SE537482C2 - Method and system for common driving strategy for vehicle trains - Google Patents

Method and system for common driving strategy for vehicle trains Download PDF

Info

Publication number
SE537482C2
SE537482C2 SE1351126A SE1351126A SE537482C2 SE 537482 C2 SE537482 C2 SE 537482C2 SE 1351126 A SE1351126 A SE 1351126A SE 1351126 A SE1351126 A SE 1351126A SE 537482 C2 SE537482 C2 SE 537482C2
Authority
SE
Sweden
Prior art keywords
vehicle
profile
vehicles
strategy
horizon
Prior art date
Application number
SE1351126A
Other languages
Swedish (sv)
Other versions
SE1351126A1 (en
Inventor
Assad Alam
Kuo-Yun Liang
Henrik Pettersson
Jonas Mårtensson
Karl Henrik Johansson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1351126A priority Critical patent/SE537482C2/en
Priority to DE112014004049.5T priority patent/DE112014004049T5/en
Priority to PCT/SE2014/051112 priority patent/WO2015047175A1/en
Publication of SE1351126A1 publication Critical patent/SE1351126A1/en
Publication of SE537482C2 publication Critical patent/SE537482C2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/695Coordinated control of the position or course of two or more vehicles for maintaining a fixed relative position of the vehicles, e.g. for convoy travelling or formation flight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

Sammandrag En metod och ett system (4) for aft reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet (2) for tradlos kommunikation. Systemet (4) innefattar: - en karprofilenhet (6) konfigurerad aft bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont, varvid korprofilen innehaller bOrvarden bk for fordonet fk i positioner langs vaghorisonten; - en vaxlingsprofilenhet (8) konfigurerad aft bestamma en transmissionsvaxlingsprofil far atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs horisonten. En analysenhet (7) ar konfigurerad aft bestamma en korstrategi far fordonen i fordonstaget baserat atminstone pa korprofilen och transmissionsvaxlingsprofilen for fordonet fk; aft generera en korstrategisignal som indikerar korstrategin, och aft sanda korstrategisignalen till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras enligt korstrategin. Summary A method and a system (4) for aft controlling a vehicle stay comprising at least one conductor vehicle and an additional vehicle each having a positioning unit (1) and a unit (2) for wireless communication. The system (4) comprises: - a vessel profile unit (6) configured to define a body profile for at least one vehicle fk in the vehicle stay along a vag horizon, the body profile containing the bore bk for the vehicle fk in positions along the vag horizon; a shift profile unit (8) configured to define a transmission shift profile for at least one vehicle fk in the vehicle stay based on the horizon characteristics and on vehicle specific characteristics, the shift profile containing type of changes for the vehicle fk in positions along the horizon. An analysis unit (7) is configured to determine a crossover strategy for the vehicles in the vehicle roof based at least on the carcass profile and the transmission shift profile of the vehicle fk; aft generate a cross-strategy signal indicating the cross-strategy, and aft true the cross-strategy signal to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated according to the cross-strategy.

Description

Titel Metod och system for gemensam korstrategi for fordonstag Uppfinningens omrade Den foreliggande uppfinningen hanfor sig till ett system och en metod for fordonstag dar en gemensam k6rstrategi bestams f6r fordonstaget genom att ta hansyn till en korprofil och en transmissionsvaxlingsprofil over en framtida vaghorisont. Title Field of the Invention The present invention relates to a system and method for vehicle roofs in which a common driving strategy is determined for the vehicle roof by taking into account a body profile and a transmission shift profile over a future vaginal horizon.

Uppfinningens bakgrund Trafikintensiteten är hog pa Europas storre vagar och forvantas oka framover. Den okade transporten av manniskor och gods ger inte bara upphov till trafikproblem i form av koer utan kraver aven alit mer energi som i slutanden ger upphov till utslapp av exempelvis vaxthusgaser. Ett mojligt bidrag till att losa dessa problem är att lata fordon fardas tatare i sa kallade fordonstag (platoons). Background of the Invention The traffic intensity is high on Europe's major roads and is expected to increase in the future. The increased transport of people and goods not only gives rise to traffic problems in the form of cows but also requires more energy, which in the end gives rise to emissions of, for example, greenhouse gases. A possible contribution to solving these problems is that lazy vehicles travel tatare in so-called vehicle stays (platoons).

Med fordonstag menas har ett antal fordon som kors med korta avstand mellan varandra och framfors som en enhet. De korta avstanden leder till att mer trafik kan fardas pa vagen, och aven att energif6rbrukningen f6r ett enskilt fordon minskar eftersom luftmotstandet reduceras. Fordonen i fordonstaget ' Forare utnyttjar detta valkanda faktum redan idag med en sankt trafiksakerhet som -160. En grundlaggande fraga kring fordonstag är hur tidsluckan mellan fordon kan minskas fran rekommenderade 3 sek ner till mellan 0,5 och 1 sekund utan att paverka trafiksakerheten. Med avstandssensorer och kameror kan 1 forarens reaktionstid elinnineras, en typ av teknik anvand redan idag av system som ACC (Adaptiv Cruise Control) och LKA (Lane Keeping Assistance). En begransning är dock att avstandssensorer och kameror kraver fri sikt till malet vilket gor det svart att detektera handelser mer an ett par fordon framat i Icon. En ytterligare begransning är att farthallaren inte kan reagera proaktivt, d.v.s. farthallaren kan inte reagera pa handelser som hander langre fram i trafiken som kommer att paverka trafikrytmen. By vehicle stays is meant a number of vehicles that cross at short distances between each other and drive forward as a unit. The short distances lead to more traffic on the road, and also to the energy consumption of an individual vehicle decreasing as the air resistance is reduced. The vehicle in the vehicle roof ' Drivers are already taking advantage of this elusive fact today with a holy traffic safety like -160. A fundamental question about vehicle stays is how the time gap between vehicles can be reduced from the recommended 3 seconds down to between 0.5 and 1 second without affecting road safety. With distance sensors and cameras, 1 driver's reaction time can be eliminated, a type of technology already used today by systems such as ACC (Adaptive Cruise Control) and LKA (Lane Keeping Assistance). One limitation, however, is that distance sensors and cameras require a clear view of the target, which makes it difficult to detect trades more than a couple of vehicles up front in Icon. A further limitation is that the cruise control cannot react proactively, i.e. the cruise control can not react to actions that take place further in the traffic that will affect the traffic rhythm.

En mojlighet att fà fordonen att agera proaktivt är att fà fordonen att kommunicera for att kunna utbyta information nnellan dem. En utvecklig av IEEE-standarden 802.11 for WLAN (Wireless Local Area Networks) kallad 802.11p mojliggor tradlos overforing av information nnellan fordon, och nnellan fordon och infrastruktur. Olika sorters information kan sandas till och fran fordonen, sasom fordonsparametrar och strategier. Utvecklingen av kommunikationstekniken har alltsa gjort det mojligt att designa fordon och infrastruktur som kan interagera och agera proaktivt. One way to get vehicles to act proactively is to get vehicles to communicate in order to exchange information between them. A development of the IEEE standard 802.11 for WLAN (Wireless Local Area Networks) called 802.11p enables wireless transmission of information nnellan vehicles, and nnellan vehicles and infrastructure. Different types of information can be sanded to and from the vehicles, such as vehicle parameters and strategies. The development of communication technology has thus made it possible to design vehicles and infrastructure that can interact and act proactively.

Fordon kan agera som en enhet och foljaktligen mojliggors konare avstand och ett battre globalt trafikflode. Vehicles can act as a unit and consequently the cone distance and a better global traffic flow are possible.

Manga fordon är idag aven utrustade med en farthallare fOr att underlatta fOr foraren att framfora fordonet. Den onskade hastigheten kan da stallas in av foraren genom exempelvis ett reglage i rattkonsolen, och ett farthallarsystem i fordonet paverkar sedan ett styrsystem sa att det gasar respektive bromsar fordonet for att halla den onskade hastigheten. Om fordonet är utrustat med autonnatvaxlingssystem sa andras fordonets vaxel for att fordonet ska kunna halla onskad hastighet. Many vehicles today are also equipped with a cruise control to make it easier for the driver to drive the vehicle. The desired speed can then be set by the driver through, for example, a control in the steering console, and a cruise control system in the vehicle then acts on a control system so that it accelerates or brakes the vehicle to maintain the desired speed. If the vehicle is equipped with an automatic night shifting system, the other person's vehicle's shift so that the vehicle can maintain the desired speed.

Nar farthallare anvands i backig terrang sa kommer farthallarsystemet att forsoka halla installd hastighet genom uppforsbackar. Detta far ibland till foljd att fordonet accelererar Over kronet och kanske in i en efterkommande nedforsbacke for att darefter behova bromsas fOr att inte overskrida den installda hastigheten, vilket utgor ett bransleslosande satt att framfora fordonet. Vidare paverkar naturligtvis fordonets motorstyrka och massa mojligheten att framfora fordonet branslesnalt, 2 exennpelvis paverkar en svag motor och en stor nnassa nnojligheten att halla installd hastighet i en uppforsbacke. Genom att variera fordonets hastighet i backig terrang kan bransle sparas jamfOrt med en konventionell farthallare. Om den framtida topologin Ors kand genom att fordonet har kartdata och 5 positioneringsutrustning kan sadana system goras mer robusta samt aven andra fordonets hastighet innan saker har hant vilket astadkommes med sa kallade prediktiva farthallare (Look-Ahead Cruise control, LAC). When cruise control is used in hilly terrain, the cruise control system will try to maintain the set speed through uphill slopes. This sometimes results in the vehicle accelerating over the crown and perhaps into a subsequent downhill slope and then having to be braked so as not to exceed the set speed, which constitutes an unloading way to drive the vehicle. Furthermore, of course, the vehicle's engine power and mass affect the ability to drive the vehicle in a fuel-efficient manner, 2 for example, a weak engine and a large nose affect the ability to maintain the set speed on an uphill slope. By varying the vehicle's speed in hilly terrain, fuel can be saved compared to a conventional cruise control. If the future topology Ors kand because the vehicle has map data and positioning equipment, such systems can be made more robust as well as the speed of other vehicles before things have happened, which is achieved with so-called predictive cruise control (LAC).

Da en bransleoptimal kOrstrategi ska tas fram fOr ett helt fordonstag blir dock situationen mer komplex. Ytterligare aspekter maste tas hansyn till, som bibehallet optimalt avstand, fysisk mojlig hastighetsprofil for alla fordonen med varierande massa och motorkapacitet. En ytterligare aspekt for ett fordonstag under framfart Over varierande topografi är att nar forsta fordonet har tappat fart i en uppforsbacke, aterupptar den sin sethastighet efter backen. De efterfoljande 15 fordonen som da fortfarande befinner sig i uppforsbacken kommer att tvingas accelerera i backen, vilket inte är bransleeffektivt. Det är inte heller alltid mojligt, vilket innebar att det kommer skapas luckor i fordonstaget som i sin tur maste tappas igen. Detta skapar svangningar i fordonstaget. Snarlikt beteende observeras aven under nedforsbackar, nar forsta fordonet !polar accelerera i nedforsbacken p.g.a. den stora nnassan. De efterfoljande fordonen tvingas da att accelerera innan nedforsbacken, eftersonn de forsoker bibehalla avstandet till framforvarande fordon. Efter nedfOrsbacken borjar ledarfordonet att decelerera for att aterga till sethastigheten. De efterfoljande fordonen, som fortfarande befinner sig i nedforsbacken, kommer da att tvingas bromsa for att inte orsaka en kollision, vilket inte är bransleeffektivt. However, as an industry-optimal driving strategy must be developed for an entire vehicle roof, the situation becomes more complex. Additional aspects must be taken into account, such as maintaining the optimal distance, physically possible speed profile for all vehicles with varying mass and engine capacity. An additional aspect of a vehicle roof during travel Over varying topography is that when the first vehicle has lost speed on an uphill slope, it resumes its seat speed after the hill. The subsequent 15 vehicles which are then still on the uphill slope will be forced to accelerate on the hill, which is not industry efficient. It is also not always possible, which meant that gaps will be created in the vehicle roof, which in turn must be dropped again. This creates oscillations in the vehicle stay. Similar behavior is also observed under downhills, when the first vehicle! Polar accelerates downhill due to the big nnassan. The following vehicles are then forced to accelerate before the downhill slope, as they try to maintain the distance to the vehicle in front. After the downhill slope, the leader vehicle begins to decelerate to return to the set speed. The subsequent vehicles, which are still on the downhill slope, will then be forced to brake so as not to cause a collision, which is not industry efficient.

