SE539507C2 - Electric connector for fuel cell stack - Google Patents

Electric connector for fuel cell stack Download PDF

Info

Publication number
SE539507C2
SE539507C2 SE1550458A SE1550458A SE539507C2 SE 539507 C2 SE539507 C2 SE 539507C2 SE 1550458 A SE1550458 A SE 1550458A SE 1550458 A SE1550458 A SE 1550458A SE 539507 C2 SE539507 C2 SE 539507C2
Authority
SE
Sweden
Prior art keywords
contact pin
bipolar plate
electric connector
connector assembly
support structure
Prior art date
Application number
SE1550458A
Other languages
English (en)
Other versions
SE1550458A1 (sv
Inventor
Berggren Martin
Gustavsson Robert
Original Assignee
Powercell Sweden Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powercell Sweden Ab filed Critical Powercell Sweden Ab
Priority to SE1550458A priority Critical patent/SE539507C2/sv
Priority to PCT/SE2016/050224 priority patent/WO2016167702A1/en
Priority to CN201680021827.8A priority patent/CN107534120B/zh
Priority to JP2017553912A priority patent/JP6554179B2/ja
Priority to KR1020177027703A priority patent/KR102074426B1/ko
Priority to EP16716927.5A priority patent/EP3284127B1/en
Priority to US15/562,431 priority patent/US10707498B2/en
Priority to EP19194986.6A priority patent/EP3605659B1/en
Priority to CA2980701A priority patent/CA2980701C/en
Publication of SE1550458A1 publication Critical patent/SE1550458A1/sv
Publication of SE539507C2 publication Critical patent/SE539507C2/sv
Priority to ZA2017/06849A priority patent/ZA201706849B/en
Priority to HK18105375.4A priority patent/HK1246505A1/zh
Priority to US16/563,826 priority patent/US10950873B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0269Separators, collectors or interconnectors including a printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R3/00Electrically-conductive connections not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

