SG11202000849UA - High aspect ratio selective lateral etch using cyclic passivation and etching - Google Patents
High aspect ratio selective lateral etch using cyclic passivation and etchingInfo
- Publication number
- SG11202000849UA SG11202000849UA SG11202000849UA SG11202000849UA SG11202000849UA SG 11202000849U A SG11202000849U A SG 11202000849UA SG 11202000849U A SG11202000849U A SG 11202000849UA SG 11202000849U A SG11202000849U A SG 11202000849UA SG 11202000849U A SG11202000849U A SG 11202000849UA
- Authority
- SG
- Singapore
- Prior art keywords
- etching
- aspect ratio
- high aspect
- lateral etch
- selective lateral
- Prior art date
Links
- 125000004122 cyclic group Chemical group 0.000 title 1
- 238000005530 etching Methods 0.000 title 1
- 238000002161 passivation Methods 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
- H01L21/32137—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/667,551 US10276398B2 (en) | 2017-08-02 | 2017-08-02 | High aspect ratio selective lateral etch using cyclic passivation and etching |
PCT/US2018/043967 WO2019027811A1 (en) | 2017-08-02 | 2018-07-26 | High aspect ratio selective lateral etch using cyclic passivation and etching |
Publications (1)
Publication Number | Publication Date |
---|---|
SG11202000849UA true SG11202000849UA (en) | 2020-02-27 |
Family
ID=65230386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG11202000849UA SG11202000849UA (en) | 2017-08-02 | 2018-07-26 | High aspect ratio selective lateral etch using cyclic passivation and etching |
Country Status (7)
Country | Link |
---|---|
US (2) | US10276398B2 (en) |
JP (1) | JP7210538B2 (en) |
KR (1) | KR102574582B1 (en) |
CN (1) | CN110998804A (en) |
SG (1) | SG11202000849UA (en) |
TW (1) | TW201921484A (en) |
WO (1) | WO2019027811A1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10297459B2 (en) | 2013-09-20 | 2019-05-21 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9384998B2 (en) | 2014-12-04 | 2016-07-05 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9887097B2 (en) | 2014-12-04 | 2018-02-06 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9543148B1 (en) | 2015-09-01 | 2017-01-10 | Lam Research Corporation | Mask shrink layer for high aspect ratio dielectric etch |
US10276398B2 (en) | 2017-08-02 | 2019-04-30 | Lam Research Corporation | High aspect ratio selective lateral etch using cyclic passivation and etching |
US10658174B2 (en) | 2017-11-21 | 2020-05-19 | Lam Research Corporation | Atomic layer deposition and etch for reducing roughness |
JP7137927B2 (en) * | 2017-12-20 | 2022-09-15 | キオクシア株式会社 | Semiconductor device manufacturing method |
CN111373511B (en) | 2018-10-26 | 2023-12-26 | 株式会社日立高新技术 | Plasma processing method |
TWI843810B (en) | 2019-02-28 | 2024-06-01 | 日商東京威力科創股份有限公司 | Substrate processing method and substrate processing apparatus |
JP7422557B2 (en) * | 2019-02-28 | 2024-01-26 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing apparatus |
CN113632208A (en) * | 2019-04-05 | 2021-11-09 | 东京毅力科创株式会社 | Independent control of etch and passivation gas compositions for highly selective silicon oxide/silicon nitride etching |
TW202117847A (en) * | 2019-07-17 | 2021-05-01 | 美商得昇科技股份有限公司 | Processing of workpiece using deposition process and etch process |
WO2021171458A1 (en) | 2020-02-27 | 2021-09-02 | 株式会社日立ハイテク | Plasma processing method |
JP7496725B2 (en) | 2020-07-20 | 2024-06-07 | 東京エレクトロン株式会社 | Etching method and etching apparatus |
US20220181160A1 (en) * | 2020-12-09 | 2022-06-09 | Applied Materials, Inc. | Methods and apparatus for in-situ protection of etched surfaces |
US12004346B2 (en) | 2021-03-12 | 2024-06-04 | Micron Technology, Inc. | Microelectronic devices with nitrogen-rich insulative structures |