Ett liknande problem intraffar vid kurvtagning. Gallande ett enskilt fordon kan man berakna vilken maxhastighet ett fordon bOr ha inne i kurvan baseras pa olika faktorer som t.ex. forarkomfort, tyngdpunkt, valtrisk, topologin osv, genom en prediktiv farthallare. Det är dock inte sjalvklart hur ett fordonstag bor ta kurvan. !fall det f6rsta fordonet i fordonstaget behover decelerera i kurvan fran sin sethastighet for att klara kurvan, kommer det att ateruppta sin sethastighet efter 3 kurvan. De efterfoljande fordonen som da fortfarande befinner sig i kurvan kommer att tvingas accelerera i kurvan, vilket kanske inte är mojligt utan att utsatta fordonen for risker som exennpelvis avakning. A similar problem occurs when cornering. Biling an individual vehicle, one can calculate what maximum speed a vehicle should have inside the curve based on various factors such as. driver comfort, center of gravity, roll risk, topology, etc., through a predictive cruise control. However, it is not obvious how a vehicle roof should take the curve. If the first vehicle in the vehicle roof needs to decelerate in the curve from its set speed to complete the curve, it will resume its set speed after the 3 curve. The subsequent vehicles which are then still in the curve will be forced to accelerate in the curve, which may not be possible without exposing the vehicles to risks such as, for example, awakening.

Nar ett tungt fordon fardas over varierad topografi, tappar eller akar fordonet fart beroende pa vagens lutning. Detta sker eftersom massan pa fordonet är stor, vilket medfor att motorn inte kan motverka gravitationskraften fullstandigt. Speciellt i svara uppforsbackar kan det tunga fordonet tappa extra mycket fart, da en felaktig vaxel valjs vid nedvaxling. Detta kan aven leda till all fordonet tappar sa pass mycket fart, sa att det maste stanna i uppforsbacken. When a heavy vehicle travels over varied topography, the vehicle loses or slows down depending on the inclination of the road. This is because the mass of the vehicle is large, which means that the engine cannot completely counteract the force of gravity. Especially in heavy uphill slopes, the heavy vehicle can lose extra speed, as an incorrect gear is selected when downshifting. This can also lead to all the vehicle losing so much speed, so that it must stop on the uphill slope.

Vaxlar man i en backe, tappar man saledes fart under vaxlingen. Detta kan leda till att bakomvarande fordon i ett fordonstag tror att framforvarande fordon bromsar. Eftersom fordonen i ett fordonstag ligger tatt intill varandra och varje fordon styr sin hastighet baserat pa hur de andra fordonen beter sig, kan en felaktig nedvaxling i uppf6rsbacke leda till att manga bakomvarande fordon tvingas bromsa och aven de i sin tur tappar onodigt mycket fart i uppforsbacken. Det kan alltsa uppsta en kedjereaktion p.g.a. en storning i form av fel vaxelval. Den uppenbara foljden av detta är att sakerheten kan bli ett problem och att bransleforbrukningen okar p.g.a. onodiga bronnsningar och felaktiga vaxelval. If you shift on a hill, you thus lose speed during the shift. This can lead to the vehicle behind in a vehicle roof believing that the vehicle in front is braking. Since the vehicles in a vehicle roof are placed next to each other and each vehicle controls its speed based on how the other vehicles behave, an incorrect descent downhill can lead to many vehicles behind being forced to brake and also they in turn lose unnecessarily much speed on the uphill slope. . Thus, a chain reaction may occur due to a malfunction in the form of incorrect gear selection. The obvious consequence of this is that security can become a problem and that fuel consumption increases due to unnecessary wells and incorrect gear selections.

Darfor är ratt vaxel en viktig aspekt vid backkorning och korrekt beslut maste tas om framforvarande fordon i ett fordonstag tvingas vaxla. Therefore, steering gear is an important aspect in reverse cornering and the correct decision must be made if vehicles in front of a vehicle roof are forced to shift.

I det amerikanska patentet US-6405120 later man valet av transmissionsvaxel for det egna fordonet styras av avstandet till ett framforvarande fordon och i den publicerade internationella patentansOkan WO-2013/006826 beskrivs en styranordning for ett fordonstag som bland annat anger rekommendationer avseende vaxelval. U.S. Pat. No. 6,405,120 discloses the choice of transmission shaft for one's own vehicle is controlled by the distance to a vehicle in front and the published international patent application WO-2013/006826 describes a control device for a vehicle strut which, among other things, sets recommendations for gear selection.

Fordonstag borjar, som diskuterats ovan, bli en verklighet snart och darfor nnaste nya strategier f6r vaxelval utredas, da ett fordon paverkar narliggande fordon starkt i ett fordonstag. 4 Syftet med foreliggande uppfinning är att minska inverkan pa ett fordonstag vid vaxlingar och felaktiga vaxelval av fordonen i fordonstaget och darmed minska bransleforbrukning och aven oka sakerheten. Vehicle stays are starting to become a reality soon, as discussed above, and therefore the next new strategies for gear selection are being investigated, as a vehicle strongly affects nearby vehicles in a vehicle stay. The object of the present invention is to reduce the impact on a vehicle stay in the event of shifts and incorrect gear selections of the vehicles in the vehicle stay and thereby reduce fuel consumption and also increase safety.

Sammanfattning av uppfinningen Ovan namnda syfte uppnas av uppfinningen som den definieras av de sjalvstandiga patentkraven, och f6redragna utforingsformer definieras av de osjalvstandiga patentkraven och beskrivs i den detaljerade beskrivningen. Summary of the Invention The above object is achieved by the invention as defined by the independent claims, and preferred embodiments are defined by the independent claims and are described in the detailed description.

Genom att utnyttja tradlos kommunikation mellan fordonen, antingen fordon-tillfordon kommunikation (V2V) eller fordon-till-infrastruktur kommunikation (V2I), kan fordonen meddela varandra att de utfor vaxling. Darigenom undviks onodig bromsning f6r de narliggande fordonen eftersom de är informerade att hanstighetsandringen sker pa grund av \taxiing. By utilizing wireless communication between the vehicles, either vehicle-to-vehicle communication (V2V) or vehicle-to-infrastructure communication (V2I), the vehicles can inform each other that they are performing shifting. This avoids unnecessary braking for nearby vehicles as they are informed that the change of speed is due to taxiing.

Baserat pa vane fordons egenskaper kan enligt en utforingsform en gemensam korstrategi for fordonstaget bestammas som tar hansyn till de vaxlingar sonn behover genomforas innan exempelvis en backe genom lampliga optinneringsalgoritnner, t.ex. dynannisk progrannnnering. Dynannisk progrannnnering är en generell metod for att losa konnbinatoriska optimeringsproblem. Genom att systematiskt berakna losningar till delproblem, spara dessa pa ett effektivt satt, samt att lata alla dellosningar beraknas genom att utnyttja andra dellosningar, kan man hitta effektiva algoritmer fOr annars svarlosta problem. Detta innebar, i det 25 har sammanhanget, att varje fordonsparameter och egenskaper, t.ex. maximalt motormoment, massa, vaxelladstyp osv. skickas till en analysenhet, t.ex. i ett berakningscenter eller i det f6rsta fordonet, som genomf6r berakningarna. Optimeringsalgoritmen tar hansyn till alla fordonsegenskaper samt vaglutningen och beraknar en for fordonstaget gemensam optimal korstrategi som sedan utnyttjas for att reglera fordonen i fordonstaget. Based on the characteristics of conventional vehicles, according to one embodiment, a common crossover strategy for the vehicle stay can be determined which takes into account the changes that need to be made before, for example, a hill through suitable thinning algorithms, e.g. dynamic programming. Dynamic programming is a general method for solving combinatorial optimization problems. By systematically calculating solutions to sub-problems, saving these in an efficient way, and letting all sub-solutions be calculated by using other sub-solutions, one can find effective algorithms for otherwise unresolved problems. This meant, in this context, that each vehicle parameter and characteristics, e.g. maximum engine torque, mass, gear type, etc. sent to an analysis unit, e.g. in a calculation center or in the first vehicle carrying out the calculations. The optimization algorithm takes into account all vehicle characteristics as well as the slope of the vehicle and calculates an optimal cross strategy common to the vehicle stay, which is then used to regulate the vehicles in the vehicle stay.

Alternativt kan varje individuellt fordon i fordonstaget erhalla information fran de narliggande fordonen och berakna en egen gynnsam (optimal) korstrategi utifran de narliggande fordonens predikterade beteenden. Denna strategi är mindre berakningskravande, dock skiljer den sig fran den gemensamma korstrategin 5 genom att man i den gemensamma kOrstrategin viktar sam man och beraknar vilken den mest branslesnala strategin ar for alla fordon. Alternatively, each individual vehicle in the vehicle stay can receive information from the nearby vehicles and calculate its own favorable (optimal) crossover strategy based on the predicted behaviors of the nearby vehicles. This strategy is less demanding, however, it differs from the common cross strategy 5 in that the common cross strategy weighs together and calculates which is the most industry-efficient strategy for all vehicles.

Med en gemensam korstrategi, som tar hansyn till vaxlingarna, f6r hela fordonstaget, kan fordonen kOra narmare varandra. Darigenom minskas luftmotstandet och bransleforbrukningen reduceras avsevart. Ett korrekt vaxelval leder aven i sin tur till minskad bransleforbrukning for vane fordon. For hog eller for lag vaxel under en backe leder till ett genomsnittligt hogre varvtal, som i sin tur leder till en okad bransleforbrukning. Dessutom kommer inte det optimala avstandet mellan fordonen i fordonstaget att kunna hallas om man maste utfora en oplanerad vaxling. Detta forsamrar prestandan pa fordontaget. With a common crossover strategy, which takes into account the shifts, for the entire vehicle stay, the vehicles can run closer to each other. This reduces air resistance and significantly reduces fuel consumption. A correct gear selection also in turn leads to reduced fuel consumption for used vehicles. Too high or too low gear under a hill leads to an average higher speed, which in turn leads to increased fuel consumption. In addition, the optimal distance between the vehicles in the tie rod will not be able to be tilted if you have to perform an unplanned shift. This degrades the performance of the vehicle.

Givetvis forbattras aven sakerhetsaspekterna, d.v.s. kollisionsriskerna, eftersom kedjereaktioner sannt onodiga bronnsningar kan undvikas. Of course, the security aspects are also improved, i.e. collision risks, as chain reactions of truly unnecessary wells can be avoided.

En forutsattning är att fordonstaget regleras enligt en gemensam korstrategi. Det kan vara en enkel strategi dar avstanden mellan fordonen halls vasentligen konstant. Det kan aven vara mera avancerade strategier, t.ex. dar vartdera fordonet frannfors med en prediktiv farthallare (LAC), eller dar fordonstaget framfors med en gemensam prediktiv farthallarstrategi (LAP). For samtliga varianter som nu kommer att beskrivas är en forutsattning att fordonen i fordonstaget är utrustade med en positioneringsenhet och en enhet fOr kommunikation. A prerequisite is that the vehicle stay is regulated according to a common cross-strategy. It can be a simple strategy where the distance between the vehicles is kept essentially constant. There may also be more advanced strategies, e.g. where either the vehicle is driven with a predictive cruise control (LAC), or where the vehicle roof is driven with a common predictive speed strategy (LAP). For all variants that will now be described, it is a prerequisite that the vehicles in the vehicle stay are equipped with a positioning unit and a unit for communication.

Uppfinningen baseras pa det faktum att ett fordon tappar fart i samband med \taxiing. Enligt uppfinningen anges en korstrategi for reglering av fordonen i fordonstaget som tar hansyn till detta, exem pelvis genom att lokala hastighetsvariationer tillats, t.ex. da fordonen vaxlar, och att borvardena, t.ex. 6 hastighetsborvardena, i korprofilen har anpassats med hansyn till den sankning av hastighet som sker i sam band med vaxling. The invention is based on the fact that a vehicle loses speed in connection with taxiing. According to the invention, a crossover strategy for regulating the vehicles in the vehicle tie is stated which takes this into account, for example by allowing local speed variations, e.g. when the vehicles shift, and that the drill guards, e.g. 6 velocity drilling values, in the raft profile have been adapted with regard to the reduction of velocity that takes place in connection with switching.

Genom vaxlingsprofilen och med kunskap om vaghorisonten kan man bestamma de hastighetsforandringar som en given vaxling ger upphov till och nar de intraffar i vaghorisonten. Borvardena korrigeras sa att korprofilen for varje fordon som ingar i fordonstaget tar hansyn till de hastighetsfOrandringar som vaxlingarna orsakar. Through the shifting profile and with knowledge of the vagus horizon, one can determine the velocity changes that a given shifting gives rise to and when they occur in the vagus horizon. The drill values are corrected so that the raft profile of each vehicle that enters the vehicle stay takes into account the speed changes that the gears cause.