[0001] The present invention relätes to a support structure of an electric connector for electrically contacting at least one bipolär plate in a fuel cell stack.
[0002] A fuel cell stack is usually formed by stacking a large number of unit cells into numerous layers. Each of the unit cells comprises at least a membrane electrode assembly (MEA) having an ion exchange membrane sandwiched between an anode and a cathode, and a pair of bipolär plates on both outer sides of the MEA. Through the bipolär plates hydrogen fuel and an oxidizing agent are supplied to the MEA, which generates electric power. For such a fuel cell stack, management of the power generation state of each unit cell is necessary in order to control the amounts of supplied hydrogen and oxygen and/or to find a braken or malfunctioning unit fuel cell. To enable such management, the generated voltage for each unit cell is monitored and the control is carried out based on the monitored voltage. For monitoring the voltage each bipolär plate is connected to an electrical connector, which usually comprises a housing supporting a plurality of contact elements, which are adapted to electrically contact the bipolär plates.
[0003] From the state of the art, e.g. US 2003/054220 a comb-shaped electric contact element is known, which is supported on a support structure and whose teeth are adapted to abut to the bipolär plates, whereby the electric contact is established. The disadvantage of such a connector is manifold. Firstly, the used bipolär plates must have a certain minimum thickness for allowing an electrical contact to be established by adjoining bipolär plate and electric contact element. Sec-ondly, the electric connector easily detaches from the bipolär plates, so that additional fixing elements are required for fixing the electric connector to the fuel cell stack. A further problem is that the distances between the teeth of the electric contact must be carefully designed in order to fit to the fuel cell stack. Thereby, only minimal manufacturing tolerances are allowed, which in turn results in a costly and time-consuming manufacturing process.
[0004] From document US 2008/003482 an electric connector is known, which comprises a housing with a plurality of electric contact elements, which are arranged side by side. Each contact element has two flat rectangular stripes with outwardly bent tails, between which the bipolär plate is inserted.
[0005] The disadvantage of this state of the art is that the fuel cell stack needs a certain minimum size so that the bipolär plates may be connected to the juxta-posed contact elements. Even if one of the contact elements is already arranged on top of the other contact elements, for solving the space problem with thin fuel cells, the contact elements still need a significant space. Additionally, the support housing of the electric connector requires a special design for fitting into the avail-able space.
[0006] A further problem of the known electric connectors is that they easily de-tach from the bipolär plates and are usually fixed with additional fasteners such as damps or hooks to the fuel cell stack. Thereby, the design and manufacture of the bipolär plates and of the electric connectors is intricate, costly and time-consuming.
[0007] It is therefore object of the present invention to provide an electric connector, which can be easily fixed to the fuel cell stack and further provides an improved electric contact to the bipolär plates, even if thin unit fuel cells are used.
[0008] This object is solved by an electric connector assembly according to claim 1, a support structure for such an electric connector assembly according to claim 12, a fuel cell stack arrangement according to claim 13 and a method for fastening an electric connector assembly to a bipolär plate of a fuel cell stack according to claim 14.
[0009] In the following an electric connector assembly for electrically contacting at least one bipolär plate in a fuel cell stack and a support structure for such an electric connector assembly are disclosed, wherein the electric connector assembly comprises at least a support structure and at least one contact pin, which is adapted to electrically contacting a bipolär plate and is, in an assembled state, supported by the support structure. The support structure itself comprises at least a rear face, which is adapted to face the fuel cell stack, a front face being opposite to the rear face and at least two side faces, namely a first and second side face. Further, the rear face of the support structure comprises at least one bipolär plate housing slit, also referred to as slit in the following, which extends from the first side face to the second side face and which is adapted to accommodate a bipolär plate. Thereby, the support structure is comb-shaped having at least two teeth extending from a support basis, which are separated by the intermediately arranged bipolär housing slit.
[0010] Additionally, the support structure comprises at least one contact pin accommodation opening having a size which is adapted to accommodate the contact pin in the assembled state of the electric connector assembly. The contact pin accommodation opening itself may be arranged in the support basis extending from the front face into the slit and/or at at least one of the side faces extending at least partially from one side face to the other.