US12087595B2 (en) * | 2022-03-08 | 2024-09-10 | Applied Materials, Inc. | Metal deposition and etch in high aspect-ratio features |
WO2023209812A1 (en) * | 2022-04-26 | 2023-11-02 | 株式会社日立ハイテク | Plasma processing method |
WO2024044498A1 (en) * | 2022-08-25 | 2024-02-29 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (pip) |
US20240096640A1 (en) * | 2022-09-20 | 2024-03-21 | Tokyo Electron Limited | High Aspect Ratio Contact (HARC) Etch |
US20240120210A1 (en) * | 2022-10-11 | 2024-04-11 | Applied Materials, Inc. | Isotropic silicon nitride removal |
CN117438299B (en) * | 2023-12-21 | 2024-03-29 | 浙江集迈科微电子有限公司 | Etching method of III-V compound semiconductor material |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62136069A (en) | 1985-12-10 | 1987-06-19 | Hitachi Ltd | Semiconductor device and manufacture of the same |
US5514246A (en) * | 1994-06-02 | 1996-05-07 | Micron Technology, Inc. | Plasma reactors and method of cleaning a plasma reactor |
US5767018A (en) | 1995-11-08 | 1998-06-16 | Advanced Micro Devices, Inc. | Method of etching a polysilicon pattern |
US6063710A (en) | 1996-02-26 | 2000-05-16 | Sony Corporation | Method and apparatus for dry etching with temperature control |
US6176667B1 (en) | 1996-04-30 | 2001-01-23 | Applied Materials, Inc. | Multideck wafer processing system |
US5948704A (en) | 1996-06-05 | 1999-09-07 | Lam Research Corporation | High flow vacuum chamber including equipment modules such as a plasma generating source, vacuum pumping arrangement and/or cantilevered substrate support |
KR20010042419A (en) | 1998-04-02 | 2001-05-25 | 조셉 제이. 스위니 | Method for etching low k dielectrics |
JP5569353B2 (en) | 2000-04-28 | 2014-08-13 | ダイキン工業株式会社 | Dry etching gas and dry etching method |
US6630407B2 (en) | 2001-03-30 | 2003-10-07 | Lam Research Corporation | Plasma etching of organic antireflective coating |
US6921725B2 (en) | 2001-06-28 | 2005-07-26 | Micron Technology, Inc. | Etching of high aspect ratio structures |
US6620670B2 (en) | 2002-01-18 | 2003-09-16 | Applied Materials, Inc. | Process conditions and precursors for atomic layer deposition (ALD) of AL2O3 |
US6841943B2 (en) | 2002-06-27 | 2005-01-11 | Lam Research Corp. | Plasma processor with electrode simultaneously responsive to plural frequencies |
US7977390B2 (en) | 2002-10-11 | 2011-07-12 | Lam Research Corporation | Method for plasma etching performance enhancement |
US20040077178A1 (en) | 2002-10-17 | 2004-04-22 | Applied Materials, Inc. | Method for laterally etching a semiconductor structure |
US6838012B2 (en) | 2002-10-31 | 2005-01-04 | Lam Research Corporation | Methods for etching dielectric materials |
DE10308888B4 (en) * | 2003-02-28 | 2006-12-28 | Infineon Technologies Ag | Arrangement of capacitors for increasing the storage capacity in a semiconductor substrate and method for producing an arrangement |
US6916746B1 (en) | 2003-04-09 | 2005-07-12 | Lam Research Corporation | Method for plasma etching using periodic modulation of gas chemistry |
US7294580B2 (en) | 2003-04-09 | 2007-11-13 | Lam Research Corporation | Method for plasma stripping using periodic modulation of gas chemistry and hydrocarbon addition |
US7250371B2 (en) | 2003-08-26 | 2007-07-31 | Lam Research Corporation | Reduction of feature critical dimensions |
JP4522795B2 (en) | 2003-09-04 | 2010-08-11 | 株式会社日立ハイテクノロジーズ | Vacuum processing equipment |
US7105390B2 (en) | 2003-12-30 | 2006-09-12 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
US20050218114A1 (en) | 2004-03-30 | 2005-10-06 | Tokyo Electron Limited | Method and system for performing a chemical oxide removal process |
KR20060030717A (en) | 2004-10-06 | 2006-04-11 | 삼성전자주식회사 | Manufacturing method for semiconductor device |