Enligt en fOrsta aspekt innefattar uppfinningen ett system (4) fOr att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet (2) for tradlos kommunikation. Systemet (4) innefattar en korprofilenhet (6) konfigurerad att bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden bi for fordonet fk i posit ioner pi langs vaghorisonten; en vaxlingsprofilenhet (8) konfigurerad att bestamma en transmissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs vaghorisonten. Vidare innefattar systennet en analysenhet (7) som är konfigurerad att bestamma en korstrategi for fordonen i fordonstaget baserat atminstone pa kOrprofilen och transmissionsvaxlingsprofilen fOr fordonet fk; att generera en kOrstrategisignal som indikerar kOrstrategin, och att sanda korstrategisignalen till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med kOrstrategin. According to a first aspect, the invention comprises a system (4) for controlling a vehicle strut comprising at least one conductor vehicle and a further vehicle each having a positioning unit (1) and a unit (2) for wireless communication. The system (4) comprises a raft profile unit (6) configured to determine a raft profile for at least one vehicle fk in the vehicle stay along a vagal horizon of the vehicle's future wave, based on the characteristics of the vagus horizon, the raft profile containing the bore value bi of the vehicle fk at positions pi along the vagus horizon; a shift profile unit (8) configured to determine a transmission shift profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vag horizon and on vehicle specific characteristics, the shift profile containing type of gears for the vehicle fk in positions along the vag horizon. Furthermore, the system comprises an analysis unit (7) which is configured to determine a crossover strategy for the vehicles in the vehicle roof based at least on the driving profile and the transmission shift profile for the vehicle fk; to generate a cross-strategy signal indicating the cross-strategy, and to send the cross-strategy signal to all vehicles in the vehicle stay, after which the vehicles in the vehicle stay are regulated in accordance with the cross-strategy.

Enligt en andra aspekt innefattar uppfinningen en metod for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet for tradlos kommunikation (2). Metoden innefattar att bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont fOr fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden bi 7 for fordonet fk i positioner langs horisonten; att bestannnna en transmissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs 5 vaghorisonten. Vidare innefattar metoden stegen att bestamma en korstrategi fOr fordonen i fordonstaget baserat atminstone pa kOrprofilen och transmissionsvaxlingsprofilen for fordonet fk; och att meddela korstrategin till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med kOrstrateg in. According to a second aspect, the invention comprises a method of controlling a vehicle strut comprising at least one conductor vehicle and a further vehicle each having a positioning unit (1) and a unit for wireless communication (2). The method comprises determining a carcass profile for at least one vehicle fk in the vehicle roof along a vagal horizon for the vehicle's future road, based on the characteristics of the carriageway horizon, the carcass profile containing the drill bit bi 7 for the vehicle fk in positions along the horizon; to determine a transmission shift profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vag horizon and on vehicle-specific characteristics, the shift profile containing the type of shifts for the vehicle fk in positions along the vag horizon. Furthermore, the method comprises the steps of determining a crossover strategy for the vehicles in the vehicle roof based at least on the chassis profile and the transmission shift profile of the vehicle fk; and to communicate the cross-strategy to all vehicles in the vehicle stay, after which the vehicles in the vehicle stay are regulated in accordance with the cross-strategy in.

Kort beskrivning av de bifogade fig urerna Nedan komnner uppfinningen att beskrivas med hanvisning till de bifogade fig urerna, av vilka: Fig. 1 visar ett exempel pa ett fordonstag som fardas uppf6r en backe. Brief description of the accompanying figures The invention will now be described with reference to the accompanying figures, of which: Fig. 1 shows an example of a vehicle roof which is driven up a hill.

Fig. 2 visar ett exempel pa ett fordonstag som fardas i en kurva. Fig. 2 shows an example of a vehicle stay traveling in a curve.

Fig. 3 visar ett exempel pa ett fordon i ett fordonstag. Fig. 3 shows an example of a vehicle in a vehicle roof.

Fig. 4A-4D visar olika exempel pa systemets utformning. Figs. 4A-4D show different examples of the system design.

Fig. 5 visar ett flodesscherna f6r nnetoden enligt en utforingsfornn av uppfinningen. Fig. 5 shows a river section for the method according to an embodiment of the invention.

Detaljerad beskrivning av foredragna utforingsfornner av uppfinningen Definitioner LAC (Look-Ahead cruise control): En farthallare som anvander sig av information om den kommande vagens topografi och beraknar en optimal korprofil i form av en hastighetstrajektoria fOr ett fordon. KaIlas aven prediktiv farthallare. Detailed Description of Preferred Embodiments of the Invention Definitions LAC (Look-Ahead Cruise Control): A cruise control that uses information about the topography of the oncoming vehicle and calculates an optimal vehicle profile in the form of a speed trajectory for a vehicle. KaIlas is also a predictive speedster.

LAP (Look-Ahead cruise control for platoons): En kooperativ farthallare som anvander sig av information om den kommande vagens topografi och beraknar en optimal hastighetstrajektoria for alla fordon i ett fordonstag. KaIlas aven prediktiv farthallare fOr fordonstag. Reglerstrategin bestams exempelvis genom dynamisk programmering. LAP (Look-Ahead cruise control for platoons): A cooperative cruise control that uses information about the topography of the oncoming vehicle and calculates an optimal speed trajectory for all vehicles in a vehicle stay. KaIlas also predictive cruise control for vehicle roofs. The control strategy is determined, for example, by dynamic programming.

Vk: hastigheten for fordonet fk i fordonstaget med N fordon Dk,k+i - avstandet mellan fordonet fk och det bakomvarande fordonet fk+i i fordonstaget. 8 ak: lutningen for fordonet fk. Vk: the speed of the vehicle fk in the vehicle roof with N vehicle Dk, k + i - the distance between the vehicle fk and the vehicle behind fk + i in the vehicle roof. 8 ak: the slope of the vehicle fk.

V2V-kommunikation (Vehicle to vehicle): Tracilos kommunikation mellan fordon, aven kallad fordon-till-fordon kommunikation. V2V (Vehicle to vehicle) communication: Tracilo's communication between vehicles, also called vehicle-to-vehicle communication.

V21-kommunikation (Vehicle to infrastructure): Tracilos kommunikation mellan fordon och infrastruktur, exempelvis vagnod eller datorsystem. V21 communication (Vehicle to infrastructure): Tracilo's communication between vehicle and infrastructure, for example carriage or computer system.

Fig. 1 visar ett fordonstag med N tunga fordon fk som tar sig fram med sma mellanrum dk, k+1 mellan fordonen och som tar sig over en backe. Lutningen pa fordonet fk nar det kOr over backen visas som ak. Varje fordon fk är fOrsett med en mottagare och sandare for tradlosa signaler, visat delvis med en antenn. Fig. 1 shows a vehicle stay with N heavy vehicles fk which travels at small intervals dk, k + 1 between the vehicles and which crosses a hill. The inclination of the vehicle when driving over the hill is shown as ak. Each vehicle fk is equipped with a receiver and transmitter for wireless signals, shown partly with an antenna.

Fordonen fk i fordonstaget kan alltsa kommunicera med varandra genom V2Vkommunikation och till infrastruktur i form av V21-kommunikation. De olika fordonen fk har olika massor mk. The vehicles fk in the vehicle stay can thus communicate with each other through V2V communication and to infrastructure in the form of V21 communication. The different vehicles fk have different masses mk.

Fig. 2 visar ett fordonstag med N=6 tunga fordon fk som i likhet med exemplet i Fig. 1 tar sig fram med sma mellanrum dk, k+1 mellan fordonen, men som istallet tar sig igenom en kurva. Aven har är vane fordon fk forsett med en mottagare och sandare 2 (Fig. 3) f6r tradlosa signaler, och kan konnnnunicera via V2V- och V21kommunikation. Kurvan visas har med kurvradien r. Fig. 2 shows a vehicle stay with N = 6 heavy vehicles fk which, like the example in Fig. 1, travels at small intervals dk, k + 1 between the vehicles, but which instead passes through a curve. Even vehicles are accustomed to being equipped with a receiver and transmitter 2 (Fig. 3) for wireless signals, and can communicate via V2V and V21 communication. The curve shown has with the curve radius r.

Fordonstagen har vardera ett ledarfordon, d.v.s. det forsta fordonet f1. Varje fordon fk i fordonstaget har exempelvis en unik fordonsidentitet, och en fordonstagsidentitet som är gemensam f6r hela fordonstaget, f6r att kunna halla reda pa vilka fordon som ingar i fordonstaget. Data som skickas tradlost mellan 25 fordonen i fordonstaget kan taggas med dessa identiteter sa att data som tas emot kan harledas till ratt fordon. The vehicle stays each have a leader vehicle, i.e. the first vehicle f1. Each vehicle fk in the vehicle roof has, for example, a unique vehicle identity, and a vehicle roof identity that is common to the entire vehicle roof, in order to be able to keep track of which vehicles are in the vehicle roof. Data sent wirelessly between the vehicles in the vehicle stay can be tagged with these identities so that data received can be routed to the steering wheel vehicle.

I Fig. 3 visas ett exempel pa ett fordon fk i fordonstaget och hur det kan vara utrustat. Fordonet fk är forsett med en positioneringsenhet 1 som kan bestamma fordonet fk:s position. Positioneringsenheten 1 kan exempelvis vara konfigurerad att ta emot signaler Than ett globalt positioneringssystem som exempelvis GPS (Global Positioning System) eller GNSS (Global Navigation Satellite System) 9 exempelvis GLONASS, Galileo eller Compass. Positioneringsenheten 1 är konfigurerad att generera en positionssignal som innehaller fordonet fk:s position, och att sanda denna till en eller flera enheter i fordonet fk. Fordonet fk är som redan namnts aven forsett med en enhet 2 for tradlos kommunikation. Enheten 2 är konfigurerad att verka som mottagare och sandare av tradlosa signaler. Fig. 3 shows an example of a vehicle fk in the vehicle roof and how it can be equipped. The vehicle fk is provided with a positioning unit 1 which can determine the position of the vehicle fk. The positioning unit 1 can for example be configured to receive signals Than a global positioning system such as GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) 9 for example GLONASS, Galileo or Compass. The positioning unit 1 is configured to generate a position signal containing the position of the vehicle fk, and to transmit this to one or more units in the vehicle fk. As already mentioned, the vehicle fk is also equipped with a unit 2 for wireless communication. The device 2 is configured to act as a receiver and transmitter of wireless signals.

Enheten 2 kan ta emot tradlosa signaler fran andra fordon och/eller trAdlosa signaler Than infrastrukturen kring fordonet fk, och sanda tradlOsa signaler till andra fordon och/eller tradlosa signaler till infrastrukturen kring fordonet fk. De tradlosa signalerna kan innefatta fordonsparametrar fran andra fordon, exempelvis massa, 10 moment, hastighet, och aven mer komplex information som exempelvis gallande korprofil, korstrategi etc. De tradlosa signalerna kan aven innehalla information om omgivningen, exempelvis vagens lutning a, kurvradie r etc. Fordonet fk kan aven vara forsett med en eller flera detektorer 3 for att avkanna omgivningen, exempelvis en radarenhet, laserenhet, lutningsmatare etc. Dessa detektorer är i Fig. 3 generellt markerade som en detektorenhet 3, men kan alltsa utgoras av ett flertal olika detektorer placerade pa olika stallen i fordonet. Detektorenheten 3 är konfigurerad att avkanna en parameter, exempelvis ett relativt avstand, hastighet, lutning, lateral acceleration, vridning etc., och att generera en detektorsignal som innehaller parametern. Detektorenheten 3 är vidare konfigurerad att sanda detektorsignalen till en eller flera enheter i fordonet fk. Fordonet 2 kan aven vara utrustat med en kartenhet som kan ge kartinformation om den kommande vagen. FOraren kan exempelvis ange en slutposition och kartenheten kan da genom att veta fordonets nuvarande position ge relevant kartdata om den kommande vagen mellan den nuvarande positionen och slutdestinationen. Vidare visas i figur 3 ett system 4 som konnmer att beskrivas utforligt nedan. The unit 2 can receive wireless signals from other vehicles and / or wireless signals Than the infrastructure around the vehicle fk, and true wireless signals to other vehicles and / or wireless signals to the infrastructure around the vehicle fk. The wireless signals may include vehicle parameters from other vehicles, for example mass, torque, speed, and even more complex information such as gallant raft profile, crossover strategy, etc. The wireless signals may also contain information about the environment, e.g. The vehicle fk can also be provided with one or more detectors 3 for sensing the surroundings, for example a radar unit, laser unit, tilt feeder etc. These detectors are in Fig. 3 generally marked as a detector unit 3, but can thus consist of a number of different detectors placed in different places in the vehicle. The detector unit 3 is configured to sense a parameter, for example a relative distance, speed, inclination, lateral acceleration, rotation, etc., and to generate a detector signal which contains the parameter. The detector unit 3 is further configured to transmit the detector signal to one or more units in the vehicle fk. The vehicle 2 can also be equipped with a map unit that can provide map information about the upcoming road. The driver can, for example, specify an end position and the map unit can then, by knowing the current position of the vehicle, provide relevant map data about the coming road between the current position and the final destination. Furthermore, Figure 3 shows a system 4 which can be described in detail below.

