SE1351132A1 - Method and system for organizing vehicle trains - Google Patents

Method and system for organizing vehicle trains Download PDF

Info

Publication number
SE1351132A1
SE1351132A1 SE1351132A SE1351132A SE1351132A1 SE 1351132 A1 SE1351132 A1 SE 1351132A1 SE 1351132 A SE1351132 A SE 1351132A SE 1351132 A SE1351132 A SE 1351132A SE 1351132 A1 SE1351132 A1 SE 1351132A1
Authority
SE
Sweden
Prior art keywords
vehicle
ratio
location
maximum engine
mass
Prior art date
Application number
SE1351132A
Other languages
Swedish (sv)
Other versions
SE537598C2 (en
Inventor
Assad Alam
Kuo-Yun Liang
Henrik Pettersson
Jonas Mårtensson
Karl Henrik Johansson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1351132A priority Critical patent/SE537598C2/en
Priority to PCT/SE2014/051123 priority patent/WO2015047182A1/en
Priority to EP14850032.5A priority patent/EP3053156A4/en
Publication of SE1351132A1 publication Critical patent/SE1351132A1/en
Publication of SE537598C2 publication Critical patent/SE537598C2/en

Links

Classifications

    • G05D1/695
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q50/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle

Abstract

17 Sammandrag Ett system och en metod for att organ isera ett fordonstag. Systemet innefattar en processorenhet som är konfigurerad att bestamma en kvot bx for ett fordon fx som onskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa, jamfora kvoten bx med atminstone en annan kvot bk for ett fordon fk i fordonstaget som beskriver fOrhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s nnaximala motormoment och fordonsmassa, och bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamforelsen. Systemet är vidare konfigurerat att generera en placeringssignal som indikerar placeringen av fordonet f, och sanda placeringssignalen till en indikeringsenhet i fordonet fx, varvid placeringen av fordonet fx anvisas for foraren av fordonet fx. (Fig. 3) 17 Summary A system and method for organizing a vehicle roof. The system comprises a processor unit which is configured to determine a ratio bx for a vehicle, for example, which does not want any in the vehicle tie which describes the ratio between the vehicle's maximum engine power and vehicle mass or the ratio between the vehicle's maximum engine torque and vehicle mass, compare the ratio bx with at least another ratio bk for a vehicle fk in the vehicle stay which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass, and determine a location for the vehicle eg in the vehicle stay based on the result of the comparison. The system is further configured to generate a location signal indicating the location of the vehicle f, and the true location signal to an indicator unit in the vehicle e.g., wherein the location of the vehicle e.g. is indicated to the driver of the vehicle e.g. (Fig. 3)

Description

Metod och system for organisering av fordonstag Uppfinningens omrade Den foreliggande uppfinningen hanfor sig till ett system och en metod for att organ isera ett fordonstag. I synnerhet anges satt att organisera ett fordonstag inf6r reglering av fordonen. FIELD OF THE INVENTION The present invention relates to a system and a method for organizing a vehicle roof. In particular, it is stated how to organize a vehicle roof for regulation of the vehicles.

Uppfinningens bakgrund Trafikintensiteten är hog pa Europas stOrre vagar och fOrvantas Oka framOver. Background of the Invention The traffic intensity is high on Europe's major roads and is expected to increase in the future.

Den okade transporten av manniskor och gods ger inte bars upphov till trafikproblem i form av koer utan kraver aven alit mer energi som i slutanden ger upphov till utslapp av exempelvis vaxthusgaser. Ett nnojligt bidrag till att lose dessa problem är att late fordon fardas tatare i sa kallade fordonstag (platoons). Med fordonstag menas har ett antal fordon som kors med korta avstand mellan varandra och framfors som en enhet. De korta avstanden leder till att mer trafik kan fardas pa vagen, och aven att energif6rbrukningen f6r ett enskilt fordon minskar eftersom luftmotstandet reduceras. Fordonen i fordonstaget ' Studier visar att bransleatgangen for det ledande fordonet i fordonstaget kan reduceras med 2 till 10 (:)/0 och f6r det fOljande fordonet 15 till 20 (:)/0 jamfort med ett ensamt fordon. Detta under forutsattning att avstandet mellan lastbilarna är 8 - 16 meter och att de fardas i 80 km/h. Den minskade bransleatgangen ger en motsvarande reduktion i CO2 utslaPID- Forare utnyttjar della valkanda faktum redan idag med en sankt trafiksakerhet som foljd. En grundlaggande Maga kring fordonstag är hur tidsluckan mellan fordon kan minskas fran rekommenderade 3 sekunder ner till mellan 0,5 och 1 sekund utan att paverka trafiksakerheten. Med avstandssensorer och kanneror kan forarens reaktionstid elimineras, en typ av teknik anvand redan idag av system som ACC (Adaptiv Cruise Control) och LKA (Lane Keeping Assistance). 2 En begransning är dock att avstandssensorer och kanneror kraver fri sikt till nnalet vilket gor det svart att detektera handelser mer an ett par fordon framat i Icon. En ytterligare begransning är att farthallare inte kan reagera proaktivt, d.v.s. farthallaren kan inte reagera pa handelser som hander langre fram i trafiken som kommer att paverka trafikrytmen. The increased transport of people and goods does not give rise to traffic problems in the form of cows, but also requires more energy, which in the end gives rise to emissions of, for example, greenhouse gases. A possible contribution to solving these problems is that late vehicles travel more slowly in so-called vehicle roofs (platoons). By vehicle roof is meant a number of vehicles that cross at short distances between each other and drive forward as a unit. The short distances lead to more traffic on the road, and also to the energy consumption of an individual vehicle being reduced as air resistance is reduced. The vehicle in the vehicle roof ' Studies show that the industry access for the leading vehicle in the vehicle stay can be reduced by 2 to 10 (:) / 0 and for the following vehicle 15 to 20 (:) / 0 compared to a single vehicle. This is provided that the distance between the trucks is 8 - 16 meters and that they travel at 80 km / h. The reduced industry access results in a corresponding reduction in CO2 emissions. PID drivers are already taking advantage of this fact today, with a sacred traffic safety as a result. A basic Maga around vehicle stays is how the time gap between vehicles can be reduced from the recommended 3 seconds down to between 0.5 and 1 second without affecting road safety. With distance sensors and cans, the driver's reaction time can be eliminated, a type of technology already used today by systems such as ACC (Adaptive Cruise Control) and LKA (Lane Keeping Assistance). 2 A limitation, however, is that distance sensors and jugs require a clear view of the vehicle, which makes it difficult to detect trades more than a couple of vehicles up front in Icon. A further limitation is that cruise control cannot react proactively, i.e. the cruise control cannot react to actions that take place further in the traffic that will affect the traffic rhythm.

En mojlighet att fà fordonen att agera proaktivt är att fà fordonen att kommunicera och utbyta information. En utvecklig av IEEE-standarden 802.11 f6r WLAN (Wireless Local Area Networks) kallad 802.11p mojliggor tradlos overforing av information nnellan fordon, och nnellan fordon och infrastruktur. Olika sorters information kan sandas till och Than fordonen, sasom fordonsparametrar och strategier. Utvecklingen av konnnnunikationstekniken har gjort det nnojligt att designa fordon och infrastruktur som kan interagera och agera proaktivt. Fordon kan regleras som en enhet och foljaktligen mojliggors kortare avstand och ett battre globalt trafikflode. One way to get vehicles to act proactively is to get vehicles to communicate and exchange information. A development of the IEEE standard 802.11 for WLAN (Wireless Local Area Networks) called 802.11p enables wireless transmission of information nnellan vehicles, and nnellan vehicles and infrastructure. Different types of information can be sanded to and than vehicles, such as vehicle parameters and strategies. The development of communication technology has made it possible to design vehicles and infrastructure that can interact and act proactively. Vehicles can be regulated as a unit and consequently shorter distances and a better global traffic flow are possible.