[0011] Further, the support structure and the contact pin may be provided as separate elements, which are assembled to the electric connector assembly when being mounted to the fuel cell stack. Alternatively it is also possible that the contact pins are preliminarily arranged in the contact pin accommodation openings and may be removed from and re-inserted to or inserted deeper into the openings for fixing the electric connector assembly to the bipolär plate(s).
[0012] Advantageously, the comb-shaped support structure allows for an easy application of the support structure to the bipolär plate and to the fuel cell stack, respectively, without requiring a special design of the fuel cell stack or of the bipolär plates. Additionally, the contact pins which are inserted into the contact pin accommodation openings after the support structure has been arranged at the fuel cell stack, deform the bipolär plates accommodated in the slits of the support structure, whereby the bipolär plate is clamped in the slit, which in turn results in a clamping of the support structure to the fuel cell stack. Special implementations such as fixing elements, e.g. hooks or noses, are not necessary. This in turn has the advantage that the electric connector assembly is universally applicable.
[0013] According to a further preferred embodiment the at least one contact pin is inserted into the at least one opening in an assembled state of the electric connector assembly, wherein a thickness of the support basis is determined to be smaller than a length of the contact pin so that in an assembled state the contact pin protrudes into the slit and contacts the bipolär plate. Thereby, the contact pin may be easily inserted into the opening after having arranged the support structure to the fuel cell. Insertion of the contact pin deforms and wedges the bipolär plate into the slit. This in turn results therein that the support structure and the contact pin are fixed to the bipolär plate, and the bipolär plate is electrically contacted. Thereby the electric connector can quickly and easily be assembled to the bipolär plate without providing additional fixing elements at the fuel cell and/or at the connector for fixing the connector to the fuel cell stack.
[0014] According to a further preferred embodiment the size of the contact pin accommodation opening and/or of the contact pin is greater than a thickness of the slit. Thereby the bipolär plate may be jammed between a wall of the slit and the inserted contact pin so that a friction force between slit and bipolär plate is in-creased. Further, it is preferred that in the walls of the slit grooves are formed into which the bipolär plate may be pressed, when the contact pin is inserted into the contact pin accommodation opening. This allows for an improved fixing off the electric contact assembly to the bipolär plate and fuel cell stack, respectively.
[0015] It is further preferred, if the at least one slit has a center line, and the at least one contact pin accommodation opening has a center line, wherein the center line of the contact pin accommodation opening is misaligned to the center line of the slit. Thereby, the contact pin will not bounce against the bipolär plate, which impedes the assembling procedure, but protrudes above or beneath the bipolär plate whereby the bipolär plate may be deformed.
[0016] According to a further preferred embodiment the electric connector as sembly comprises a plurality of bipolär plate housing slits and a plurality of contact pin accommodation openings, wherein each slit comprises a single contact pin accommodation opening. Preferably a thickness of at least one support structure's teeth is adapted to at least a membrane electrode assembly of a unit fuel cell. Thereby, not only a single bipolär plate but a plurality of bipolär plates may be electrically connected using a single electric connector assembly, which speeds up the electrical contacting process.
[0017] Since the sizes of the bipolär plates and also of the membrane electrode assemblies tend to get smaller and smaller it is preferred to arrange the bipolär plate housing slits substantially in parallel to each other but the contact pin accommodation openings of adjacent bipolär plate housing slits offset from each other in a direction of a longitudinal axis of the bipolär plate housing slits. Thereby, the bipolär plate housing slits are preferably arranged along a line, preferably a diagonal, which is angled to the longitudinal axis. This has the advantage that the contact pins inserted into the openings do not interfere with each other even if small sized bipolär plates, respectively unit fuel cells, are present in the fuel cell stack. This also allows the use of thick standardized contact pins, which is very cost-effective.
[0018] According to a further preferred embodiment, a distance between two adjacent contact pin accommodation openings is determined by a required minimum distance between two adjacent contact pins for avoiding short-circuiting the pins.
