SI21104A - Power plant, dam or similar water management facility flow area with enhanced dissipation effect - Google Patents
Power plant, dam or similar water management facility flow area with enhanced dissipation effect Download PDFInfo
- Publication number
- SI21104A SI21104A SI200100302A SI200100302A SI21104A SI 21104 A SI21104 A SI 21104A SI 200100302 A SI200100302 A SI 200100302A SI 200100302 A SI200100302 A SI 200100302A SI 21104 A SI21104 A SI 21104A
- Authority
- SI
- Slovenia
- Prior art keywords
- flow field
- dissipation
- shaft
- profile
- field according
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 230000000694 effects Effects 0.000 title description 19
- 230000004888 barrier function Effects 0.000 claims description 5
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims 5
- 230000003628 erosive effect Effects 0.000 abstract description 7
- 238000010276 construction Methods 0.000 abstract description 2
- 230000003466 anti-cipated effect Effects 0.000 abstract 1
- 238000006386 neutralization reaction Methods 0.000 abstract 1
- 230000001174 ascending effect Effects 0.000 description 11
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 238000005381 potential energy Methods 0.000 description 2
- 208000006670 Multiple fractures Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B8/00—Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
- E02B8/06—Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Revetment (AREA)
- Hydraulic Turbines (AREA)
Abstract
Description
Pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkomFlow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect
Izum v splošnem spada na področje gradbeništva, namreč urejanja vodotokov, še zlasti pa na področje priprav za disipacijo oz. izničenje odvečne kinetične energije.The invention generally falls within the field of construction, namely, the regulation of watercourses, and in particular the field of preparation for dissipation or water. annihilation of excess kinetic energy.
Pri tem izum temelji na problemu, kako v vsakokratnem pretočnem polju hidroelektrarne, jezu ali drugega vodnogospodarskega objekta celo pri razmeroma majhnih višinskih razlikah in razmeroma velikih pretokih, torej pri izjemno nizkih vrednostih takoimenovanega Froude-ovega števila, in ob zanemarljivem zmanjšanju svetlega prečnega prereza vsakokratnega pretočnega polja bodisi pri načrtovanju novih vodnogospodarskih objektov ali celo zgolj na osnovi ekonomsko sprejemljive sanacije vsakokratnega že obstoječega objekta doseči učinkovito disipacijo oz. izničenje odvečne kinetične energije ter na ta način obvarovati strugo in brežine vsakokratnega vodotoka pod pretočnim poljem pfed enormno erozijo.The invention is based on the problem of how in each flow field of a hydroelectric plant, dam or other water management facility, even at relatively small height differences and relatively large flows, ie at extremely low values of the so-called Froude number, and with a negligible decrease in the bright cross-section of each flow fields, either when designing new water management facilities or even solely on the basis of economically acceptable rehabilitation of each existing facility to achieve efficient dissipation or the elimination of excess kinetic energy, thus protecting the riverbeds and banks of each watercourse under a flowing field pfed enormous erosion.
Vodnogospodarski objekti, namreč hidroelektrarne, jezovi in podobni, običajno sestojijo iz določenega števila takoimenovanih pretočnih polj, pri čemer se vsako pretočno polje nahaja med vertikalno ali poševno postavljenima bočnima stenama, s katerima je omejeno v prečni smeri glede na smer pretoka. V vzdolžni smeri se pretočno polje razprostira vse od območja zgornje gladine vode, t.j. območja nad jezom oz. nad zapornico, pa vse do območja spodnje gladine vode, t.j. območja pod zaključkom takoimenovanega podslapja. Zaradi vsakokrat razpoložljive višinske razlike med zgornjo in spodnjo gladino se pri pretoku vode skozi pretočno polje del potencialne energije pretakajoče se vode pretvori v kinetično energijo, ki ima izjemno močan vpliv na pretočne razmere, vrsto oz. obliko toka in še zlasti na erozijo. Zato pri vodnogospodarskih objektih vselej obstoji potreba po izničenju odvečnega dela kinetične energije, torej po disipaciji, ker bi odvečna energija sicer povzročala enormne erozijske učinke v strugi in na brežinah ne zgolj v območju neposredno za/pod pretočnim poljem, marveč še tudi na precejšnji oddaljenosti od le-tega. Sproščanje viška kinetične energije, t.j. disipacija, se praviloma vrši v vodnem skoku v utrjenem, erozijsko odpornem območju, namreč v podslapju.Water management structures, namely hydroelectric power plants, dams and the like, usually consist of a number of so-called flow fields, each flow field located between vertically or obliquely positioned sidewalls, with which it is restricted in the transverse direction with respect to the flow direction. In the longitudinal direction, the flow field extends all the way from the upper water surface, i.e. areas above the dam or. above the dam, all the way to the lower water level, i.e. areas below the termination of the so-called sub-basin. Due to the always available height difference between the upper and lower levels, during the flow of water through the flow field, part of the potential energy of the flowing water is converted into kinetic energy, which has an extremely strong influence on the flow conditions, type or type. the shape of the stream and especially the erosion. Therefore, there is always a need for the elimination of excess kinetic energy, ie dissipation, for water management facilities, since excess energy would cause enormous erosion effects in the river bed and on the banks, not only in the area directly behind / under the flow field, but also at a considerable distance from it. Release of excess kinetic energy, i.e. dissipation, as a rule, occurs in a water jump in a hardened, erosion-resistant zone, namely in the sub-basin.
Strokovnjakom s tega področja je znano, da je mogoče s pravilno zasnovo vzdolžnega prereza pretočnega polja vzpostaviti hidravlične razmere, ki v predvidenih okvirih višinskih razlik in pretokov preprečujejo ali vsaj karseda minimizirajo nastajanje neželenih učinkov erozije zaradi deleža kinetične energije. Tako je npr. zelo pomembna zasnova pretočnega praga, kakršen je npr. opisan v EP 0 477 745. Ključnega pomena je tudi zasnova takoimenovanega podslapja, t.j. primemo urejene, obdelane oz. betonirane poglobitve med območjem neposredno pod jezom, torej za omenjenim pragom, in nad rečno strugo ki je na voljo za/pod jezom, hidroelektrarno ali podobnim vodnogospodarskim objektom. Treba pa je upoštevati, da je vzdolžni profil pretočnega polja vendarle vselej izračunan in zgrajen za določene pogoje obratovanja, ki pa so v praksi lahko zelo spremenljivi. Problemi nastopijo pri enormnih povečanjih pretočnih količin, ker se pri tako spremenjenih pogojih (povečani pretočni količini vode in razen tega tudi pri povečani razliki med spodnjo in zgornjo gladino) tudi delež neizničene kinetične energije občutno poveča in ogroža spodnjo strugo reke pod vodnogospodarskim objektom.It will be appreciated by those skilled in the art that the proper design of a longitudinal cross-section of the flow field allows the establishment of hydraulic conditions that prevent or at least minimize the generation of adverse effects of erosion due to kinetic energy in the envisaged frames of height differences and flows. Thus, e.g. a very important design of a flow threshold, such as a. described in EP 0 477 745. The design of the so-called sub-basement, i.e. we accept edited, processed or. concreted recesses between the area directly below the dam, ie beyond the said threshold, and above the river bed available for / under the dam, hydroelectric power plant or similar water management facility. However, it should be borne in mind that the longitudinal profile of the flow field is nevertheless always calculated and constructed for certain operating conditions, which in practice can be highly variable. Problems occur with enormous increases in flow rates, because under such changed conditions (increased flow rate of water and, moreover, with an increased difference between the lower and upper levels), the proportion of non-depleted kinetic energy also significantly increases and threatens the river bed below the water management facility.
Za zagotavljanje karseda učinkovite disipacije, torej izničenja deleža odvečne oz. neželene kinetične energije vodnega toka, je znana cela vrsta ukrepov. Tako je prijavitelju znano, da so v območje podslapja v pričakovanju povečanih disipacijskih učinkov nameščali večtonske betonske bloke, ki pa jih je ob povečanju pretočnih količin zaradi intenzivnih padavin vodni tok izvrgel iz območja podslapja in odnesel navzdol po strugi pod vodnogospodarskim objektom.To ensure the most efficient dissipation, ie the elimination of the excess or of the unwanted kinetic energy of the water course, a whole host of measures are known. Thus, it is known to the applicant that, in anticipation of increased dissipation effects, multi-ton concrete blocks were installed in the sub-basin area, which, in the case of increased flow volumes due to heavy rainfall, ejected the stream from the sub-basin area and carried it down the river basin below the water management facility.