Manga fordon är idag aven utrustade med en farthallare for att underlatta for f6raren att framf6ra fordonet. Den 6nskade hastigheten kan da stallas in av fOraren genom exempelvis ett reglage i rattkonsolen, och ett farthallarsystem i fordonet paverkar sedan ett styrsystem sa att det gasar respektive bromsar fordonet for att halla den onskade hastigheten. Om fordonet är utrustat med automatvaxlingssystem sa andras fordonets vaxel for att fordonet ska kunna halla onskad hastighet. Many vehicles today are also equipped with a cruise control to make it easier for the driver to drive the vehicle. The desired speed can then be set by the driver through, for example, a control in the steering console, and a cruise control system in the vehicle then acts on a control system so that it accelerates or brakes the vehicle to maintain the desired speed. If the vehicle is equipped with an automatic shifting system, the other person's the vehicle's gearbox so that the vehicle can maintain the desired speed.

Nar farthallare anvands i backig terrang sa kommer farthallarsystemet att forsoka halla installd hastighet genom uppforsbackar. Detta far ibland till -160 att fordonet accelererar over kronet och kanske in i en efterkommande nedforsbacke for att darefter behova bronnsas f6r att inte overskrida den installda hastigheten, vilket utgor ett bransleslosande satt att framfora fordonet. Genom att variera fordonets hastighet i backig terrang kan bransle sparas jamfort med en konventionell farthallare. Om den framtida topologin Ors kand genom att fordonet har kartdata och positioneringsutrustning kan sadana system g6ras mer robusta samt aven 3 andra fordonets hastighet innan saker har hant vilket astadkonnnnes med sa kallade prediktiva farthallare (Look-Ahead Cruise control, LAC). When cruise control is used in hilly terrain, the cruise control system will try to maintain the set speed through uphill slopes. This sometimes causes the vehicle to accelerate over the crown and perhaps into a subsequent downhill slope and then need to be bronzed so as not to exceed the set speed, which constitutes an unloading way to drive the vehicle. By varying the vehicle's speed in hilly terrain, fuel can be saved at the same time as a conventional cruise control. If the future topology Ors kand because the vehicle has map data and positioning equipment, such systems can be made more robust as well as the speed of other vehicles before things have happened, which can be achieved with so-called predictive cruise control (Look-Ahead Cruise control, LAC).

Da en bransleoptimal korstrategi ska tas fram for ett helt fordonstag blir dock situationen mer komplex. Ytterligare aspekter maste tas hansyn till, som bibehallet optimalt aystand, fysisk mojlig hastighetsprofil for alla fordonen med varierande massa och motorkapacitet. En ytterligare aspekt for ett fordonstag under framfart over varierande topografi är att nar forsta fordonet har tappat fart i en uppforsbacke, aterupptar den sin sethastighet efter backen. De efterfOljande fordonen som da fortfarande befinner sig i uppforsbacken kommer att tvingas accelerera i backen, vilket inte är bransleeffektivt. Det är inte heller alltid mojligt, vilket innebar att det kommer skapas luckor i fordonstaget som i sin tur maste tappas igen. Detta skapar svangningar i fordonstaget. Snarlikt beteende observeras aven under nedf6rsbackar, nar forsta fordonet borjar att accelerera i nedforsbacken p.g.a. den stora massan. De efterfoljande fordonen tvingas da att accelerera innan nedf6rsbacken, eftersom de f6rs6ker bibehalla aystandet till framforvarande fordon. Efter nedforsbacken borjar ledarfordonet att decelerera for att aterga till sethastigheten. De efterfoljande fordonen, som fortfarande befinner sig i nedforsbacken, kommer da att tvingas bromsa for att inte orsaka en kollision, vilket inte är bransleeffektivt. However, as an industry-optimal crossover strategy must be developed for an entire vehicle roof, the situation becomes more complex. Additional aspects must be taken into account, such as maintaining optimal aystand, physically possible speed profile for all vehicles with varying mass and engine capacity. A further aspect of a vehicle stay during travel over varying topography is that when the first vehicle has lost speed on an uphill slope, it resumes its seat speed along the hill. The subsequent vehicles that are then still on the uphill slope will be forced to accelerate on the hill, which is not industry efficient. It is also not always possible, which meant that gaps will be created in the vehicle roof which in turn must be dropped again. This creates oscillations in the vehicle stay. Similar behavior is also observed under downhills when the first vehicle begins to accelerate downhill due to the great mass. The subsequent vehicles are then forced to accelerate before the downhill slope, as they try to maintain the condition of the vehicle in front. After the downhill slope, the leader vehicle begins to decelerate to return to the set speed. The subsequent vehicles, which are still on the downhill slope, will then be forced to brake so as not to cause a collision, which is not industry efficient.

I WO-2012105889-A1 namns att ett tungt fordon som fardas nedfor en backe bakom ett lattare fordon kommer att narma sig den senare och maste bromsas. Det beskrivs att korrekt val av tidsaystand eller korrekt positionering av fordonen i fordonstaget fore nedf6rsbacken b6rjar mojligtvis kan undvika denna inbromsning och fOljaktligen minska branslefOrbrukningen. WO-2012105889-A1 mentions that a heavy vehicle traveling down a hill behind a lighter vehicle will approach the latter and must be braked. It is described that the correct choice of time resistance or correct positioning of the vehicles in the vehicle roof before the downhill slope can possibly begin to avoid this deceleration and consequently reduce the fuel consumption.

Det saknas dock fortfarande en generell losning pa hur ett fordonstag ska vara organiserat for att klara bade uppfor- och nedforsbackar med samma ordning pa de i fordonstaget ingaende fordonet pa ett bransleeffektivt satt. 4 Syftet nned uppfinningen är att tillhandahalla en forbattrad nnetod for att organisera ett fordonstag sa att fordonstaget kan framforas pa ett bransleeffektivt satt i varierande topografi. However, there is still no general solution to how a vehicle roof should be organized to cope with both uphill and downhill slopes in the same order on the vehicle included in the vehicle roof in an industry-efficient manner. The object of the invention is to provide an improved method for organizing a vehicle roof so that the vehicle roof can be driven in an industry-efficient manner in varying topography.

Sammanfattning av uppfinningen Enligt en aspekt uppnas det ovan beskrivna syftet atminstone delvis genom en metod for att organisera ett fordonstag. Metoden innefattar att bestamma en kvot bx for ett fordon fx som onskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller fOrhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa; jamfora kvoten bx med atminstone en annan kvot bk for ett fordon fk i fordonstaget, som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa; bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamforelsen och anvisa placeringen av fordonet f for fordonet fx. Summary of the invention According to one aspect, the object described above is achieved at least in part by a method for organizing a vehicle roof. The method comprises determining a ratio bx for a vehicle, for example, which desires none in the vehicle tie which describes the ratio between the vehicle's maximum engine power and vehicle mass or the ratio between the vehicle's maximum engine torque and vehicle mass; compare the ratio bx with at least one other ratio bk for a vehicle fk in the vehicle roof, which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass; determine a location for the vehicle eg in the vehicle roof based on the result of the comparison and assign the location of the vehicle f for the vehicle e.g.