KR100745986B1 (en) | 2004-12-08 | 2007-08-06 | 삼성전자주식회사 | Fabrication method of dual damascene interconnections of microelectronics device using filler having porogen |
US7645707B2 (en) | 2005-03-30 | 2010-01-12 | Lam Research Corporation | Etch profile control |
JP4537878B2 (en) * | 2005-04-01 | 2010-09-08 | 株式会社日立ハイテクノロジーズ | Plasma processing equipment |
US7344975B2 (en) | 2005-08-26 | 2008-03-18 | Micron Technology, Inc. | Method to reduce charge buildup during high aspect ratio contact etch |
KR101167195B1 (en) | 2005-11-01 | 2012-07-31 | 매그나칩 반도체 유한회사 | Method of forming a deep trench in Semiconductor device |
US7459363B2 (en) | 2006-02-22 | 2008-12-02 | Micron Technology, Inc. | Line edge roughness reduction |
US7740736B2 (en) | 2006-06-08 | 2010-06-22 | Lam Research Corporation | Methods and apparatus for preventing plasma un-confinement events in a plasma processing chamber |
US20090275202A1 (en) | 2006-11-22 | 2009-11-05 | Masahiko Tanaka | Silicon structure having an opening which has a high aspect ratio, method for manufacturing the same, system for manufacturing the same, and program for manufacturing the same, and method for manufacturing etching mask for the silicon structure |
US7732728B2 (en) | 2007-01-17 | 2010-06-08 | Lam Research Corporation | Apparatuses for adjusting electrode gap in capacitively-coupled RF plasma reactor |
US7951683B1 (en) | 2007-04-06 | 2011-05-31 | Novellus Systems, Inc | In-situ process layer using silicon-rich-oxide for etch selectivity in high AR gapfill |
US20080286978A1 (en) | 2007-05-17 | 2008-11-20 | Rong Chen | Etching and passivating for high aspect ratio features |
WO2008153674A1 (en) | 2007-06-09 | 2008-12-18 | Boris Kobrin | Method and apparatus for anisotropic etching |
KR20100106501A (en) | 2007-12-21 | 2010-10-01 | 램 리써치 코포레이션 | Etch with high etch rate resist mask |
KR101605005B1 (en) | 2007-12-21 | 2016-03-21 | 램 리써치 코포레이션 | Cd bias loading control with arc layer open |
US7998872B2 (en) | 2008-02-06 | 2011-08-16 | Tokyo Electron Limited | Method for etching a silicon-containing ARC layer to reduce roughness and CD |
WO2009099660A2 (en) | 2008-02-08 | 2009-08-13 | Lam Research Corporation | Adjustable gap capacitively coupled rf plasma reactor including lateral bellows and non-contact particle seal |
JP2009193988A (en) | 2008-02-12 | 2009-08-27 | Tokyo Electron Ltd | Plasma-etching method and computer storage medium |
JP5285403B2 (en) * | 2008-04-15 | 2013-09-11 | 東京エレクトロン株式会社 | Vacuum container and plasma processing apparatus |
KR100875180B1 (en) | 2008-07-10 | 2008-12-22 | 주식회사 동부하이텍 | Method for manufacturing semiconductor device |
JP5530088B2 (en) | 2008-10-20 | 2014-06-25 | 東京エレクトロン株式会社 | Plasma etching method and plasma etching apparatus |
US8809196B2 (en) | 2009-01-14 | 2014-08-19 | Tokyo Electron Limited | Method of etching a thin film using pressure modulation |
EP2306497B1 (en) | 2009-10-02 | 2012-06-06 | Imec | Method for manufacturing a low defect interface between a dielectric and a III/V compound |
JP5782226B2 (en) * | 2010-03-24 | 2015-09-24 | 東京エレクトロン株式会社 | Substrate processing equipment |
US8608852B2 (en) | 2010-06-11 | 2013-12-17 | Applied Materials, Inc. | Temperature controlled plasma processing chamber component with zone dependent thermal efficiencies |
JP2012023164A (en) * | 2010-07-14 | 2012-02-02 | Hitachi High-Technologies Corp | Plasma processing apparatus |
JP5375763B2 (en) | 2010-07-27 | 2013-12-25 | 三菱電機株式会社 | Plasma device and semiconductor thin film manufacturing method using the same |
US9793126B2 (en) | 2010-08-04 | 2017-10-17 | Lam Research Corporation | Ion to neutral control for wafer processing with dual plasma source reactor |