Nadalje je npr. iz US 09/072,836 (WO 99/57377) znano, da je mogoče pretočno polje neposredno nad omenjeno poglobitvijo t.j. podslapjem opremiti s kaskadami. Tak ukrep je lahko do določene mere učinkovit le pri dovolj veliki višinski razliki med zgornjo in spodnjo gladino vode oz. pri razmeroma veliki globini podslapja. Kadar gre za večje višinske razlike, so na voljo tudi druge rešitve, ki izboljšajo disipacijo oz. izničenje viškov kinetične energije. Znano je npr. da v območje podslapja vgradijo takoimenovane razbijače, namreč nekakšne konzolno vpete vertikalne ali poševne stebre oz. zobe, ki štrlijo in dna podslapja, ali rešetke ali takoimenovane glavnike, preko katerih pada tok oz. si mora skoznje utirati pot. Slednje je med drugim opisano tudi v US 5,032,038. Pretakanje vode preko tovrstnih priprav, s katerimi je v splošnem mogoče naknadno opremiti tudi že obstoječe vodnogospodarske objekte ter jih na ta način do neke mere sanirati, dejansko lahko povzroči določeno disipacijo, vendar le v primeru zadostnega pretoka pri zadostni višinski razliki, torej v območju še dovolj visokega Froudeovega števila. Tako teoretični izračuni kot tudi izsledki iz prakse kažejo, da pri manjših višinskih razlikah oz. pod spodnjo mejno vrednostjo Froude-ovega števila tovrstni ukrepi izgubijo sleherni učinek in namen. Tovrstna problematika je opisana tudi v strokovni literaturi ter v nekaterih objavah znanstvenih člankov, npr.Furthermore, e.g. from US 09 / 072,836 (WO 99/57377) it is known that a flow field may be directly above said recess, i.e. I can equip stunts. Such a measure can be effective to a certain extent only with a sufficiently large height difference between the upper and lower water levels, or. at relatively high depth sub-bases. For larger altitude differences, there are other solutions available that improve dissipation. annihilation of excess kinetic energy. It is known e.g. to install so-called breakers in the sub-basement area, namely, some cantilever vertical or oblique columns or. teeth that protrude and the bottom sub-bases, or the grilles or so-called combs through which the current or it must pave the way. The latter is described, inter alia, in US 5,032,038. Flowing water through such devices, which in general can be retrofitted to existing water management facilities and thus remediated to some extent, can actually cause some dissipation, but only if there is sufficient flow at a sufficient height difference, so in the area still a high enough Froude number. Both theoretical calculations and practical results show that with smaller height differences or. below the Froude number limit, such measures lose all effect and purpose. This kind of problem is also described in the scientific literature and in some publications of scientific articles, e.g.
1. Peterka A..J. - Spillway tests confirm model-prototype conformance (Engineering MonographNo. 16, Denver, Colorado, 1954);1. Peter A..J. - Spillway tests confirm model-prototype conformance (Engineering MonographNo. 16, Denver, Colorado, 1954);
2. Schroder W., Euler G., Knauf D. - Grundlagen des Wasserbaus (Wasserbau, Wemer Verlag, 1994);2. Schroder W., Euler G., Knauf D. - Grundlagen des Wasserbaus (Wasserbau, Wemer Verlag, 1994);
3. Novak P., Moffat A.I.B., Nalluri C., Narayanan R. - Hydraulic structures (Chapman & Hall, Hampshire, England)3. Novak P., Moffat A.I.B., Nalluri C., Narayanan R. - Hydraulic structures (Chapman & Hall, Hampshire, England)
4. Aisenbrey A.J., Hayes R.B., Warren H.J., Winsett D.L., Young R.B.4. Aisenbrey A.J., Hayes R.B., Warren H.J., Winsett D.L., Young R.B.
Design of small channel structures (United States Department of the Interior, Denver, Colorado, 1978);Design of small channel structures (United States Department of the Interior, Denver, Colorado, 1978);
5. Design of gravity dams (United States Department of the Interior, Denver, Colorado, 1976);5. Design of Gravity Dams (United States Department of the Interior, Denver, Colorado, 1976);
6. Design of small dams (United States Department of the Interior, Denver, Colorado, Third Edition, 1987).6. Design of small dams (United States Department of the Interior, Denver, Colorado, Third Edition, 1987).
Pri vodotokih z razmeroma velikim pretokom in majhnim padcem (majhno višinsko razliko), ki so karakteristični po nizkem Froude-ovem številu, potrebne disipacije s prej omenjenimi ukrepi nikakor ni mogoče zagotoviti. Edini način, s katerim bi bilo vsaj teoretično to mogoče doseči, bi bilo umetno povečevanje padca s poglabljanjem podslapja. S tovrstnim ukrepom je realno mogoče računati kvečjemu pri načrtovanju novih vodnogospodarskih objektov. Sanacija obstoječih objektov na ta način namreč zaradi potrebnega razbijanja ogromnih količin betona v podslapju, poglabljanja in ponovnega betoniranja niti približno ne more biti racionalna. Treba pa je vedeti, da tudi načrtovanje novega objekta z zadosti poglobljenim podslapjem pomeni enormno povečanje investicijske vrednosti objekta. Tak ukrep dejansko terja že temeljenje na bistveno večji globini kot sicer, hkrati pa tudi temu primemo višjo, trdnejšo konstrukcijo objekta.For waters with relatively high flow and low drop (small height difference), characterized by low Froude numbers, the necessary dissipation by the above measures cannot be guaranteed. The only way that could at least theoretically be achieved would be to artificially magnify the fall by deepening the sub-basin. Such a measure can realistically be counted on when designing new water management facilities. The rehabilitation of existing structures in this way, because of the necessary breaking down of huge quantities of concrete in the sub-basement, deepening and re-concreting, cannot even be rational. However, it should be borne in mind that the design of a new facility with a sufficiently deep sub-basement also means an enormous increase in the investment value of the facility. Such a measure actually requires a foundation at a much greater depth than usual, but at the same time accepts a taller, firmer structure of the object.
Pričujoči izum se torej ukvaija s pretočnim poljem hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta, sestoječim iz utrjenega podslapja, ki je gledano v smeri toka - razporejeno neposredno pod/za prelivom in po potrebi zaključeno z zaključnim pragom ter ob straneh omejeno z vsaj v bistvu vertikalnima ali poševnima bočnima stenama. Po potrebi je v območju takšnega pretočnega polja predvidena tudi primerna zapornica ali podobna zapiralna naprava. Omenjeno podslapje s prelivom in po potrebi z zaključnim pragom skupaj z omenjenima bočnima stenama tvori enovito, kompaktno konstrukcijo za obvladovanje hidravličnih obremenitev in pojavov med zajezenim območjem vsakokratnega vodotoka, ki se nahaja nad oz. pred omenjenim pretočnim poljem, ter med rečno strugo s pripadajočima brežinama za oz. pod pretočnim območjem. Po izumu je v območju vsaj ene od bočnih sten vsakokratnega pretočnega polja predvidena vsaj ena vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda. Prednostno je v območju vsake od bočnih sten vsakokratnega pretočnega polja predvidena vsaj po ena, še zlasti prednostno kar vsakokrat po ena, vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda.The present invention is therefore addressed by the flow field of a hydroelectric plant, dam or similar water management facility, consisting of a fortified sub-basin, viewed in the direction of flow - arranged directly below / after the overflow and, if necessary, terminated by a closing threshold and bounded by at least substantially vertical sides but oblique side rocks. Where appropriate, a suitable barrier or similar closure device is provided in the area of such flow field. Said sub-basement with overflow and, if necessary, with a sill, together with the said sidewalls, forms a uniform, compact structure for handling hydraulic loads and phenomena between the impounded area of the respective watercourse above or above. in front of the said flowing field, and between the river bed and the associated banks for or. below the flow area. According to the invention, in the region of at least one of the side walls of the respective flow field, at least one substantially flowing dissipation beam extending in the direction of the flow field from the side is provided. Preferably, at least one is provided in the area of each side wall of each flow field, and in particular preferably one at a time, at least substantially in the direction of flow, and in the brightness of the flow field from the side, the dissipation shaft extends.
Po izumu sta smotrno predvideni vsaj dve premočrtno ali - enkrat ali tudi celo večkrat - lomljeno zasnovani disipacijski gredi, ki potekata vse od območja preliva bodisi horizontalno v smeri toka ali poševno vzpenjajoče ali spuščajoče se glede na horizontalno ravnino ter segata vse do zaključka podslapja ali celo do izteka zaključnega praga. Ti disipacijski gredi sta razporejeni vsaj v bistvu v smeri toka in bodisi med seboj vzporedno ali druga glede na drugo poševno, tako da se v smeri toka druga drugi približujeta ali druga od druge oddaljujeta.According to the invention, at least two rectilinear or - once or even repeatedly - fracturedly designed dissipation shafts extending from the overflow area either horizontally in the direction of flow or obliquely ascending or descending relative to the horizontal plane and extending to the end of the sub-basin or even the end, are reasonably provided. until the expiration of the closing threshold. These dissipation shafts are arranged at least substantially in the direction of the flow and either in parallel or in relation to each other obliquely, so that in the direction of the flow they approach each other or distance from each other.
Prečni profil vsakokratne grede je lahko bodisi kvadraten profil ali vsaj v bistvu pravilen krožen profil ali tudi pokončen ali sploščen pravokotni profil.The transverse profile of each beam can be either a square profile or at least a substantially correct circular profile, or an upright or flattened rectangular profile.
Nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina grede v bistvu hiperbolično izdolbljeni, medtem ko je stranska površina grede ravna in gladka ter vsaj v bistvu vertikalna.Further, the respective dissipation beam may be designed with a transverse profile, which is undercut at least substantially rectangular or square, in which the lower and upper surfaces of the shaft are substantially hyperbolically hollowed, while the lateral surface of the shaft is flat and smooth and at least substantially vertical.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja in zgornja površina grede ravni in gladki ter horizontalni, stranska površina grede pa je sicer ravna in gladka, vendar pa upoševljena navzven in navzdol.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the lower and upper surfaces of the shaft are flat and smooth and horizontal, while the lateral surface of the shaft is straight and smooth, but taken outwards and downwards .