Fordonet fk kommunicerar internt mellan sina olika enheter genom exempelvis en buss, exempelvis en CAN-buss (Controller Area Network) som anvander sig av ett meddelandebaserat protokoll. Exempel pa andra kommunikationsprotokoll 30 som kan anvandas ar TTP (Time-Triggered Protocol), Flexray m fl. Pa sa satt kan signaler och data som beskrivits ovan utbytas mellan olika enheter i fordonet fk. The vehicle fk communicates internally between its various units through, for example, a bus, for example a CAN bus (Controller Area Network) which uses a message-based protocol. Examples of other communication protocols that can be used are TTP (Time-Triggered Protocol), Flexray and others. In this way, signals and data described above can be exchanged between different units in the vehicle fk.

Signaler och data kan exempelvis istallet overforas tradlost nnellan de olika enheterna. Signals and data can, for example, instead be transmitted wirelessly to the various devices.

I fordonet fk finns aven helt eller delvis ett system 4 som harnast kommer att forklaras med hanvisning till figurerna 4A-4D, som visar olika exempel pa systemet 4. De streckade linjerna i figurerna indikerar att det galler tradlos overfOring av data. Generellt sa är systemet 4 till fOr att reglera fordonstaget, och att komma fram till en gemensam korstrategi for hela fordonstaget baserat pa information om den framtida vagen. Systemet 4 implementerar alltsa, enligt en utforingsform, en typ av kooperativ farthallare for fordonstaget, en LAP. Sarskilt är systemet 4 till for att reglera fordonstaget nar det Icor i backar och/eller i kurvor. Genom att ta fram en gemensann korprofil som galler for hela fordonstaget sa far man ett val organiserat fordonstag dar hansyn tas till vad som är bast for hela fordonstaget vid korning i backe och/eller kurva. In the vehicle fk there is also, in whole or in part, a system 4 which will be explained with reference to Figures 4A-4D, which show various examples of the system 4. The dashed lines in the figures indicate that there is wireless transmission of data. In general, the system is 4 to regulate the vehicle roof, and to arrive at a common cross-strategy for the entire vehicle roof based on information about the future road. The system 4 thus implements, according to one embodiment, a type of cooperative cruise control for the vehicle stay, a LAP. In particular, the system 4 is for regulating the vehicle stay when it is Icor on slopes and / or curves. By developing a common raft profile that applies to the entire vehicle roof, you get a choice of organized vehicle roof where consideration is given to what is best for the entire vehicle roof when cornering on a hill and / or curve.

I det foljande anges en beskrivning f6r en kooperativ farthallare f6r fordonstaget (LAP) baserat pa de enskilda fordonens korstrategi, exempelvis en prediktiv korstrategi LAC. LAP är en korstrategi dar det är fordelaktigt att aven ta hansyn till de hastighetsforandringar som fordonens vaxlingar ger upphov till. Dessa definieras nnera i detalj av en transnnissionsvaxlingsprofil som konnnner att beskrivas nedan. The following is a description of a cooperative cruise control for the vehicle stay (LAP) based on the individual vehicles' crossover strategy, for example a predictive crossover strategy LAC. LAP is a cross-strategy where it is advantageous to also take into account the speed changes that the vehicles' changes cause. These are defined in more detail by a transmission transmission profile which can be described below.

Systemet innefattar en vaxlingsprofilenhet 8 konfigurerad att bestamma en vaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper. Vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs horisonten, dar typ av \taxiing innefattar exempelvis att ange fran vilken vaxel och till vilken vaxel vaxlingen avser. 30 Systemet 4 innefattar vidare en analysenhet 7 som är konfigurerad att emottaga en korprofil fran en korprofilenhet 6 for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, varvid korprofilen innehaller 11 borvarden bi (till exennpel hastighetsborvarden vi, accelerationsborvarden a; eller avstandsborvarden di) for fordonet fk i positioner pi langs vaghorisonten. Analysenheten är vidare konfigurerad att ta emot en transmissionsvaxlingsprofil fran vaxlingsprofilenheten. The system comprises a shift profile unit 8 configured to determine a shift profile for at least one vehicle fk in the vehicle roof based on the characteristics of the horizon and on vehicle-specific characteristics. The gearing profile contains the type of gearing for the vehicle fk in positions along the horizon, where the type of taxiing includes, for example, indicating from which gear and to which gear the gearing refers. The system 4 further comprises an analysis unit 7 which is configured to receive a raft profile from a raft profile unit 6 for at least one vehicle fk in the vehicle roof along a vagal horizon of the vehicle's future wagon, the raft profile containing the drill bit bi (for example the speed drill bit vi, the acceleration drill bit a; the distance drill value di) for the vehicle fk in positions pi along the vag horizon. The analysis unit is further configured to receive a transmission shift profile from the shift profile unit.

Transmissionsvaxlingsprofilen innefattar information om nuvarande och foretradesvis ocksa framtida vaxlingar i vaghorisonten. Med hansyn till den framtida vagens egenskaper, t.ex. dess lutning, och exempelvis fordonets motorstyrka, bestams vaxlingspositioner i den framtida vaghorisonten. FOr respektive vaxling bestanns en vaxlingstid och en samh6rande hastighetsforandring orsakad av vaxlingen. Mera specifikt kommer vaxlingsprofilen att innehalla ett antal varden Avt som representerar hastighets-, avstands- och/eller accelerationsforandringar langs vaghorisonten. Vaxlingsprofilen är lag rad pa ett sadant satt att informationen enkelt kan mappas med information i korprofilen, dvs. hastighets-, avstands- och/eller accelerationsforandringar orsakade av vaxlingar och hastighets-, avstandsoch/eller accelerationsforandringar angivna i korprofilen kan identifieras i positioner i den framtida vaghorisonten. The transmission shift profile includes information on current and preferably also future shifts in the vaginal horizon. With regard to the properties of the future carriage, e.g. its inclination, and for example the engine power of the vehicle, are determined by shifting positions in the future vaginal horizon. For each change, there was a change time and a corresponding change in speed caused by the change. More specifically, the shift profile will contain a number of values Avt that represent changes in speed, distance and / or acceleration along the vagus horizon. The shift profile is arranged in such a way that the information can be easily mapped with information in the raft profile, ie. velocity, distance and / or acceleration changes caused by oscillations and velocity, distance and / or acceleration changes indicated in the raft profile can be identified in positions in the future vaginal horizon.

Korprofilen fran korprofilenheten 6 kan exempelvis ha bestannts av en existerande farthallare, exempelvis en LAC eller annan form av prediktiv farthallare, och meddelas till analysenheten 7. Analysenheten 7 är vidare konfigurerad att bestamma en k6rstrategi, exempelvis en positionsbaserad k6rstrategi, f6r fordonen i fordonstaget baserat atminstone pa kOrprofilen fOr fordonet fk och pa transmissionsvaxlingsprofilen for fordonet fk. Med en positionsbaserad korstrategi avses generellt en kOrstrategi dar det finns bOrvarden avseende t.ex. hastigheten som hor samman med positioner i en framtida vaghorisont. Respektive fordon i fordonstaget regleras efter de bOrvarden som hOr samman med de positioner som fordonet passerar. The crane profile from the crane profile unit 6 may, for example, have consisted of an existing cruise control, for example an LAC or other form of predictive cruise control, and be communicated to the analysis unit 7. The analysis unit 7 is further configured to determine a driving strategy, for example a position-based driving strategy. on the driving profile for the vehicle fk and on the transmission shift profile for the vehicle fk. A position-based crossover strategy generally refers to a crossover strategy where there is a barrier regarding e.g. the velocity associated with positions in a future vaginal horizon. The respective vehicles in the vehicle roof are regulated according to the boreholes that are associated with the positions that the vehicle passes.

Fordonen i fordonstaget regleras sedan i enlighet med korstrategin. The vehicles in the vehicle stay are then regulated in accordance with the cross strategy.

Analysenheten 7 är enligt en utforingsform konfigurerad att generera en korstrategisignal som indikerar korstrategin, och att sanda korstrategisignalen till 12 alla fordon i fordonstaget varefter fordonen i fordonstaget regleras i enlighet med korstrategin. Enligt en annan utforingsform sa regleras fordonen i fordonstaget efter korstrategin allteftersom den bestams, vilket kommer att fOrklaras mer i detalj i det foljande. The analysis unit 7 is according to an embodiment configured to generate a cross-strategy signal indicating the cross-strategy, and to send the cross-strategy signal to 12 all vehicles in the vehicle stay, after which the vehicles in the vehicle stay are regulated in accordance with the cross-strategy. According to another embodiment, the vehicles in the vehicle stay are regulated according to the crossover strategy as it is determined, which will be explained in more detail in the following.

Den resulterande kOrstrategin kan saledes avse antingen en positionsbaserad \taxiing, varvid namnda vaxiingar tillampas for vartdera fordonet i fOr varje \taxiing samh6rande position eller avse en tidsbaserad vaxling, varvid samtliga fordon i fordonstaget vaxiar samtidigt. The resulting cross-strategy can thus refer either to a position-based \ taxiing, wherein said waxings are applied to each vehicle in for each \ taxiing associated position or to a time-based shifting, whereby all vehicles in the vehicle stay wax at the same time.

Enligt en utforingsform är analysenheten konfigurerad att ange i korstrategisignalen att ett framforvarande fordon vaxiar och att meddela detta till ett eller flera bakomvarande fordon i fordonstaget och att ange positionen dar vaxiingen sker. According to one embodiment, the analysis unit is configured to indicate in the cross-strategy signal that a vehicle in front is waxing and to notify this to one or more vehicles behind in the vehicle stay and to indicate the position where the waxing takes place.

