikalna.Further, each dissipation beam can be designed with a transverse profile, in which the lower and upper surfaces of the shaft are at least substantially hyperbolically extended in the direction of the corresponding side wall, while the lateral surface of the shaft is flat and smooth and completely vertical.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja in zgornja površina grede ravni in gladki ter horizontalni, stranska površina grede pa je sicer ravna in gladka, vendar upoševljena navzdol in navznoter.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the lower and upper surfaces of the shaft are flat and smooth and horizontal, and the lateral surface of the shaft is flat and smooth but taken down and inwards.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, kije pokončen pravokoten profil, katerega zgornja in spodnja površina sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina pa je opremljena s pravokotnim, vzdolžno potekajočim utorom.In addition, each dissipation beam may be designed with a transverse profile having an upright profile, the upper and lower surfaces of which are flat and smooth and parallel, otherwise the flat and vertical side surfaces are provided with a rectangular, longitudinally extending groove.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je trapezen profil, katerega zgornja in spodnja površina sta ravni in gladki, vendar upoševljeni na ta način, da se v smeri proti pripadajoči steni druga drugi približujeta, medtem ko je ravna in gladka stranska površina vsaj v bistvu vertikalna.Further, each dissipation beam can be designed with a transverse profile, which is a trapezoidal profile, the upper and lower surfaces of which are flat and smooth, but taken in such a way that they approach one another in the direction of the corresponding wall while being flat and smooth. lateral surface at least essentially vertical.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina grede vsaj v bistvu hiperbolično izdolbljeni, na vsaj podoben način pa je izdolbljena tudi stranska površina grede.Further, each dissipation beam can be designed with a transverse profile, which is at least substantially rectangular or square in profile, with the lower and upper surfaces of the shaft at least substantially hyperbolically hollowed out and the lateral surface of the shaft at least similarly hollowed out.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu T- profil, pri katerem sta spodnja in zgornja površina grede stopničasto izdolbljeni v območjih neposredno ob steni, medtem ko je stranska površina grede ravna, gladka in vertikalna.Further, each dissipation beam can be designed with a transverse profile, which is at least essentially a T-profile, in which the lower and upper surfaces of the shaft are stepwise hollowed out in the areas immediately adjacent to the wall, while the lateral surface of the shaft is flat, smooth and vertical.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta zgornja površina in stranska površina grede ravni in gladki ter med seboj pravokotni, medtem ko je spodnja površina grede sicer ravna in gladka, vendar pa upoševljena v smeri navznoter proti pripadajoči bočni steni in navzdol.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the upper surface and the lateral surface of the shaft are straight and smooth and perpendicular to each other, while the lower surface of the shaft is flat and smooth, but taken inwards towards the side wall and downwards.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu pokončen pravokoten profil, katerega zgornja in spodnja površina sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina pa je opremljena z osrednje razporejenim pravokotnim, vzdolžno potekajočim utorom, v katerem je na voljo še nadaljnji osrednje razporejen pravokoten in vzdolžno potekajoč utor.Furthermore, each dissipation beam may be designed with a transverse profile, which is at least essentially an upright rectangular profile, the upper and lower surfaces of which are straight and smooth and parallel, otherwise the flat and vertical lateral surfaces are provided with a centrally arranged rectangular, longitudinally a running groove in which a further centrally arranged rectangular and longitudinal groove is provided.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja površina in stranska površina grede ravni in gladki ter med seboj pravokotni, medtem ko je zgornja površina grede sicer ravna in gladka, vendar pa upoševljena v smeri navznoter proti steni in navzgor.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the lower surface and lateral surface of the shaft are straight and smooth and perpendicular to each other, while the upper surface of the shaft is flat and smooth but taken inwards and upwards.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu romboiden profil, pri katerem sta zgornja površina in spodnja površina sicer ravni in gladki, vendar potekata poševno v smeri navzdol proti pripadajoči steni, medtem ko je. stranska površina ravna, gladka in vertikalna.Further, each dissipation beam may be designed with a transverse profile, which is at least essentially a rhomboid profile, in which the upper surface and the lower surface are straight and smooth, but extend obliquely downward toward the corresponding wall while. lateral surface flat, smooth and vertical.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu E-profil, namreč za pokončen pravokoten profil z ravnima, gladkima ter horizontalnima in torej med seboj vzporednima površinama kot tudi z vertikalno stransko površino, ki pa je opremljena z dvema med seboj vzporednima vzdolžno po gredi potekajočima vsaj v bistvu pravokotnima utoroma.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially an E-profile, namely for an upright rectangular profile with straight, smooth and horizontal and therefore parallel surfaces as well as a vertical lateral surface, which is provided with two grooves running parallel to each other along at least substantially rectangular grooves.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama, od katerih je vsaka opremljena s po enim vsaj v bistvu kvadratno profiliranim utorom , kot tudi z ravno in gladko vertikalno stransko površino.Furthermore, each dissipation beam can be designed with a transverse profile, which is at least essentially an H-profile, namely an upright rectangular profile with horizontal and therefore substantially parallel surfaces, each provided with at least one substantially square profile groove, as well as with a flat and smooth vertical lateral surface.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, kije modificiran H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama, pri čemer je zgornja površina izvedena stopničasto zoženo v smeri proti pripadajoči bočni steni, spodnja površina pa je opremljena z vzdolžno potekajočim pravokotnim utorom, medtem ko je stranska površina vsaj v bistvu ravna, gladka in vertikalna.In addition, the respective dissipation beam may be designed with a transverse profile having a modified H-profile, namely for an upright rectangular profile with horizontal and substantially parallel surfaces, the upper surface being stepped tapered towards the corresponding side wall, the lower one the surface is provided with a longitudinally extending rectangular groove, while the lateral surface is at least substantially flat, smooth and vertical.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, pri katerem sta zgornja in spodnja površina med seboj v osnovi vzporedni, medtem ko je stranska površina stopničasto upoševljena v smeri navzdol in proti pripadajoči bočni steni.Further, the respective dissipation beam may be designed with a transverse profile, in which the upper and lower surfaces are substantially parallel, while the lateral surface is stepped in a downward direction and against the corresponding side wall.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu L-profil, namreč pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima zgornjo in spodnjo površino, pri čemer je zgornja površina izvedena stopničasto zoženo v smeri proti pripadajoči bočni steni, spodnja površina je ravna in gladka, prav tako pa je ravna, gladka tudi vertikalna stranska površina.Further, the respective dissipation beam may be formed by a transverse profile, which is at least essentially an L-profile, namely an upright rectangular profile with horizontal and thus substantially parallel upper and lower surfaces, the upper surface being stepped tapered in the direction toward belonging to the lateral wall, the lower surface is flat and smooth, as well as the flat, smooth and vertical lateral surface.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je zasukan U-profil, namreč pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima zgornjo in spodnjo površino, pri čemer je zgornja površina ravna, spodnja površina pa je opremljena z vzdolžno potekajočim pravokotnim utorom, hkrati pa je stranska površina vsaj v bistvu ravna, gladka in vertikalna.Furthermore, the respective dissipation beam may be formed by a transverse profile, which is a rotated U-profile, namely an upright rectangular profile with horizontal and thus substantially parallel upper and lower surfaces, with the upper surface being flat and the lower surface having longitudinally extending rectangular grooves, and at the same time the lateral surface is at least substantially flat, smooth and vertical.

Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki v bistvu predstavlja črko X, namreč vsaj v bistvu pravokoten ali kvadraten profil, pri katerem je zgornja površina stopničasto upoševljena v smeri navzdol in navznoter proti pripadajoči bočni steni, medtem ko sta stranska površina in spodnja površina grede trapezno izdolbljeni, tako da vsaka od njiju obsega trapezen, vzdolžno potekajoč utor.Further, the respective dissipation beam may be designed with a transverse profile essentially representing the letter X, at least essentially a rectangular or square profile, with the upper surface stepped in a downward and inward direction toward the associated side wall, while the lateral surface and the lower surface of the shaft is recessed, so that each of them comprises a trapezoidal longitudinal groove.

-1010-1010

Razen tega je po izumu predvideno, da pretočno polje obsega vsaj eno kompleksno disipacijsko gredo, sestoječo iz druge ob drugi razporejenih gred, zlasti iz druge ob drugi razporejenih gred izrazito sploščenega pravokotnega prečnega profila.In addition, it is contemplated by the invention that the flow field comprises at least one complex dissipation shaft consisting of beams arranged side by side, in particular from beams arranged side by side with a highly flattened rectangular profile.

Še nadalje je predvideno, da pretočno polje obsega vsaj eno disipacijsko gredo katere prečni profil je po dolžini grede bodisi nespremenljiv ali spremenljiv, zlasit zvezno, v splošnem pa lahko tudi nezvezno spremenljiv.It is further contemplated that the flow field comprises at least one dissipation shaft whose transverse profile is either fixed or variable along the length of the beam, preferably continuous, and generally variable.

Izum bo v nadaljevanju konkretiziran s primeri izvedbe, ki so prikazani na priloženi skici.The invention will now be concretized with the embodiments shown in the accompanying drawing.

Sl. 1 kaže pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 1 shows a flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect, in longitudinal section in plane A - A according to FIG. 11 and / or 12.