Genom att berakna en kvot som beskriver forhallandet mellan fordonets maximala nnotoreffekt och fordonets massa alternativt mellan fordonets maximala motormoment och fordonsmassa, sa kan man bestamma det mest begransade fordonet. Det mest begransade fordonet är det fordon sonn far storst hastighetsvariationer da det ska ta sig uppfor respektive nedfor en backe. Genom att placera det mest begransade fordonet forst i fordonstaget, och placera det nast mest begransade darefter etc., kan man vara saker pa att fordonen efter det forsta fordonet kommer att klara av de hastighetsvariationer som det forsta fordonet kommer att Ora. Detta innebar att varje fordon kommer att kunna halla samma hastighet som det forsta fordonet i en uppfOrsbacke. Detta blir da bransleoptimalt, eftersonn aystandet mellan fordonen kan bibehallas under hela farden vilket ger maximal luftnnotstandsreduktion och darigenom lagst bransleforbrukning. Detta innebar ocksa att inget fordon i fordonstaget kommer att tvingas bromsa da det forsta fordonet okar i hastighet vid exempelvis frirullning eller motorbromsning vid framforande over en nedforsbacke. Detta blir da bransleoptinnalt, eftersom onodig bromsning undviks. By calculating a ratio that describes the ratio between the vehicle's maximum engine power and the vehicle's mass or alternatively between the vehicle's maximum engine torque and vehicle mass, one can determine the most limited vehicle. The most limited vehicle is the vehicle that has the greatest speed variations as it has to go up and down a hill, respectively. By placing the most limited vehicle first in the vehicle roof, and placing the next most limited thereafter, etc., one can be sure that the vehicles after the first vehicle will be able to cope with the speed variations that the first vehicle will cause. This meant that each vehicle would be able to maintain the same speed as the first vehicle on an uphill slope. This then becomes industry-optimal, since the condition between the vehicles can be maintained throughout the journey, which gives maximum air efficiency reduction and thereby the lowest fuel consumption. This also meant that no vehicle in the vehicle roof will be forced to brake as the first vehicle increases in speed during, for example, free-rolling or engine braking when driving over a downhill slope. This then becomes industry-optinal, as unnecessary braking is avoided.

Enligt en andra aspekt sa uppnas syftet atminstone delvis genom ett system for att organ isera ett fordonstag. Systemet innefattar en processorenhet som är konfigurerad att bestamma en kvot b, for ett fordon f som onskar inga i fordonstaget som beskriver forhallandet mellan fordonet f,:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet f,:s maximala motormoment och fordonsmassa, jamfOra kvoten b med atnninstone en annan kvot bk for ett fordon fk i fordonstaget som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive fOrhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa, och bestamma en placering for fordonet f i fordonstaget baserat pa resultatet av jamforelsen. Systemet är vidare konfigurerat att generera en placeringssignal som indikerar placeringen av fordonet f och sanda placeringssignalen till en indikeringsenhet i fordonet fx, varvid placeringen av fordonet f anvisas f6r f6raren av fordonet f. According to a second aspect, the purpose is achieved at least in part by a system for organizing a vehicle roof. The system comprises a processor unit configured to determine a ratio b, for a vehicle f which desires none of the vehicle struts which describes the ratio between the maximum engine power and vehicle mass of the vehicle f, or the ratio between the maximum engine torque and the vehicle mass of the vehicle f, b with atnninstone another ratio bk for a vehicle fk in the vehicle tie which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass, and determine a location for the vehicle in the vehicle tie based on the result of the comparison . The system is further configured to generate a location signal indicating the location of the vehicle f and the true location signal to an indicator unit in the vehicle e.g., the location of the vehicle f being indicated to the driver of the vehicle f.

Uppfinningen är sarskilt fordelaktig att anvanda da en gemensam korstrategi ska anvandas for hela fordonstaget. Manga tunga berakningar kan undvikas under fard genonn all i forvag ha organ iserat fordonstaget. Alla fordonen kan enkelt folja det forsta fordonets bestamda korprofil och uppna bransleoptimalitet, eftersom det nnest begransade fordonet dikterar den bransleoptinnala korprofilen. Detta system blir da aven robust (string stable), eftersom alla eventuella storningar kommer att dampas cla de efterfoljande fordonen alltid kommer att ha en snabbare dynamik och alltsa kunna reagera snabbare pa forandringar an fordonet framf6r. The invention is particularly advantageous to use when a common crossover strategy is to be used for the entire vehicle stay. Many heavy calculations can be avoided while driving through all in advance have organized the vehicle roof. All vehicles can easily follow the determined vehicle profile of the first vehicle and achieve industry optimality, as the next limited vehicle dictates the industry optinal vehicle profile. This system will then also be robust (string stable), since all possible faults will be evaporated as the subsequent vehicles will always have a faster dynamics and thus be able to react more quickly to changes than the vehicle in front.

Styrstrategin kan exempelvis innebara att alla fordonen i fordonstaget ska -160 ett av fordonen i fordonstagets framraknade kOrprofil. !fall fordonen i fordonstaget är organ iserade enligt uppfinningen behover man endast bestamma ledarfordonets kOrprofil, alltsa det fOrsta fordonets kOrprofil, och behOver inte ta hansyn till bakomvarande fordon p.g.a. deras snabbare dynamik. Detta innebar exempelvis att inga korprofiler behover skickas mellan fordonen utan de bakomvarande fordonen behover endast positionsbaserat -160 det framforvarande fordonet. 6 En ytterligare fordel med att organisera fordonen enligt uppfinningen är att fordonstaget blir mer robust, eftersom organiseringen sakerstaller att de bakomvarande fordonen alltid har mojlighet att anpassa sig rent fysiskt efter framforvarande fordon, d.v.s. inga fysiska begransningar hos fordonen kommer att skapa problem med regleringen. The steering strategy may, for example, mean that all vehicles in the vehicle stay must -160 one of the vehicles in the vehicle stay's protruding car profile. If the vehicles in the vehicle roof are organized according to the invention, it is only necessary to determine the vehicle profile of the leader vehicle, ie the vehicle profile of the first vehicle, and it is not necessary to take into account the vehicle behind due to their faster dynamics. This meant, for example, that no crane profiles need to be sent between the vehicles, but the vehicles behind need only position-based the forward vehicle. An additional advantage of organizing the vehicles according to the invention is that the vehicle stay becomes more robust, since the organization ensures that the vehicles behind always have the opportunity to adapt physically to the vehicles in front, i.e. no physical restrictions on the vehicles will create problems with regulation.

Enligt en tredje aspekt uppnas atminstone delvis syftet genom ett datorprogram P vid ett system, dar namnda datorprogrann P innefattar program kod for att fa systemet att utfora nagot av metodstegen som beskrivs hari. According to a third aspect, the purpose is achieved at least in part by a computer program P in a system, wherein said computer program P comprises program code for causing the system to perform some of the method steps described herein.

Enligt en fjarde aspekt uppnas atminstone delvis syftet genom en datorprogramprodukt innefattande en programkod lagrat pa ett, av en dator lasbart, medium for att utf6ra nagot av metodstegen som beskrivs hari. According to a fourth aspect, the object is achieved at least in part by a computer program product comprising a program code stored on a computer readable medium for performing some of the method steps described herein.

Foredragna utf6ringsformer beskrivs i de osjalvstandiga kraven och i den detaljerade beskrivningen. Preferred embodiments are described in the dependent claims and in the detailed description.

Kort beskrivninq av de bifoqade fiqurerna Nedan konnnner uppfinningen att beskrivas med hanvisning till de bifogade figurerna, av vilka: Fig. 1 illustrerar ett fordonstag som tar sig uppfor en backe. Brief Description of the accompanying Figures The invention may now be described with reference to the accompanying figures, of which: Fig. 1 illustrates a vehicle roof ascending a hill.

Fig. 2 visar ett exempel pa ett fordon i fordonstaget. Fig. 2 shows an example of a vehicle in the vehicle roof.

Fig. 3 visar ett system enligt en utforingsform av uppfinningen. Fig. 3 shows a system according to an embodiment of the invention.

Fig. 4 visar ett flodesschema f6r en metod f6r att organisera fordonstag. Fig. 4 shows a flow chart of a method for organizing vehicle roofs.

Fig. 5A-5C visar ett organ isationsscenario. Figs. 5A-5C show an organization scenario.

Fig. 6 visar ett ytterligare organisationsscenario. Fig. 6 shows a further organizational scenario.