[0019] It is further preferred that a distance between at least two adjacent contact pin accommodation openings is determined by a required distance between at least two correspondingly adjacent contact pins comprised in a standardized male plug and/or for being connectable to a standardized female socket. Besides the requirement of avoiding short-circuiting it is preferred to contact the contact pins by a standard plug comprising ordinarily spaced female sockets or use a standard male plug comprising contact pins for inserting the contact pins into the contact pin accommodation openings. Thereby, a plurality of individual contact pins or contact pin accommodation openings may be connected simultaneously, which increases the speed of the fuel cell stack wiring process. Thus, by providing contact pins and/or contact pin accommodation openings at a standardized distance, standardized female sockets and/or male plugs may be used, which provides a quick and cost-effective wiring process.
[0020] As mentioned above, the electric connector assembly may be provided in a disassembled state. Therefore, a further aspect of the present invention relätes to a support structure for such an electric connector assembly which shows at least one of the above described features.
[0021] A further aspect of the present invention relätes to a fuel cell stack arrangement comprising at least a fuel cell stack with at least one bipolär plate and at least one fuel cell unit having at least a membrane electrode assembly, and an electric connector assembly as described above. In an assembled state, the at least one bipolär plate is at least partly accommodated in the at least one bipolär plate housing slit and fastened and electrically connected to the electric contact assembly by a clamping and/or friction force applied by the contact pin inserted into the contact pin accommodation opening provided in the support structure.
[0022] A further aspect of the present invention relätes to a method for fästen ing an electrical connector assembly as described above to a fuel cell stack arrangement comprising the steps of: arranging in each slit of the electric connector support structure at least partly a single bipolär plate, and pressing a contact pin into each contact pin accommodation opening so that the contact pin protrudes into the slit and contacts the bipolär plate, thereby the contact pin deforms and fastens the bipolär plate in the slit and to the support structure. This fastening method provides a quick and cost-effective possibility for electrically contacting a fuel cell stack as described above.
[0023] Further advantages and preferred embodiments are disclosed in the de-scription, the drawings and the attached claims.
[0024] In the following, the present invention will be described by means of embodiments shown in the figures. The shown embodiments are exemplarily, only, and are not intended to limit the scope of protection. The scope of protection is solely defined by the attached claims.
The figures show: Fig. 1: a schematic sectional view of a first embodiment of the inventive electric connector assembly arranged at a fuel cell stack but before assembling; Fig. 2: an enlarged view of the electric connector assembly shown in Fig. 1 in the assembled state; and Fig. 3: a perspective view of the support structure of the electric connector assembly shown in Fig. 1 and Fig. 2. Fig. 4: an enlarged view of a second embodiment of the electric connector assembly; Fig. 5: a sectional view through the embodiment shown in Fig. 4, along line A-A. Fig. 6: a schematic sectional view of a third embodiment of the electric connector assembly before assembling; Fig. 7: a schematic perspective view of the embodiment shown in Fig. 6 in an assembled state.
[0025] In the following same or functionally similar elements are references by the same reference signs.
[0026] Fig. 1 and Fig. 6 show sectional views of two different embodiments of an electric connector assembly 1, which is arranged at a fuel cell stack 2, forming a fuel cell stack arrangement 100. The electric connector assembly 1 is seen from one of its side face S-i; S2and has a front side F and, opposite thereof, a rear side R which faces the fuel cell stack 2. The fuel cell stack 2 comprises a plurality of unit fuel cells 4 having a membrane electrode assembly 6 and a bipolär plate 8, which are stacked on top of each other. Since the fuel cell stack 2 is state of the art, it will not be further described in this application. For electrically connecting the bipolär plates 8, the bipolär plates 8 stick out from the fuel cell stack, thereby defining electrically contact flags 8-1.
[0027] The electrical connector assembly 1 further comprises a support structure 10 having a plurality of bipolär plate housing slits 12 referred to as slits in the following, which define a comb-like structure and are adapted to accommodate the contact flags 8-1 of the bipolär plates 8. Between the slits 12 the support structure 10 shows teeth 14, whose thickness resembles a thickness of the membrane electrode assembly 6. Further, the support structure 10 comprises a support structure basis 16 from which the teeth protrude and whose width is defined by the depth of the slits 12. It is explicitly noted that the shown number of slits or teeth, respectively, is exemplarily, only. Any other number is also preferred. Even an electrical connector assembly 1 comprising only a single slit 12 is encompassed by this application.