Sl. 2 kaže nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 2 shows a further example of a flow field of a hydroelectric power plant, dam or similar water management facility with improved dissipation effect, again in the longitudinal section in plane A - A according to FIG. 11 and / or 12.

Sl. 3 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 3 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.

Sl. 4 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 4 shows a further example of a flow field of a hydropower plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.

Sl. 5 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 5 shows a further example of a flow field of a hydropower plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.

-1111-1111

Sl. 6 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnmi A - A po sl. 11 in/ali 12.FIG. 6 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in plane A - A of FIG. 11 and / or 12.

Sl. 7 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 7 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.

Sl. 8 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 8 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.

Sl. 9 kaže še nadaljnji primer izvedbe pretočnega polja vodnogospodarskega objekta brez zapornice, spet z izboljšanim disipacijskim učinkom in spet prikazano v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 9 shows a further example of a flow field of a water management facility without a barrier, again with improved dissipation effect and again shown in a longitudinal section in the plane A - A of FIG. 11 and / or 12.

Sl. 10 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu.FIG. 10 shows a further example of a flow field of a hydroelectric power plant, dam or similar water management facility with improved dissipation effect, again in the longitudinal section.

Sl. 11 kaže pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer v prečnem prerezu v ravnini B - B po sl. 1 do 10.FIG. 11 shows a flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect, in cross section in plane B - B according to FIG. 1 to 10.

Sl. 12 kaže nadaljnjo možno izvedbo pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v prečnem prerezu v ravnini B - B po sl. 1 do 10.FIG. 12 shows a further possible embodiment of the flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect, again in cross section in plane B - B according to FIG. 1 to 10.

Sl. 13 kaže prečni profil na bočno steno nameščene disipacijske grede.FIG. 13 shows a transverse profile on the side wall of a dissipation beam installed.

Sl. 14 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 15 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 16 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 17 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 18 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 19 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni.FIG. 14 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 15 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 16 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 17 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 18 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 19 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall.

-1212-1212

Sl. 20 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 21 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 22 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 23 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 24 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 25 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 26 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 27 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 28 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 29 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 30 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 31 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 32 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 33 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 34 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 35 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 36 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni.FIG. 20 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 21 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 22 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 23 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 24 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 25 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 26 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 27 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 28 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 29 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 30 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 31 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 32 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 33 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 34 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 35 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 36 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall.

Pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom je na sl. 1 prikazano v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12, na sl. 11 in 12 pa v prečnem prerezu v ravnini B B po sl. 1 oz. preostalih slikah 2 do 10. Pretočno polje - gledano v smeri toka - v osnovi sestoji iz preliva 1, podslapja 2 z zaključnim pragom 3 ali brez, in je ob straneh obdano z bočnima stenama 4', 4, ki potekata v vzdolžni smeri toka. Po potrebi oz. odvisno od namena pretočnega polja se v območju slednjega lahko nahaja tudi zapornica 6 ali podobna zapiralna naprava, ki je na sl. 1 do 10 prikazana povsem shematično, a na strokovnjaku nedvomno razumljiv način.. Pri izvedbi pretočnega polja, ki je prikazana na sl. 12, sta bočni steni 4', 4 ravni inThe flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect is shown in FIG. 1 is a longitudinal section in plane A - A of FIG. 11 and / or 12, in FIG. 11 and 12 in cross-section in plane B B according to FIG. 1 oz. the remaining figures 2 to 10. The flow field - viewed in the direction of flow - consists essentially of overflow 1, sublayer 2 with or without sill 3, and is flanked by the side walls 4 ', 4 extending along the longitudinal direction of flow. If necessary, depending on the purpose of the flow field, a barrier 6 or similar closure device may be located in the area of the latter, which in FIG. 1 to 10 are shown in a schematic but clearly understood manner by a person skilled in the art. In carrying out the flow field shown in FIG. 12, the side walls are 4 ', 4 straight and

-1313 potekata vertikalno, medtem ko sta pri izvedbi po sl. 11 bočni steni 4', 4 prav tako ravni, vendar sta poševni in se druga drugi približujeta v smeri proti dnu 21 podslapja 2. Tako je pretočno polje po sl. 12 v prečnem preseku pravokotne oblike, pretočno polje po sl. 11 pa je značilno po trapeznem prečnem preseku. V splošnem so vsi našteti elementi, torej podslapje 2 s prelivom 1 in eventualno z zaključnim pragom 3 ter obe bočni steni 4', 4 izvedeni kot enovita, kompaktna in trdna prednostno betonska konstrukcija, ki je zmožna kljubovati predvidljivim obremenitvam, ki so posledica vsakokratnih hidravličnih razmer, in še zlasti tudi eroziji v vseh njenih pojavnih oblikah kot posledici kinetične energije vodnega toka.-1313 run vertically, while in the embodiment of FIG. 11, the side walls 4 ', 4 are also straight, but are oblique and approach each other in the direction towards the bottom 21 of the sub-floor 2. Thus, the flow field of FIG. 12 in a cross-section of a rectangular shape, the flow field of FIG. 11 is characterized by a trapezoidal cross-section. In general, all of the above elements, ie sub-bases 2 with overflow 1 and possibly with a sill 3 and both side walls 4 ', 4 are constructed as a single, compact and solid preferentially concrete structure capable of withstanding the predictable loads resulting from the hydraulic forces involved. conditions and, in particular, erosion in all its phenomena as a result of the kinetic energy of the water flow.

Z namenom zagotovitve karseda učinkovitega izničenja viškov kinetične energije v pretočnem polju, torej že večkrat omenjene disipacije, je v območju bočnih sten 4', 4 po izumu predvidena namestitev takoimenovanih disipacijskih gred 5', 5. V splošnem velja, da je po izumu v območju vsaj ene od bočnih sten 4', 4 vsakokratnega pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta, predvidena vsaj po ena vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda 5', 5. Prednostno je vsaj ena disipacijska greda 5', 5 nameščena na vsaki od bočnih sten 4', 4 vsakokratnega pretočnega polja, najbolj prednostno pa je na vsaki od bočnih sten 4', 4 nameščena po ena disipacijska greda 5', 5 vsakokrat ustrezne izvedbe.In order to ensure as much as possible the effective elimination of kinetic energy in the flow field, ie the already mentioned dissipation, in the area of the sidewalls 4 ', 4 according to the invention, it is provided for the installation of the so-called dissipation shafts 5', 5. In general, according to the invention, it is within the range at least one of the side walls 4 ', 4 of each flow field of a hydroelectric plant, dam or similar water management facility, provided at least one substantially flowing in the direction of flow and brightness of the flow field from the side of the dissipation shaft 5', 5. Preferably at least one a dissipation shaft 5 ', 5 mounted on each of the side walls 4', 4 of each flow field, and most preferably, one dissipation shaft 5 ', 5 each of a suitable embodiment is mounted on each side wall 4', 4.

Na levi strani po sl. 1 je pred prelivom 1 na voljo zajezitveno območje, obsegajoče določeno količino vode, ki postopoma z določeno pretočno količino odteka preko preliva 1 v območje podslapja 2 ter zatem preko zaključnega praga 3 v strugo, kije na voljo pod omenjenim pretočnim območjem. Pri tem vodnogospodarski objekt lahko obsega npr. eno ali tudi več drugo ob drugem razporejenih pretočnih polj.On the left side of FIG. 1, prior to overflow 1, a reservoir area comprising a certain amount of water is available, gradually draining through the overflow 1 into the sub-basin area 2 with a certain flow rate, and then through the closing threshold 3 into the riverbed, which is available below said flow area. In this case, the water management facility may comprise e.g. one or more flow fields arranged side by side.

-1414-1414

Med gladino vode v zajezitvenem območju oz. v območju preliva 1 ter gladino odtekajoče vode v rečni strugi je na voljo določena višinska razlika, iz česar izhaja tudi razlika v potencialni energijski bilanci obeh območij. Znaten delež te bilančne razlike predstavlja kinetična energija, ki je v pretežni meri nezaželena oz. celo škodljiva. Kadar je na voljo zadostna višinska razlika med gladino vode v zajezitvenem območju oz. v območju preliva 1, in med gladino odtekajoče vode v strugi za podslapjem 2, se zaradi hidravličnih razmer ustvarja zadovoljiva disipacija kinetične energije, še zlasti ob pomoči znanih ukrepov iz stanja tehnike. Kadar potrebna višinska razlika ni na voljo, je potrebno za disipacijo poskrbeti v območju podslapja 2. Eden od ukrepov je kot že omenjeno npr. poglabljanje dna 21 podslapja 2, kar pa v določenih primerih ni realno. Izum se osredotoča na hidroenergetski objekt, ki je že obstoječ ali zgolj načrtovan za pogoje, kjer je višinska razlika med gladino vode v območju preliva 1 in gladino odtekajoče vode v strugi pod/za podslapjem občutno prenizka, da bi bilo mogoče računati z disipacijo zaradi zadostnega padca, hkrati pa je tudi dno 21 podslapja 2 preplitko za ustvarjanje disipacije. Po izumu je mogoče zagotoviti potrebno disipacijo z namestitvijo disipacijskih gred 5',5 ob vsakokrat pripadajoči bočni steni 4', 4 pretočnega polja.During the water level in the dam area or in the area of overflow 1 and the level of the outflow of water in the river bed, a certain height difference is available, which also results in the difference in the potential energy balance of the two areas. A significant portion of this balance difference is represented by kinetic energy, which is largely undesirable or non-desirable. even harmful. When there is a sufficient height difference between the water level in the containment area or satisfactory dissipation of kinetic energy is created due to the hydraulic conditions in the overflow zone 1 and between the water flow level in the sub-basin 2, especially by means of known prior art measures. When the required height difference is not available, dissipation should be provided in the area of sub-basement 2. One of the measures is, as already mentioned, e.g. deepening the bottom 21 sub-floor 2, which in some cases is not realistic. The invention focuses on a hydropower facility that is already existing or merely designed for conditions where the height difference between the water level in the overflow zone 1 and the drainage water level in the sub / sub-basin is significantly too low to be able to account for dissipation due to sufficient at the same time, the bottom 21 is sublayer 2 interlayer to create dissipation. According to the invention, it is possible to provide the necessary dissipation by installing the dissipation shafts 5 ', 5 along each side wall 4', 4 of the flow field.