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, pri katerem sta spodnja in zgornja površina grede vsaj v bistvu hiperbolično razširjeni v smeri proti pripadajoči bočni steni, medtem ko je stranska površina grede ravna in gladka ter popolnoma vertikalna.Further, each dissipation beam can be designed with a transverse profile, in which the lower and upper surfaces of the shaft are at least substantially hyperbolically extended in the direction of the corresponding side wall, while the lateral surface of the shaft is flat and smooth and completely vertical.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja in zgornja površina grede ravni in gladki ter horizontalni, stranska površina grede pa je sicer ravna in gladka, vendar upoševljena navzdol in navznoter.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the lower and upper surfaces of the shaft are flat and smooth and horizontal, and the lateral surface of the shaft is flat and smooth but taken down and inwards.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, kije pokončen pravokoten profil, katerega zgornja in spodnja površina sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina pa je opremljena s pravokotnim, vzdolžno potekajočim utorom.In addition, each dissipation beam may be designed with a transverse profile having an upright profile, the upper and lower surfaces of which are flat and smooth and parallel, otherwise the flat and vertical side surfaces are provided with a rectangular, longitudinally extending groove.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je trapezen profil, katerega zgornja in spodnja površina sta ravni in gladki, vendar upoševljeni na ta način, da se v smeri proti pripadajoči steni druga drugi približujeta, medtem ko je ravna in gladka stranska površina vsaj v bistvu vertikalna.Further, each dissipation beam can be designed with a transverse profile, which is a trapezoidal profile, the upper and lower surfaces of which are flat and smooth, but taken in such a way that they approach one another in the direction of the corresponding wall while being flat and smooth. lateral surface at least essentially vertical.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina grede vsaj v bistvu hiperbolično izdolbljeni, na vsaj podoben način pa je izdolbljena tudi stranska površina grede.Further, each dissipation beam can be designed with a transverse profile, which is at least substantially rectangular or square in profile, with the lower and upper surfaces of the shaft at least substantially hyperbolically hollowed out and the lateral surface of the shaft at least similarly hollowed out.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu T- profil, pri katerem sta spodnja in zgornja površina grede stopničasto izdolbljeni v območjih neposredno ob steni, medtem ko je stranska površina grede ravna, gladka in vertikalna.Further, each dissipation beam can be designed with a transverse profile, which is at least essentially a T-profile, in which the lower and upper surfaces of the shaft are stepwise hollowed out in the areas immediately adjacent to the wall, while the lateral surface of the shaft is flat, smooth and vertical.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta zgornja površina in stranska površina grede ravni in gladki ter med seboj pravokotni, medtem ko je spodnja površina grede sicer ravna in gladka, vendar pa upoševljena v smeri navznoter proti pripadajoči bočni steni in navzdol.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the upper surface and the lateral surface of the shaft are straight and smooth and perpendicular to each other, while the lower surface of the shaft is flat and smooth, but taken inwards towards the side wall and downwards.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu pokončen pravokoten profil, katerega zgornja in spodnja površina sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina pa je opremljena z osrednje razporejenim pravokotnim, vzdolžno potekajočim utorom, v katerem je na voljo še nadaljnji osrednje razporejen pravokoten in vzdolžno potekajoč utor.Furthermore, each dissipation beam may be designed with a transverse profile, which is at least essentially an upright rectangular profile, the upper and lower surfaces of which are straight and smooth and parallel, otherwise the flat and vertical lateral surfaces are provided with a centrally arranged rectangular, longitudinally a running groove in which a further centrally arranged rectangular and longitudinal groove is provided.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu trapezen profil, pri katerem sta spodnja površina in stranska površina grede ravni in gladki ter med seboj pravokotni, medtem ko je zgornja površina grede sicer ravna in gladka, vendar pa upoševljena v smeri navznoter proti steni in navzgor.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially a trapezoidal profile in which the lower surface and lateral surface of the shaft are straight and smooth and perpendicular to each other, while the upper surface of the shaft is flat and smooth but taken inwards and upwards.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu romboiden profil, pri katerem sta zgornja površina in spodnja površina sicer ravni in gladki, vendar potekata poševno v smeri navzdol proti pripadajoči steni, medtem ko je. stranska površina ravna, gladka in vertikalna.Further, each dissipation beam may be designed with a transverse profile, which is at least essentially a rhomboid profile, in which the upper surface and the lower surface are straight and smooth, but extend obliquely downward toward the corresponding wall while. lateral surface flat, smooth and vertical.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu E-profil, namreč za pokončen pravokoten profil z ravnima, gladkima ter horizontalnima in torej med seboj vzporednima površinama kot tudi z vertikalno stransko površino, ki pa je opremljena z dvema med seboj vzporednima vzdolžno po gredi potekajočima vsaj v bistvu pravokotnima utoroma.Further, the respective dissipation beam may be designed with a transverse profile, which is at least essentially an E-profile, namely for an upright rectangular profile with straight, smooth and horizontal and therefore parallel surfaces as well as a vertical lateral surface, which is provided with two grooves running parallel to each other along at least substantially rectangular grooves.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama, od katerih je vsaka opremljena s po enim vsaj v bistvu kvadratno profiliranim utorom , kot tudi z ravno in gladko vertikalno stransko površino.Furthermore, each dissipation beam can be designed with a transverse profile, which is at least essentially an H-profile, namely an upright rectangular profile with horizontal and therefore substantially parallel surfaces, each provided with at least one substantially square profile groove, as well as with a flat and smooth vertical lateral surface.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, kije modificiran H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama, pri čemer je zgornja površina izvedena stopničasto zoženo v smeri proti pripadajoči bočni steni, spodnja površina pa je opremljena z vzdolžno potekajočim pravokotnim utorom, medtem ko je stranska površina vsaj v bistvu ravna, gladka in vertikalna.In addition, the respective dissipation beam may be designed with a transverse profile having a modified H-profile, namely for an upright rectangular profile with horizontal and substantially parallel surfaces, the upper surface being stepped tapered towards the corresponding side wall, the lower one the surface is provided with a longitudinally extending rectangular groove, while the lateral surface is at least substantially flat, smooth and vertical.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, pri katerem sta zgornja in spodnja površina med seboj v osnovi vzporedni, medtem ko je stranska površina stopničasto upoševljena v smeri navzdol in proti pripadajoči bočni steni.Further, the respective dissipation beam may be designed with a transverse profile, in which the upper and lower surfaces are substantially parallel, while the lateral surface is stepped in a downward direction and against the corresponding side wall.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je vsaj v bistvu L-profil, namreč pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima zgornjo in spodnjo površino, pri čemer je zgornja površina izvedena stopničasto zoženo v smeri proti pripadajoči bočni steni, spodnja površina je ravna in gladka, prav tako pa je ravna, gladka tudi vertikalna stranska površina.Further, the respective dissipation beam may be formed by a transverse profile, which is at least essentially an L-profile, namely an upright rectangular profile with horizontal and thus substantially parallel upper and lower surfaces, the upper surface being stepped tapered in the direction toward belonging to the lateral wall, the lower surface is flat and smooth, as well as the flat, smooth and vertical lateral surface.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki je zasukan U-profil, namreč pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima zgornjo in spodnjo površino, pri čemer je zgornja površina ravna, spodnja površina pa je opremljena z vzdolžno potekajočim pravokotnim utorom, hkrati pa je stranska površina vsaj v bistvu ravna, gladka in vertikalna.Furthermore, the respective dissipation beam may be formed by a transverse profile, which is a rotated U-profile, namely an upright rectangular profile with horizontal and thus substantially parallel upper and lower surfaces, with the upper surface being flat and the lower surface having longitudinally extending rectangular grooves, and at the same time the lateral surface is at least substantially flat, smooth and vertical.
Še nadalje je vsakokratna disipacijska greda lahko zasnovana s prečnim profilom, ki v bistvu predstavlja črko X, namreč vsaj v bistvu pravokoten ali kvadraten profil, pri katerem je zgornja površina stopničasto upoševljena v smeri navzdol in navznoter proti pripadajoči bočni steni, medtem ko sta stranska površina in spodnja površina grede trapezno izdolbljeni, tako da vsaka od njiju obsega trapezen, vzdolžno potekajoč utor.Further, the respective dissipation beam may be designed with a transverse profile essentially representing the letter X, at least essentially a rectangular or square profile, with the upper surface stepped in a downward and inward direction toward the associated side wall, while the lateral surface and the lower surface of the shaft is recessed, so that each of them comprises a trapezoidal longitudinal groove.
-1010-1010
Razen tega je po izumu predvideno, da pretočno polje obsega vsaj eno kompleksno disipacijsko gredo, sestoječo iz druge ob drugi razporejenih gred, zlasti iz druge ob drugi razporejenih gred izrazito sploščenega pravokotnega prečnega profila.In addition, it is contemplated by the invention that the flow field comprises at least one complex dissipation shaft consisting of beams arranged side by side, in particular from beams arranged side by side with a highly flattened rectangular profile.