[0028] In the embodiment depicted in Fig. 1, the support structure basis 16 further comprises contact pin accommodation openings 18 referred to as openings in the following, which are aligned with the slits 12 and allow accommodation of contact pins 20, which are to be inserted into the openings 18. In the assembled state depicted in Fig. 2, the contact pins 20 are adapted to protrude into the slits 12 and thereby contact the bipolär plates 8 electrically. Additionally, the contact pins 20 damp the bipolär plates 8 in the slits 12 so that the electric connector assembly 1 is fixed by clamping and/or friction force to the fuel cell stack 2.
[0029] Fig. 3 depicts a perspective view of the support structure 10 alone from its front side F. As can be seen in Fig. 3, the openings 18 are arranged diagonally offset from each other, for providing an enlarged distance D between the openings 18. This offset allows for the use of thick standardized contact pins 20 and/or of a standardized male plug even if the thickness of the unit fuel cell 4 defined by the distance d between two slits is smaller than a minimum distance necessary for the thick standard contact pins 20. Therefore, the enlarge distance D between two openings 18, which is due to the offset alignment of the openings 18, allows the use of standardized contact pins 20 that would have been not necessarily possible with openings 18 aligned along a line which is perpendicular to an extension of the slits 12. Besides the advantage that thicker standardized contact pins may be easily handled, the standardized contact pins may also be connected to standard female plugs, which reduces the manufacturing costs.
[0030] For increasing the cohesion of the electrical connector assembly 1 to the bipolär plates 8, it is further possible to deform the bipolär plate 8 in the slit 12. Different possibilities are shown in Figs. 4-7. Thereby, the contact pin accommodation openings 18 do not have the same size as the slits 12, but are larger (Fig. 4, 5) than or offset (Fig. 6, 7) than the slits, whereby grooves 22 are formed in the support structure 10 into which the bipolär plate deforms.
[0031] Fig. 4 and its sectional view along line A-A seen from the front face F and illustrated in Fig. 5 depict an embodiment where the grooves 22 are formed at a bottom 24 of the slits 12. Thereby, the grooves 22 may be arranged symmetrically as illustrated, whereby both side walls 26, 28 of the slits 12 are grooved. But it is also possible if only one of the side walls provide the groove 12. When inserting the contact pin 20, the bipolär plate 8 is deformed into the groove 22 as can be seen in Fig. 4 as well as in the sectional view of Fig. 5. The deformation 8-2 of the bipolär plate 8 impedes movement of the electric connector assembly sideways along the fuel cell stack (see double-arrow in Fig. 5) as well as a detaching movement of the support structure 10 from the bipolär plate (see arrow in Fig. 4). Thereby, the electric connector assembly 1 is safely fixed to the bipolär plate 8. The grooves 22 themselves may have a rectangular shape as illustrated, but can also be circularly or elliptically shaped. Further, the grooves 22 may have a similar shape to the contact pins 20.
[0032] Besides the arrangement of the contact pins 20 at a front side F as illustrated in Figs. 1-5, the contact pins 20 may also be arranged at one of the side faces S-i, S2(see Fig. 7). These embodiments are shown in Fig. 6 and 7. As can be seen from Fig. 6, the grooves 22 can be arranged in one of the wall side 28 of the teeth 14 (see upper part of Fig. 6), or in both side walls 26 and 28 (see lower part of Fig. 6). Further is illustrated that the grooves 22 may be arranged offset from each other or vertically aligned to each other. Further, it is shown that the shape of the grooves 22 resemble the shape of the contact pins 20.
[0033] Fig. 7 shows a perspective view of the embodiment shown in Fig. 6 illustrated from the side S-i, wherein the contact pins 20-1, 20-2, 20-3 are aligned offset to each other. The middle contact pin 20-2 further shows that the grooves 22-2 extends only partially into the slit 12, thereby defining a bottom end 32 of the groove 22-2, which in turn defines an end stop for the contact pin 20. Thereby, a defined insertion depth for the contact pin 20 and thus also a defined protrusion length of the contact pins 20 from the side face Sican be achieved. This facilitates arrangement of the pins 20 into the support structure for obtaining a standardized electric contact which can be connected to a female plug.
[0034] The defined bottom end 32 may also be realized in all other embodiments, where the grooves 22 have a defined depth (see e.g. Fig. 4).
[0035] The disclosed electrical contact assembly preferably allows for a fast and cost-effective electrical connection of the bipolär plates of a fuel cell. By clamping the support structure of the electrical connector assembly to the bipolär plates by inserting the contact pins into the contact pin accommodation openings, the fuel cell can be easily electrically contacted. Further, the electrical connector assembly may be used universally since the fuel cell stack needs not to be formed in a special way for fixing the electric connector assembly thereto. Further, the offset arrangement of the openings and of the contact pins, respectively, allows use of standardized contact pins even for thin bipolär plates, where a longitudinal distance between the slits would not be sufficient for arranging the contact pins vertically or horizontally.
Reference numerals Image available on "Original document"