Obstaja vrsta možnosti namestitve disipacijskih gred 5', 5. V splošnem gre lahko za premočrtno ali lomljeno zasnovane grede 5', 5. Nadalje so grede 5', 5 lahko nameščene horizontalno ali poševno, npr. tako da se v smeri vodnega toka vzpenjajo ali spuščajo glede na horizontalno ravnino. Še nadalje sta po dve vsaka ob pripadajoči bočni steni 4', 4 nameščeni disipacijski gredi 5', 5 lahko med seboj vzporedni ali pa druga glede na drugo poševni, in sicer bodisi na ta način, da se v smeri toka druga drugi približujeta ali pa se v smeri toka druga od druge oddaljujeta. Izvedbe tako izboljšanih pretočnih polj se lahko razlikujejo tudi po dolžini disipacijskih gred 5', 5; slednje lahko segajo npr. od preliva 1 do zaključkaThere are a number of options for installing 5 ', 5 dissipation shafts. Generally, these can be straight or broken beams 5', 5. Further, 5 ', 5 beams can be mounted horizontally or obliquely, e.g. so that they rise or lower in the direction of the water flow relative to the horizontal plane. In addition, two dissipation shafts 5 ', 5 may be arranged two adjacent to each side wall 4', 4, or may be parallel to each other or sloping relative to each other, either by approaching each other in the direction of flow or they move away from each other in the direction of flow. The designs of such improved flow fields may also vary in the length of the dissipation shafts 5 ', 5; the latter can range from e.g. from dressing 1 to conclusion

-1515 podslapja 2, takorekoč do zaključnega praga 3, lahko pa segajo celo preko omenjenega zaključnega praga 3.-1515 sub-bases 2, almost to the finishing threshold 3, and may even extend beyond said finishing threshold 3.

Na sl. 1 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni in premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni horizontalno in potekata med seboj vsaj v bistvu vzporedno vse od preliva 1, nad katerim je vidna tudi zapornica 6, zaključeni pa sta neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3. Namen in učinkovitost disipacijskih gred 5', 5 ustrezata predhodno opisanim.In FIG. 1 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5, which are arranged horizontally and spaced apart from each other, are mounted on each side wall 4', 4 (Figures 11 and 12). at least substantially parallel to overflow 1, above which gate 6 is visible, and terminated immediately before the expiration of sub-floor 2, namely before the closing threshold 3. The purpose and efficiency of the dissipation shafts 5 ', 5 are as previously described.

Na sl. 2 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno. Gredi 5', 5 sta tudi v tem primeru zaključeni neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3.In FIG. 2 shows a flow field in which, in the area of sub-basin 2, two rectilinearly arranged dissipation shafts 5 ', 5, which are arranged obliquely, ascending with respect to each side wall 4', 4 (Figs. 11 and 12) are mounted each direction, but at the same time they are still running at least essentially parallel. In this case, the shafts 5 ', 5 are closed just before the expiration of sub-floor 2, namely before the closing threshold 3.

Na sl. 3 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, končni del 52 taiste grede 5', 5 pa poteka horizontalno. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa sta tudi v tem primeru zaključeni pred iztekom podslapja 2, namreč pred zaključnim pragom 3.In FIG. 3 shows a flow field in which two dissipating shafts 4 ', 4 (Figs. 11 and 12) of the dissipation shaft 5', 5, which are fractured, are again located in the sub-basin area 2. The starting portion 51 of each shaft 5 ', 5 immediately adjacent to overflow 1 runs obliquely, ascending in the direction of flow, and the end portion 52 of the same shaft 5', 5 extends horizontally. In this case, the shafts 5 ', 5 are still running at least substantially parallel to each other, but in this case they are also closed before the expiry of sub-floor 2, namely before the closing threshold 3.

Na sl. 4 je prikazano pretočno polje, pri katerem sta v območju podslapja 2. spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeniIn FIG. 4 shows a flow field in which two in each sub-basement area 2 are again mounted on the respective side wall 4 ', 4 (Figs. 11 and 12)

-1616 disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka horizontalno, medtem ko končni del 52 grede 5', 5 poteka poševno, vzpenjajoče se glede na smer toka. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa sta tudi v tem primeru zaključeni še pred iztekom podslapja 2, t.j. pred zaključnim pragom 3.-1616 5 ', 5 dissipation shafts, which are broken. The starting portion 51 of each shaft 5 ', 5 immediately extends along the overflow 1 horizontally, while the end portion 52 of the beam 5', 5 extends obliquely, ascending in the direction of flow. In this case, the shafts 5 ', 5 continue to run at least substantially parallel to each other, but in this case they are also closed before the expiration of sub-floor 2, i.e. before the closing threshold 3.

Na sl. 5 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, končni del 52 grede 5', 5 pa poteka horizontalno. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, v tem primeru pa segata izven območja podslapja 2 in sta zaključeni šele nad iztekom zaključnega praga 3.In FIG. 5 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5 (5 and 5) are attached to each side wall 4', 4 (Figs. 11 and 12), which are broken. The beginning portion 51 of each shaft 5 ', 5 immediately adjacent to overflow 1 runs obliquely, ascending in the direction of flow, and the end portion 52 of shaft 5', 5 extends horizontally. In this case, the shafts 5 ', 5 are still extending at least substantially in parallel, in which case they extend beyond the area of sub-basement 2 and are closed only beyond the end of the closing threshold 3.

Na sl. 6 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, medtem ko končni del 52 grede 5', 5 poteka poševno, spuščajoče se glede na smer toka. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa sta tudi v tem primeru zaključeni še pred iztekom podslapja 2, t.j. pred zaključnim pragom 3.In FIG. 6 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5 (2), which are each fractured, are again attached to the respective side wall 4', 4 (Figs. 11 and 12). The starter part 51 of each shaft 5 ', 5 immediately extends obliquely along spillway 1, ascending in the direction of flow, while the end portion 52 of the shaft 5', 5 extends obliquely, descending with respect to the direction of flow. In this case, the shafts 5 ', 5 continue to run at least substantially parallel to each other, but in this case they are also closed before the expiration of sub-floor 2, i.e. before the closing threshold 3.

Na sl. 7 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni dvakrat lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, osrednji del 53 poteka vsaj v bistvu horizontalno, končni delIn FIG. 7 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5 (5 and 5) are attached to each side wall 4', 4 (Figs. 11 and 12), which are broken twice. The starting part 51 of each shaft 5 ', 5, immediately adjacent to overflow 1, runs obliquely, ascending in the direction of flow, the central portion 53 extends at least substantially horizontally, the end portion

-1717 vsakokratne grede 5', 5 pa spet poteka poševno, vzpenjajoče se glede na smer toka. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa segata preko celotnega območja podslapja 2 in sta zaključeni nad iztekom zaključnega praga 3.-1717 each beams 5 ', and 5 goes again obliquely, ascending in the direction of the current. In this case, the shafts 5 ', 5 continue to run at least substantially parallel to each other, extending over the entire area of sub-basement 2 and being closed above the end of the closing threshold 3.

Na sl. 8 je prikazano pretočno polje, pri katerem sta v območju tokrat nekoliko drugače - namreč kot V - zasnovanega podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4’, 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno. Gredi 5', 5 sta tudi v tem primeru zaključeni neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3, ki ga tvori poševnina, izhajajoča iz najnižje točke omenjenega podslapja 2.In FIG. 8 shows a flow field in which, this time, in the area slightly different from V, of the designed sub-basin 2, two rectilinearly-designed dissipation shafts 5 ', 5 are mounted on each side 4', 4 (Figs. 11 and 12). both of which are arranged obliquely, ascending in the direction of the stream, but at the same time still running at least substantially in parallel. In this case, the shafts 5 ', 5 are closed just before the expiry of sub-basement 2, namely before the closing threshold 3 formed by the sloping originating from the lowest point of said sub-basement 2.