Še nadalje je predvideno, da pretočno polje obsega vsaj eno disipacijsko gredo katere prečni profil je po dolžini grede bodisi nespremenljiv ali spremenljiv, zlasit zvezno, v splošnem pa lahko tudi nezvezno spremenljiv.It is further contemplated that the flow field comprises at least one dissipation shaft whose transverse profile is either fixed or variable along the length of the beam, preferably continuous, and generally variable.
Izum bo v nadaljevanju konkretiziran s primeri izvedbe, ki so prikazani na priloženi skici.The invention will now be concretized with the embodiments shown in the accompanying drawing.
Sl. 1 kaže pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 1 shows a flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect, in longitudinal section in plane A - A according to FIG. 11 and / or 12.
Sl. 2 kaže nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 2 shows a further example of a flow field of a hydroelectric power plant, dam or similar water management facility with improved dissipation effect, again in the longitudinal section in plane A - A according to FIG. 11 and / or 12.
Sl. 3 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 3 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.
Sl. 4 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 4 shows a further example of a flow field of a hydropower plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.
Sl. 5 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 5 shows a further example of a flow field of a hydropower plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.
-1111-1111
Sl. 6 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnmi A - A po sl. 11 in/ali 12.FIG. 6 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in plane A - A of FIG. 11 and / or 12.
Sl. 7 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 7 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.
Sl. 8 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 8 shows a further example of a flow field of a hydroelectric power plant, a dam or a similar water management facility with improved dissipation effect, again in the longitudinal section in the plane A - A of FIG. 11 and / or 12.
Sl. 9 kaže še nadaljnji primer izvedbe pretočnega polja vodnogospodarskega objekta brez zapornice, spet z izboljšanim disipacijskim učinkom in spet prikazano v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12.FIG. 9 shows a further example of a flow field of a water management facility without a barrier, again with improved dissipation effect and again shown in a longitudinal section in the plane A - A of FIG. 11 and / or 12.
Sl. 10 kaže še nadaljnji primer izvedbe pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v vzdolžnem prerezu.FIG. 10 shows a further example of a flow field of a hydroelectric power plant, dam or similar water management facility with improved dissipation effect, again in the longitudinal section.
Sl. 11 kaže pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer v prečnem prerezu v ravnini B - B po sl. 1 do 10.FIG. 11 shows a flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect, in cross section in plane B - B according to FIG. 1 to 10.
Sl. 12 kaže nadaljnjo možno izvedbo pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom, in sicer spet v prečnem prerezu v ravnini B - B po sl. 1 do 10.FIG. 12 shows a further possible embodiment of the flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect, again in cross section in plane B - B according to FIG. 1 to 10.
Sl. 13 kaže prečni profil na bočno steno nameščene disipacijske grede.FIG. 13 shows a transverse profile on the side wall of a dissipation beam installed.
Sl. 14 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 15 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 16 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 17 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 18 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 19 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni.FIG. 14 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 15 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 16 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 17 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 18 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 19 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall.
-1212-1212
Sl. 20 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 21 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 22 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 23 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 24 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 25 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 26 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 27 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 28 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 29 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 30 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 31 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 32 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 33 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 34 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 35 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni. Sl. 36 kaže prečni profil nadaljnje izvedbe disipacijske grede na pripadajoči steni.FIG. 20 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 21 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 22 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 23 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 24 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 25 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 26 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 27 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 28 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 29 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 30 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 31 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 32 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 33 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 34 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 35 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall. FIG. 36 shows a transverse profile of a further embodiment of the dissipation beam on the associated wall.
Pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom je na sl. 1 prikazano v vzdolžnem prerezu v ravnini A - A po sl. 11 in/ali 12, na sl. 11 in 12 pa v prečnem prerezu v ravnini B B po sl. 1 oz. preostalih slikah 2 do 10. Pretočno polje - gledano v smeri toka - v osnovi sestoji iz preliva 1, podslapja 2 z zaključnim pragom 3 ali brez, in je ob straneh obdano z bočnima stenama 4', 4, ki potekata v vzdolžni smeri toka. Po potrebi oz. odvisno od namena pretočnega polja se v območju slednjega lahko nahaja tudi zapornica 6 ali podobna zapiralna naprava, ki je na sl. 1 do 10 prikazana povsem shematično, a na strokovnjaku nedvomno razumljiv način.. Pri izvedbi pretočnega polja, ki je prikazana na sl. 12, sta bočni steni 4', 4 ravni inThe flow field of a hydroelectric plant, dam or similar water management facility with improved dissipation effect is shown in FIG. 1 is a longitudinal section in plane A - A of FIG. 11 and / or 12, in FIG. 11 and 12 in cross-section in plane B B according to FIG. 1 oz. the remaining figures 2 to 10. The flow field - viewed in the direction of flow - consists essentially of overflow 1, sublayer 2 with or without sill 3, and is flanked by the side walls 4 ', 4 extending along the longitudinal direction of flow. If necessary, depending on the purpose of the flow field, a barrier 6 or similar closure device may be located in the area of the latter, which in FIG. 1 to 10 are shown in a schematic but clearly understood manner by a person skilled in the art. In carrying out the flow field shown in FIG. 12, the side walls are 4 ', 4 straight and
-1313 potekata vertikalno, medtem ko sta pri izvedbi po sl. 11 bočni steni 4', 4 prav tako ravni, vendar sta poševni in se druga drugi približujeta v smeri proti dnu 21 podslapja 2. Tako je pretočno polje po sl. 12 v prečnem preseku pravokotne oblike, pretočno polje po sl. 11 pa je značilno po trapeznem prečnem preseku. V splošnem so vsi našteti elementi, torej podslapje 2 s prelivom 1 in eventualno z zaključnim pragom 3 ter obe bočni steni 4', 4 izvedeni kot enovita, kompaktna in trdna prednostno betonska konstrukcija, ki je zmožna kljubovati predvidljivim obremenitvam, ki so posledica vsakokratnih hidravličnih razmer, in še zlasti tudi eroziji v vseh njenih pojavnih oblikah kot posledici kinetične energije vodnega toka.-1313 run vertically, while in the embodiment of FIG. 11, the side walls 4 ', 4 are also straight, but are oblique and approach each other in the direction towards the bottom 21 of the sub-floor 2. Thus, the flow field of FIG. 12 in a cross-section of a rectangular shape, the flow field of FIG. 11 is characterized by a trapezoidal cross-section. In general, all of the above elements, ie sub-bases 2 with overflow 1 and possibly with a sill 3 and both side walls 4 ', 4 are constructed as a single, compact and solid preferentially concrete structure capable of withstanding the predictable loads resulting from the hydraulic forces involved. conditions and, in particular, erosion in all its phenomena as a result of the kinetic energy of the water flow.
Z namenom zagotovitve karseda učinkovitega izničenja viškov kinetične energije v pretočnem polju, torej že večkrat omenjene disipacije, je v območju bočnih sten 4', 4 po izumu predvidena namestitev takoimenovanih disipacijskih gred 5', 5. V splošnem velja, da je po izumu v območju vsaj ene od bočnih sten 4', 4 vsakokratnega pretočnega polja hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta, predvidena vsaj po ena vsaj v bistvu v smeri toka potekajoča in v svetlino pretočnega polja od strani segajoča disipacijska greda 5', 5. Prednostno je vsaj ena disipacijska greda 5', 5 nameščena na vsaki od bočnih sten 4', 4 vsakokratnega pretočnega polja, najbolj prednostno pa je na vsaki od bočnih sten 4', 4 nameščena po ena disipacijska greda 5', 5 vsakokrat ustrezne izvedbe.In order to ensure as much as possible the effective elimination of kinetic energy in the flow field, ie the already mentioned dissipation, in the area of the sidewalls 4 ', 4 according to the invention, it is provided for the installation of the so-called dissipation shafts 5', 5. In general, according to the invention, it is within the range at least one of the side walls 4 ', 4 of each flow field of a hydroelectric plant, dam or similar water management facility, provided at least one substantially flowing in the direction of flow and brightness of the flow field from the side of the dissipation shaft 5', 5. Preferably at least one a dissipation shaft 5 ', 5 mounted on each of the side walls 4', 4 of each flow field, and most preferably, one dissipation shaft 5 ', 5 each of a suitable embodiment is mounted on each side wall 4', 4.
Na levi strani po sl. 1 je pred prelivom 1 na voljo zajezitveno območje, obsegajoče določeno količino vode, ki postopoma z določeno pretočno količino odteka preko preliva 1 v območje podslapja 2 ter zatem preko zaključnega praga 3 v strugo, kije na voljo pod omenjenim pretočnim območjem. Pri tem vodnogospodarski objekt lahko obsega npr. eno ali tudi več drugo ob drugem razporejenih pretočnih polj.On the left side of FIG. 1, prior to overflow 1, a reservoir area comprising a certain amount of water is available, gradually draining through the overflow 1 into the sub-basin area 2 with a certain flow rate, and then through the closing threshold 3 into the riverbed, which is available below said flow area. In this case, the water management facility may comprise e.g. one or more flow fields arranged side by side.