Claims (14)

1. :1. Elektrisk förbindningsanordning (1)för att elektriskt ansluta till minst en bipolär platta (8) i ett bränslecellsaggregat (2) innefattande minst en stödstruktur (10) ochminst ett kontaktstift (20), som är anpassat för att elektriskt ansluta till den bipoläraplattan (8) och som hålls uppe av stödstrukturen (10), kännetecknad av att stödstrukturen (10) innefattar minst en baksida (R) som är anpassad så att den vettermot bränslecellsaggregatet (2), en framsida (F) pä motsatt sida till baksidan (R), ochen första och en andra sida (S1; S2), varvid baksidan (R) innefattar minst enskyddsskåra (12) för en bipolär platta, vilken skyddsskåra sträcker sig från den förstasidan (S1) till den andra sidan (S2) och som är anpassad för att åtminstone till vissdel rymma den bipolära plattan (8), och därigenom definierar en kamformadstödstruktur (10) med minst två tänder (14) som sticker ut från en stödbas (16), vilkaskiljs åt av den mellanliggande skyddsskåran (12) för en bipolär platta och varvidstödstrukturen (10) vidare innefattar minst en öppning (18) för inrymning av ett kontaktstift med en storlek som är anpassad för att rymma kontaktstiftet (20).
2. Elektrisk förbindningsanordning (1) enligt krav 1, varvid minst en öppning (18)för inrymning av kontaktstift är anordnad i stödbasen (16) och sträcker sig åtminstonefrån framsidan (F) till skyddsskåran (12) för en bipolär platta och därigenom definierarett kontaktstiftshål i framsidan (F).
3. Elektrisk förbindningsanordning (1) enligt krav 2, varvid minst ett kontaktstift(20) förs in i minst en öppning (18) för inrymning av kontaktstift, i ett monterat tillståndav det elektriska anslutningsdonet (1 ), varvid det är fastställt att bredden avstödstrukturens stödbas (16) ska vara mindre än längden av ett kontaktstift (20) såatt kontaktstiftet (20), i monterat tillstånd, skjuter in i skyddsskåran (12) för en bipolärplatta. PC1405 SE2017-06-28
4. Elektrisk förbindningsanordning (1) enligt något av föregående krav, varvidden minst en öppning (18) för inrymning av kontaktstift sträcker sig åtminstone tillviss del från en sida (S1; S2) till den andra sidan (S1; S2), varvid öppningen (18) förinrymning av kontaktstift skapar ett spår (22) i minst en sidovägg (26; 28) påtänderna (14).
5. Elektrisk förbindningsanordning (1) enligt något av föregående krav, varvid enstorlek på öppningen (18) för inrymning av kontaktstift och/eller på kontaktstiftet (20)är större än en tjocklek hos skyddsskåran (12) för en bipolär platta.
6. Elektrisk förbindningsanordning (1) enligt något av föregående krav, varvidöppningen (18) för inrymning av kontaktstift sträcker sig igenom stödbasen (16) ochskjuter in i skyddsskåran (12) för en bipolär platta, varigenom ett spår (22) bildas iminst en sidovägg (26; 28) på tänderna (14) och därigenom skapar ett utvidgatutrymme på en underdel (24) av skyddsskåran (12) för en bipolär platta.
7. Elektrisk förbindningsanordning (1) enligt krav 4 eller 6, varvid spåret (22) haren spårbotten (32) som definierar ett maximalt införingsdjup för kontaktstiftet (20) ispåret (22).
8. Elektrisk förbindningsanordning (1) enligt något av föregående krav, varvidstödstrukturen (10) innefattar ett flertal skyddsskåror (12) för bipolära plattor och ettflertal öppningar (18) för inrymning av kontaktstift, varvid varje skåra (12) innefattaren enkel öppning (18).
9. Elektrisk förbindningsanordning (1) enligt krav 8, varvid skårorna (12)huvudsakligen är anordnade parallellt till varandra och öppningarna (18) förinrymning av kontaktstift vilka finns i intilliggande skåror (12) är anordnade fristående från varandra.
10. Elektrisk förbindningsanordning (1) enligt krav 8 eller 9, varvid ett avstånd (D) mellan två intilliggande öppningar (18) för inrymning av kontaktstift bestäms av ett PC1405 SE2017-06-28 erfordrat minimiavstånd mellan två intilliggande kontaktstift (20) för att undvikakortslutning av kontaktstiften.
11. Elektrisk förbindningsanordning (1) enligt kraven 8 till 10, varvid ett avstånd(D) mellan två intilliggande öppningar (18) för inrymning av kontaktstift bestäms av etterfordrat minimiavstånd mellan åtminstone två på motsvarande sätt intilliggandekontaktstift (20) hos en standardiserad hankoppling och/eller för att kunna anslutas till ett standardiserat vägguttag med honkoppling.
12. Stödstruktur (10) för en elektrisk förbindningsanordning (1) enligt något avkraven 1 till 11.
13. Anordning av bränslecellsaggregat (100) innefattande minst ettbränslecellsaggregat (2) med minst en bränslecellsenhet (4) innefattande minst enbipolär platta (8) och minst ett membranelektrodsystem (6) och en elektriskförbindningsanordning (1) enligt något av kraven 1 till 11, varvid minst en bipolärplatta (8), i monterat tillstånd, är åtminstone till viss del inrymd i minst en skyddsskåra(12) för en bipolär platta och fastsatt genom en klämkraft från kontaktstiftet (20).
14. Förfarande för att fästa en elektrisk förbindningsanordning (1) enligt något avkraven 1 till 11 till en anordning av bränslecellsaggregat (100) enligt krav 13innefattande följande steg: - att anordna i varje skyddsskåra (12) för en bipolär platta hos stödstrukturen(10) åtminstone till viss del en enstaka bipolär platta (8); och - att trycka i ett kontaktstift (20) i varje öppning (18) för inrymning av kontaktstift,så att kontaktstiftet (20) skjuter in i skåran (12) och kommer i kontakt med denbipolära plattan (8), och därigenom deformerar den bipolära plattan (8) och sätter fastden bipolära plattan (8) i den bipolära plattans skyddsskåra (12) och i stödstrukturen(10).
SE1550458A 2015-04-16 2015-04-16 Electric connector for fuel cell stack SE539507C2 (sv)