Detaljerad beskrivning av f6redragna utf6ringsformer av uppfinningen Definitioner vk: hastigheten for fordonet fk i ett fordonstag med N fordon. dk,k+i — avstandet mellan fordonet fk och det bakomvarande fordonet fk_Ei i fordonstaget. ak: lutningen for fordonet fk. 7 V2V-kommunikation (Vehicle to vehicle): Tracilos kommunikation mellan fordon, aven kallad fordon-till-fordon kommunikation. Detailed Description of Preferred Embodiments of the Invention Definitions vk: the speed of the vehicle fk in a vehicle stay with N vehicles. dk, k + i - the distance between the vehicle fk and the vehicle behind fk_Ei in the vehicle stay. ak: the slope of the vehicle fk. 7 V2V (Vehicle to vehicle) communication: Tracilo's communication between vehicles, also called vehicle-to-vehicle communication.

V21-kommunikation (Vehicle to infrastructure): Tracilos kommunikation mellan fordon och infrastruktur, exempelvis vagnod eller datorsystem. V21 (Vehicle to infrastructure) communication: Tracilo's communication between vehicle and infrastructure, such as a vehicle or computer system.

Fig. 1 visar ett fordonstag med N tunga fordon fk som tar sig fram med sma mellanrum dk, k+1 mellan fordonen uppfOr en backe. Lutningen pa fordonet fk nar det Icor uppfor backen visas som ak. Varje fordon fk är forsett med en mottagare och sandare for tradlOsa signaler, visat delvis med en antenn. Fordonen fk i fordonstaget kan alltsa kommunicera med varandra genom V2V-kommunikation eller andra medel som exempelvis genom mobila kommunikationsenheter, via en applikation i en kommunikationsenhet eller via en server, och till infrastruktur i form av V21-kommunikation. Kommunikationen kan exempelvis ga fran ett fordon och via en vagnod till ett annat fordon. De olika fordonen fk har olika massor mk. Fig. 1 shows a vehicle stay with N heavy vehicles fk which travels at small intervals dk, k + 1 between the vehicles up a hill. The inclination of the vehicle when the Icor uphill is shown as ak. Each vehicle fk is equipped with a receiver and transmitter for wireless signals, shown partly with an antenna. The vehicles fk in the vehicle stay can thus communicate with each other through V2V communication or other means such as through mobile communication units, via an application in a communication unit or via a server, and to infrastructure in the form of V21 communication. The communication can, for example, go from one vehicle and via a car node to another vehicle. The different vehicles fk have different masses mk.

Fordonstaget har ett ledarfordon, d.v.s. det forsta fordonet f1. Varje fordon fk i fordonstaget har exempelvis en unik fordonsidentitet, och en fordonstagsidentitet som är gemensam for hela fordonstaget, for att kunna halla reda pa vilka fordon som ingar i fordonstaget. Data som skickas tradlost mellan fordonen i fordonstaget kan taggas med dessa identiteter sa att data som tas emot kan harledas till ratt fordon. The vehicle roof has a leader vehicle, i.e. the first vehicle f1. Each vehicle fk in the vehicle roof has, for example, a unique vehicle identity, and a vehicle roof identity that is common to the entire vehicle roof, in order to be able to keep track of which vehicles are included in the vehicle roof. Data sent wirelessly between the vehicles in the vehicle stay can be tagged with these identities so that data received can be routed to the steering wheel of the vehicle.

I Fig. 2 visas ett exempel pa ett fordon fk i fordonstaget och hur det kan vara utrustat. Fordonet fk är f6rsett med en positioneringsenhet 5 som kan bestamma fordonet fk:s position. Positioneringsenheten 5 kan exempelvis vara konfigurerad att ta emot signaler fran ett globalt positioneringssystem GNSS (Global Navigation Satellite System) exempelvis GPS (Global Positioning System), GLONASS, Galileo eller Compass. Alternativt kan positioneringsenheten 5 vara konfigurerad att ta emot signaler fran exempelvis en eller flera detektorer i fordonet som mater relativa avstand till exempelvis en vagnod, fordon i omgivningen eller liknande med kand position. Baserat pa de relativa avstanden kan positioneringsenheten sedan bestamma fordonet fk:s egen position. En detektor kan aven vara konfigurerad att avkanna en signatur i exempelvis en vagnod, varvid signaturen 8 representerar en viss position. Positioneringsenheten 5 kan da vara konfigurerad att bestamma sin position genom avkanning av signaturen. Positioneringsenheten 5 kan istallet vara konfigurerad att ta bestamma signalstyrkan i en eller flera signaler fran flera basstationer och/eller vagnoder etc. med kand position, och darigenom bestamma fordonet fk:s position genom triangulering. Pa sa satt kan fk:s egen position bestamnnas. Naturligtvis kan aven de ovan teknikerna kombineras for att sakerstalla fordonet fk:s position. Positioneringsenheten 5 är konfigurerad att generera en positionssignal som innehaller fordonet fk:s position, och att sanda denna till en eller flera enheter i fordonet fk. Fordonet fk är som redan namnts aven f6rsett med en enhet 4 for tradlos kommunikation. Enheten 4 är konfigurerad att verka som mottagare och sandare av tradlosa signaler. Enheten 4 kan ta emot tradlosa signaler Man andra fordon och/eller tradlosa signaler fran infrastrukturen kring fordonet fk, och sanda tradlosa signaler till andra fordon och/eller tradlosa signaler till infrastrukturen kring fordonet fk. De tradlosa signalerna kan innefatta fordonsparametrar fran andra fordon, exempelvis massa, moment, maximal motoreffekt, hastighet, och aven mer komplex information som exempelvis gallande korprofil, korstrategi etc. De tradlosa signalerna kan aven innehalla information om onngivningen, exempelvis vagens lutning a, kurvradie r etc. Fordonet fk kan aven vara forsett med en eller flera detektorer 8 f6r att avkanna onngivningen, exempelvis en radarenhet, laserenhet, lutningsnnatare, accelerationsmatare, rattvinkelmatare, ett gyro etc. En detektorenhet är konfigurerad att avkanna en parameter, exempelvis ett relativt aystand, hastighet, lutning, lateral acceleration, vridning, rattutslag etc., och att generera en detektorsignal som innehaller parametern. Detektorenheten är vidare konfigurerad att sanda detektorsignalen till en eller flera enheter i fordonet fk. Fordonet fk kan aven vara utrustat med en kartenhet som kan ge kartinformation om den kommande vagen. Kartenheten kan exempelvis vara en del av positioneringsenheten 5. FOraren kan exempelvis ange en slutposition och kartenheten kan da genom att veta fordonets nuvarande position ge relevant kartdata om den kommande vagen mellan den nuvarande positionen och slutdestinationen. 9 Fordonet fk konnnnunicerar internt nnellan sina olika enheter genonn exempelvis en buss, exempelvis en CAN-buss (Controller Area Network) som anvander sig av ett meddelandebaserat protokoll. Exempel pa andra kommunikationsprotokoll som kan anvandas är TTP (Time-Triggered Protocol), Flexray m fl. Pa sa satt kan signaler och data som beskrivits ovan utbytas mellan olika enheter i fordonet fk. Fig. 2 shows an example of a vehicle fk in the vehicle roof and how it can be equipped. The vehicle fk is provided with a positioning unit 5 which can determine the position of the vehicle fk. The positioning unit 5 can for instance be configured to receive signals from a global positioning system GNSS (Global Navigation Satellite System) for example GPS (Global Positioning System), GLONASS, Galileo or Compass. Alternatively, the positioning unit 5 may be configured to receive signals from, for example, one or more detectors in the vehicle which feed relative distances to, for example, a car node, vehicles in the vicinity or the like with a known position. Based on the relative distances, the positioning unit can then determine the vehicle's own position. A detector can also be configured to sense a signature in, for example, a car node, the signature 8 representing a certain position. The positioning unit 5 can then be configured to determine its position by scanning the signature. The positioning unit 5 can instead be configured to determine the signal strength of one or more signals from several base stations and / or car nodes etc. with a known position, and thereby determine the position of the vehicle fk by triangulation. In this way, fk's own position can be determined. Of course, the above techniques can also be combined to secure the position of the vehicle fk. The positioning unit 5 is configured to generate a position signal containing the position of the vehicle fk, and to transmit this to one or more units in the vehicle fk. As already mentioned, the vehicle fk is also provided with a unit 4 for wireless communication. The unit 4 is configured to act as a receiver and transmitter of wireless signals. The unit 4 can receive wireless signals Man vehicles and / or wireless signals from the infrastructure around the vehicle fk, and true wireless signals to other vehicles and / or wireless signals to the infrastructure around the vehicle fk. The wireless signals may include vehicle parameters from other vehicles, such as mass, torque, maximum engine power, speed, and even more complex information such as gallbladder profile, crossover strategy, etc. The wireless signals may also include information about the signal, e.g., vehicle inclination a, curve radius r etc. The vehicle fk may also be provided with one or more detectors 8 for sensing the indication, for example a radar unit, laser unit, inclinator, acceleration feeder, steering angle feeder, a gyro etc. A detector unit is configured to sense a parameter, for example a relative aystand, speed , inclination, lateral acceleration, rotation, steering angle, etc., and generating a detector signal containing the parameter. The detector unit is further configured to transmit the detector signal to one or more units in the vehicle fk. The vehicle fk can also be equipped with a map unit that can provide map information about the upcoming road. The map unit can, for example, be part of the positioning unit 5. The driver can, for example, enter an end position and the map unit can then, by knowing the current position of the vehicle, provide relevant map data about the coming road between the current position and the final destination. 9 The vehicle fk communicates internally nnellan its various units through, for example, a bus, for example a CAN bus (Controller Area Network) which uses a message-based protocol. Examples of other communication protocols that can be used are TTP (Time-Triggered Protocol), Flexray and others. In this way, signals and data described above can be exchanged between different units in the vehicle fk.