JP5981106B2 (en) | 2011-07-12 | 2016-08-31 | 東京エレクトロン株式会社 | Plasma etching method |
JP5893864B2 (en) | 2011-08-02 | 2016-03-23 | 東京エレクトロン株式会社 | Plasma etching method |
JP2013229351A (en) | 2012-04-24 | 2013-11-07 | Hitachi High-Technologies Corp | Dry etching method |
US9117668B2 (en) | 2012-05-23 | 2015-08-25 | Novellus Systems, Inc. | PECVD deposition of smooth silicon films |
US8916472B2 (en) | 2012-07-31 | 2014-12-23 | Globalfoundries Inc. | Interconnect formation using a sidewall mask layer |
US20140043216A1 (en) | 2012-08-10 | 2014-02-13 | Qualcomm Mems Technologies, Inc. | Boron nitride antistiction films and methods for forming same |
KR101881857B1 (en) * | 2012-08-27 | 2018-08-24 | 삼성전자주식회사 | Method of forming a step shape pattern |
US20140065838A1 (en) | 2012-08-31 | 2014-03-06 | Carolyn R. Ellinger | Thin film dielectric layer formation |
US9378971B1 (en) | 2014-12-04 | 2016-06-28 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9543158B2 (en) | 2014-12-04 | 2017-01-10 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US10297459B2 (en) | 2013-09-20 | 2019-05-21 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9548188B2 (en) | 2014-07-30 | 2017-01-17 | Lam Research Corporation | Method of conditioning vacuum chamber of semiconductor substrate processing apparatus |
US9384998B2 (en) | 2014-12-04 | 2016-07-05 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9997373B2 (en) | 2014-12-04 | 2018-06-12 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9620377B2 (en) | 2014-12-04 | 2017-04-11 | Lab Research Corporation | Technique to deposit metal-containing sidewall passivation for high aspect ratio cylinder etch |
US10170324B2 (en) | 2014-12-04 | 2019-01-01 | Lam Research Corporation | Technique to tune sidewall passivation deposition conformality for high aspect ratio cylinder etch |
US9887097B2 (en) | 2014-12-04 | 2018-02-06 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US9396961B2 (en) | 2014-12-22 | 2016-07-19 | Lam Research Corporation | Integrated etch/clean for dielectric etch applications |
US9576811B2 (en) | 2015-01-12 | 2017-02-21 | Lam Research Corporation | Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch) |
US9728422B2 (en) | 2015-01-23 | 2017-08-08 | Central Glass Company, Limited | Dry etching method |
US9806252B2 (en) | 2015-04-20 | 2017-10-31 | Lam Research Corporation | Dry plasma etch method to pattern MRAM stack |
JP6541439B2 (en) | 2015-05-29 | 2019-07-10 | 東京エレクトロン株式会社 | Etching method |
US9922806B2 (en) | 2015-06-23 | 2018-03-20 | Tokyo Electron Limited | Etching method and plasma processing apparatus |
US9922839B2 (en) | 2015-06-23 | 2018-03-20 | Lam Research Corporation | Low roughness EUV lithography |
US9385318B1 (en) | 2015-07-28 | 2016-07-05 | Lam Research Corporation | Method to integrate a halide-containing ALD film on sensitive materials |
KR20170014036A (en) | 2015-07-28 | 2017-02-08 | 삼성전자주식회사 | Semiconductor devices |
US9543148B1 (en) | 2015-09-01 | 2017-01-10 | Lam Research Corporation | Mask shrink layer for high aspect ratio dielectric etch |
US9837286B2 (en) * | 2015-09-04 | 2017-12-05 | Lam Research Corporation | Systems and methods for selectively etching tungsten in a downstream reactor |
US10607850B2 (en) * | 2016-12-30 | 2020-03-31 | American Air Liquide, Inc. | Iodine-containing compounds for etching semiconductor structures |
US20180286707A1 (en) | 2017-03-30 | 2018-10-04 | Lam Research Corporation | Gas additives for sidewall passivation during high aspect ratio cryogenic etch |
US9997371B1 (en) | 2017-04-24 | 2018-06-12 | Lam Research Corporation | Atomic layer etch methods and hardware for patterning applications |