Na sl. 9 je prikazano pretočno polje vodnogospodarskega objekta, pri katerem sta v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno. Gredi 5', 5 sta tudi v tem primeru zaključeni neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3. V tem primeru gre za pretočno polje vodnogospodarskega objekta brez vsakršne zapornice ali podobne zapiralne naprave, s čimer želi prijavitelj ponazoriti predvsem široko uporabljivost izuma in koristnost vgradnje disipacijskih gred 5', 5 na pripadajoče bočne stene 4', 4 tudi v primeru npr. sanacije obstoječih jezov, prelivov, pretočnih kanalov, kaskad in podobnih objektov.In FIG. 9 shows a flow field of a water management facility wherein two sub-linearly dissipated shafts 5 ', 5, which are arranged obliquely, ascending, are mounted in the sub-basin area 2, each of which is attached to the respective side wall 4', 4 (Figs. 11 and 12). depending on the direction of the flow, but at the same time they are still running at least substantially in parallel. In this case, the shafts 5 ', 5 are closed just before the expiration of sub-floor 2, namely before the closing threshold 3. In this case, it is a flow field of the water management facility without any barrier or similar closure device, in order to illustrate in particular the wide applicability of the invention and the utility of mounting 5 ', 5 dissipation beams on the corresponding side walls 4', 4 even in the case of e.g. rehabilitation of existing dams, overflows, flow channels, cascades and similar structures.

S podobnim namenom je na sl. 10 prikazano pretočno polje vodnogospodarskega objekta, pri v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočnoFor a similar purpose, FIG. 10 shows a flow field of a water management facility, with two in each sub-basin 2 positioned per side

-1818 steno 4', 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno.-1818 wall 4 ', 4 (Figs. 11 and 12) are mounted in a straight line with respect to the dissipation shafts 5', 5, which are arranged obliquely, ascending in the direction of the flow, and at the same time still running at least substantially in parallel.

Poleg števila razporeditve in zasnove disipacijskih gred 5', 5, torej premočrtnosti, enkratne ali večkratne lomljenosti, medsebojne vzporednosti ali poševnosti in podobnih karakteristik, se po izumu na vsakokrat pripadajoče bočne stene 4', 4 pritrdljive disipacijske grede 5', 5 odlikujejo tudi po različnih izvedbah prečnih profilov. Ti so shematično prikazani na sl. 13 do 36, in sicer kot prečni profili in ne kot npr. prečni preseki. Za potrebe pričujočega izuma je namreč irelevantno, če je disipacijska greda 5', 5 npr. polna ali votla, ker je pač za njeno učinkovitost v smislu zagotavljanja pričakovane disipacije ključnega pomena konfiguracija njenega oboda oz. obrisa, ki je po dolžini bodisi nespremenljiv ali v splošnem tudi spremenljiv. Na sl. 13 do 36 so predstavljeni nekateri od možnih prečnih profilov, ki so lahko po celotni dolžini grede 5', 5 med seboj enaki ali spremenljivi ali celo vzdolž taiste disipacijske grede 5', 5 prehajajo iz enega obrisa (npr. tistega po sl. 2) v drug obris (npr. tistega po sl. 3).In addition to the number of arrangement and design of the dissipation beams 5 ', 5, ie straight lines, single or multiple fractures, parallelism or obliquity and similar characteristics, according to the invention, the respective side walls 4', 4 of the fixed dissipation beams 5 ', 5 are also distinguished by the different designs of transverse profiles. These are shown schematically in FIG. 13 to 36, namely as transversal profiles rather than as e.g. cross sections. Namely, it is irrelevant for the purposes of the present invention if the dissipation beam is 5 ', 5 e.g. full or hollow, because the configuration of its perimeter or the circumference is crucial for its effectiveness in terms of providing the expected dissipation. an outline that is either invariable or generally variable in length. In FIG. 13 to 36, some of the possible transversal profiles are presented which, along the entire length of the beam 5 ', 5 may be identical or variable with each other, or even extend along a single contour along the same dissipation beam 5', 5 (for example, the one in Fig. 2) into another outline (eg the one in Fig. 3).

Na sl. 13 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre ža pokončen pravokoten profil disipacijske grede 5'.In FIG. 13 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, the rectangular profile of the 5 'dissipation beam is upright.

Na sl. 14 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za sploščen pravokoten profil disipacijske grede 5'.In FIG. 14 is a cross-sectional view of a dissipation beam 5 'mounted adjacent to the side wall 4' of the available flow field. In this case it is a flattened rectangular profile of the 5 'dissipation beam.

-1919-1919

Na sl. 15 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za kvadraten profil disipacijske grede 5'.In FIG. 15 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case the square profile of the dissipation beam is 5 '.

Na sl. 16 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' nekako hiperbolično izdolbljeni, medtem ko je stranska površina 503 grede 5' ravna in gladka ter popolnoma vertikalna.In FIG. 16 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a truncated at least substantially rectangular or square profile in which the lower and upper surfaces of the 501, 502 beams 5 'are somehow hyperbolically hollowed out, while the lateral surface 503 of the beams 5' is flat and smooth and completely vertical.

Na sl. 17 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' ravni in gladki ter horizontalni, stranska površina 503 grede 5' pa je sicer ravna in gladka, vendar pa upoševljena navzven in navzdol, npr. v smeri npr. proti dnu na skici neprikazanega podslapja.In FIG. 17 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the lower and upper surfaces of the 501, 502 beams 5 'are straight and smooth and horizontal, while the lateral surface 503 of the beams 5' is straight and smooth, but taken inwards and downwards, e.g. in the direction of e.g. towards the bottom in the sketch of the undisplayed sublayer.

Na sl. 18 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' nekako hiperbolično razširjeni v smeri proti pripadajoči bočni steni 4', medtem ko je stranska površina 503 grede 5' ravna in gladka ter popolnoma vertikalna.In FIG. 18 is a cross-sectional view of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, there is a profile in which the lower and upper surfaces of the beams 501, 502 5 'are somehow hyperbolically extended toward the corresponding side wall 4', while the side surface 503 of the beams 5 'is flat and smooth and completely vertical.

Na sl. 19 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' ravni in gladki ter horizontalni, stranska površina 503 grede 5' pa je sicer ravna in gladka, vendar pa upoševljena navzdol in navznoter.In FIG. 19 shows a transversal profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the lower and upper surfaces of the 501, 502 beams 5 'are straight and smooth and horizontal, while the lateral surface 503 of the beams 5' is straight and smooth, but taken down and inwards.

-2020-2020

Na sl. 20 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za pokončen pravokoten profil, katerega zgornja in spodnja površina 501, 502 sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina 503 pa je opremljena s pravokotnim, vzdolžno potekajočim utorom 504.In FIG. 20 is a cross-sectional view of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case it is an upright rectangular profile whose upper and lower surfaces 501, 502 are straight and smooth and parallel to each other; otherwise, the flat and vertical side surfaces 503 are provided with a rectangular, longitudinal groove 504.

Na sl. 21 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, katerega zgornja in spodnja površina 501, 502 sta ravni in gladki, vendar upoševljeni na ta način, da se v smeri proti pripadajoči steni 4' druga drugi približujeta, medtem ko je ravna in gladka stranska površina 503 vsaj v bistvu vertikalna.In FIG. 21 is a cross-sectional view of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile, the upper and lower surfaces of 501, 502 being flat and smooth but taken in such a way that they approach each other in the direction of the corresponding wall 4 ', while the flat and smooth lateral surface 503 is at least basically vertical.

Na sl. 22 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' nekako hiperbolično izdolbljeni, na enak ali podoben način pa je izdolbljena tudi stranska površina 503 grede 5'.In FIG. 22 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, at least a substantially rectangular or square profile is trimmed, in which the lower and upper surfaces 501, 502 of the beam 5 'are somehow hyperbolically hollowed out, and the lateral surface 503 of the shaft 5' is also hollowed out in the same or similar manner.

Na sl. 23 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za vsaj v bistvu T- profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' stopničasto izdolbljeni v območjih neposredno ob steni 4', medtem ko je stranska površina 503 grede 5' ravna, gladka in vertikalna.In FIG. 23 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is at least essentially a T-profile in which the lower and upper surface 501, 502 of the shaft 5 'are stepped in a step in the areas immediately adjacent to the wall 4', while the lateral surface 503 of the shaft 5 'is flat, smooth and vertical.

Na sl. 24 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za vsaj v bistvu pravilen krožen profil.In FIG. 24 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is at least essentially the correct circular profile.

-2121-2121

Na sl. 25 je prikazan prečni profil disipacijske grede 5’, ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta zgornja površina 501 in stranska površina 503 grede 5' ravni in gladki ter med seboj pravokotni, medtem ko je spodnja površina 502 grede 5' sicer ravna in gladka, vendar pa upoševljena navznoter proti steni 4' in navzdol.In FIG. 25 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the upper surface 501 and the side surface 503 of the beam 5 'are straight and smooth and perpendicular to each other, while the lower surface 502 of the beam 5' is flat and smooth but is considered inwards against the wall 4 'and down.