Signaler och data kan exempelvis istallet overforas tradlOst mellan de olika enheterna. Signals and data can, for example, instead be transmitted wirelessly between the various units.

I Fig. 2 visas aven en processorenhet 2, som ingar i ett system 1 enligt uppfinningen. I Fig. 3 visas detta system 1 enligt en ufforingsform, som nu kommer att forklaras med hanvisning till denna figur. Som visas i figuren är processorenheten 2 kopplad till en minnesenhet 3. Minnesenheten 3 kan innefatta ett flyktigt- och/eller ett icke-flyktigt minne, exempelvis flashminne eller RAM (Random Access Memory). Pa minnesenheten 3 finns ett program P lagrat. Fig. 2 also shows a processor unit 2, which is part of a system 1 according to the invention. Fig. 3 shows this system 1 according to an embodiment, which will now be explained with reference to this figure. As shown in the figure, the processor unit 2 is connected to a memory unit 3. The memory unit 3 may comprise a volatile and / or a non-volatile memory, for example flash memory or RAM (Random Access Memory). A program P is stored on the memory unit 3.

Programmet P innefattar program kod for att fa processorenheten 2 att utfora en metod for att organisera fordonstaget som kommer att forklaras i det foljande. Processorenheten 2 är alltsa konfigurerad att utfora de olika metodstegen som kommer att beskrivas. Progrannnnet P kan aven lagras pa en datorprogrannprodukt pa ett av en dator lasbart medium som en program kod. Processorenheten 2 kan utgoras av en eller flera CPU:er (Central Processing Unit). Processorenheten 2 kan vara en del av ett dator eller datorsystem, exempelvis en ECU (Electronic Control Unit) i ett fordon fk. Alternativt kan systemet 1 med processorenheten 2 vara placerad i infrastrukturen i exempelvis en vagnod eller central enhet 7 (Fig. 5A-6). The program P comprises program code for causing the processor unit 2 to perform a method for organizing the vehicle stay which will be explained in the following. The processor unit 2 is thus configured to perform the various method steps that will be described. The software program P can also be stored on a computer software product on a computer readable medium as a program code. The processor unit 2 may consist of one or more CPUs (Central Processing Unit). The processor unit 2 may be part of a computer or computer system, for example an ECU (Electronic Control Unit) in a vehicle fk. Alternatively, the system 1 with the processor unit 2 can be located in the infrastructure in, for example, a carriage node or central unit 7 (Figs. 5A-6).

Enheten 4 kir tradlOs kommunikation kan ta emot data gallande fordonsmassa och maximal motoreffekt for respektive fordon fk. Processorenheten 2 är konfigurerad att generera en placeringssignal som indikerar en placering av fordonet fx och sanda placeringssignalen till en indikeringsenhet 6 i fordonet fx, varvid placeringen av fordonet fx anvisas for foraren av fordonet fx. Foraren av fordonet fx vet da vilken plats denne ska ha i fordonstaget och kan placera in sig pa ratt position i taget. Placeringssignalen kan aven sandas till ett fordon fk eller 10 flera av de ovriga fordonen i fordonstaget sa att de bereder plats till fordonet fx, antingen genom att forarna manuellt reglerar fordonen sa att en lucka oppnas mellan fordonen, eller genom automatisk reglering av fordonen i fordonstaget. The unit 4 kir wireless communication can receive data gallant vehicle mass and maximum engine power for each vehicle fk. The processor unit 2 is configured to generate a location signal indicating a location of the vehicle e.g. and the true location signal to an indicator unit 6 in the vehicle e.g., wherein the location of the vehicle e.g. is indicated to the driver of the vehicle e.g. The driver of the vehicle, for example, then knows what place he should have in the vehicle roof and can place himself in the right position at a time. The location signal can also be sent to a vehicle fk or several of the other vehicles in the vehicle stay so that they provide space for the vehicle, for example, either by the drivers manually regulating the vehicles so that a gap is opened between the vehicles, or by automatic control of the vehicles in the vehicle stay.

I Fig. 4 visas ett flodesschema for metoden att organ isera fordonstaget, och metoden kommer nu att forklaras med hanvisning till denna figur. Processorenheten 2 (Fig. 2) är alltsa konfigurerad att utfOra denna metod enligt de olika utforingsformerna av metoden. Metoden innefattar att bestamma en kvot bxfOr ett fordon fx som Onskar inga i fordonstaget som beskriver fOrhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa (Al). Kvoten bx jamfors sedan med atnninstone en annan kvot bk for ett fordon fk i fordonstaget, som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa (A2). Enligt en utforingsform innefattar metoden att bestamma kvoten bx for fordonet fx och kvoten bk for fordonet fk genom att berakna Maximal motoreffekt for fordonet f ordonets massa fOr respektive fordon. Alternativt kan kvoten bxfOr fordonet fx och kvoten bk fOr fordonet fk genom att berakna Maximalt motormoment for fordonet f ordonets massa Kvoterna bx och bk som ska jamforas med varandra är alltsa !Dada bestamda med antingen ekvation (1) eller ekvation (2). Kvoten ger ett !matt pa hur begransat fordonet är, alltsa hur svart det har att halla en bestarnd hastighet i en uppfOrsbacke. Det mest begransade fordonet är det fordon som far storst hastighetsvariationer da det ska ta sig uppfor respektive nedfor en backe. Det som har lagst kvot av fordonen har alltsa svarast att Ora [Ada delarna. Den 11 nnaxinnala nnotoreffekten respektive det maxinnala nnotormonnentet for varje fordon är en kand motorparameter. Varje fordons massa är aven den en kand parameter for varje fordon som dock uppdateras da lasten andras. Varje fordons respektive parametrar finns tillgangliga via det interna natverket hos varje fordon. Fig. 4 shows a flow chart of the method of organizing the vehicle stay, and the method will now be explained with reference to this figure. The processor unit 2 (Fig. 2) is thus configured to perform this method according to the different embodiments of the method. The method involves determining a ratio bxfor a vehicle, for example, which does not want in the vehicle roof which describes the ratio between the vehicle's maximum engine power and vehicle mass or the ratio between the vehicle's maximum engine torque and vehicle mass (Al). The ratio bx is then compared with atnninstone another ratio bk for a vehicle fk in the vehicle roof, which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass (A2). According to one embodiment, the method comprises determining the ratio bx for the vehicle, for example, and the ratio bk for the vehicle fk by calculating the maximum engine power for the vehicle for the mass of the vehicle for each vehicle. Alternatively, the ratio bxfor the vehicle, for example, and the ratio bk for the vehicle may be calculated by calculating the maximum engine torque of the vehicle for the mass of the vehicle. The ratios bx and bk to be compared with each other are thus determined by either equation (1) or equation (2). The ratio gives a measure of how limited the vehicle is, ie how black it is to maintain a constant speed on an uphill slope. The most limited vehicle is the vehicle that has the greatest speed variations as it has to go up and down a hill, respectively. That which has added quota of the vehicles has thus answered that Ora [Ada the parts. The 11 nnaxinnal nnotor power and the maxinnala nnotormonent for each vehicle are a known engine parameter. The mass of each vehicle is also a known parameter for each vehicle, which is updated when the load is different. The respective parameters of each vehicle are accessible via the internal network of each vehicle.