Priority Applications (12)

Application Number Priority Date Filing Date Title
SE1550458A SE539507C2 (sv) 2015-04-16 2015-04-16 Electric connector for fuel cell stack
EP16716927.5A EP3284127B1 (en) 2015-04-16 2016-03-17 Electric connector for fuel cell stack
CN201680021827.8A CN107534120B (zh) 2015-04-16 2016-03-17 用于燃料电池堆的电连接器
JP2017553912A JP6554179B2 (ja) 2015-04-16 2016-03-17 燃料電池スタック用電気コネクタ
KR1020177027703A KR102074426B1 (ko) 2015-04-16 2016-03-17 연료 전지 스택용 전기 커넥터
PCT/SE2016/050224 WO2016167702A1 (en) 2015-04-16 2016-03-17 Electric connector for fuel cell stack
US15/562,431 US10707498B2 (en) 2015-04-16 2016-03-17 Electric connector for fuel cell stack
EP19194986.6A EP3605659B1 (en) 2015-04-16 2016-03-17 Electric connector for fuel cell stack
CA2980701A CA2980701C (en) 2015-04-16 2016-03-17 Electric connector for fuel cell stack
ZA2017/06849A ZA201706849B (en) 2015-04-16 2017-10-10 Electric connector for fuel cell stack
HK18105375.4A HK1246505A1 (zh) 2015-04-16 2018-04-25 用於燃料電池堆的電連接器
US16/563,826 US10950873B2 (en) 2015-04-16 2019-09-07 Electric connector for fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1550458A SE539507C2 (sv) 2015-04-16 2015-04-16 Electric connector for fuel cell stack