Na sl. 26 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4’ razpoložljivega pretočnega polja. V tem primeru gre za pokončen pravokoten profil, katerega zgornja in spodnja površina 501, 502 sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina 503 pa je opremljena z osrednje razporejenim pravokotnim, vzdolžno potekajočim utorom 504, v katerem je na voljo še nadaljnji osrednje razporejen pravokoten in vzdolžno potekajoč utor 505.In FIG. 26 shows a transversal profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is an upright rectangular profile, the upper and lower surfaces of 501, 502 being straight and smooth and parallel to each other, otherwise the flat and vertical side surfaces 503 are provided with a centrally arranged rectangular, longitudinally extending groove 504 in which a further centrally arranged rectangular and longitudinally extending groove 505 is available.

Na sl. 27 je prikazan prečni profil kompleksne disipacijske grede 5', sestavljene iz dveh druge ob drugi nahajajočih gred z izrazito sploščenim pravokotnim profilom.In FIG. 27 shows a transverse profile of a complex dissipation beam 5 'consisting of two adjacent adjacent beams with a highly flattened rectangular profile.

Na sl. 28 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta spodnja površina 502 in stranska površina 503 grede 5' ravni in gladki ter med seboj pravokotni, medtem ko je zgornja površina 501 grede 5' sicer ravna in gladka, vendar pa upoševljena navznoter proti steni 4' in navzgor.In FIG. 28 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the lower surface 502 and the lateral surface 503 of the beam 5 'are straight and smooth and perpendicular to each other, while the upper surface 501 of the beam 5' is flat and smooth but is considered inwards against the wall 4 'and up.

Na sl. 29 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre zaIn FIG. 29 is a cross-sectional view of a dissipation beam 5 'mounted adjacent to the side wall 4' of the available flow field. In this case it is

-2222 romboiden profil, pri katerem sta zgornja površina 501 in spodnja površina 502 sicer ravni in gladki, vendar potekata poševno v smeri navzdol proti pripadajoči steni 4'. Stranska površina 503 je ravna, gladka in vertikalna.-2222 rhombic profile, in which the upper surface 501 and the lower surface 502 are straight and smooth, but extend obliquely downwards towards the corresponding wall 4 '. The side surface 503 is flat, smooth and vertical.

Na sl. 30 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za E-profil, namreč za pokončen pravokoten profil z ravnima, gladkima ter horizontalnima in torej med seboj vzporednima površinama 501, 502, kot tudi z vertikalno stransko površino 503, ki pa je opremljena z dvema med seboj vzporednima vzdolžno po gredi 5' potekajočima vsaj v bistvu pravokotnima utoroma 504, 505.In FIG. 30 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is an E-profile, namely an upright rectangular profile with straight, smooth and horizontal surfaces of 501, 502, and therefore with a vertical lateral surface 503, which is provided with two sides parallel to each other along the shaft. 5 'running at least essentially rectangular grooves 504, 505.

Na sl. 31 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, od katerih je vsaka opremljena s po enim vsaj v bistvu kvadratno profiliranim utorom 504, 505, kot tudi z ravno in gladko vertikalno stransko površino 503.In FIG. 31 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is an H-profile, namely an upright rectangular profile with horizontal and therefore substantially parallel surfaces 501, 502, each of which is provided with at least one substantially square-shaped groove 504, 505, as well as a straight and a smooth vertical lateral surface 503.

Na sl. 32 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za modificiran H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, pri čemer je zgornja površina 501 izvedena stopničasto zoženo v smeri proti steni 4', spodnja površina 502 pa je opremljena z vzdolžno potekajočim pravokotnim utorom 504. Stranska površina 503 je ravna, gladka in vertikalna.In FIG. 32 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a modified H-profile, namely, an upright rectangular profile with horizontal and therefore substantially parallel surfaces 501, 502, with the upper surface 501 being stepped tapered towards the wall 4 'and the lower surface 502 being provided with a longitudinally extending rectangular groove 504. The side surface 503 is flat, smooth and vertical.

-2323-2323

Na sl. 33 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za profil z med seboj v osnovi vzporednima zgornjo in spodnjo površino 501, 502, medtem ko je stranska površina 503 stopničasto upoševljena v smeri navzdol in proti steni 4'.In FIG. 33 is a cross-sectional view of a dissipation beam 5 ', which is located adjacent to the side wall 4 ' of the available flow field. In this case, the profile is substantially parallel to the upper and lower surfaces 501, 502, while the lateral surface 503 is stepped up and down 4 '.

Na sl. 34 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za nekakšen L-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, pri čemer je zgornja površina 501 izvedena stopničasto zoženo v smeri proti steni 4', spodnja površina 502 pa je ravna in gladka. Prav tako je ravna, gladka tudi vertikalna stranska površina 503.In FIG. 34 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a kind of L-profile, namely an upright rectangular profile with horizontal and therefore substantially parallel surfaces 501, 502, with the upper surface 501 being stepped tapered in the direction of the wall 4 'and the lower surface 502 being straight and smooth. The 503 vertical side surface is also flat, smooth.

Na sl. 35 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za zasukan U-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, pri čemer je zgornja površina 501 ravna, spodnja površina 502 pa je opremljena z vzdolžno potekajočim pravokotnim utorom 504. Stranska površina 503 je ravna, gladka iri vertikalna.In FIG. 35 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a rotated U-profile, namely an upright rectangular profile with horizontal and thus substantially parallel surfaces 501, 502, with the upper surface 501 being flat and the lower surface 502 having a longitudinally extending rectangular groove 504. Side surface 503 is flat, smooth and vertical.

Na sl. 36 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za profil, ki spominja na črko X, namreč za vsaj v bistvu pravokoten ali kvadraten profil, pri katerem je zgornja površina 501 stopničasto upoševljena v smeri navzdol in navznoter proti pripadajoči bočni steni 4', medtem ko sta stranskaIn FIG. 36 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a profile reminiscent of the letter X, namely, at least essentially a rectangular or square profile, in which the upper surface 501 is stepped in a downward and inward direction towards the corresponding side wall 4 ', while the lateral side

-2424 površina 503 in spodnja površina 502 grede 5’ trapezno izdolbljeni, tako da vsaka od njiju obsega trapezen, vzdolžno potekajoč utor 504, 505.-2424 the surface 503 and the lower surface 502 of the beam 5 'are recessed, so that each of them comprises a trapezoidal groove 504, 505.