-1414-1414
Med gladino vode v zajezitvenem območju oz. v območju preliva 1 ter gladino odtekajoče vode v rečni strugi je na voljo določena višinska razlika, iz česar izhaja tudi razlika v potencialni energijski bilanci obeh območij. Znaten delež te bilančne razlike predstavlja kinetična energija, ki je v pretežni meri nezaželena oz. celo škodljiva. Kadar je na voljo zadostna višinska razlika med gladino vode v zajezitvenem območju oz. v območju preliva 1, in med gladino odtekajoče vode v strugi za podslapjem 2, se zaradi hidravličnih razmer ustvarja zadovoljiva disipacija kinetične energije, še zlasti ob pomoči znanih ukrepov iz stanja tehnike. Kadar potrebna višinska razlika ni na voljo, je potrebno za disipacijo poskrbeti v območju podslapja 2. Eden od ukrepov je kot že omenjeno npr. poglabljanje dna 21 podslapja 2, kar pa v določenih primerih ni realno. Izum se osredotoča na hidroenergetski objekt, ki je že obstoječ ali zgolj načrtovan za pogoje, kjer je višinska razlika med gladino vode v območju preliva 1 in gladino odtekajoče vode v strugi pod/za podslapjem občutno prenizka, da bi bilo mogoče računati z disipacijo zaradi zadostnega padca, hkrati pa je tudi dno 21 podslapja 2 preplitko za ustvarjanje disipacije. Po izumu je mogoče zagotoviti potrebno disipacijo z namestitvijo disipacijskih gred 5',5 ob vsakokrat pripadajoči bočni steni 4', 4 pretočnega polja.During the water level in the dam area or in the area of overflow 1 and the level of the outflow of water in the river bed, a certain height difference is available, which also results in the difference in the potential energy balance of the two areas. A significant portion of this balance difference is represented by kinetic energy, which is largely undesirable or non-desirable. even harmful. When there is a sufficient height difference between the water level in the containment area or satisfactory dissipation of kinetic energy is created due to the hydraulic conditions in the overflow zone 1 and between the water flow level in the sub-basin 2, especially by means of known prior art measures. When the required height difference is not available, dissipation should be provided in the area of sub-basement 2. One of the measures is, as already mentioned, e.g. deepening the bottom 21 sub-floor 2, which in some cases is not realistic. The invention focuses on a hydropower facility that is already existing or merely designed for conditions where the height difference between the water level in the overflow zone 1 and the drainage water level in the sub / sub-basin is significantly too low to be able to account for dissipation due to sufficient at the same time, the bottom 21 is sublayer 2 interlayer to create dissipation. According to the invention, it is possible to provide the necessary dissipation by installing the dissipation shafts 5 ', 5 along each side wall 4', 4 of the flow field.
Obstaja vrsta možnosti namestitve disipacijskih gred 5', 5. V splošnem gre lahko za premočrtno ali lomljeno zasnovane grede 5', 5. Nadalje so grede 5', 5 lahko nameščene horizontalno ali poševno, npr. tako da se v smeri vodnega toka vzpenjajo ali spuščajo glede na horizontalno ravnino. Še nadalje sta po dve vsaka ob pripadajoči bočni steni 4', 4 nameščeni disipacijski gredi 5', 5 lahko med seboj vzporedni ali pa druga glede na drugo poševni, in sicer bodisi na ta način, da se v smeri toka druga drugi približujeta ali pa se v smeri toka druga od druge oddaljujeta. Izvedbe tako izboljšanih pretočnih polj se lahko razlikujejo tudi po dolžini disipacijskih gred 5', 5; slednje lahko segajo npr. od preliva 1 do zaključkaThere are a number of options for installing 5 ', 5 dissipation shafts. Generally, these can be straight or broken beams 5', 5. Further, 5 ', 5 beams can be mounted horizontally or obliquely, e.g. so that they rise or lower in the direction of the water flow relative to the horizontal plane. In addition, two dissipation shafts 5 ', 5 may be arranged two adjacent to each side wall 4', 4, or may be parallel to each other or sloping relative to each other, either by approaching each other in the direction of flow or they move away from each other in the direction of flow. The designs of such improved flow fields may also vary in the length of the dissipation shafts 5 ', 5; the latter can range from e.g. from dressing 1 to conclusion
-1515 podslapja 2, takorekoč do zaključnega praga 3, lahko pa segajo celo preko omenjenega zaključnega praga 3.-1515 sub-bases 2, almost to the finishing threshold 3, and may even extend beyond said finishing threshold 3.
Na sl. 1 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni in premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni horizontalno in potekata med seboj vsaj v bistvu vzporedno vse od preliva 1, nad katerim je vidna tudi zapornica 6, zaključeni pa sta neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3. Namen in učinkovitost disipacijskih gred 5', 5 ustrezata predhodno opisanim.In FIG. 1 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5, which are arranged horizontally and spaced apart from each other, are mounted on each side wall 4', 4 (Figures 11 and 12). at least substantially parallel to overflow 1, above which gate 6 is visible, and terminated immediately before the expiration of sub-floor 2, namely before the closing threshold 3. The purpose and efficiency of the dissipation shafts 5 ', 5 are as previously described.
Na sl. 2 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno. Gredi 5', 5 sta tudi v tem primeru zaključeni neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3.In FIG. 2 shows a flow field in which, in the area of sub-basin 2, two rectilinearly arranged dissipation shafts 5 ', 5, which are arranged obliquely, ascending with respect to each side wall 4', 4 (Figs. 11 and 12) are mounted each direction, but at the same time they are still running at least essentially parallel. In this case, the shafts 5 ', 5 are closed just before the expiration of sub-floor 2, namely before the closing threshold 3.
Na sl. 3 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, končni del 52 taiste grede 5', 5 pa poteka horizontalno. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa sta tudi v tem primeru zaključeni pred iztekom podslapja 2, namreč pred zaključnim pragom 3.In FIG. 3 shows a flow field in which two dissipating shafts 4 ', 4 (Figs. 11 and 12) of the dissipation shaft 5', 5, which are fractured, are again located in the sub-basin area 2. The starting portion 51 of each shaft 5 ', 5 immediately adjacent to overflow 1 runs obliquely, ascending in the direction of flow, and the end portion 52 of the same shaft 5', 5 extends horizontally. In this case, the shafts 5 ', 5 are still running at least substantially parallel to each other, but in this case they are also closed before the expiry of sub-floor 2, namely before the closing threshold 3.
Na sl. 4 je prikazano pretočno polje, pri katerem sta v območju podslapja 2. spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeniIn FIG. 4 shows a flow field in which two in each sub-basement area 2 are again mounted on the respective side wall 4 ', 4 (Figs. 11 and 12)
-1616 disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka horizontalno, medtem ko končni del 52 grede 5', 5 poteka poševno, vzpenjajoče se glede na smer toka. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa sta tudi v tem primeru zaključeni še pred iztekom podslapja 2, t.j. pred zaključnim pragom 3.-1616 5 ', 5 dissipation shafts, which are broken. The starting portion 51 of each shaft 5 ', 5 immediately extends along the overflow 1 horizontally, while the end portion 52 of the beam 5', 5 extends obliquely, ascending in the direction of flow. In this case, the shafts 5 ', 5 continue to run at least substantially parallel to each other, but in this case they are also closed before the expiration of sub-floor 2, i.e. before the closing threshold 3.
Na sl. 5 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, končni del 52 grede 5', 5 pa poteka horizontalno. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, v tem primeru pa segata izven območja podslapja 2 in sta zaključeni šele nad iztekom zaključnega praga 3.In FIG. 5 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5 (5 and 5) are attached to each side wall 4', 4 (Figs. 11 and 12), which are broken. The beginning portion 51 of each shaft 5 ', 5 immediately adjacent to overflow 1 runs obliquely, ascending in the direction of flow, and the end portion 52 of shaft 5', 5 extends horizontally. In this case, the shafts 5 ', 5 are still extending at least substantially in parallel, in which case they extend beyond the area of sub-basement 2 and are closed only beyond the end of the closing threshold 3.
Na sl. 6 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, medtem ko končni del 52 grede 5', 5 poteka poševno, spuščajoče se glede na smer toka. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa sta tudi v tem primeru zaključeni še pred iztekom podslapja 2, t.j. pred zaključnim pragom 3.In FIG. 6 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5 (2), which are each fractured, are again attached to the respective side wall 4', 4 (Figs. 11 and 12). The starter part 51 of each shaft 5 ', 5 immediately extends obliquely along spillway 1, ascending in the direction of flow, while the end portion 52 of the shaft 5', 5 extends obliquely, descending with respect to the direction of flow. In this case, the shafts 5 ', 5 continue to run at least substantially parallel to each other, but in this case they are also closed before the expiration of sub-floor 2, i.e. before the closing threshold 3.