Parametrarna kan skickas till systemet 1 genom V2V eller V2I. Genom att exempelvis tagga parametrarna med fordonsidentitet respektive fordonstagsidentitet kan man halla reda pa vilken parameter som tillhor vilket fordon. Metoden innefattar vidare att bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamfOrelsen (A3). Enligt en utfOringsform bestams en placering framfor fordonet fk ifall bx < bk, och en placering bakom fordonet fk ifall bx bk. Pa sa satt kan fordonet fx ordnas in i fordonstaget enligt sin kvot bx som anger hur begransat det är. Fordonet fx placeras alltsa in i fordonstaget sa att det placeras efter det eller de fordon som är mer begransade an fordonet fx sjalv, fast fore det eller dem som är mindre begransade. The parameters can be sent to system 1 via V2V or V2I. By, for example, tagging the parameters with vehicle identity and vehicle stay identity, respectively, you can keep track of which parameter belongs to which vehicle. The method further comprises determining a location for the vehicle eg in the vehicle stay based on the result of the comparison (A3). According to one embodiment, a location in front of the vehicle is determined if bx <bk, and a location behind the vehicle fk if bx <bk. In this way, the vehicle can, for example, be arranged in the vehicle roof according to its quota, which indicates how limited it is. The vehicle, for example, is thus placed in the vehicle stay so that it is placed after the vehicle or vehicles that are more limited than the vehicle, for example itself, but before that or those that are less limited.

Placeringen av fordonet fx anvisas sedan for fordonet f (A4). The location of the vehicle, for example, is then indicated for the vehicle f (A4).

Enligt en utforingsform sa bereds plats for fordonet f i fordonstaget enligt den anvisade placeringen i fordonstaget. Detta kan exempelvis utforas genom att ett eller flera fordon i fordonstaget far veta att fordonet fx ska placeras i fordonstaget i den anvisade placeringen. Dessa fordon kan sedan manuellt eller automatisk bli reglerade sá att det skapas en lucka dar fordonet fx ska placeras. Foraren av fordonet fx kan sedan styra in fordonet fx i luckan. Alternativt kan fordonet fx automatiskt regleras sa att det placeras i luckan. According to one embodiment, the location of the vehicle f in the vehicle roof is prepared according to the designated location in the vehicle roof. This can be done, for example, by one or more vehicles in the vehicle roof being informed that the vehicle, for example, is to be placed in the vehicle roof in the designated location. These vehicles can then be manually or automatically adjusted so that a gap is created where the vehicle, for example, is to be placed. The driver of the vehicle, for example, can then steer the vehicle, for example, into the door. Alternatively, the vehicle can, for example, be automatically adjusted so that it is placed in the door.

I figurerna 5A-5C visas ett scenario for att sortera in ett fordon fx i ett befintligt fordonstag. I Fig. 5A visas fx som onskar inga i det befintliga fordonstaget som innefattar de tre fordonen fl, f2 och f3. Fordonet f k6r pa en Wart och det befintliga fordonstaget Icor pa den vag som fordonet fx ska kora in pa. Fordonet fx kan exempelvis avsoka onngivningen efter fordonstag och skicka ut en forfragan att fa inga i fordonstaget till ett lampligt fordonstag. Alternativt kan detta skotas av en central enhet 7 som tar emot signaler fran fordonen och sedan organiserar lampliga fordonstag da det ar mojligt. Placeringssignaler etc. kan sedan skickas ut 12 till fordonen fran den centrala enheten 7 f6r att organisera fordonstaget. Den centrala enheten 7 innefattar da hela eller delar av systemet 1. Alternativt kan systemet 1 vara arrangerat i ett eller flera av fordonen i fordonstaget, exempelvis ledarfordonet -IL eller i fordonet fx. !fall fordonet fx far lov att inga i fordonstaget sa bestams fordonet fx:s kvot bx ifall den inte redan är bestamd. Sedan jamfors kvoten bx med ledarfordonetkvot b1. I detta fall är bx st6rre an b1, och fordonet fx ska alltsa placeras bakom ledarfordonetf1. Darefter jamfors kvoten bx med kvoten b2 f6r nasta fordon f2 i fordonstaget. I detta fall är bx mindre an b2, och fordonet fx ska placeras framfOr fordonet f2. Kvoten b, fordonet fx jamfOrs alltsa konsekutivt med kvoterna bk for fordonen fk i fordonstaget. Jamforelserna fortsatter tills ett fordon har hittats som fordonet fx ska stalla sig framf6r, eller tills det inte finns fler fordon i fordonstaget. Fordonet f far da placera sig sist i fordonstaget. Resultatet är har att fordonet f ska placeras mellan fordonen f1 och f2. Placeringen anvisas till foraren av fordonet fx. Denna kan da ta stallning till om den vill inga i fordonstaget. Placeringen kan aven anvisas till ett eller flera fordon i fordonstaget. I Fig. 5B visas hur fordonen i fordonstaget 6ppnar upp en lucka mellan fordonen f1 och f2 genom att 6ka aystandet d1,2 mellan fordonen. F6r att tillfalligt oka aystandet mellan fordonen kan fordonen hastighetsregleras nnanuellt, eller autonnatiskt Than ett eller flera av fordonen i fordonstaget eller Than central enhet 7. Fordonet f Icor sedan in i luckan sonn skapats vilket visas i Fig. 5C, och ingar sedan i fordonstaget. Figures 5A-5C show a scenario for sorting a vehicle, eg into an existing vehicle roof. Fig. 5A shows, for example, those who want none in the existing vehicle tie which comprises the three vehicles f1, f2 and f3. The vehicle is driven on a Wart and the existing vehicle roof Icor on the road on which the vehicle, for example, is to run. The vehicle, for example, can scan the display after the vehicle stay and send out a request to get none in the vehicle stay to a suitable vehicle stay. Alternatively, this can be shot by a central unit 7 which receives signals from the vehicles and then organizes suitable vehicle stays when possible. Placement signals etc. can then be sent out 12 to the vehicles from the central unit 7 to organize the vehicle stay. The central unit 7 then comprises all or parts of the system 1. Alternatively, the system 1 may be arranged in one or more of the vehicles in the vehicle stay, for example the conductor vehicle -IL or in the vehicle e.g. In the case of the vehicle, for example, no one in the vehicle stay said that the vehicle's quota is determined, for example, if it has not already been determined. Then the ratio bx is compared with the conductor vehicle quota b1. In this case, bx is larger than b1, and the vehicle, for example, must therefore be placed behind the conductor vehicle f1. Then the quotient bx is compared with the quotient b2 for the next vehicle f2 in the vehicle roof. In this case, bx is smaller than b2, and the vehicle, for example, must be placed in front of the vehicle f2. The quota b, the vehicle, for example, is compared consecutively with the quotas bk for the vehicles fk in the vehicle roof. The comparisons continue until a vehicle has been found that the vehicle, for example, is to stand in front of, or until there are no more vehicles in the drawbar. The vehicle may then be placed last in the vehicle roof. The result is that the vehicle f must be placed between the vehicles f1 and f2. The location is assigned to the driver of the vehicle e.g. This can then take a stand if it does not want anyone in the vehicle stay. The location can also be assigned to one or more vehicles in the vehicle stay. Fig. 5B shows how the vehicles in the vehicle stay 6 open a gap between the vehicles f1 and f2 by increasing the distance d1,2 between the vehicles. To temporarily increase the distance between the vehicles, the vehicles can be speed controlled manually, or automatically Than one or more of the vehicles in the vehicle stay or Than central unit 7. The vehicle f Icor then into the door sonn created as shown in Fig. 5C, and then enters the vehicle stay.