Claims (47)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta, sestoječe iz utrjenega podslapja (2), ki je - gledano v smeri toka razporejeno neposredno pod/za prelivom (1) in po potrebi zaključeno z zaključnim pragom (3) ter ob straneh omejeno z vsaj v bistvu vertikalnima ali poševnima bočnima stenama (4', 4), po potrebi pa je v območju takšnega pretočnega polja predvidena tudi primerna zapornica (6) ali podobna zapiralna naprava, pri čemer omenjeno podslapje s prelivom (1) in po potrebi z zaključnim pragom (3) skupaj z omenjenima bočnima stenama (4', 4) tvori enovito, kompaktno konstrukcijo za obvladovanje hidravličnih obremenitev in pojavov med zajezenim območjem vsakokratnega vodotoka, ki se nahaja nad oz. pred omenjenim pretočnim poljem, ter med rečno strugo s pripadajočima brežinama za oz. pod pretočnim območjem, označeno s tem, da je v območju vsaj ene od bočnih sten (4', 4) vsakokratnega pretočnega polja predvidena vsaj ena vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda (5', 5).1. Flow field of a hydroelectric power plant, dam or similar water management facility consisting of a fortified sub-basin (2) which, when viewed in the direction of flow, is arranged directly below / behind the overflow (1) and, if necessary, terminated by a closing threshold (3) and bounded on the sides with at least substantially vertical or oblique sidewalls (4 ', 4), and, if necessary, a suitable barrier (6) or similar closure device is provided in the area of such flow field, with said overflow (1) and, if necessary, the closing threshold (3) together with the said lateral walls (4 ', 4) forms a uniform, compact structure for handling hydraulic loads and phenomena between the impounded area of the respective watercourse above or above. in front of the said flowing field, and between the river bed and the associated banks for or. below the flow area, characterized in that, in the area of at least one of the side walls (4 ', 4) of each flow field, at least one substantially flowing in the direction of flow and a flow field of the flow field extending from the side extends from the side (5', 5). 2. Pretočno polje po zahtevku 1, označeno s tem, da je v območju vsake od bočnih sten (4', 4) vsakokratnega pretočnega polja predvidena vsaj po ena vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda (5', 5).Flow field according to claim 1, characterized in that in the area of each side wall (4 ', 4) of the flow field, at least one substantially flowing flow direction and a brightness of the flow field from the side of the flow field extending from the side (5 ', 5). 3. Pretočno polje po zahtevku 1, označeno s tem, daje v območju vsake od bočnih sten (4', 4) vsakokratnega pretočnega polja predvidena po ena vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda (5', 5”).Flow field according to claim 1, characterized in that in the area of each side wall (4 ', 4) of each flow field, at least one substantially flowing flow direction and a flow field brightness extending from the side of the flow field (5) ', 5'). -2626-2626 4. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve premočrtno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) vsaj v bistvu horizontalno v smeri toka in segata vse do zaključka podslapja (2), t.j. vsaj v bistvu do zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two linearly designed dissipation shafts (5 ', 5) are provided, extending from the overflow area (1) at least substantially horizontally in the direction of flow and extending all to the conclusion of sublayer (2), i.e. at least essentially to the closing threshold (3), where available. 5. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve premočrtno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) poševno v smeri toka vzpenjajoče se in segata vse do zaključka podslapja (2), t.j. vsaj v bistvu do zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two linearly designed dissipation shafts (5 ', 5) are provided, extending from the overflow area (1) upstream and extending all the way to the conclusion of sublayer (2), i at least essentially to the closing threshold (3), where available. 6. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve premočrtno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) poševno v smeri toka padajoče in segata vse do zaključka podslapja (2), t.j. vsaj v bistvu do zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two rectilinearly designed dissipation shafts (5 ', 5) are provided, extending downstream from the overflow region (1) and reaching their completion. underlies (2), i.e. at least essentially to the closing threshold (3), where available. 7. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve vsaj enkrat lomljeno zasnovani disipacijski gredi (5’, 5), ki potekata od območja preliva (1) vsaj v bistvu horizontalno v smeri toka in segata vse do zaključka podslapja (2), t.j. vsaj v bistvu do zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two at least once fractured design dissipation shafts (5 ', 5) are provided extending from the overflow area (1) at least substantially horizontally in the direction of flow and reach the end of sub-basement (2), ie at least essentially to the closing threshold (3), where available. .. 8. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve vsaj enkrat lomljeno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) poševno v smeri toka vzpenjajoče se in segata vse do zaključka podslapja (2), t.j. vsaj v bistvu do zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two at least once fractured design dissipation shafts (5 ', 5) are provided, extending from the overflow area (1) upstream and extending right up to the end of sub-floor (2), ie at least essentially to the closing threshold (3), where available. 9. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve vsaj enkrat lomljeno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) poševno v smeri toka padajoče in segata vse do zaključka podslapja (2), t.j. vsaj v bistvu do zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two at least once fractured design dissipation shafts (5 ', 5) are provided, extending downstream from the overflow region (1) and extending all to the conclusion of sublayer (2), i.e. at least essentially to the closing threshold (3), where available. 10. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve premočrtno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) vsaj v bistvu horizontalno v smeri toka in segata preko zaključka podslapja (2), t.j. preko zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two linearly designed dissipation shafts (5 ', 5) are provided, extending from the overflow area (1) at least substantially horizontally in the direction of flow and extending beyond the conclusion of sublayer (2), i beyond the closing threshold (3), where available. 11. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve premočrtno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) poševno v smeri toka vzpenjajoče se in segata preko zaključka podslapja (2), t.j. preko zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two linearly designed dissipation shafts (5 ', 5) are provided, extending from the overflow region (1) upstream and extending beyond the end. underlies (2), i.e. beyond the closing threshold (3), where available. 12. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve premočrtno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) poševno v smeri toka padajoče in segata preko zaključka podslapja (2), t.j. preko zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two linearly designed dissipation shafts (5 ', 5) are provided, extending downstream from the overflow region (1) and extending beyond the end of the sub-basin. (2), i.e. beyond the closing threshold (3), where available. 13. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve vsaj enkrat lomljeno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) vsaj v bistvu horizontalno v smeri toka in segata preko zaključka podslapja (2), t.j. preko zaključnega praga (3), kadar je ta na voljo.Flow field according to any one of claims 1 to 3, characterized in that at least two at least once fractured design dissipation shafts (5 ', 5) are provided extending from the overflow area (1) at least substantially horizontally in the direction of flow and reach beyond the conclusion of sublayer (2), ie beyond the closing threshold (3), where available. 14. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da.sta predvideni vsaj dve vsaj enkrat lomljeno zasnovani disipacijski gredi (5', 5), kiFlow field according to one of Claims 1 to 3, characterized in that at least two at least once fractured design dissipation shafts (5 ', 5) are provided which -2828 potekata od območja preliva (1) poševno v smeri toka vzpenjajoče se in segata preko zaključka podslapja (2), t.j. preko zaključnega praga (3), kadar je ta na voljo.-2828 run upstream from the overflow area (1) in an upstream direction and extend beyond the end of the sub-basement (2), i.e. beyond the closing threshold (3), where available. 15. Pretočno polje po enem od zahtevkov 1 do 3, označeno s tem, da sta predvideni vsaj dve vsaj enkrat lomljeno zasnovani disipacijski gredi (5', 5), ki potekata od območja preliva (1) poševno v smeri toka padajoče in segata preko zaključka podslapja (2), t.j. preko zaključnega praga (3), kadar je ta na voljo.Flow field according to one of Claims 1 to 3, characterized in that at least two at least once fractured design dissipation shafts (5 ', 5) are provided, extending downstream from the overflow region (1) and extending beyond the conclusion of sublayer (2), i beyond the closing threshold (3), where available. 16. Pretočno polje po kateremkoli od zahtevkov 4 do 15, označeno s tem, da sta predvideni vsaj dve disipacijski gredi (5', 5), ki sta razporejeni v smeri toka in med seboj vzporedno.Flow field according to any one of claims 4 to 15, characterized in that at least two dissipation shafts (5 ', 5) are arranged, arranged in the direction of the flow and in parallel with each other. 17. Pretočno polje po kateremkoli od zahtevkov 4 do 15, označeno s tem, da sta predvideni vsaj dve disipacijski gredi (5', 5), ki sta razporejeni vsaj v bistvu v smeri toka, vendar druga glede na drugo poševno, tako da se v smeri toka druga drugi približujeta.Flow field according to any one of claims 4 to 15, characterized in that at least two dissipation shafts (5 ', 5) are provided, which are arranged at least substantially in the direction of flow but with respect to each other so that in the direction of the flow, they approach each other. 18. Pretočno polje po kateremkoli od zahtevkov 4 do 15, označeno s tem, da sta predvideni vsaj dve disipacijski gredi (5', 5), ki sta razporejeni vsaj v bistvu v smeri toka, vendar druga glede na drugo poševno, tako da se v smeri toka druga od druge oddaljujeta.18. Flow field according to any one of claims 4 to 15, characterized in that at least two dissipation shafts (5 ', 5) are provided, which are arranged at least substantially in the direction of the flow but with respect to each other so that away from each other in the direction of flow. 19. Pretočno polje po kateremkoli od predhodnih zahtevkov, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s pokončnim pravokotnim prečnim profilom.Flow field according to any one of the preceding claims, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by an upright rectangular cross-section. -2929-2929 20. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s sploščenim pravokotnim prečnim profilom.Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a flattened rectangular transverse profile. 21. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s kvadratnim prečnim profilom.Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a square transverse profile. 22. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina (501, 502) grede (5') v bistvu hiperbolično izdolbljeni, medtem ko je stranska površina (503) grede (5') ravna in gladka ter vsaj v bistvu vertikalna.Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5), which is formed by a transverse profile, which is undercut at least substantially rectangular or square profile, in which the lower and upper surfaces (501, 502) of the shaft (5 ') are substantially hyperbolically recessed, while the lateral surface (503) of the shaft (5') is flat and smooth and at least substantially vertical. 23. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja in zgornja površina (501, 502) grede (5') ravni in gladki ter horizontalni, stranska površina (503) grede (5') pa je sicer ravna in gladka, vendar pa upoševljena navzven in navzdol.23. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which is at least essentially a trapezoidal profile, with the lower and upper the surface (501, 502) of the shaft (5 ') is flat and smooth and horizontal, while the lateral surface (503) of the shaft (5') is flat and smooth, but is considered outwards and downwards. 24. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), kije zasnovana s prečnim profilom, pri katerem sta spodnja in zgornja površina (501, 502) grede (5') vsaj v bistvu hiperbolično razširjeni v smeri proti pripadajoči bočni steni (4'), medtem ko je stranska površina (503) grede (5') ravna in gladka ter popolnoma vertikalna.Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, wherein the lower and upper surfaces (501, 502) of the shaft (5) ') at least substantially hyperbolically extended toward the associated lateral wall (4'), while the lateral surface (503) of the shaft (5 ') is flat and smooth and completely vertical. 25. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), kije zasnovana s prečnim profilom, ki25. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5), which is formed by a transverse profile which -3030 je vsaj v bistvu trapezen profil, pri katerem sta spodnja in zgornja površina (501, 502) grede (5') ravni in gladki ter horizontalni, stranska površina (503) grede (5') pa je sicer ravna in gladka, vendar upoševljena navzdol in navznoter.-3030 is at least essentially a trapezoidal profile in which the lower and upper surfaces (501, 502) of the shaft (5 ') are straight and smooth and horizontal, while the lateral surface (503) of the shaft (5') is flat and smooth, but considered downwards and inwards. 26. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je pokončen pravokoten profil, katerega zgornja in spodnja površina (501, 502) sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina (503) pa je opremljena s pravokotnim, vzdolžno potekajočim utorom (504).26. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5), which is formed by a transverse profile, which is a rectangular profile whose upper and lower surfaces (501, 502) are straight and smooth and parallel to each other, otherwise the flat and vertical side surfaces (503) are provided with a rectangular, longitudinal groove (504). 27. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je trapezen profil, katerega zgornja in spodnja površina (501, 502) sta ravni in gladki, vendar upoševljeni na ta način, da se v smeri proti pripadajoči steni (4') druga drugi približujeta, medtem ko je ravna in gladka stranska površina (503) vsaj v bistvu vertikalna.Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5), which is formed by a transverse profile, which is a trapezoidal profile having an upper and lower surface (501, 502 ) are straight and smooth but taken in such a way that they approach each other in the direction of the corresponding wall (4 '), while the flat and smooth side surface (503) is at least substantially vertical. 28. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina (501, 502) grede (5') vsaj v bistvu hiperbolično izdolbljeni, na vsaj podoben način pa je izdolbljena tudi stranska površina (503) grede (5').28. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5), which is formed by a transverse profile, which is undercut at least substantially rectangular or square profile, in which the lower and upper surfaces (501, 502) of the shaft (5 ') are at least substantially hyperbolically hollowed out, and the lateral surface (503) of the shaft (5') is at least similarly hollowed out. 29. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu T- profil, pri katerem sta spodnja in zgornja površina (501, 502) grede (5') stopničasto izdolbljeni v območjih neposredno ob steni (4'), medtem ko je stranska površina (503) grede (5') ravna, gladka in vertikalna.29. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which is at least essentially a T-profile, wherein the lower and the upper surface (501, 502) of the shaft (5 ') is stepped in a step in the areas immediately adjacent to the wall (4'), while the lateral surface (503) of the shaft (5 ') is flat, smooth and vertical. -3131-3131 30. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu pravilen krožen profil.Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is designed with a transverse profile, which is at least essentially a regular circular profile. 31. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta zgornja površina (501) in stranska površina (503) grede (5') ravni in gladki ter med seboj pravokotni, medtem ko je spodnja površina (502) grede (5') sicer ravna in gladka, vendar pa upoševljena v smeri navznoter proti pripadajoči bočni steni (4') in navzdol.Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which is at least essentially a trapezoidal profile, with the upper surface ( 501) and the lateral surface (503) of the shaft (5 ') are straight and smooth and perpendicular to each other, while the lower surface (502) of the shaft (5') is even and smooth but taken inwards towards the corresponding lateral wall ( 4 ') and down. 32. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu pokončen pravokoten profil, katerega zgornja in spodnja površina (501, 502) sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina (503) pa je opremljena z osrednje razporejenim pravokotnim, vzdolžno potekajočim utorom (504), v katerem je na voljo še nadaljnji osrednje razporejen pravokoten in vzdolžno potekajoč utor (505).32. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5), which is formed by a transverse profile, which is at least essentially an upright profile, the upper and lower surfaces of which (501, 502) are straight and smooth and parallel to each other, otherwise the flat and vertical side surfaces (503) are provided with a centrally arranged rectangular, longitudinally extending groove (504) in which a further centrally arranged rectangular and longitudinal portion is provided running groove (505). 33. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja površina (502) in stranska površina (503) grede (5') ravni in gladki ter med seboj pravokotni, medtem ko je zgornja površina (501) grede (51) sicer ravna in gladka, vendar pa upoševljena v smeri navznoter proti steni (4') in navzgor.33. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which is at least essentially a trapezoidal profile with the lower surface ( 502) and the lateral surface (503) of the shaft (5 ') is straight and smooth and perpendicular to each other, while the upper surface (501) of the shaft (5 1 ) is even and smooth but taken inwards towards the wall (4' ) and up. 34. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki34. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile which -3232 je vsaj v bistvu romboiden profil, pri katerem sta zgornja površina (501) in spodnja površina (502) sicer ravni in gladki, vendar potekata poševno v smeri navzdol proti pripadajoči steni (4'), medtem ko je stranska površina (503) ravna, gladka in vertikalna.-3232 is at least essentially a rhombic profile, in which the upper surface (501) and the lower surface (502) are straight and smooth, but extend obliquely downward toward the corresponding wall (4 '), while the lateral surface (503) flat, smooth and vertical. 35. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), kije zasnovana s prečnim profilom, ki je vsaj v bistvu E-profil, namreč za pokončen pravokoten profil z ravnima, gladkima ter horizontalnima in torej med seboj vzporednima površinama (501, 502), kot tudi z vertikalno stransko površino (503), ki pa je opremljena z dvema med seboj vzporednima vzdolžno po gredi (5') potekajočima vsaj v bistvu pravokotnima utoroma (504, 505).35. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which is at least essentially an E profile, namely an upright rectangular profile with flat, smooth and horizontal and therefore parallel surfaces (501, 502), as well as a vertical lateral surface (503), which is provided with two parallel grooves (5 ') extending at least substantially rectangular ( 504, 505). 36. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama (501, 502), od katerih je vsaka opremljena s po enim vsaj v bistvu kvadratno profiliranim utorom (504, 505), kot tudi z ravno in gladko vertikalno stransko površino (503).36. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which is at least essentially an H-profile, namely an upright rectangular profile with horizontal and therefore substantially parallel surfaces (501, 502), each of which is provided with at least one substantially square-shaped groove (504, 505), as well as a flat and smooth vertical lateral surface (503). 37. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki modificiran H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama (501, 502), pri čemer je zgornja površina (501) izvedena stopničasto zoženo v smeri proti pripadajoči bočni steni (4'), spodnja površina (502) pa je opremljena z vzdolžno potekajočim pravokotnim utorom (504), medtem ko je stranska površina (503) vsaj v bistvu ravna, gladka in vertikalna.37. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile which is modified by an H-profile, namely for an upright rectangular profile with horizontal and thus substantially parallel surfaces (501, 502), with the upper surface (501) being stepped tapered towards the corresponding side wall (4 ') and the lower surface (502) provided with a longitudinally extending rectangular groove (504) ), while the lateral surface (503) is at least substantially flat, smooth and vertical. -3333-3333 38. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), kije zasnovana s prečnim profilom, pri katerem sta zgornja in spodnja površina (501, 502) med seboj v osnovi vzporedni, medtem ko je stranska površina (503) stopničasto upoševljena v smeri navzdol in proti pripadajoči bočni steni (4').38. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, wherein the upper and lower surfaces (501, 502) are interconnected in substantially parallel, while the lateral surface (503) is stepped in a downward direction and toward the corresponding lateral wall (4 '). 39. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki je vsaj v bistvu L-profil, namreč pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima zgornjo in spodnjo površino (501, 502), pri čemer je zgornja površina (501) izvedena stopničasto zoženo v smeri proti pripadajoči bočni steni (4'), spodnja površina (502) je ravna in gladka, prav tako pa je ravna, gladka tudi vertikalna stranska površina (503).39. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which is at least essentially an L profile, namely an upright rectangular profile with horizontal, and thus substantially parallel, upper and lower surfaces (501, 502), wherein the upper surface (501) is stepped tapered in the direction of the corresponding side wall (4 ') and the lower surface (502) is flat and smooth, as well as a flat, smooth vertical side surface (503). 40. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki zasukan U-profil, namreč pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima zgornjo in spodnjo površino (501, 502), pri čemer je zgornja površina (501) ravna, spodnja površina (502) je opremljena z vzdolžno potekajočim pravokotnim utorom (504), medtem ko je stranska površina (503) vsaj v bistvu ravna, gladka in vertikalna.40. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile, which rotates a U-profile, namely an upright rectangular profile with horizontal and therefore The upper and lower surfaces (501, 502) are substantially parallel to each other, with the upper surface (501) being flat, the lower surface (502) being provided with a longitudinally extending rectangular groove (504), while the lateral surface (503) is at least basically flat, smooth and vertical. 41. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), ki je zasnovana s prečnim profilom, ki v bistvu predstavlja črko X, namreč vsaj v bistvu pravokoten ali kvadraten profil, pri katerem je zgornja površina (501) stopničasto upoševljena v smeri navzdol in navznoter proti pripadajoči bočni steni (4'), medtem ko sta stranska površina (503)A flow field according to any one of claims 1 to 18, characterized in that it comprises at least one dissipation shaft (5 ', 5) which is formed by a transverse profile which essentially represents the letter X, namely at least substantially rectangular or square profile in which the upper surface (501) is stepped in a downward and inward direction toward the associated side wall (4 '), while the lateral surface (503) -3434 in spodnja površina (502) grede (5') trapezno izdolbljeni, tako da vsaka od njiju obsega trapezen, vzdolžno potekajoč utor (504, 505).-3434 and the lower surface (502) of the beam (5 ') is trapezoidal, so that each of them comprises a trapezoidal, longitudinally extending groove (504, 505). 42. Pretočno polje po kateremkoli od zahtevkov 1 do 18, označeno s tem, da obsega vsaj eno kompleksno disipacijsko gredo (5', 5), sestoječo iz druge ob drugi razporejenih gred.42. Flow field according to any one of claims 1 to 18, characterized in that it comprises at least one complex dissipation shaft (5 ', 5) consisting of beams arranged side by side. 43. Pretočno polje po zahtevku 42, označeno s tem, da obsega vsaj eno kompleksno disipacijsko gredo (5', 5), sestoječo iz druge ob drugi razporejenih gred izrazito sploščenega pravokotnega prečnega profila.43. Flow field according to claim 42, characterized in that it comprises at least one complex dissipation shaft (5 ', 5) consisting of beams arranged along side by side with a distinctly flattened rectangular profile. 44. Pretočno polje po kateremkoli od predhodnih zahtevkov, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), katere prečni profil je po dolžini grede (5', 5) nespremenljiv.Flow field according to any one of the preceding claims, characterized in that it comprises at least one dissipation shaft (5 ', 5) whose transverse profile is fixed in length along the length of the shaft (5', 5). 45. Pretočno polje po kateremkoli od zahtevkov 1 do 43, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), katere prečni profil je po dolžini grede (5', 5) spremenljiv.Flow field according to any one of claims 1 to 43, characterized in that it comprises at least one dissipation shaft (5 ', 5) whose transverse profile is variable in length along the shaft (5', 5). 46. Pretočno polje po kateremkoli od zahtevkov 1 do 43, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), katere prečni profil je po dolžini grede (5', 5) zvezno spremenljiv.Flow field according to any one of claims 1 to 43, characterized in that it comprises at least one dissipation shaft (5 ', 5) whose transverse profile is continuously variable along the length of the shaft (5', 5). 47. Pretočno polje po kateremkoli od zahtevkov 1 do 43, označeno s tem, da obsega vsaj eno disipacijsko gredo (5', 5), katere prečni profil je po dolžini grede (5', 5) nezvezno spremenljiv.Flow field according to any one of claims 1 to 43, characterized in that it comprises at least one dissipation shaft (5 ', 5), the transversal profile of which is freely variable along the length of the shaft (5', 5).
SI200100302A 2001-11-27 2001-11-27 Power plant, dam or similar water management facility flow area with enhanced dissipation effect SI21104B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SI200100302A SI21104B (en) 2001-11-27 2001-11-27 Power plant, dam or similar water management facility flow area with enhanced dissipation effect
US10/496,969 US20050111916A1 (en) 2001-11-27 2002-11-25 Spilway with improved dissipation efficiency
PCT/SI2002/000026 WO2003046292A1 (en) 2001-11-27 2002-11-25 Spilway with improved dissipation efficiency
EP02789136A EP1451412A1 (en) 2001-11-27 2002-11-25 Spillway with improved dissipation efficiency
AU2002354398A AU2002354398A1 (en) 2001-11-27 2002-11-25 Spilway with improved dissipation efficiency
HR20040581A HRP20040581A2 (en) 2001-11-27 2004-06-23 Spilway with improved dissipation efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200100302A SI21104B (en) 2001-11-27 2001-11-27 Power plant, dam or similar water management facility flow area with enhanced dissipation effect