Publications (2)

Publication Number Publication Date
SE1550458A1 SE1550458A1 (sv) 2016-10-17
SE539507C2 true SE539507C2 (sv) 2017-10-03

Family

ID=55755638

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1550458A SE539507C2 (sv) 2015-04-16 2015-04-16 Electric connector for fuel cell stack

Country Status (10)

Country Link
US (2) US10707498B2 (sv)
EP (2) EP3605659B1 (sv)
JP (1) JP6554179B2 (sv)
KR (1) KR102074426B1 (sv)
CN (1) CN107534120B (sv)
CA (1) CA2980701C (sv)
HK (1) HK1246505A1 (sv)
SE (1) SE539507C2 (sv)
WO (1) WO2016167702A1 (sv)
ZA (1) ZA201706849B (sv)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870493B2 (ja) * 2017-06-22 2021-05-12 トヨタ自動車株式会社 燃料電池モジュール及びその製造方法、コネクタ
DE102018216265A1 (de) * 2018-09-25 2020-03-26 Audi Ag Steckverbinder, Bipolarplatte und Kombination aus einem Steckverbinder und einem Brennstoffzellenstapel
CN112670674B (zh) * 2019-09-27 2022-06-14 四川顺驰科技有限公司 一种单体金属燃料电池及其构成电堆的结构
CN113093028B (zh) * 2019-12-23 2022-07-29 未势能源科技有限公司 用于燃料电池极片检测的连接装置、连接器、检测装置
CN111403764B (zh) * 2020-03-31 2021-05-18 西安交通大学 一种金属支撑型微管固体氧化物燃料电池堆结构
CN112201820A (zh) * 2020-09-23 2021-01-08 张家口市氢能科技有限公司 一种金属双极板燃料电池电堆电压采集结构及连接方法
CN113328126B (zh) * 2021-08-04 2021-10-26 爱德曼氢能源装备有限公司 用于解决部件容差差异的燃料电池板结构
CN113809352B (zh) * 2021-08-30 2023-05-09 深圳深科鹏沃科技有限公司 Cvm插针机构与燃料电池系统
CN113793945B (zh) * 2021-08-30 2023-05-05 深圳深科鹏沃科技有限公司 双极板机构与燃料电池系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030054220A1 (en) 2001-09-19 2003-03-20 Ballard Power Sytems Inc. Electrical contacting device for a fuel cell
JP4313128B2 (ja) * 2003-09-18 2009-08-12 パナソニック株式会社 高分子電解質型燃料電池システム及びその運転方法
JP4494125B2 (ja) * 2004-08-12 2010-06-30 本田技研工業株式会社 電圧検出コネクタのセルへの接続構造および燃料電池
JP4911978B2 (ja) 2006-01-25 2012-04-04 トヨタ自動車株式会社 燃料電池及び燃料電池用コネクタ
KR20090000655A (ko) * 2007-03-16 2009-01-08 전자부품연구원 자동 감도 조절형 인간 행동 인지 시스템
EP2174360A4 (en) 2007-06-29 2013-12-11 Artificial Muscle Inc CONVERTER WITH ELECTROACTIVE POLYMER FOR SENSOR REVIEW APPLICATIONS
KR100931212B1 (ko) * 2007-07-12 2009-12-10 주식회사 케피코 차량용 연료전지 스택의 셀 전압 측정장치
JP5188459B2 (ja) * 2009-06-10 2013-04-24 本田技研工業株式会社 燃料電池スタック
GB2486180B (en) * 2010-12-03 2017-09-13 Intelligent Energy Ltd Connector system for a fuel cell stack
JP5928989B2 (ja) * 2013-10-30 2016-06-01 トヨタ自動車株式会社 セルモニタコネクタ

Also Published As

Publication number Publication date
JP2018515880A (ja) 2018-06-14
CN107534120A (zh) 2018-01-02
EP3605659B1 (en) 2021-03-03
SE1550458A1 (sv) 2016-10-17
KR20170125917A (ko) 2017-11-15
US20180090771A1 (en) 2018-03-29
US10950873B2 (en) 2021-03-16
CA2980701C (en) 2021-06-08
JP6554179B2 (ja) 2019-07-31
HK1246505A1 (zh) 2018-09-07
EP3605659A1 (en) 2020-02-05
KR102074426B1 (ko) 2020-02-07
EP3284127A1 (en) 2018-02-21
CN107534120B (zh) 2021-03-02
EP3284127B1 (en) 2019-11-27
CA2980701A1 (en) 2016-10-20
US20190393516A1 (en) 2019-12-26
WO2016167702A1 (en) 2016-10-20
ZA201706849B (en) 2018-08-29
US10707498B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
US10950873B2 (en) Electric connector for fuel cell stack
CA2636768C (en) Voltage detection connector for a fuel cell and a fuel cell adapted for same
JP4883653B2 (ja) 導電板用コネクタ組立体
JP5584719B2 (ja) 電気コネクタおよび燃料電池
EP2624376B1 (en) Cell voltage detecting connector
CN110829044B (zh) 触头元件、插头和用于接触双极堆叠体的触头布置
JP2004134401A (ja) 電気コネクタ
KR100999264B1 (ko) 차량용 연료전지 스택의 셀 전압 측정용 커넥터
EP1800363B1 (en) Connector system for conductive plates
CN109844988B (zh) 电池、载体板以及具有卡锁元件的载体板元件
JP6598779B2 (ja) 燃料電池スタック組立体のためのコネクタシステム
US7090512B2 (en) Connector system for conductive plates
CN110168819B (zh) 接头连接器
JP2010192384A (ja) コネクタ及びスタック状電極への接続構造
JP5564678B2 (ja) コネクタ、スタック状電極への接続構造
CN218472338U (zh) 插头连接器和连接器套件
KR101567093B1 (ko) 연료전지스택의 셀 전압측정 구조
JP2015084289A (ja) コネクタ
JP2000164289A5 (sv)