En korprofil for det enskilda fordonet fk kan alitsa astadkommas genom att anvanda en redan bestamd korprofil utformad av en prediktiv farthallare placerad i fordonet eller annan extern enhet. Prediktiv farthallning, aven kallad forutseende farthalining, är ett prediktivt styrschema med kunskap om nagra av de framtida storningarna, t.ex. vagtopografin. En optinnering utfors med avseende pa ett kriterium som involverar ett predikterat framtida upptradande av systemet. En optimal lOsning soks har Over problemet Over en vaghorisont, som fas genom trunkera hela k6ruppdragets horisont. Met med optimeringen är att minimera den erforderliga energin och tiden for koruppdraget, medan fordonets hastighet halls inom ett bestamt intervall. Optimeringen kan utforas med exempelvis MPC (Model Predictive Control) eller en LQR (Linear Quadratic Regulator) m.a.p. att minimera bransleatgang och tid i en kostnadsfunktion J baserat pa en olinjar dynamik- och bransleatgangsnnodell for fordonet fk, begransningar pa reglerinsignaler och begransningar pa den maximala absoluta deviationen fran 30 vaghastigheten, exempelvis 5 km/h. Ett exempel pa hur en sadan optimering kan utforas beskrivs i "Look-ahead control of heavy vehicles", E. Helistrom, Linkoping 13 University, 2010. En fordonsnnodell sonn beskriver de huvudsakliga krafterna sonn paverkar ett fordon i rorelse beskrivas dari enligt: dv int —dt = rmotor Fbroms Fluftmotstand(v) — Frulining (a) — Fgravitet(a) = itifrvif T (vve, 8) — Fbrake — -1 CDAapaV2 — C mg cos a — mg sin a, (1) rw2 dar a betecknar vagens lutning, CD och cr an karakteristiska koefficienter, g betecknar gravitationskraften, pa an luftdensiteten, r an hjulradien, och it, if, no rif an transmission och vaxelspecifika konstanter. Den accelererande fordonsmassan mt(m,Jw,Je, it, if, no rjf) beror pa bruttomassan m, hjultroghet Jw, motortroghet Je, vaxelladans utvaxling och effektivitet tont liksom den slutliga korutvaxlingen och effektiviteten if, rip Den prediktiva farthallaren LAC okar fordonets hastighet i fOrvag infor en brant uppforsbacke som da erhaller en hOgre medelhastighet nar fordonet fardas langs den branta uppf6rsbacken. Pa samma satt minskas hastigheten innan fordonet gar in i en brant nerforsbacke. Eftersom fordonets hastighet tillats att minska till minimumhastigheten i en uppf6rsbacke och alltsa vantar med att accelerera igen tappad hastighet tills efter kronet, d.v.s. pa plan vag, erhalls en branslebesparing 20 jamfort med om fordonet ska halla sethastigheten vset under uppf6rsbacken eftersom det krays mer bransle for att uppratthalla hastigheten i uppforsbacken an att ta igen hastigheten efter backen. Om uppf6rsbacken foljs av en nedf6rsbacke sa kan hastigheten hallas pa en lagre niva i uppforsbacken for att slippa bromsa i nedforsbacken for att fordonets hastighet blir f6r h6g och istallet utnyttja den potentiella energin fordonet far av sin vikt i nedforsbacken. Bade tid och bransle kan sparas. A raft profile for the individual vehicle fk can alitsa be achieved by using an already determined raft profile designed by a predictive cruise control located in the vehicle or other external unit. Predictive cruise control, also called predictive cruise control, is a predictive control scheme with knowledge of some of the future disturbances, e.g. vagtopografin. An optimization is performed with respect to a criterion that involves a predicted future behavior of the system. An optimal solution such as Over has the problem Over a vagus horizon, which phase through truncates the entire horizon of the driving mission. The goal of the optimization is to minimize the required energy and time for the chore assignment, while keeping the vehicle's speed within a certain range. The optimization can be performed with, for example, MPC (Model Predictive Control) or an LQR (Linear Quadratic Regulator) m.a.p. to minimize industry access and time in a cost function J based on a non-linear dynamics and industry access model for the vehicle fk, restrictions on control inputs and restrictions on the maximum absolute deviation from the vehicle speed, for example 5 km / h. An example of how such optimization can be performed is described in "Look-ahead control of heavy vehicles", E. Helistrom, Linkoping 13 University, 2010. A vehicle model son describes the main forces that affect a vehicle in motion is described therein according to: dv int —Dt = rmotor Fbroms Fluftmotstand (v) - Frulining (a) - Fgravitet (a) = itifrvif T (vve, 8) - Fbrake - -1 CDAapaV2 - C mg cos a - mg sin a, (1) rw2 dar a betecknar The inclination of the carriage, CD and cr an characteristic coefficients, g denote the gravitational force, pa an the air density, r an the wheel radius, and it, if, no rif an transmission and gear-specific constants. The accelerating vehicle mass mt (m, Jw, Je, it, if, no rjf) depends on the gross mass m, wheel inertia Jw, engine inertia Je, gearbox gear ratio and efficiency ton as well as the final chore gearing and efficiency if, rip The predictive cruise control LAC increases vehicle speed in front of a steep uphill slope which then obtains a higher average speed when the vehicle travels along the steep uphill slope. In the same way, the speed is reduced before the vehicle enters a steep downhill slope. Since the speed of the vehicle is allowed to decrease to the minimum speed on an uphill slope and thus is accustomed to accelerating again lost speed until after the crown, i.e. on level ground, an fuel saving of 20 is obtained compared to if the vehicle is to keep the seat speed well below the uphill slope because more fuel is required to maintain the speed on the uphill slope than to catch up with the speed after the hill. If the uphill slope is followed by a downhill slope, the speed can be kept at a lower level in the uphill slope to avoid braking on the downhill slope so that the vehicle's speed becomes too high and instead utilizes the potential energy the vehicle receives from its weight on the downhill slope. Both time and fuel can be saved.

En mindre vaglutning a kan beskrivas enligt: al < a <(2) 30 dar 14 kfTe(Smax,we)—kilv7 f(d_ iii)—k[r =>0 k. A minor vagal slope a can be described as: al <a <(2) 30 days 14 kfTe (Smax, we) —kilv7 f (d_ iii) —k [r => 0 k.

Te(coe)—kfiv7 f (di_ij)—kfr =kg. <0 är den brantaste lutning f6r vilken hastigheten kan bibehallas i en uppf6rsbacke med maximalt motormoment, och ct är den brantaste vaglutningen for vilken ett tungt fordon kan bibehalla en konstant hastighet genom utrullning och inte behova bromsa och/eller gasa. Branta backar definieras som vagsegment med en lutning utanfor intervallet i (2). Te (coe) —kfiv7 f (di_ij) —kfr = kg. <0 is the steepest slope for which the speed can be maintained on an uphill slope with maximum engine torque, and ct is the steepest slope for which a heavy vehicle can maintain a constant speed by rolling out and not having to brake and / or accelerate. Steep slopes are defined as road segments with a slope outside the range in (2).

Enligt en utforingsform innefattar systemet 4 atminstone en horisontenhet 5 och en korprofilenhet 6. Horisontenheten 5 är konfigurerad att bestamma en vaghorisont for atminstone ett fordon fk i fordonstaget med hjalp av positionsdata och kartdata av en framtida vag, som innehaller en eller flera egenskaper for den framtida vagen. Vaghorisonten kan delas in i olika vagsegment. En egenskap kan exempelvis vara att ett vagsegment i horisonten klassas som en brant uppfOrs- eller nedf6rsbacke med en lutning utanf6r intervallet i (2). Korprofilenheten 6 är konfigurerad att bestamma en kOrprofil fOr atminstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden och samhorande positioner p, for fordonet fk langs vaghorisonten. Borvardena kan exempelvis vara hastighetsborvarden vi, accelerationsborvarden ai, eller avstandsborvarden di. Systemet 4 kan alltsa vara konfigurerat att sjalvstandigt bestamma en eller flera korprofiler f6r fordonen i fordonstaget, exempelvis genom att korprofilenheten 6 bestammer en optimal hastighetskorprofil pa samma satt som den ovan beskrivna LAC:en. According to one embodiment, the system 4 comprises at least one horizon unit 5 and a corpus profile unit 6. The horizon unit 5 is configured to determine a vaginal horizon for at least one vehicle fk in the vehicle roof using position data and map data of a future vag, which contains one or more properties for the future vagen. The road horizon can be divided into different road segments. A feature may be, for example, that a road segment on the horizon is classified as a steep uphill or downhill slope with a slope outside the range in (2). The carcass profile unit 6 is configured to determine a carcass profile for at least one vehicle fk in the vehicle roof based on the characteristics of the wagon horizon, the carcass profile containing the drill guard and associated positions on, for the vehicle fk along the wagon horizon. The drilling values can be, for example, the velocity drilling value vi, the acceleration drilling value ai, or the distance drilling value di. The system 4 can thus be configured to independently determine one or more carcass profiles for the vehicles in the vehicle stay, for example by the carcass profile unit 6 determining an optimal velocity carcass profile in the same way as the LAC described above.

Systennets 4 funktion kan vara konfigurerat att sattas igang da vagen uppvisar sarskilda egenskaper som exempelvis en brant lutning eller liten kurvradie (en snav kurva). Dessa egenskaper finns reflekterade i korprofilen som tas frann genom de borvarden b, som genererats, och aven som egenskaper i vaghorisonten. Fordonen i fordonstaget fOljer van ligtvis en vaghastighet, aven kallad sethastighet vset, som är den h6gsta hastighet som hastighetsbegransningen enligt vagen tillater. Vid backar, kurvor etc. kan det vara lampligt att variera hastigheten for att uppna branslebesparingar eller forbattra eller uppratthalla sakerheten. len kurva kan det vara lampligt att sanka hastigheten ifall kurvradien är lite. Ett samband som uttrycker hur hog fordonets 5 hastighet som mest kan vara baserat pa fordonets massa och kurvradien kan anvandas f6r att rakna ut fordonens maximala hastighet i kurvan. LAC:en raknar fram optimala hastighetsborvarden vi i positioner pi, och dessa hastighetsborvarden vi kan alltsa variera Than sethastigheten vset for att uppna en branslesnal och/eller saker kOrning. Analysenheten 7 är enligt en utfOringsform konfigurerad att jamfora hastighetsborvarden vi med en sethastighet v„t och bestamma en skillnad Av mellan vi och vset. Analysenheten 7 är vidare konfigurerad att jamfora Av nned ett troskelvarde, och initiera bestamningen av den positionsbaserade korstrategin ifall Av overstiger troskelvardet. Pa sa satt kan fordonstaget regleras efter den gemensamma k6rstrategin i utvalda situationer eller under sarskilda vagsegment, och i andra fall kan fordonen i fordonstaget regleras utifran sin vanliga korprofil. Nar fordonstaget i sin helhet har kommit ur kurvan eller är uppfor respektive nedfor backen, kan alla fordonen i fordonstaget aterga till sin vanliga korprofil. 1 Fig. 4A visas ett exennpel av systennet 4, dar systennet 4 ar placerat i fordonet fk, exempelvis ledarfordonet fi. Systemet 4 kan da vara en del av en styrenhet i fordonet fi. Systemet 4 visas har innefatta en horisontenhet 5 och en kOrprofilenhet 6 som tillhandahaller en korprofil for fordonet -11 till analysenheten 7 och en vaxlingsprofilenhet 8 konfigurerad att bestamma en transmissionsvaxlingsprofil fOr atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar f6r fordonet fk i positioner langs horisonten. Kartdata och positionsdata skickas da exempelvis via det interna natverket i fordonet f1 till horisontenheten 5. Alternativt kan en befintlig LAC i fordonet fi tillhandahalla en korprofil for fordonet f1 till analysenheten 7. Systemet 4 kan istallet vara placerat i en extern enhet som exempelvis en vagnod eller ett datorsystem. Positionsdata etc. kan da skickas via V21 till den externa enheten. 16 Enligt exemplet som illustreras schennatiskt i Fig. 4A bestarnmer analysenheten 7 korstrategin att det är korprofilen f6r fordonet fi och vaxlingsprofilen f6r fi som är den utvalda korprofilen och vaxlingsprofilen f6r hela fordonstaget. K6rstrategin meddelas till fordonen i fordonstaget via en tradlos signal. Korstrategin innefattar 5 exempelvis ett meddelande med inneborden att alla fordonen i fordonstaget forutom ledarfordonet ska mata hur det framforvarande fordonet i fordonstaget beter sig och anpassa sin fart darefter fOr att uppratthalla avstandetmellan fordonen. Exempelvis kan fordonen anvanda radar f6r att bestamma det framfOrvarande fordonets hastighet. Pa sa satt kommer fordonen i fordonstaget att folja ledarfordonethastighetsprofil utan att sjalva behova vara medvetna om sjalva hastighetsprofilen. The function of the system 4 can be configured to be started when the scales have special properties such as a steep slope or small curve radius (a narrow curve). These properties are reflected in the raven profile taken from the boron values b, which are generated, and also as properties in the vaginal horizon. The vehicles in the vehicle stay usually follow a carriage speed, also called seat speed vset, which is the highest speed that the speed limit according to the carriage allows. On slopes, curves, etc., it may be appropriate to vary the speed in order to achieve industry savings or to improve or maintain safety. smooth curve, it may be appropriate to slow down the speed if the radius of curvature is small. A relationship that expresses how high the speed of the vehicle can at most be based on the mass of the vehicle and the radius of curvature can be used to calculate the maximum speed of the vehicles in the curve. The LAC brings out the optimal speed drill values we in positions pi, and these speed drill values we can thus vary Than the set speed vset to achieve an industry slalom and / or things driving. According to one embodiment, the analysis unit 7 is configured to compare the velocity drilling value vi with a set velocity v and determine a difference Av between vi and vset. The analysis unit 7 is further configured to compare Av below a threshold value, and initiate the determination of the position-based cross strategy if Av exceeds the threshold value. In this way, the vehicle roof can be regulated according to the common driving strategy in selected situations or under special road segments, and in other cases, the vehicles in the vehicle roof can be regulated based on their usual vehicle profile. When the vehicle stay in its entirety has come out of the curve or is up or down the hill, all the vehicles in the vehicle stay can return to their normal raft profile. Fig. 4A shows an example column of the sewing machine 4, where the sewing machine 4 is placed in the vehicle fk, for example the conductor vehicle fi. The system 4 can then be part of a control unit in the vehicle fi. The system 4 shown has comprised a horizon unit 5 and a body profile unit 6 which provides a body profile for the vehicle -11 to the analysis unit 7 and a shift profile unit 8 configured to determine a transmission shift profile for at least one vehicle fk in the vehicle stay based on the horizon characteristics and vehicle specification contains type of gear changes for the vehicle fk in positions along the horizon. Map data and position data are then sent, for example, via the internal network in the vehicle f1 to the horizon unit 5. Alternatively, an existing LAC in the vehicle f1 can provide a raft profile for the vehicle f1 to the analysis unit 7. The system 4 may instead be located in an external unit such as a car node or a computer system. Position data etc. can then be sent via V21 to the external device. According to the example schematically illustrated in Fig. 4A, the analysis unit 7 determines the cross strategy that it is the raft profile for the vehicle fi and the shift profile for fi which is the selected raft profile and the shift profile for the entire vehicle stay. The driving strategy is communicated to the vehicles in the vehicle roof via a wireless signal. The crossover strategy includes, for example, a message with the inboard that all vehicles in the vehicle roof except the leader vehicle must feed how the vehicle in front in the vehicle behavior behaves and adjust its speed accordingly in order to maintain the distance between the vehicles. For example, vehicles may use radar to determine the speed of the vehicle in front. In this way, the vehicles in the vehicle stay will follow the leader vehicle speed profile without having to be aware of the speed profile itself.