Na sl. 7 je prikazano pretočno polje, pri katerem sta v območju podslapja 2 spet nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni disipacijski gredi 5', 5, ki pa sta izvedeni dvakrat lomljeno. Začetni del 51 vsakokratne grede 5', 5 neposredno ob prelivu 1 poteka poševno, vzpenjajoče se glede na smer toka, osrednji del 53 poteka vsaj v bistvu horizontalno, končni delIn FIG. 7 shows a flow field in which, in the area of sub-basin 2, two dissipation shafts 5 ', 5 (5 and 5) are attached to each side wall 4', 4 (Figs. 11 and 12), which are broken twice. The starting part 51 of each shaft 5 ', 5, immediately adjacent to overflow 1, runs obliquely, ascending in the direction of flow, the central portion 53 extends at least substantially horizontally, the end portion
-1717 vsakokratne grede 5', 5 pa spet poteka poševno, vzpenjajoče se glede na smer toka. Pri tem gredi 5', 5 še vedno potekata med seboj vsaj v bistvu vzporedno, hkrati pa segata preko celotnega območja podslapja 2 in sta zaključeni nad iztekom zaključnega praga 3.-1717 each beams 5 ', and 5 goes again obliquely, ascending in the direction of the current. In this case, the shafts 5 ', 5 continue to run at least substantially parallel to each other, extending over the entire area of sub-basement 2 and being closed above the end of the closing threshold 3.
Na sl. 8 je prikazano pretočno polje, pri katerem sta v območju tokrat nekoliko drugače - namreč kot V - zasnovanega podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4’, 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno. Gredi 5', 5 sta tudi v tem primeru zaključeni neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3, ki ga tvori poševnina, izhajajoča iz najnižje točke omenjenega podslapja 2.In FIG. 8 shows a flow field in which, this time, in the area slightly different from V, of the designed sub-basin 2, two rectilinearly-designed dissipation shafts 5 ', 5 are mounted on each side 4', 4 (Figs. 11 and 12). both of which are arranged obliquely, ascending in the direction of the stream, but at the same time still running at least substantially in parallel. In this case, the shafts 5 ', 5 are closed just before the expiry of sub-basement 2, namely before the closing threshold 3 formed by the sloping originating from the lowest point of said sub-basement 2.
Na sl. 9 je prikazano pretočno polje vodnogospodarskega objekta, pri katerem sta v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočno steno 4', 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno. Gredi 5', 5 sta tudi v tem primeru zaključeni neposredno pred iztekom podslapja 2, namreč pred zaključnim pragom 3. V tem primeru gre za pretočno polje vodnogospodarskega objekta brez vsakršne zapornice ali podobne zapiralne naprave, s čimer želi prijavitelj ponazoriti predvsem široko uporabljivost izuma in koristnost vgradnje disipacijskih gred 5', 5 na pripadajoče bočne stene 4', 4 tudi v primeru npr. sanacije obstoječih jezov, prelivov, pretočnih kanalov, kaskad in podobnih objektov.In FIG. 9 shows a flow field of a water management facility wherein two sub-linearly dissipated shafts 5 ', 5, which are arranged obliquely, ascending, are mounted in the sub-basin area 2, each of which is attached to the respective side wall 4', 4 (Figs. 11 and 12). depending on the direction of the flow, but at the same time they are still running at least substantially in parallel. In this case, the shafts 5 ', 5 are closed just before the expiration of sub-floor 2, namely before the closing threshold 3. In this case, it is a flow field of the water management facility without any barrier or similar closure device, in order to illustrate in particular the wide applicability of the invention and the utility of mounting 5 ', 5 dissipation beams on the corresponding side walls 4', 4 even in the case of e.g. rehabilitation of existing dams, overflows, flow channels, cascades and similar structures.
S podobnim namenom je na sl. 10 prikazano pretočno polje vodnogospodarskega objekta, pri v območju podslapja 2 nameščeni dve vsaka na pripadajočo bočnoFor a similar purpose, FIG. 10 shows a flow field of a water management facility, with two in each sub-basin 2 positioned per side
-1818 steno 4', 4 (sl. 11 in 12) pritrjeni premočrtno zasnovani disipacijski gredi 5', 5, ki sta razporejeni poševno, vzpenjajoče se glede na smer toka, hkrati pa še vedno potekata med seboj vsaj v bistvu vzporedno.-1818 wall 4 ', 4 (Figs. 11 and 12) are mounted in a straight line with respect to the dissipation shafts 5', 5, which are arranged obliquely, ascending in the direction of the flow, and at the same time still running at least substantially in parallel.
Poleg števila razporeditve in zasnove disipacijskih gred 5', 5, torej premočrtnosti, enkratne ali večkratne lomljenosti, medsebojne vzporednosti ali poševnosti in podobnih karakteristik, se po izumu na vsakokrat pripadajoče bočne stene 4', 4 pritrdljive disipacijske grede 5', 5 odlikujejo tudi po različnih izvedbah prečnih profilov. Ti so shematično prikazani na sl. 13 do 36, in sicer kot prečni profili in ne kot npr. prečni preseki. Za potrebe pričujočega izuma je namreč irelevantno, če je disipacijska greda 5', 5 npr. polna ali votla, ker je pač za njeno učinkovitost v smislu zagotavljanja pričakovane disipacije ključnega pomena konfiguracija njenega oboda oz. obrisa, ki je po dolžini bodisi nespremenljiv ali v splošnem tudi spremenljiv. Na sl. 13 do 36 so predstavljeni nekateri od možnih prečnih profilov, ki so lahko po celotni dolžini grede 5', 5 med seboj enaki ali spremenljivi ali celo vzdolž taiste disipacijske grede 5', 5 prehajajo iz enega obrisa (npr. tistega po sl. 2) v drug obris (npr. tistega po sl. 3).In addition to the number of arrangement and design of the dissipation beams 5 ', 5, ie straight lines, single or multiple fractures, parallelism or obliquity and similar characteristics, according to the invention, the respective side walls 4', 4 of the fixed dissipation beams 5 ', 5 are also distinguished by the different designs of transverse profiles. These are shown schematically in FIG. 13 to 36, namely as transversal profiles rather than as e.g. cross sections. Namely, it is irrelevant for the purposes of the present invention if the dissipation beam is 5 ', 5 e.g. full or hollow, because the configuration of its perimeter or the circumference is crucial for its effectiveness in terms of providing the expected dissipation. an outline that is either invariable or generally variable in length. In FIG. 13 to 36, some of the possible transversal profiles are presented which, along the entire length of the beam 5 ', 5 may be identical or variable with each other, or even extend along a single contour along the same dissipation beam 5', 5 (for example, the one in Fig. 2) into another outline (eg the one in Fig. 3).
Na sl. 13 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre ža pokončen pravokoten profil disipacijske grede 5'.In FIG. 13 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, the rectangular profile of the 5 'dissipation beam is upright.
Na sl. 14 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za sploščen pravokoten profil disipacijske grede 5'.In FIG. 14 is a cross-sectional view of a dissipation beam 5 'mounted adjacent to the side wall 4' of the available flow field. In this case it is a flattened rectangular profile of the 5 'dissipation beam.
-1919-1919
Na sl. 15 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za kvadraten profil disipacijske grede 5'.In FIG. 15 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case the square profile of the dissipation beam is 5 '.
Na sl. 16 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' nekako hiperbolično izdolbljeni, medtem ko je stranska površina 503 grede 5' ravna in gladka ter popolnoma vertikalna.In FIG. 16 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a truncated at least substantially rectangular or square profile in which the lower and upper surfaces of the 501, 502 beams 5 'are somehow hyperbolically hollowed out, while the lateral surface 503 of the beams 5' is flat and smooth and completely vertical.
Na sl. 17 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' ravni in gladki ter horizontalni, stranska površina 503 grede 5' pa je sicer ravna in gladka, vendar pa upoševljena navzven in navzdol, npr. v smeri npr. proti dnu na skici neprikazanega podslapja.In FIG. 17 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the lower and upper surfaces of the 501, 502 beams 5 'are straight and smooth and horizontal, while the lateral surface 503 of the beams 5' is straight and smooth, but taken inwards and downwards, e.g. in the direction of e.g. towards the bottom in the sketch of the undisplayed sublayer.
Na sl. 18 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' nekako hiperbolično razširjeni v smeri proti pripadajoči bočni steni 4', medtem ko je stranska površina 503 grede 5' ravna in gladka ter popolnoma vertikalna.In FIG. 18 is a cross-sectional view of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, there is a profile in which the lower and upper surfaces of the beams 501, 502 5 'are somehow hyperbolically extended toward the corresponding side wall 4', while the side surface 503 of the beams 5 'is flat and smooth and completely vertical.
Na sl. 19 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' ravni in gladki ter horizontalni, stranska površina 503 grede 5' pa je sicer ravna in gladka, vendar pa upoševljena navzdol in navznoter.In FIG. 19 shows a transversal profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the lower and upper surfaces of the 501, 502 beams 5 'are straight and smooth and horizontal, while the lateral surface 503 of the beams 5' is straight and smooth, but taken down and inwards.
-2020-2020
Na sl. 20 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za pokončen pravokoten profil, katerega zgornja in spodnja površina 501, 502 sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina 503 pa je opremljena s pravokotnim, vzdolžno potekajočim utorom 504.In FIG. 20 is a cross-sectional view of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case it is an upright rectangular profile whose upper and lower surfaces 501, 502 are straight and smooth and parallel to each other; otherwise, the flat and vertical side surfaces 503 are provided with a rectangular, longitudinal groove 504.