I Fig. 6 visas ett annat organisationsscenario i vilket ett flertal fordon fi-f4fOrst befinner sig oorganiserat pa exempelvis en rastplats eller ett akeri. For att organisera ett fordonstag av fordonen f1-f4 sa bestams fordonens respektive kvot enligt ekvation (1), och jamfOrs med varandra for all bestamma den kvot som är lagst och alltsa anger det mest begransade fordonet. Darefter placeras det fordon med den nast lagsta kvoten etc. Placeringarna anvisas fOr fordonen ifraga, som installer sig pa sin respektive plats i taget. Exempelvis kan man utse ett fordon fk till att inga i fordonstaget, och de andra fordonen far stalla in sig i fordonstaget utifran dess kvot bk. 13 Ett organiserat fordonstag är en fordel da en gennensann reglerstrategi ska appliceras pa fordonen i fordonstaget. Exempelvis kan fordonen i fordonstaget da agera enligt en LAP-farthallare (Look-Ahead cruise control for platoons), som är en kooperativ farthallare som am/ander sig av information om den kommande vagens topografi och beraknar en optimal hastighetstrajektoria for alla fordon i fordonstaget. Kailas aven prediktiv farthallare f6r fordonstag. Reglerstrategin bestams exempelvis genom dynamisk programmering. En LAP kan exemeplvis anvanda sig av en eller flera framraknade trajektorier fran LAC-farthallare (Look-Ahead cruise control), som är farthallare som am/ander sig av information om den kommande vagens topografi och beraknar en optimal korprofil i form av en hastighetstrajektoria for ett fordon. KaIlas aven prediktiv farthallare. IfaII ett fordonstag är organiserat sa att ledarfordonet är det mest begransade fordonet etc., sa kan de efterfoljande fordonen folja den bestamda hastighetstrajektorian f6r ledarfordonet. Pa sa satt uppnas en optimerad farthallning for hela fordonstaget avseende bransleforbrukning och tid. Fig. 6 shows another organizational scenario in which a plurality of vehicles are initially disorganized at, for example, a rest area or a haulage company. In order to organize a vehicle stay of the vehicles f1-f4, the respective ratio of the vehicles is determined according to equation (1), and compared with each other to determine the ratio that is lowest and thus indicates the most limited vehicle. Then the vehicle with the next lowest quota, etc. is placed. The placements are indicated for the vehicles in question, which are installed in their respective places at a time. For example, one can fk a vehicle fk so that no one in the vehicle roof, and the other vehicles are allowed to line up in the vehicle roof based on its quota bk. 13 An organized vehicle roof is an advantage as a true control strategy must be applied to the vehicles in the vehicle roof. For example, the vehicles in the drawbar can then act according to a LAP cruise control (Look-Ahead cruise control for platoons), which is a cooperative cruise control that accepts information about the topography of the oncoming vehicle and calculates an optimal speed trajectory for all vehicles in the drawbar. Kailas is also a predictive cruise control for vehicle roofs. The control strategy is determined, for example, by dynamic programming. An LAP can, for example, use one or more projected trajectories from LAC (Look-Ahead cruise control) cruise lanes, which are cruise lanes that provide information about the topography of the oncoming car and calculate an optimal corps profile in the form of a speed trajectory for a vehicle. KaIlas is also a predictive speedster. If a vehicle roof is organized so that the leader vehicle is the most limited vehicle, etc., then the subsequent vehicles can follow the determined velocity trajectory for the leader vehicle. In this way, an optimized cruise control is achieved for the entire vehicle stay in terms of fuel consumption and time.

Den foreliggande uppfinningen är inte beg ransad till de ovan beskrivna utforingsformerna. Olika alternativ, nnodifieringar och ekvivalenter kan anvandas. Darfor begransar inte de ovan namnda utforingsformerna uppfinningens onnfattning, som definieras av de bifogade kraven. 14 The present invention is not limited to the embodiments described above. Various alternatives, nnodifications and equivalents can be used. Therefore, the above-mentioned embodiments do not limit the scope of the invention, which is defined by the appended claims. 14

Claims (5)