US10276398B2 (en) | 2017-08-02 | 2019-04-30 | Lam Research Corporation | High aspect ratio selective lateral etch using cyclic passivation and etching |
US10847374B2 (en) | 2017-10-31 | 2020-11-24 | Lam Research Corporation | Method for etching features in a stack |
US10658174B2 (en) | 2017-11-21 | 2020-05-19 | Lam Research Corporation | Atomic layer deposition and etch for reducing roughness |
-
2017
- 2017-08-02 US US15/667,551 patent/US10276398B2/en active Active
-
2018
- 2018-07-26 JP JP2020505402A patent/JP7210538B2/en active Active
- 2018-07-26 WO PCT/US2018/043967 patent/WO2019027811A1/en active Application Filing
- 2018-07-26 KR KR1020207006051A patent/KR102574582B1/en active IP Right Grant
- 2018-07-26 CN CN201880050594.3A patent/CN110998804A/en active Pending
- 2018-07-26 SG SG11202000849UA patent/SG11202000849UA/en unknown
- 2018-07-30 TW TW107126300A patent/TW201921484A/en unknown
-
2019
- 2019-03-07 US US16/296,057 patent/US11011388B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20190206697A1 (en) | 2019-07-04 |
KR20200027568A (en) | 2020-03-12 |
KR102574582B1 (en) | 2023-09-04 |
JP2020529732A (en) | 2020-10-08 |
JP7210538B2 (en) | 2023-01-23 |
US11011388B2 (en) | 2021-05-18 |
TW201921484A (en) | 2019-06-01 |
US20190043732A1 (en) | 2019-02-07 |
WO2019027811A1 (en) | 2019-02-07 |
US10276398B2 (en) | 2019-04-30 |
CN110998804A (en) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SG11202000849UA (en) | High aspect ratio selective lateral etch using cyclic passivation and etching | |
SG10202005212QA (en) | Composition for etching and method for manufacturing semiconductor device using same | |
SG11201913310RA (en) | Etching method and etching device | |
SG10201701689UA (en) | Semiconductor device, semiconductor wafer, and electronic device | |
GB201608769D0 (en) | Sensors employing a P-N semiconducting oxide heterostructure and methods of using thereof | |
EP3279925A4 (en) | Semiconductor device and manufacturing method thereof | |
EP3271946A4 (en) | Silicon-containing semiconductor structures, methods of making the same and devices including the same | |
EP3093885A4 (en) | Semiconductor device and semiconductor device manufacturing method | |
EP3105777A4 (en) | Selective, electrochemical etching of a semiconductor | |
GB2573215B (en) | Semiconductor manufacturing method and semiconductor manufacturing device | |
SG10201912557WA (en) | Semiconductor devices including conductive lines and methods of forming the semiconductor devices | |
EP3551781A4 (en) | Methods of etching conductive features, and related devices and systems | |
EP3174089A4 (en) | Semiconductor manufacturing device, and method of manufacturing semiconductor | |
SG11201606466YA (en) | Pattern formation method, etching method, electronic devicemanufacturing method, and electronic device | |
GB201400518D0 (en) | Semiconductor devices and fabrication methods | |
GB2576108B (en) | Semiconductor etching methods | |
GB2556255B (en) | Semiconductor device and semiconductor device manufacturing method | |
GB201708927D0 (en) | Methods of plasma etching and plasma dicing | |
IL274331A (en) | Etching method and semiconductor manufacturing method | |
GB201620826D0 (en) | Semiconductor device and fabrication method | |
EP2950333A4 (en) | Plasma etching method, plasma etching method, plasma processing method, and plasma processing device | |
TWI563567B (en) | Etching method and semiconductor device and fabrication method of the semiconductor device using the same | |
SG11201704867TA (en) | Wafer group, wafer manufacturing device, and wafer manufacturing method | |
IL257070B (en) | Semiconductor integrated circuit device production method, and semiconductor integrated circuit device | |
GB201712147D0 (en) | Semiconductor device and manufacturing method |