Enligt en utforingsform är fordonen i fordonstaget ordnade i en viss ordning, sa att det mest begransade fordonet är placerat framst i fordonstaget som ledarfordonet 15 f1, och de resterande fordonen i nedatgaende ordning sa att det minst begransade fordonet är placerat sist i fordonstaget. Pa sa satt kan man sakerstalla att alla fordon i fordonstaget klarar av ledarfordonets korprofil och vaxlingsprofil. Det mest begransade fordonet är exem pelvis det fordon som har storst massa, eller minst tillgangligt motormoment, eller en kombination av !Dada. According to one embodiment, the vehicles in the vehicle roof are arranged in a certain order, so that the most restricted vehicle is located at the front of the vehicle roof as the leader vehicle 15 f1, and the remaining vehicles in descending order said that the least restricted vehicle is located last in the vehicle boom. In this way, it can be ensured that all vehicles in the vehicle roof can withstand the corps profile and shift profile of the conductor vehicle. The most limited vehicle is, for example, the vehicle that has the largest mass, or least available engine torque, or a combination of! Dada.

Enligt en utforingsform är analysenheten 7 konfigurerad att emottaga en korprofil och en vaxlingsprofil for vartdera av ett flertal fordon i fordonstaget. Analysenheten 7 är enligt denna utf6ringsform konfigurerad att analysera kOrprofilerna tillsammans med respektive vaxlingsprofil for att bestamma en utvald kOrprofil som positionsbaserad korstrategi for fordonen i fordonstaget. Den utvalda kOrprofilen med hastighetsvarden som justerats i beroende av vaxlingsprofilens hastighetsvarden kan sedan exem pelvis meddelas till alla fordon i fordonstaget, varefter varje enskilt fordon i fordonstaget kommer att fOlja samma utvalda korprofil i samma positioner. According to one embodiment, the analysis unit 7 is configured to receive a raft profile and a shift profile for each of a plurality of vehicles in the vehicle stay. According to this embodiment, the analysis unit 7 is configured to analyze the choir profiles together with the respective shift profile in order to determine a selected choir profile as a position-based cross strategy for the vehicles in the vehicle stay. The selected choir profile with the speed value adjusted in dependence on the speed value of the shift profile can then, for example, be communicated to all vehicles in the vehicle stay, after which each individual vehicle in the vehicle stay will follow the same selected choir profile in the same positions.

Innan korprofilen meddelas till fordonen, kan positionerna pi i korprofilen mappas till verkliga positioner langs den kommande vagen, sa att fordonen i fordonstagen 17 kan reglera sin hastighet efter hastighetsborvardena vi (och/eller sitt avstand efter avstandsborvardena och/eller sin acceleration efter accelerationsborvardena) i samma verkliga positioner langs vagen. Den korprofil som avses har är en korprofil som justerats med avseende pa vaxlingsprofilen. Detta galler for alla utfOringsformer har. Before the raft profile is communicated to the vehicles, the positions pi in the raft profile can be mapped to actual positions along the coming road, so that the vehicles in the vehicle stays 17 can regulate their speed according to the speed drilling values vi (and / or their distance after the distance drilling values and / or their acceleration after the acceleration drilling values). the same real positions along the road. The raft profile referred to is a raft profile that has been adjusted with respect to the shift profile. This applies to all embodiments.

Det finns olika satt att bestarnma en utvald kOrprofil. Exempelvis kan den utvalda korprofilen bestammas att vara den korprofil som bestamts for det mest begransade fordonet i fordonstaget och da hansyn tas till vaxlingsprofilen och hastighetsvardena i vaxlingsprofilen. Exempel pa det mest begransade fordonet har beskrivits ovan. Det mest begransade fordonet kan aven bestammas att vara det fordon som har de st6rsta hastighetsfluktuationerna i sin korprofil i och/eller omkring en kommande backe och/eller kurva. For att bestamma vilken korprofil det är, som alltsa da blir den utvalda korprofilen, sà an analysenheten 7 konfigurerad att bestamma ett skillnadsvarde Av for varje korprofil som indikerar den storsta skillnaden mellan en maxhastighet vniax och minhastighet vmin, jamfora skillnadsvarden Av for de olika korprofilerna med varandra och att bestamma en utvald korprofil som har det storsta skillnadsvardet Av baserat pa jannforelsen. Maxhastigheten vmax an ett av hastighetsborvardena vi i korprofilen, och nninhastigheten vrnin är ett av hastighetsborvardena vi i korprofilen i och/eller omkring en kommande backe och/eller kurva. There are different ways to determine a selected choir profile. For example, the selected raft profile can be determined to be the raft profile determined for the most limited vehicle in the vehicle stay and then consideration is given to the shift profile and the speed values in the shift profile. Examples of the most limited vehicle have been described above. The most limited vehicle can also be determined to be the vehicle that has the largest speed fluctuations in its body profile in and / or around an upcoming hill and / or curve. To determine which chore profile it is, that is, the selected chorus profile, then the analysis unit 7 is configured to determine a difference value Av for each chorus profile indicating the largest difference between a maximum velocity vniax and minimum velocity vmin, compare the difference value Av for the different chore profiles with each other and to determine a selected corps profile that has the largest difference value of based on the comparison. The maximum speed vmax an one of the velocity drilling values we in the raft profile, and the nnin velocity vrnin is one of the velocity drilling values we in the raft profile in and / or around an upcoming hill and / or curve.

I Fig. 4B visas ett exempel pa systemet 4, i vilket en korprofil och en vaxlingsprofil bestams for vartdera fordonet i vartdera fordon fk. KOrprofilerna och vaxlingsprofilerna sands sedan till analysenheten 7 for att bestamma en positionsbaserad korstrategi baserat pa en utvald korprofil. Analysenheten 7 an har placerad i en extern enhet, och de olika korprofilerna skickas till analysenheten via V21-kommunikation. Efter att analysenheten 7 bestamt en utvald korprofil med hansyn taget till vaxlingsprofilen, meddelas korstrategin till fordonen i fordonstaget via V21-kommunikation, alltsa en eller flera tradlosa signaler. Korstrategin innefattar exempelvis ett meddelande med inneb6rden att alla fordonen i fordonstaget forutom ledarfordonet ska mata hur det 18 framforvarande fordonet i fordonstaget beter sig och anpassa sin fart darefter for att uppratthalla avstandetmellan fordonen. Exempelvis kan fordonen anvanda radar kir att bestarnma det framforvarande fordonets hastighet. Korstrategin innefattar aven ett meddelande till ledarfordonet fi att det ska folja den utvalda kOrprofilen, samt kOrprofilen i sig ifall det inte redan är ledarfordonets kOrprofil. Pa sa satt komnner fordonen i fordonstaget att folja den utvalda hastighetsprofilen utan att sjalva behova vara medvetna om vilken hastighetsprofil de ftiljer. Alternativt kan den utvalda korprofilen meddelas till alla fordonen i fordonsthget, varefter varje enskilt fordon i fordonstaget kommer att folja samma utvalda korprofil. Fig. 4B shows an example of the system 4, in which a carcass profile and a shift profile are determined for each vehicle in each vehicle fk. The chorus profiles and shift profiles are then sent to the analysis unit 7 to determine a position-based crossover strategy based on a selected chorus profile. The analysis unit 7 has been placed in an external unit, and the various corps profiles are sent to the analysis unit via V21 communication. After the analysis unit 7 has determined a selected body profile with regard to the shift profile, the cross strategy is communicated to the vehicles in the vehicle stay via V21 communication, i.e. one or more wireless signals. The crossover strategy includes, for example, a message that all vehicles in the vehicle roof, except the leader vehicle, must feed how the 18 vehicle in front in the vehicle roof behaves and adjust its speed accordingly in order to maintain the distance between the vehicles. For example, vehicles may use radar to determine the speed of the vehicle in front. The cross strategy also includes a message to the leader vehicle that it must follow the selected choir profile, as well as the choir profile itself if it is not already the leader vehicle's choir profile. In this way, the vehicles in the vehicle stay will follow the selected speed profile without having to be aware of the speed profile they are following. Alternatively, the selected raft profile can be communicated to all vehicles in the vehicle stage, after which each individual vehicle in the vehicle roof will follow the same selected raft profile.

I Fig. 40 visas ett ytterligare exempel, i vilket analysenheten 7 i systemet 4 är placerat i ett fordon, har ledar{ordonetf1. I likhet med exemplet i Fig. 4B bestams en korprofil och en vaxlingsprofil for vartdera fordonet fk. Korprofilerna och vaxlingsprofilerna sands via V2V-kommunikation till analysenheten 7 eller meddelas till analysenheten 7 for att bestamma en positionsbaserad korstrategi baserat pa en utvald korprofil. Efter att analysenheten 7 bestamt en utvald korprofil, meddelas korstrategin till fordonen i fordonstaget via V2Vkommunikation, alltsa en eller flera tradlosa signaler, samt via meddelande eller signal till fordonet fk i vilken analysenheten 7 befinner sig I, har f1. Korstrategin kan har vara densamnna som de i exemplet som illustreras i Fig. 4B. Fordonen i fordonstaget reglerar sedan sin hastighet efter den utvalda kOrprofilen. Fig. 40 shows a further example, in which the analysis unit 7 in the system 4 is placed in a vehicle, has conductor {ordonetf1. Similar to the example in Fig. 4B, a carcass profile and a gearing profile are determined for each vehicle fk. The corps profiles and switching profiles are sent via V2V communication to the analysis unit 7 or communicated to the analysis unit 7 to determine a position-based cross strategy based on a selected corps profile. After the analysis unit 7 has determined a selected corps profile, the cross strategy is communicated to the vehicles in the vehicle roof via V2V communication, i.e. one or more wireless signals, and via message or signal to the vehicle fk in which the analysis unit 7 is located I, has f1. The cross strategy may have been the same as those in the example illustrated in Fig. 4B. The vehicles in the vehicle roof then regulate their speed according to the selected car profile.

I Fig. 4D visas ett exempel pa hur en positionsbaserad strategi kan bestammas sekventiellt. Varje fordon fk är har forsett med en analysenhet 7k, eller en del av analysenheten 7. Det sista fordonet fN bestammer sin kOrprofil och vaxlingsprofil, och skickar den till analysenheten 7N-1 i det narmsta framforvarande fordonet fN-1. Fordonet fN-1 bestammer sin kOrprofil och de [Ada kOrprofilerna och vaxlingsprofilerna jamfors i analysenheten 7N-1 for att bestamma vilken av korprofilerna och vaxlingsprofilerna som ar mest begransad. Analysenheten 7 är har alltsa konfigurerad att jamfora skillnadsvarden Av sekventiellt. Hur det kan utforas har beskrivits tidigare. Den mest begransade kOrprofilen, dar hansyn tages 19 till vaxlingsprofilen, av de bada skickas sedan vidare till nasta narnnsta framforvarande fordon fN-2 for fortsatt jamforelse. Efter en sista jamforelse i ledarfordonet har en utvald korprofil som kraver storst hastighetsandringar bestamts. Ledarfordonet foljer denna utvalda korprofil, och de andra fordonen i fordonstaget fOljer direkt narmast framfOrvarande fordons hastighet i fordonstaget utan ytterligare kommunikation, genom exempelvis radaravkanning som forklaras tidigare. Som alternativ kan de andra fordonen i fordonstaget meddelas samma utvalda korprofil som de sedan foljer. Fig. 4D shows an example of how a position-based strategy can be determined sequentially. Each vehicle fk is equipped with an analysis unit 7k, or a part of the analysis unit 7. The last vehicle fN determines its vehicle profile and shift profile, and sends it to the analysis unit 7N-1 in the nearest forward vehicle fN-1. The vehicle fN-1 determines its choir profile and the [Ada choir profiles and shift profiles are compared in the analysis unit 7N-1 to determine which of the choir profiles and shift profiles is most limited. The analysis unit 7 is thus configured to compare the difference value Av sequentially. How it can be performed has been described previously. The most limited chassis profile, where the view is taken 19 to the shift profile, of the two is then sent on to the next nearest forward vehicle fN-2 for further comparison. After a final comparison in the leader vehicle, a selected corps profile that requires the greatest speed changes has been determined. The conductor vehicle follows this selected body profile, and the other vehicles in the vehicle roof follow directly the speed of the vehicle present in the vehicle roof without further communication, for example through radar detection as explained earlier. Alternatively, the other vehicles in the vehicle stay can be notified of the same selected raft profile that they then follow.