Patentkrav 1. Metod for att organ isera ett fordonstag, varvid metoden innefattar att 1. bestamma en kvot bx for ett fordon fx som onskar inga i fordonstaget som beskriver fOrhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller fOrhallandet mellan fordonet fx:s maximala motormoment och fordonsnnassa; 2. jamfora kvoten bx med atminstone en annan kvot bk for ett fordon fk fordonstaget, som beskriver fOrhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa; 3. bestamma en placering for fordonet f i fordonstaget baserat pa resultatet av jamforelsen; 4. anvisa placeringen av fordonet fx f6r fordonet fx. 2. Metoden enligt krav 1, som innefattar att bestamma kvoten bx for fordonet fx och kvoten bk for fordonet fk genom att berakna Maximal motoreffekt for fordonet f orclonets massa fOr respektive fordon, respektive Maximalt motormoment for fordonet for respektive fordon. f ordonets massa 3. Metoden enligt krav 2, som innefattar att bestamma en placering framfor fordonet fk ifall bx < bk, och en placering bakom fordonet fk ifall bx bk. 4. Metoden enligt nagot av foregaende krav, som innefattar att bereda plats for fordonet fx i fordonstaget enligt den anvisade placeringen i fordonstaget. 5. Metoden enligt nagot av foregaende krav, som innefattar att konsekutivt jamfora kvoten bx f6r fordonet fx med kvoterna bk f6r fordonen fk i fordonstaget. 6. System (1) for att organisera ett fordonstag, kanneteckn at av att systemet (1) innefattar en processorenhet (2) som är konfigurerad attA method for organizing a vehicle roof, wherein the method comprises 1. determining a ratio bx for a vehicle, for example, which desires none in the vehicle roof which describes the relationship between the vehicle's maximum engine power and vehicle mass or the relationship between the vehicle, for example, the maximum engine torque and vehicle nose; 2. compare the ratio bx with at least one other ratio bk for a vehicle fk the vehicle stay, which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass; 3. determine a location for the vehicle f in the vehicle roof based on the result of the comparison; 4. indicate the location of the vehicle fx for the vehicle fx. The method according to claim 1, which comprises determining the ratio bx for the vehicle fx and the ratio bk for the vehicle fk by calculating Maximum engine power for the vehicle for the mass of the vehicle for each vehicle, respectively Maximum engine torque for the vehicle for each vehicle. The mass according to claim 2, which comprises determining a location in front of the vehicle fk if bx <bk, and a location behind the vehicle fk if bx <bk. The method according to any one of the preceding claims, which comprises preparing a place for the vehicle, for example in the vehicle roof according to the designated location in the vehicle roof. The method according to any one of the preceding claims, which comprises consecutively comparing the ratio bx for the vehicle, for example with the quotas bk for the vehicles fk in the vehicle roof. System (1) for organizing a vehicle stay, characterized in that the system (1) comprises a processor unit (2) configured to 1. bestamma en kvot bx for ett fordon fx som onskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller fOrhallandet mellan fordonet fx:s maximala nnotormoment och fordonsnnassa;1. determine a ratio bx for a vehicle eg that does not want any in the vehicle stay that describes the ratio between the vehicle fx's maximum engine power and vehicle mass or the ratio between the vehicle fx's maximum engine torque and vehicle mass; 2. jamfora kvoten bx med atminstone en annan kvot bk fOr ett fordon fk I fordonstaget som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motornnoment och fordonsmassa;2. compare the ratio bx with at least one other ratio bk for a vehicle fk In the vehicle roof which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine number and vehicle mass; 3. bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamforelsen;3. determine a location for the vehicle eg in the vehicle roof based on the result of the comparison; 4. generera en placeringssignal som indikerar placeringen av fordonet fx; - sanda placeringssignalen till en indikeringsenhet (6) i fordonet fx, varvid placeringen av fordonet fx anvisas f6r f6raren av fordonet fx. 7. Systemet (1) enligt krav 6, varvid processorenheten (2) är konfigurerad att bestamma kvoten bx for fordonet fx och kvoten bk for fordonet fk Maximal motoreffekt for fordonet genom att beraknafor respektive fordon, respektive fordonets massa Maximalt motormoment for fordonet for respektive fordon. 8. Systemet (1) enligt krav 7, varvid processorenheten (2) ar konfigurerad att bestamma en placering framfor fordonet fk ifall bx < bk, och en placering bakom fordonet fk ifall bx bk. 9. Systemet (1) enligt nagot av kraven 6 till 8, varvid processorenheten (2) är konfigurerad att sanda placeringssignalen till atminstone ett fordon fk fordonstaget, varefter plats bereds for fordonet fx i fordonstaget enligt den anvisade placeringen i fordonstaget. f ordonets massa 16 10. Systennet (1) enligt nagot av kraven 6 till 9, varvid processorenheten (2) är konfigurerad att konsekutivt jamfora kvoten bx for fordonet fx med kvoterna bk for fordonen fk i fordonstaget. 11. Datorprogram, P, vid ett system (4), dar namnda datorprogram, P, innefattar programkod f6r att fa processorenheten (2) att utf6ra nagot av stegen enligt patentkraven 1 till 5. 12. Datorprogramprodukt innefattande en progrannkod lagrat pa ett, av en dator lasbart, medium f6r att utfora metodstegen enligt nagot av patentkraven 1 till4. generate a location signal indicating the location of the vehicle e.g.; send the location signal to an indicating unit (6) in the vehicle, for example, the location of the vehicle, for example, being indicated to the driver of the vehicle, for example. The system (1) according to claim 6, wherein the processor unit (2) is configured to determine the ratio bx for the vehicle fx and the ratio bk for the vehicle fk Maximum engine power for the vehicle by calculating the respective vehicle and the mass of the vehicle Maximum engine torque for the vehicle for each vehicle . The system (1) according to claim 7, wherein the processor unit (2) is configured to determine a location in front of the vehicle fk if bx <bk, and a location behind the vehicle fk if bx <bk. The system (1) according to any one of claims 6 to 8, wherein the processor unit (2) is configured to send the location signal to at least one vehicle fk the vehicle stay, after which space is prepared for the vehicle eg in the vehicle stay according to the designated location in the vehicle stay. The system (1) according to any one of claims 6 to 9, wherein the processor unit (2) is configured to consecutively compare the ratio bx for the vehicle, for example with the ratios bk for the vehicles fk in the vehicle stay. Computer program, P, in a system (4), wherein said computer program, P, comprises program code for causing the processor unit (2) to perform some of the steps according to claims 1 to 5. 12. A computer program product comprising a program code stored on one, of a computer readable medium for performing the method steps according to any one of claims 1 to 5. 1/45. 1/4
SE1351132A 2013-09-30 2013-09-30 Method and system for organizing vehicle trains SE537598C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1351132A SE537598C2 (en) 2013-09-30 2013-09-30 Method and system for organizing vehicle trains
PCT/SE2014/051123 WO2015047182A1 (en) 2013-09-30 2014-09-26 Method and system for the organisation of vehicle platoons
EP14850032.5A EP3053156A4 (en) 2013-09-30 2014-09-26 Method and system for the organisation of vehicle platoons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1351132A SE537598C2 (en) 2013-09-30 2013-09-30 Method and system for organizing vehicle trains

Publications (2)

Publication Number Publication Date
SE1351132A1 true SE1351132A1 (en) 2015-03-31
SE537598C2 SE537598C2 (en) 2015-07-14

Family

ID=52744114

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1351132A SE537598C2 (en) 2013-09-30 2013-09-30 Method and system for organizing vehicle trains

Country Status (3)

Country Link
EP (1) EP3053156A4 (en)
SE (1) SE537598C2 (en)
WO (1) WO2015047182A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
WO2018039114A1 (en) 2016-08-22 2018-03-01 Peloton Technology, Inc. Systems for vehicular platooning and methods therefor
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
DE102015016758A1 (en) * 2015-12-23 2017-06-29 Daimler Ag Method for moving, in particular for controlling or regulating, a vehicle convoy
EP3465371A4 (en) 2016-05-31 2019-12-18 Peloton Technology Inc. Platoon controller state machine
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10497268B2 (en) 2016-12-20 2019-12-03 Honeywell International Inc. System and method for virtual flight interval management
US10482767B2 (en) 2016-12-30 2019-11-19 Bendix Commercial Vehicle Systems Llc Detection of extra-platoon vehicle intermediate or adjacent to platoon member vehicles
SE541386C2 (en) * 2017-12-15 2019-09-10 Scania Cv Ab Method and control arrangement for arranging driving order of a platoon
KR102395308B1 (en) 2017-12-29 2022-05-09 현대자동차주식회사 Apparatus for controlling lamp of platooning vehicles and method thereof
DE102018210020A1 (en) * 2018-06-20 2019-12-24 Robert Bosch Gmbh Method for controlling a traffic flow
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
KR20200083683A (en) 2018-12-14 2020-07-09 현대자동차주식회사 Vehicle, Server communicating with the vehicle and method for controlling the same
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
CN111222535A (en) * 2019-11-18 2020-06-02 腾讯科技(深圳)有限公司 Motorcade difference degree identification method and device and storage medium
EP3836110A1 (en) * 2019-12-09 2021-06-16 Ningbo Geely Automobile Research & Development Co. Ltd. A method for autonomous control of vehicles of a transportation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899914B2 (en) * 2007-02-19 2012-03-21 トヨタ自動車株式会社 Convoy travel control device
SE1150075A1 (en) * 2011-02-03 2012-08-04 Scania Cv Ab Method and management unit in connection with vehicle trains
WO2013006826A2 (en) * 2011-07-06 2013-01-10 Peloton Technology Inc. Systems and methods for semi-autonomous vehicular convoying
US8744666B2 (en) * 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys

Also Published As

Publication number Publication date
EP3053156A1 (en) 2016-08-10
SE537598C2 (en) 2015-07-14
WO2015047182A1 (en) 2015-04-02
EP3053156A4 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
SE1351132A1 (en) Method and system for organizing vehicle trains
SE537618C2 (en) Method and system for common driving strategy for vehicle trains
SE1351125A1 (en) Method and system for handling obstacles for vehicle trains
EP3052356B1 (en) System and method for controlling a vehicle platoon with a common position-based driving strategy
EP3053154B1 (en) System and method to control a vehicle platoon with two different driving strategies
SE537482C2 (en) Method and system for common driving strategy for vehicle trains
EP3052355B1 (en) A system and a method for vehicle platoons comprising at least two vehicles.
SE1351131A1 (en) Control unit and method for controlling a vehicle in a vehicle train
DE102016003450B4 (en) Method and control unit for determining a speed profile
SE538458C2 (en) Method, apparatus and system comprising the apparatus for supporting the creation of vehicle trains
JP2019098914A (en) Pre-congestion deceleration notification apparatus
SE538817C2 (en) A method and a control unit for determining a set of velocity profiles for a platoon of grouped vehicles
JP5644373B2 (en) Information processing device
JP2015225384A (en) Drive assist system and drive assist method
EP3871058B1 (en) A method for controlling a platoon of vehicles
SE538767C2 (en) Method and control unit for determining a velocity profile for each vehicle comprised in a platoon of grouped vehicles

Legal Events

Date Code Title Description
NUG Patent has lapsed