Publications (2)

Publication Number Publication Date
SI21104A true SI21104A (en) 2003-06-30
SI21104B SI21104B (en) 2011-01-31

Family

ID=20433018

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200100302A SI21104B (en) 2001-11-27 2001-11-27 Power plant, dam or similar water management facility flow area with enhanced dissipation effect

Country Status (6)

Country Link
US (1) US20050111916A1 (en)
EP (1) EP1451412A1 (en)
AU (1) AU2002354398A1 (en)
HR (1) HRP20040581A2 (en)
SI (1) SI21104B (en)
WO (1) WO2003046292A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929084B (en) * 2015-05-27 2017-01-18 中国葛洲坝集团第三工程有限公司 Protection structure of high-speed overflowing surface and construction method thereof
CN105239540B (en) * 2015-10-13 2018-01-30 四川大学 A kind of inclined floor formula stiling basin
CN105887775A (en) * 2016-06-03 2016-08-24 国网新疆电力公司疆南供电公司 Energy dissipation rib type flood discharging device
CN107090809B (en) * 2017-04-14 2019-06-18 广东省水利水电科学研究院 A kind of low water head Downstream of Sluice stilling pond method of construction
CN107503330B (en) * 2017-07-10 2019-08-20 四川大学 It is weak in hole to there is pressure is prominent to fall expansion type jet stream stilling pond energy-dissipating system
CN108221846B (en) * 2018-03-14 2023-10-27 天津市水务规划勘测设计有限公司 Pressureless flow-to-pressured flow state conversion facility
CN108532565B (en) * 2018-06-06 2023-08-29 浙江省水利水电勘测设计院有限责任公司 Differential mixing energy dissipation structure with slope diffusion
CN109487763B (en) * 2018-12-26 2024-08-27 云南省水利水电勘测设计研究院 Underflow energy dissipation structure suitable for wide-tail pier extends to stilling pool
CN109778799B (en) * 2019-02-01 2020-09-04 四川大学 Asymmetric stilling pool
CN110284468A (en) * 2019-07-12 2019-09-27 中国电建集团北京勘测设计研究院有限公司 A kind of flood-discharge energy-dissipating structure for high flow rate non-pressure tunnel
CN112343016A (en) * 2020-11-10 2021-02-09 中铁第四勘察设计院集团有限公司 Combined energy dissipation structure of flood discharge tunnel
CN112726527A (en) * 2020-12-30 2021-04-30 中国电建集团贵阳勘测设计研究院有限公司 Method for reducing or avoiding cavitation damage of discharge chute and spillway thereof
CN113237631B (en) * 2021-05-08 2021-12-21 中国水利水电科学研究院 Urban accumulated water monitoring oscillation eliminating structure based on underflow energy dissipation and energy dissipation method thereof
CN113981916A (en) * 2021-12-08 2022-01-28 水利部交通运输部国家能源局南京水利科学研究院 Energy dissipater for water outlet of thermonuclear power plant
CN115369815B (en) * 2022-08-09 2023-11-07 中国电建集团中南勘测设计研究院有限公司 Energy dissipation structure with various flood discharge energy dissipation modes and energy dissipation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1372138A (en) * 1919-12-06 1921-03-22 Herschel Clemens Weir
GB232244A (en) * 1924-04-10 1925-10-15 Theodor Rehbock Improvements in arrangements for preventing the bottom of water-courses from being washed-out near water-falls, weirs and other water-structures
US2139458A (en) * 1937-01-18 1938-12-06 Krupp Ag Grusonwerk Sluice gate
US2317975A (en) * 1939-03-10 1943-05-04 Howard E Boath Hydraulic gate construction
FR2076556A5 (en) * 1970-01-20 1971-10-15 Alsthom
US3874176A (en) * 1971-01-21 1975-04-01 Ralph E Shettel Irrigation control
SU479848A1 (en) * 1972-02-29 1975-08-05 Государственный Ордена Трудового Красного Знамени Среднеазиатский Проектно-Изыскательский И Научно-Исследовательский Институт По Ирригационному И Мелиоративному Строительству "Средазгипроводхлопок" Им. А.А.Саркисова Device for extinguishing the energy of the flow in hydraulic structures
GB2138661B (en) * 1983-04-29 1986-04-09 Maeta Concrete Works Ltd Irrigation and drainage
FR2671116B1 (en) * 1990-12-28 1993-05-07 Gtm Batimen Travaux Publ EXCEPTIONAL FLOOD SPRINKLER FOR DAM COMPRISING AT LEAST TWO FLOOD SPRAYING DEVICES.

Also Published As

Publication number Publication date
HRP20040581A2 (en) 2005-04-30
US20050111916A1 (en) 2005-05-26
AU2002354398A1 (en) 2003-06-10
EP1451412A1 (en) 2004-09-01
SI21104B (en) 2011-01-31
WO2003046292A1 (en) 2003-06-05
WO2003046292A9 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
SI21104A (en) Power plant, dam or similar water management facility flow area with enhanced dissipation effect
US20130078037A1 (en) Debris flow drainage canal based on cascade antiscour notched sill group and application thereof
AU3867899A (en) Hydraulic energy dissipating offset stepped spillway
CN104695390A (en) Integrated super-discharge energy-dissipation flood-overflowing unit and method
CN210636383U (en) Debris flow blocking dam with slag removal and drainage channel
CN111424620A (en) Hydraulic energy dissipation structure and method
CN111139801A (en) Interactive hydraulic rectification energy dissipation system and hydraulic rectification method
CN107806065B (en) Stage beam flow type debris flow drainage groove and application thereof
CN207193911U (en) A kind of stage beam pattern debris flow drainage groove
CN212052625U (en) Check dam structure of hydraulic and hydroelectric engineering
CN216108325U (en) Hydraulic engineering prevents bank protection
JPH09158157A (en) Checkdam in which lining cylinder type screen culvert body is installed and lining cylinder type screen culvert body
JP7212581B2 (en) Debris flow sedimentary work
KR102351049B1 (en) Debris barrier with integrated side wall
Bing-Shyan et al. The experimental study for the allocation of ground-sills downstream of check dams
Tullis et al. Impact dissipators
CN113073602B (en) Sand prevention dispersion water inlet diversion system
CN215629701U (en) Sand prevention dispersion water inlet diversion system
RU2076915C1 (en) Selective water inlet structure
CN219100252U (en) Combined type drainage ditch force dissipating structure
CN211815973U (en) Silt-proof structure of dam-free water intake channel
CN216765775U (en) Ecological weir capable of locally and automatically bursting
CN108316257A (en) Discharge chute structure with large and small discharge capacity
CN209958466U (en) Energy dissipation drainage channel
SU1532656A1 (en) Sandby water spillway for earth-fill retaining strucrure

Legal Events

Date Code Title Description
IF Valid on the event date
OU02 Decision according to article 73(2) ipa 1992, publication of decision on partial fulfilment of the invention and change of patent claims

Effective date: 20101211

KO00 Lapse of patent

Effective date: 20150718