Analysenheten 7, korprofilenheten 6, vaxlingsprofilenheten 8 och horisontenheten 5 kan utgoras av en eller flera processorenheter och en eller flera minnesenheter. En processorenhet kan utgoras av en CPU (Central Processing Unit). En minnesenhet kan innefatta ett flyktigt- och/eller ett icke-flyktigt minne, exempelvis flashminne eller RAM (Random Access Memory). Processorenheten kan vara en del av en dator eller ett datorsystem, exempelvis en ECU (Electronic Control Unit), i ett fordon 2. The analysis unit 7, the crate profile unit 6, the swap profile unit 8 and the horizon unit 5 can be constituted by one or more processor units and one or more memory units. A processor unit can be a CPU (Central Processing Unit). A memory device may include a volatile and / or non-volatile memory, such as flash memory or RAM (Random Access Memory). The processor unit may be part of a computer or computer system, such as an Electronic Control Unit (ECU), in a vehicle 2.

I Fig. 5 visas ett flodesscherna f6r en nnetod f6r att reglera fordonstaget som beskrivits ovan. Metoden kan implementeras som programkod i ett datorprogram P. Progrannkoden kan fà systemet 4 att utfora nagot av stegen enligt nnetoden nar den ' Uppfinningen avser saledes aven en metod for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet och en enhet for tradlos kommunikation. Metoden innefattar att bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, dar korprofilen innehaller borvarden bi for fordonet fk i positioner langs horisonten (Al). Vidare innefattar nnetoden att bestannnna en transnnissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar fOr fordonet fk i positioner langs horisonten (A2). Baserat atminstone pa kOrprofilen och transmissionsvaxlingsprofilen fOr fordonet fk bestams en kOrstrategi for fordonen i fordonstaget (A3). Slutligen meddelas korstrategin till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med korstrategin (A4). Fig. 5 shows a river section for a method for regulating the vehicle stay as described above. The method can be implemented as a program code in a computer program P. The program code can cause the system 4 to perform some of the steps according to the method when it ' The invention thus also relates to a method for regulating a vehicle strut which comprises at least one conductor vehicle and a further vehicle which each have a positioning unit and a unit for wireless communication. The method comprises determining a carcass profile for at least one vehicle fk in the vehicle roof along a vagal horizon for the vehicle's future road, based on the characteristics of the carriageway horizon, where the carcass profile contains the drill bit bi for the vehicle fk in positions along the horizon (A1). Furthermore, the method includes determining a transmission transmission profile for at least one vehicle fk in the vehicle roof based on the characteristics of the horizon and on vehicle-specific properties, the gearing profile containing type of gears for the vehicle fk in positions along the horizon (A2). Based on at least the driving profile and the transmission gear profile for the vehicle, a driving strategy is determined for the vehicles in the vehicle roof (A3). Finally, the cross strategy is communicated to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the cross strategy (A4).

Korstrategin innefattar antingen en positionsbaserad vaxling, varvid namnda vaxlingar tillampas for vartdera fordonet i for varje \taxiing samhorande position, eller en tidsbaserad vaxling, varvid samtliga fordon i fordonstaget vaxlar vasentligen samtidigt. 15 Uppfinningen omfattar aven en datorprogramprodukt innefattande programkoden P lagrat pa ett, av en dator lasbart, medium for att utfora metodstegen som beskrivits hari. Datorprogramprodukten kan exempelvis vara en CD-skiva. The crossover strategy involves either a position-based shifting, said shifting being applied to each vehicle in each associated taxiing position, or a time-based shifting, all vehicles in the vehicle stay shifting substantially simultaneously. The invention also comprises a computer program product comprising the program code P stored on a computer readable medium for performing the method steps described herein. The computer program product may be, for example, a CD.

Ett antal olika varianter pa hur uppfinningen kan tillampas kommer nu att 20 exennplifieras. A number of different variants of how the invention may be practiced will now be exemplified.

Exempel 1 Ledarfordonet meddelar i realtid att det kommer att vaxla. 25 Ovriga fordon far samtidigt detta meddelande och kan direkt och synkront med ledarfordonet vaxla och/eller gOra en hastighetsandring som Overensstammer med den som ledarfordonet g6r i samband med vaxlingen. Detta kan vara en fOrutbestarnd hastighetsand ring under en fOrutbestarnd tidsperiod, foretradesvis relaterad till den hastighet som foreligger. Example 1 The leader vehicle announces in real time that it will shift. Other vehicles receive this message at the same time and can directly and synchronously with the leader vehicle change gears and / or make a speed change that corresponds to the one that the leader vehicle makes in connection with the change. This may be a predetermined velocity change over a predetermined period of time, preferably related to the velocity available.

Exempel 2 21 Ledarfordonet nneddelar i realtid att det kommer att vaxla. I nneddelandet ingar ocksa positionen som ledarfordonet är i da vaxlingen kommer att ske. Example 2 21 The leader vehicle divides in real time that it will shift. The division also indicates the position that the leader vehicle is in when the changeover will take place.

Ovriga fordon far samtidigt detta meddelande och kan sedan genomfora vaxlingen och/eller Ora den hastighetsandring som overensstamer med den som 5 ledarfordonet gar i samband med vaxlingen da de ovriga fordonen passerar positionen dar vaxlingen skedde. Det kan vara en forutbestamd hastighetsandring under en fOrutbestamd tidsperiod, foretradesvis relaterad till den hastighet som foreligger. 10 Exempel 3 Ledarfordonet regleras med en prediktiv farthallare (LAC) och ovriga fordon foljer samma korprofil som ledarfordonet. De ovriga fordonen foljer korprofilen positionsbaserat, dvs. samma hastighetsforandring sker for vartdera fordonet vid en forutbestamd position. Other vehicles receive this message at the same time and can then carry out the changeover and / or Ora the speed change that corresponds to that which the leader vehicle goes in connection with the changeover when the other vehicles pass the position where the changeover took place. It may be a predetermined speed change over a predetermined period of time, preferably related to the speed available. Example 3 The leader vehicle is regulated with a predictive cruise control (LAC) and other vehicles follow the same raft profile as the leader vehicle. The other vehicles follow the corps profile based on position, ie. the same speed change occurs for each vehicle at a predetermined position.

Ledarfordonet bestammer aven en transnnissionsvaxlingsprofil baserat pa en framtida vaghorisont och fordonsspecifika egenskaper. Med hansyn till den framtida vagens egenskaper, t.ex. dess lutning, och exempelvis fordonets motorstyrka, bestams vaxlingspositioner i den framtida vaghorisonten. For respektive vaxling bestanns en vaxlingstid och en samhorande hastighetsforandring orsakad av vaxlingen. Vaxlingsprofilen mappas sedan med den korprofil som LAC tagit fram for samma vaghorisont. Mera specifikt kommer vaxlingsprofilen att innehalla ett antal varden Avt som representerar hastighetsforandringar langs vaghoristonen. The conductor vehicle also determines a transmission transmission profile based on a future vaginal horizon and vehicle-specific characteristics. With regard to the properties of the future carriage, e.g. its inclination, and for example the engine power of the vehicle, are determined by shifting positions in the future vaginal horizon. For each change, there was a change time and a corresponding change in speed caused by the change. The shift profile is then mapped with the corps profile that LAC has developed for the same vaginal horizon. More specifically, the shift profile will contain a number of values Avt that represent changes in velocity along the vagus horizon.

Vid berakningarna av hastighetsbOrvardena som genomfors av det prediktiva farthallarsystemet tas hansyn aven till Avt och de beraknade hastighetsborvardena justeras darefter sa att kOrprofilen fortfarande hailer hastigheten inom uppstallda gransvarden. In the calculations of the speed bores carried out by the predictive cruise control system, the view is also taken of Avt and the calculated speed bores are then adjusted so that the choir profile still reaches the speed within the erected spruce guards.

Exempel 4 Fordonstaget framfors med en gemensann prediktiv farthallarstrategi (LAP) vilket beskrivits ovan. LAP-korprofilen har bestamts baserat pa LAC-korprofilerna for 22 vartdera fordonet enligt berakningar som forklarats i detalj, exennpelvis i sannband med beskrivningen av figur 4A. Example 4 The vehicle roof is advanced with a common predictive speedway strategy (LAP) as described above. The LAP carcass profile has been determined based on the LAC carcass profiles for each vehicle according to calculations explained in detail, for example in true relation to the description of Figure 4A.

Vartdera fordonet beraknar dessutom en transmissionsvaxlingsprofil pa samma satt som beskrivits ovan i anslutning till exempel 3. In addition, each vehicle calculates a transmission shift profile in the same manner as described above in connection with Example 3.

Dessa transmissionsvaxlingsprofiler jamfOrs med varandra. Den transmissionsvaxlingsprofil bland fordonstagens profiler som har mest paverkan pa hastigheten kommer att valjas till att galla for hela fordonstaget, dvs. fordonet som är det mest begransade fordonet kommer att valjas. Det mest begransande fordonet är exempelvis det fordon som har stOrst massa, eller minst tillgangligt motormoment, eller en kombination av !pada. These transmission shift profiles are compared with each other. The transmission shift profile among the vehicle roof profiles that has the most impact on the speed will be chosen to apply to the entire vehicle roof, ie. the vehicle that is the most limited vehicle will be selected. The most limiting vehicle is, for example, the vehicle that has the largest mass, or least available engine torque, or a combination of! Pada.

Denna transmissionsvaxlingsprofil mappas sedan med den gemensamma korprofil som LAP-farthallarsystemet bestamt och en justerad korprofil bestams som aven tar hansyn till vaxlingar. Denna justerade korprofil, dvs. korstrategin anvands sedan f6r att reglera fordonen i fordonstaget. This transmission shift profile is then mapped with the common raft profile determined by the LAP cruise control system and an adjusted raft profile determined which also takes into account changes. This adjusted raven profile, ie. the cross strategy is then used to regulate the vehicles in the vehicle stay.

Exempel Varje fordon i fordonstaget far information om ett eller flera framforvarande fordons transnnissionsvaxlingsprofil(er) sonn bestannts pa sannnna satt som beskrivits i exempel 3 och kan sedan anpassa sin korprofil med hansyn till de narliggande fordonens vaxlingar. Example Each vehicle in the vehicle roof receives information about the transmission transmission profile (s) of one or more front-wheel drive vehicles in the true manner described in Example 3 and can then adapt its body profile with regard to the changes of the adjacent vehicles.

Exempel 6 En variant av exempel 1 är att vane fordon far meddelande om en forestaende \taxiing fran ett framforvarande fordon och kan darigenom tillata, och ta hansyn till, 25 den hastighetsforandring, och samh6rande avstandsfOrandring, som det framfOrvarande fordonet uppvisar. Example 6 A variant of Example 1 is that a habitual vehicle is notified of an impending taxiing from a vehicle in front and can thereby allow, and take into account, the speed change and associated distance change which the vehicle in question exhibits.

Den fOreliggande uppfinningen är inte begransad till de ovan beskrivna utforingsformerna. Olika alternativ, modifieringar och ekvivalenter kan anvandas. The present invention is not limited to the embodiments described above. Various alternatives, modifications and equivalents can be used.