Na sl. 21 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, katerega zgornja in spodnja površina 501, 502 sta ravni in gladki, vendar upoševljeni na ta način, da se v smeri proti pripadajoči steni 4' druga drugi približujeta, medtem ko je ravna in gladka stranska površina 503 vsaj v bistvu vertikalna.In FIG. 21 is a cross-sectional view of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile, the upper and lower surfaces of 501, 502 being flat and smooth but taken in such a way that they approach each other in the direction of the corresponding wall 4 ', while the flat and smooth lateral surface 503 is at least basically vertical.
Na sl. 22 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za spodrezan vsaj v bistvu pravokoten ali kvadraten profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' nekako hiperbolično izdolbljeni, na enak ali podoben način pa je izdolbljena tudi stranska površina 503 grede 5'.In FIG. 22 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, at least a substantially rectangular or square profile is trimmed, in which the lower and upper surfaces 501, 502 of the beam 5 'are somehow hyperbolically hollowed out, and the lateral surface 503 of the shaft 5' is also hollowed out in the same or similar manner.
Na sl. 23 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za vsaj v bistvu T- profil, pri katerem sta spodnja in zgornja površina 501, 502 grede 5' stopničasto izdolbljeni v območjih neposredno ob steni 4', medtem ko je stranska površina 503 grede 5' ravna, gladka in vertikalna.In FIG. 23 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is at least essentially a T-profile in which the lower and upper surface 501, 502 of the shaft 5 'are stepped in a step in the areas immediately adjacent to the wall 4', while the lateral surface 503 of the shaft 5 'is flat, smooth and vertical.
Na sl. 24 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za vsaj v bistvu pravilen krožen profil.In FIG. 24 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is at least essentially the correct circular profile.
-2121-2121
Na sl. 25 je prikazan prečni profil disipacijske grede 5’, ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta zgornja površina 501 in stranska površina 503 grede 5' ravni in gladki ter med seboj pravokotni, medtem ko je spodnja površina 502 grede 5' sicer ravna in gladka, vendar pa upoševljena navznoter proti steni 4' in navzdol.In FIG. 25 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the upper surface 501 and the side surface 503 of the beam 5 'are straight and smooth and perpendicular to each other, while the lower surface 502 of the beam 5' is flat and smooth but is considered inwards against the wall 4 'and down.
Na sl. 26 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4’ razpoložljivega pretočnega polja. V tem primeru gre za pokončen pravokoten profil, katerega zgornja in spodnja površina 501, 502 sta ravni in gladki ter med seboj vzporedni, sicer ravna in vertikalna stranska površina 503 pa je opremljena z osrednje razporejenim pravokotnim, vzdolžno potekajočim utorom 504, v katerem je na voljo še nadaljnji osrednje razporejen pravokoten in vzdolžno potekajoč utor 505.In FIG. 26 shows a transversal profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is an upright rectangular profile, the upper and lower surfaces of 501, 502 being straight and smooth and parallel to each other, otherwise the flat and vertical side surfaces 503 are provided with a centrally arranged rectangular, longitudinally extending groove 504 in which a further centrally arranged rectangular and longitudinally extending groove 505 is available.
Na sl. 27 je prikazan prečni profil kompleksne disipacijske grede 5', sestavljene iz dveh druge ob drugi nahajajočih gred z izrazito sploščenim pravokotnim profilom.In FIG. 27 shows a transverse profile of a complex dissipation beam 5 'consisting of two adjacent adjacent beams with a highly flattened rectangular profile.
Na sl. 28 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za trapezen profil, pri katerem sta spodnja površina 502 in stranska površina 503 grede 5' ravni in gladki ter med seboj pravokotni, medtem ko je zgornja površina 501 grede 5' sicer ravna in gladka, vendar pa upoševljena navznoter proti steni 4' in navzgor.In FIG. 28 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a trapezoidal profile in which the lower surface 502 and the lateral surface 503 of the beam 5 'are straight and smooth and perpendicular to each other, while the upper surface 501 of the beam 5' is flat and smooth but is considered inwards against the wall 4 'and up.
Na sl. 29 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre zaIn FIG. 29 is a cross-sectional view of a dissipation beam 5 'mounted adjacent to the side wall 4' of the available flow field. In this case it is
-2222 romboiden profil, pri katerem sta zgornja površina 501 in spodnja površina 502 sicer ravni in gladki, vendar potekata poševno v smeri navzdol proti pripadajoči steni 4'. Stranska površina 503 je ravna, gladka in vertikalna.-2222 rhombic profile, in which the upper surface 501 and the lower surface 502 are straight and smooth, but extend obliquely downwards towards the corresponding wall 4 '. The side surface 503 is flat, smooth and vertical.
Na sl. 30 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za E-profil, namreč za pokončen pravokoten profil z ravnima, gladkima ter horizontalnima in torej med seboj vzporednima površinama 501, 502, kot tudi z vertikalno stransko površino 503, ki pa je opremljena z dvema med seboj vzporednima vzdolžno po gredi 5' potekajočima vsaj v bistvu pravokotnima utoroma 504, 505.In FIG. 30 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is an E-profile, namely an upright rectangular profile with straight, smooth and horizontal surfaces of 501, 502, and therefore with a vertical lateral surface 503, which is provided with two sides parallel to each other along the shaft. 5 'running at least essentially rectangular grooves 504, 505.
Na sl. 31 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, od katerih je vsaka opremljena s po enim vsaj v bistvu kvadratno profiliranim utorom 504, 505, kot tudi z ravno in gladko vertikalno stransko površino 503.In FIG. 31 shows a transverse profile of the dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is an H-profile, namely an upright rectangular profile with horizontal and therefore substantially parallel surfaces 501, 502, each of which is provided with at least one substantially square-shaped groove 504, 505, as well as a straight and a smooth vertical lateral surface 503.
Na sl. 32 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za modificiran H-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, pri čemer je zgornja površina 501 izvedena stopničasto zoženo v smeri proti steni 4', spodnja površina 502 pa je opremljena z vzdolžno potekajočim pravokotnim utorom 504. Stranska površina 503 je ravna, gladka in vertikalna.In FIG. 32 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a modified H-profile, namely, an upright rectangular profile with horizontal and therefore substantially parallel surfaces 501, 502, with the upper surface 501 being stepped tapered towards the wall 4 'and the lower surface 502 being provided with a longitudinally extending rectangular groove 504. The side surface 503 is flat, smooth and vertical.
-2323-2323
Na sl. 33 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za profil z med seboj v osnovi vzporednima zgornjo in spodnjo površino 501, 502, medtem ko je stranska površina 503 stopničasto upoševljena v smeri navzdol in proti steni 4'.In FIG. 33 is a cross-sectional view of a dissipation beam 5 ', which is located adjacent to the side wall 4 ' of the available flow field. In this case, the profile is substantially parallel to the upper and lower surfaces 501, 502, while the lateral surface 503 is stepped up and down 4 '.
Na sl. 34 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za nekakšen L-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, pri čemer je zgornja površina 501 izvedena stopničasto zoženo v smeri proti steni 4', spodnja površina 502 pa je ravna in gladka. Prav tako je ravna, gladka tudi vertikalna stranska površina 503.In FIG. 34 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a kind of L-profile, namely an upright rectangular profile with horizontal and therefore substantially parallel surfaces 501, 502, with the upper surface 501 being stepped tapered in the direction of the wall 4 'and the lower surface 502 being straight and smooth. The 503 vertical side surface is also flat, smooth.
Na sl. 35 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za zasukan U-profil, namreč za pokončen pravokoten profil s horizontalnima in torej med seboj v osnovi vzporednima površinama 501, 502, pri čemer je zgornja površina 501 ravna, spodnja površina 502 pa je opremljena z vzdolžno potekajočim pravokotnim utorom 504. Stranska površina 503 je ravna, gladka iri vertikalna.In FIG. 35 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a rotated U-profile, namely an upright rectangular profile with horizontal and thus substantially parallel surfaces 501, 502, with the upper surface 501 being flat and the lower surface 502 having a longitudinally extending rectangular groove 504. Side surface 503 is flat, smooth and vertical.
Na sl. 36 je prikazan prečni profil disipacijske grede 5', ki je nameščena ob pripadajoči bočni steni 4' razpoložljivega pretočnega polja. V tem primeru gre za profil, ki spominja na črko X, namreč za vsaj v bistvu pravokoten ali kvadraten profil, pri katerem je zgornja površina 501 stopničasto upoševljena v smeri navzdol in navznoter proti pripadajoči bočni steni 4', medtem ko sta stranskaIn FIG. 36 shows a transverse profile of a dissipation shaft 5 'mounted adjacent to the side wall 4' of the available flow field. In this case, it is a profile reminiscent of the letter X, namely, at least essentially a rectangular or square profile, in which the upper surface 501 is stepped in a downward and inward direction towards the corresponding side wall 4 ', while the lateral side
-2424 površina 503 in spodnja površina 502 grede 5’ trapezno izdolbljeni, tako da vsaka od njiju obsega trapezen, vzdolžno potekajoč utor 504, 505.-2424 the surface 503 and the lower surface 502 of the beam 5 'are recessed, so that each of them comprises a trapezoidal groove 504, 505.