Darfor begransar inte de ovan namnda utforingsformerna uppfinningens omfattning, som definieras av de bifogade kraven. 23 Therefore, the above-mentioned embodiments do not limit the scope of the invention, which is defined by the appended claims. 23

Claims (16)

Patentkrav 1. System (4) for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet (2) for tradlos kommunikation; varvid systemet (4) innefattar: - en korprofilenhet (6) konfigurerad att bestamnna en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden bi for fordonet fk i positioner pi langs vaghorisonten;A system (4) for controlling a vehicle strut comprising at least one conductor vehicle and a further vehicle each having a positioning unit (1) and a unit (2) for wireless communication; wherein the system (4) comprises: - a carcass profile unit (6) configured to define a carcass profile for at least one vehicle fk in the vehicle roof along a vagal horizon for the vehicle's future carriage, based on the carcass profile properties, the carcass profile containing the bore value bi for the vehicle fk in positions along vaghorisonten; 1. en vaxlingsprofilenhet (8) konfigurerad att bestamma en transmissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar f6r fordonet fk i positioner langs vaghorisonten, 2. en analysenhet (7) som är konfigurerad att: - bestamma en korstrategi for fordonen i fordonstaget baserat atminstone pa korprofilen och transmissionsvaxlingsprofilen f6r fordonet fk; - generera en korstrategisignal som indikerar korstrategin, och - sanda korstrategisignalen till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med korstrategin.A shift profile unit (8) configured to determine a transmission shift profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vag horizon and on vehicle specific characteristics, the shift profile containing type of changes for the vehicle fk in positions along the vag horizon, 2. an analysis unit (7) is configured to: - determine a crossover strategy for the vehicles in the vehicle stay based at least on the carcass profile and the transmission shift profile for the vehicle fk; - generate a crossover strategy signal indicating the crossover strategy, and - true crossover strategy signal to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the crossover strategy. 2. Systemet enligt krav 1, varvid namnda korstrategi innefattar positionsbaserad \taxiing, varvid namnda vaxlingar tillampas for vartdera fordonet i for varje vaxling samhorande position.The system of claim 1, wherein said crossover strategy comprises position-based taxiing, said shifting being applied to each vehicle in a position associated with each shifting. 3. Systemet enligt krav 1, varvid namnda korstrategi innefattar tidsbaserad \taxiing, varvid samtliga fordon i fordonstaget vaxlar samtidigt.The system of claim 1, wherein said crossover strategy comprises time-based \ taxiing, wherein all vehicles in the vehicle stay shift at the same time. 4. Systemet enligt nagot av kraven 1-3, varvid namnda korstrategi innebar att lokala hastighetsvariationer finals f6r enskilda fordon i fordonstaget da \taxiing sker. 24The system according to any one of claims 1-3, wherein said cross strategy meant that local speed variations are finalized for individual vehicles in the vehicle roof when taxiing takes place. 24 5. Systemet enligt nagot av kraven 1-4, varvid namnda korstrategi är en gemensam kooperativ prediktiv farthallarstrategi for fordonstag (LAP).The system of any of claims 1-4, wherein said crossover strategy is a common cooperative predictive speedboat strategy for vehicle stays (LAP). 6. Systemet enligt krav 1, varvid analysenheten är anpassad att ange i kOrstrategisignalen att ett framforvarande fordon vaxlar och att meddela detta till ett eller flera bakomvarande fordon i fordonstaget och att ange positionen dar vaxlingen sker.The system of claim 1, wherein the analysis unit is adapted to indicate in the course strategy signal that a vehicle in front is shifting and to notify this to one or more vehicles behind in the vehicle roof and to indicate the position where the shifting takes place. 7. Systemet enligt nagot av kraven 1-6, varvid typ av vaxling innefattar att ange fran vilken vaxel och till vilken vaxel vaxlingen avser.The system of any one of claims 1-6, wherein the type of waxing comprises indicating from which wax and to which wax the waxing refers. 8. Metod for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet for tradlos kommunikation (2), metoden innefattar att: bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden bi for fordonet fk i positioner langs horisonten; - bestarnma en transmissionsvaxlingsprofil for atnninstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk positioner langs vaghorisonten, 1. bestamma en korstrategi for fordonen i fordonstaget baserat atminstone pa korprofilen och transmissionsvaxlingsprofilen for fordonet fk; 2. meddela korstrategin till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med korstrategin.A method of controlling a vehicle stay comprising at least one conductor vehicle and a further vehicle each having a positioning unit (1) and a unit for wireless communication (2), the method comprising: determining a body profile of at least one vehicle fk in the vehicle stay along a vaginal horizon for the vehicle's future vaginal, based on the characteristics of the vaginal horizon, the core profile containing the drill bit bi for the vehicle fk in positions along the horizon; determine a transmission shift profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vehicle horizon and on vehicle-specific characteristics, the gearing profile contains type of gear changes for the vehicle fk positions along the vehicle horizon, 1. determine a cross strategy for the vehicles in the vehicle roof based on fk; 2. communicate the crossover strategy to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the crossover strategy. 9. Metoden enligt krav 8, varvid namnda korstrategi innefattar positionsbaserad \taxiing, varvid namnda vaxlingar tillampas for vartdera fordonet i for varje vaxling samhorande position.The method of claim 8, wherein said crossover strategy comprises position-based taxiing, said shifting being applied to each vehicle in a position associated with each shifting. 10. Metoden enligt krav 8, varvid nannnda k6rstrategi innefattar tidsbaserad vaxling, varvid samtliga fordon i fordonstaget vaxiar vasentligen samtidigt.The method of claim 8, wherein said driving strategy comprises time-based shifting, wherein all vehicles in the vehicle stay wax substantially simultaneously. 11. Metoden enligt nagot av kraven 8-10, varvid namnda korstrategi innebar att lokala hastighetsvariationer finals f6r enskilda fordon i fordonstaget da \taxiing sker.The method according to any one of claims 8-10, wherein said crossing strategy meant that local speed variations are finalized for individual vehicles in the vehicle roof when taxiing takes place. 12. Metoden enligt nagot kraven 8-11, varvid namnda kOrstrategi är en gemensam kooperativ prediktiv farthallarstrategi f6r fordonstag (LAP).The method according to any of claims 8-11, wherein said driving strategy is a common cooperative predictive speedboat strategy for vehicle roofs (LAP). 13. Metoden enligt krav 8, varvid korstrategin innefattar att ett framforvarande fordon meddelar ett eller fiera bakomvarande fordon i fordonstaget att \taxiing sker och anger positionen dar vaxiingen sker.The method of claim 8, wherein the crossover strategy comprises that a forward vehicle notifies one or more rear vehicles in the vehicle stay that taxiing is taking place and indicates the position where the waxing is taking place. 14. Metoden enligt nagot av kraven 8-13, varvid typ av vaxling innefattar att ange fran vilken vaxel och till vilken vaxel vaxiingen avser.The method of any of claims 8-13, wherein the type of waxing comprises indicating from which wax and to which wax the waxing refers. 15. Datorprogram (P) vid ett system (4), dar namnda datorprogram (P) innefattar program kod for att fà systennet (4) att utfora nagot av stegen enligt patentkraven 8-14.A computer program (P) in a system (4), wherein said computer program (P) comprises program code for causing the system (4) to perform some of the steps of claims 8-14. 16. Datorprogramprodukt innefattande en programkod lagrat pa ett, av en dator lasbart, medium for att utfora metodstegen enligt nagot av patentkraven 825 14. 26 1/4A computer program product comprising a program code stored on a computer readable medium for performing the method steps of any of claims 825 14. 26 1/4
SE1351126A 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains SE537482C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1351126A SE537482C2 (en) 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains
DE112014004049.5T DE112014004049T5 (en) 2013-09-30 2014-09-26 Method and system for a common driving strategy for vehicles
PCT/SE2014/051112 WO2015047175A1 (en) 2013-09-30 2014-09-26 Method and system for a common driving strategy for vehicle platoons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1351126A SE537482C2 (en) 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains

Publications (2)

Publication Number Publication Date
SE1351126A1 SE1351126A1 (en) 2015-03-31
SE537482C2 true SE537482C2 (en) 2015-05-12

Family

ID=52744108

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1351126A SE537482C2 (en) 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains

Country Status (3)

Country Link
DE (1) DE112014004049T5 (en)
SE (1) SE537482C2 (en)
WO (1) WO2015047175A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US20180210463A1 (en) 2013-03-15 2018-07-26 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
WO2016168213A2 (en) * 2015-04-13 2016-10-20 Honeywell International, Inc. System and approach for vehicle cruise control
EP3465371A4 (en) 2016-05-31 2019-12-18 Peloton Technology Inc. Platoon controller state machine
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
JP6690056B2 (en) 2016-08-22 2020-04-28 ぺロトン テクノロジー インコーポレイテッド Control system architecture for motor vehicle
DE102016224108A1 (en) * 2016-12-05 2018-06-07 Robert Bosch Gmbh Method and apparatus for providing a signal for operating at least two vehicles
DE102016224396A1 (en) * 2016-12-07 2018-06-07 Volkswagen Aktiengesellschaft Method and control unit for controlling a powertrain of an ego vehicle
US10073464B2 (en) 2016-12-30 2018-09-11 Bendix Commercial Vehicle Systems Llc Varying the distance between vehicles in a platoon
DE102017202551A1 (en) * 2017-02-16 2018-08-16 Robert Bosch Gmbh Method and apparatus for providing a signal for operating at least two vehicles
US10551842B2 (en) * 2017-06-19 2020-02-04 Hitachi, Ltd. Real-time vehicle state trajectory prediction for vehicle energy management and autonomous drive
JP6822386B2 (en) * 2017-11-30 2021-01-27 トヨタ自動車株式会社 Formation running system
DE112017008199T5 (en) 2017-12-13 2020-07-30 Ford Global Technologies, Llc RANGE-BASED ORDER OF A VEHICLE PLATOON
WO2019118833A1 (en) 2017-12-14 2019-06-20 Cummins Inc. Interfaces for engine controller and platooning controller
US11511746B2 (en) 2018-05-11 2022-11-29 Volvo Truck Corporation Method for establishing a path for a vehicle
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
CN112969975B (en) * 2018-10-25 2024-06-07 沃尔沃卡车集团 Method for controlling a train of vehicles
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
DE102019208142B3 (en) * 2019-06-05 2020-11-12 Volkswagen Aktiengesellschaft Method for specifying a driving strategy and vehicle
DE102019134499A1 (en) * 2019-12-16 2021-06-17 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Method and device for determining the driving behavior of a vehicle within a platoon, as well as a vehicle with such a device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277837B2 (en) * 1996-03-15 2002-04-22 トヨタ自動車株式会社 Transmission control device
US6405120B1 (en) * 1999-05-20 2002-06-11 Nissan Motor Co., Ltd. Vehicular velocity controlling apparatus and method to follow up a preceding vehicle running ahead of vehicle
JP3661496B2 (en) * 1999-06-15 2005-06-15 日産自動車株式会社 Preceding vehicle tracking control device
DE19949448A1 (en) * 1999-10-14 2001-05-03 Daimler Chrysler Ag Vehicle control system determines drive state variables and operating values of vehicles based on received signals representing drive state variable and operating value of front vehicle
DE102006042419A1 (en) * 2006-09-09 2008-03-27 Zf Friedrichshafen Ag Predictive driving with ACC
US8086396B1 (en) * 2006-12-07 2011-12-27 Itt Manufacturing Enterprises, Inc. Close-spaced leader-follower navigation using control mimic
GB2455584A (en) * 2007-12-15 2009-06-17 Anatolijs Fjodorovics Distance based traffic control system for a vehicle
JP4983732B2 (en) * 2008-06-20 2012-07-25 アイシン・エィ・ダブリュ株式会社 Driving support device, driving support method, and driving support program

Also Published As

Publication number Publication date
SE1351126A1 (en) 2015-03-31
DE112014004049T5 (en) 2016-08-11
WO2015047175A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
SE537482C2 (en) Method and system for common driving strategy for vehicle trains
SE1351128A1 (en) Method and system for common driving strategy for vehicle trains
SE1351125A1 (en) Method and system for handling obstacles for vehicle trains
EP1885576B1 (en) Cruise control for a motor vehicle
EP3052356B1 (en) System and method for controlling a vehicle platoon with a common position-based driving strategy
CN102458943B (en) Method and module for determining of velocity reference values for a vehicle control system
KR101601891B1 (en) Method and module for determining of reference values for a vehicle control system
SE1351132A1 (en) Method and system for organizing vehicle trains
EP3053154B1 (en) System and method to control a vehicle platoon with two different driving strategies
CN102803039B (en) Method and module for controlling a velocity of a vehicle
KR101578502B1 (en) Method and module for determining of at least one reference value
CN102803040B (en) For determining method and the module of the reference value of vehicle control system
SE537469C2 (en) A system and method for correcting map data and vehicle train position data
WO2015047179A1 (en) Control unit and method to control a vehicle in a vehicle platoon based on the predicted behaviour of the preceeding vehicle
CN102458944A (en) Method and module for determining of velocity reference values for a vehicle control system
CN102458952B (en) Module for determining of reference values for a vehicle control system
SE1151248A1 (en) Method and module for determining at least one reference value for a control system in a vehicle
CN102481932B (en) System and method for maintaining driving times
SE1451022A1 (en) Control unit and method for controlling the speed of a vehicle in a distance controlled vehicle train when reversing
CN112969975B (en) Method for controlling a train of vehicles
EP4246486A1 (en) Non-selfish traffic lights passing advisory systems
CN114599564A (en) Determining a trajectory of a first vehicle taking into account a driving behavior of a second vehicle

Legal Events

Date Code Title Description
NUG Patent has lapsed