Claims (47)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200100302A SI21104B (en) | 2001-11-27 | 2001-11-27 | Power plant, dam or similar water management facility flow area with enhanced dissipation effect |
US10/496,969 US20050111916A1 (en) | 2001-11-27 | 2002-11-25 | Spilway with improved dissipation efficiency |
PCT/SI2002/000026 WO2003046292A1 (en) | 2001-11-27 | 2002-11-25 | Spilway with improved dissipation efficiency |
EP02789136A EP1451412A1 (en) | 2001-11-27 | 2002-11-25 | Spillway with improved dissipation efficiency |
AU2002354398A AU2002354398A1 (en) | 2001-11-27 | 2002-11-25 | Spilway with improved dissipation efficiency |
HR20040581A HRP20040581A2 (en) | 2001-11-27 | 2004-06-23 | Spilway with improved dissipation efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200100302A SI21104B (en) | 2001-11-27 | 2001-11-27 | Power plant, dam or similar water management facility flow area with enhanced dissipation effect |
Publications (2)
Publication Number | Publication Date |
---|---|
SI21104A true SI21104A (en) | 2003-06-30 |
SI21104B SI21104B (en) | 2011-01-31 |
Family
ID=20433018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200100302A SI21104B (en) | 2001-11-27 | 2001-11-27 | Power plant, dam or similar water management facility flow area with enhanced dissipation effect |
Country Status (6)
Country | Link |
---|---|
US (1) | US20050111916A1 (en) |
EP (1) | EP1451412A1 (en) |
AU (1) | AU2002354398A1 (en) |
HR (1) | HRP20040581A2 (en) |
SI (1) | SI21104B (en) |
WO (1) | WO2003046292A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104929084B (en) * | 2015-05-27 | 2017-01-18 | 中国葛洲坝集团第三工程有限公司 | Protection structure of high-speed overflowing surface and construction method thereof |
CN105239540B (en) * | 2015-10-13 | 2018-01-30 | 四川大学 | A kind of inclined floor formula stiling basin |
CN105887775A (en) * | 2016-06-03 | 2016-08-24 | 国网新疆电力公司疆南供电公司 | Energy dissipation rib type flood discharging device |
CN107090809B (en) * | 2017-04-14 | 2019-06-18 | 广东省水利水电科学研究院 | A kind of low water head Downstream of Sluice stilling pond method of construction |
CN107503330B (en) * | 2017-07-10 | 2019-08-20 | 四川大学 | It is weak in hole to there is pressure is prominent to fall expansion type jet stream stilling pond energy-dissipating system |
CN108221846B (en) * | 2018-03-14 | 2023-10-27 | 天津市水务规划勘测设计有限公司 | Pressureless flow-to-pressured flow state conversion facility |
CN108532565B (en) * | 2018-06-06 | 2023-08-29 | 浙江省水利水电勘测设计院有限责任公司 | Differential mixing energy dissipation structure with slope diffusion |
CN109487763B (en) * | 2018-12-26 | 2024-08-27 | 云南省水利水电勘测设计研究院 | Underflow energy dissipation structure suitable for wide-tail pier extends to stilling pool |
CN109778799B (en) * | 2019-02-01 | 2020-09-04 | 四川大学 | Asymmetric stilling pool |
CN110284468A (en) * | 2019-07-12 | 2019-09-27 | 中国电建集团北京勘测设计研究院有限公司 | A kind of flood-discharge energy-dissipating structure for high flow rate non-pressure tunnel |
CN112343016A (en) * | 2020-11-10 | 2021-02-09 | 中铁第四勘察设计院集团有限公司 | Combined energy dissipation structure of flood discharge tunnel |
CN112726527A (en) * | 2020-12-30 | 2021-04-30 | 中国电建集团贵阳勘测设计研究院有限公司 | Method for reducing or avoiding cavitation damage of discharge chute and spillway thereof |
CN113237631B (en) * | 2021-05-08 | 2021-12-21 | 中国水利水电科学研究院 | Urban accumulated water monitoring oscillation eliminating structure based on underflow energy dissipation and energy dissipation method thereof |
CN113981916A (en) * | 2021-12-08 | 2022-01-28 | 水利部交通运输部国家能源局南京水利科学研究院 | Energy dissipater for water outlet of thermonuclear power plant |
CN115369815B (en) * | 2022-08-09 | 2023-11-07 | 中国电建集团中南勘测设计研究院有限公司 | Energy dissipation structure with various flood discharge energy dissipation modes and energy dissipation method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1372138A (en) * | 1919-12-06 | 1921-03-22 | Herschel Clemens | Weir |
GB232244A (en) * | 1924-04-10 | 1925-10-15 | Theodor Rehbock | Improvements in arrangements for preventing the bottom of water-courses from being washed-out near water-falls, weirs and other water-structures |
US2139458A (en) * | 1937-01-18 | 1938-12-06 | Krupp Ag Grusonwerk | Sluice gate |
US2317975A (en) * | 1939-03-10 | 1943-05-04 | Howard E Boath | Hydraulic gate construction |
FR2076556A5 (en) * | 1970-01-20 | 1971-10-15 | Alsthom | |
US3874176A (en) * | 1971-01-21 | 1975-04-01 | Ralph E Shettel | Irrigation control |
SU479848A1 (en) * | 1972-02-29 | 1975-08-05 | Государственный Ордена Трудового Красного Знамени Среднеазиатский Проектно-Изыскательский И Научно-Исследовательский Институт По Ирригационному И Мелиоративному Строительству "Средазгипроводхлопок" Им. А.А.Саркисова | Device for extinguishing the energy of the flow in hydraulic structures |
GB2138661B (en) * | 1983-04-29 | 1986-04-09 | Maeta Concrete Works Ltd | Irrigation and drainage |
FR2671116B1 (en) * | 1990-12-28 | 1993-05-07 | Gtm Batimen Travaux Publ | EXCEPTIONAL FLOOD SPRINKLER FOR DAM COMPRISING AT LEAST TWO FLOOD SPRAYING DEVICES. |
-
2001
- 2001-11-27 SI SI200100302A patent/SI21104B/en not_active IP Right Cessation
-
2002
- 2002-11-25 WO PCT/SI2002/000026 patent/WO2003046292A1/en not_active Application Discontinuation
- 2002-11-25 US US10/496,969 patent/US20050111916A1/en not_active Abandoned
- 2002-11-25 EP EP02789136A patent/EP1451412A1/en not_active Withdrawn
- 2002-11-25 AU AU2002354398A patent/AU2002354398A1/en not_active Abandoned
-
2004
- 2004-06-23 HR HR20040581A patent/HRP20040581A2/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
HRP20040581A2 (en) | 2005-04-30 |
US20050111916A1 (en) | 2005-05-26 |
AU2002354398A1 (en) | 2003-06-10 |
EP1451412A1 (en) | 2004-09-01 |
SI21104B (en) | 2011-01-31 |
WO2003046292A1 (en) | 2003-06-05 |
WO2003046292A9 (en) | 2004-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SI21104A (en) | Power plant, dam or similar water management facility flow area with enhanced dissipation effect | |
US20130078037A1 (en) | Debris flow drainage canal based on cascade antiscour notched sill group and application thereof | |
AU3867899A (en) | Hydraulic energy dissipating offset stepped spillway | |
CN104695390A (en) | Integrated super-discharge energy-dissipation flood-overflowing unit and method | |
CN210636383U (en) | Debris flow blocking dam with slag removal and drainage channel | |
CN111424620A (en) | Hydraulic energy dissipation structure and method | |
CN111139801A (en) | Interactive hydraulic rectification energy dissipation system and hydraulic rectification method | |
CN107806065B (en) | Stage beam flow type debris flow drainage groove and application thereof | |
CN207193911U (en) | A kind of stage beam pattern debris flow drainage groove | |
CN212052625U (en) | Check dam structure of hydraulic and hydroelectric engineering | |
CN216108325U (en) | Hydraulic engineering prevents bank protection | |
JPH09158157A (en) | Checkdam in which lining cylinder type screen culvert body is installed and lining cylinder type screen culvert body | |
JP7212581B2 (en) | Debris flow sedimentary work | |
KR102351049B1 (en) | Debris barrier with integrated side wall | |
Bing-Shyan et al. | The experimental study for the allocation of ground-sills downstream of check dams | |
Tullis et al. | Impact dissipators | |
CN113073602B (en) | Sand prevention dispersion water inlet diversion system | |
CN215629701U (en) | Sand prevention dispersion water inlet diversion system | |
RU2076915C1 (en) | Selective water inlet structure | |
CN219100252U (en) | Combined type drainage ditch force dissipating structure | |
CN211815973U (en) | Silt-proof structure of dam-free water intake channel | |
CN216765775U (en) | Ecological weir capable of locally and automatically bursting | |
CN108316257A (en) | Discharge chute structure with large and small discharge capacity | |
CN209958466U (en) | Energy dissipation drainage channel | |
SU1532656A1 (en) | Sandby water spillway for earth-fill retaining strucrure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
IF | Valid on the event date | ||
OU02 | Decision according to article 73(2) ipa 1992, publication of decision on partial fulfilment of the invention and change of patent claims |
Effective date: 20101211 |
|
KO00 | Lapse of patent |
Effective date: 20150718 |