SE1351126A1 - Method and system for common driving strategy for vehicle trains - Google Patents

Method and system for common driving strategy for vehicle trains Download PDF

Info

Publication number
SE1351126A1
SE1351126A1 SE1351126A SE1351126A SE1351126A1 SE 1351126 A1 SE1351126 A1 SE 1351126A1 SE 1351126 A SE1351126 A SE 1351126A SE 1351126 A SE1351126 A SE 1351126A SE 1351126 A1 SE1351126 A1 SE 1351126A1
Authority
SE
Sweden
Prior art keywords
vehicle
profile
vehicles
strategy
horizon
Prior art date
Application number
SE1351126A
Other languages
Swedish (sv)
Other versions
SE537482C2 (en
Inventor
Assad Alam
Kuo-Yun Liang
Henrik Pettersson
Jonas Mårtensson
Karl Henrik Johansson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1351126A priority Critical patent/SE537482C2/en
Priority to DE112014004049.5T priority patent/DE112014004049T5/en
Priority to PCT/SE2014/051112 priority patent/WO2015047175A1/en
Publication of SE1351126A1 publication Critical patent/SE1351126A1/en
Publication of SE537482C2 publication Critical patent/SE537482C2/en

Links

Classifications

    • G05D1/695
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles

Abstract

27 Sammandrag En metod och ett system (4) for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet (2) for tradlos kommu §nikation. Systemet (4) innefattar:- en korprofilenhet (6) konfigurerad att bestamma en korprofil f6r atminstone ett fordon fk i fordonstaget langs en vaghorisont, varvid kOrprofilen innehaller borvarden bk for fordonet fk i positioner langs vaghorisonten; - en vaxlingsprofilenhet (8) konfigurerad att bestamma en transmissionsvaxlingsprofil fOr atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs horisonten. En analysenhet (7) är konfigurerad att bestamma en korstrategi for fordonen i fordonstaget baserat atminstone pa korprofilen och transmissionsvaxlingsprofilen for fordonet fk; att generera en korstrategisignal som indikerar korstrategin, och att sanda korstrategisignalen till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras enligt k6rstrategin. (Figur 4A) 27 Summary A method and a system (4) for regulating a vehicle stay comprising at least one conductor vehicle and an additional vehicle each having a positioning unit (1) and a unit (2) for wireless communication. The system (4) comprises: - a raft profile unit (6) configured to determine one body profile for at least one vehicle fk in the vehicle roof along a vag horizon, the choir profile containing the drill bit bk for the vehicle fk in positions along the vag horizon; a shift profile unit (8) configured to determine a transmission shift profile for at least one vehicle fk in the vehicle stay based on the characteristics of the horizon and of vehicle-specific characteristics, whereby the waxing profile contains the type of waxing for the vehicle fk in positions along the horizon. An analysis unit (7) is configured to determine a crossover strategy for the vehicles in the vehicle roof based at least on the carcass profile and the transmission shift profile of the vehicle fk; to generate a cross strategy signal such as indicates the cross strategy, and to send the cross strategy signal to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated according to the driving strategy. (Figure 4A)

Description

Titel Metod och system for gemensam korstrategi for fordonstag Uppfinningens omrade Den foreliggande uppfinningen hanfor sig till ett system och en metod for fordonstag dar en gemensam korstrategi bestams for fordonstaget genom att ta hansyn till en kOrprofil och en transmissionsvaxlingsprofil over en framtida vaghorisont. Title Method and system for common cross strategy for vehicle roofs FIELD OF THE INVENTION The present invention relates to a system and a method for vehicle roof where a common cross-strategy is determined for the vehicle roof by taking into account a choir profile and a transmission shift profile over a future vaginal horizon.

Uppfinningens bakgrund Trafikintensiteten är hog pa Europas storre vagar och forvantas oka framover. Den okade transporten av manniskor och gods ger inte bara upphov till trafikproblem i form av koer utan kraver aven alit mer energi som i slutanden ger upphov till utslapp av exempelvis vaxthusgaser. Ett nnojligt bidrag till att losa dessa problem är att lata fordon fardas tatare i sa kallade fordonstag (platoons). Background of the invention Traffic intensity is high on Europe's major roads and is expected to increase in the future. The increased transport of people and goods not only gives rise to traffic problems in the form of cows but also requires more energy, which in the end gives rise to emissions of greenhouse gases, for example. A nice contribution to solve these problems are that lazy vehicles travel tatars in so-called platoons.

Med fordonstag menas har ett antal fordon som '<ors med korta avstand mellan varandra och framfors som en enhet. De korta avstanden leder till att mer trafik kan fardas pa vagen, och aven att energif6rbrukningen f6r ett enskilt fordon minskar eftersom luftmotstandet reduceras. Fordonen i fordonstaget '<ors med en autonnatiserad styrning for fordonens hastighet och/eller rattstyrning. Detta medfor att fordonsforare sasom lastbilschaufforer blir avlastade, olyckor baserat pa felaktiga manniskobeslut minskas och bransleforbrukningen kan reduceras. Studier visar att bransleatgangen f6r det ledande fordonet i fordonstaget kan reduceras med 2 till 10 (:)/0 och fOr det fOljande fordonet 15 till 20 (:)/0 jamfort med ett ensamt fordon. Detta under forutsattning att avstandet mellan fordonen är 8- 16 meter och att de fardas i 80 km/h. Den minskade bransleatgangen ger en motsvarande reduktion i CO2 utslaPP. By vehicle stays is meant having a number of vehicles which are carried at short distances between each other and driven as a unit. The short distances lead to more traffic on the road, and also to the energy consumption of an individual vehicle being reduced as air resistance is reduced. The vehicles in the vehicle roof '<ors with a autonomous steering for vehicle speed and / or steering. This entails that vehicle drivers such as truck drivers are relieved, accidents based on incorrect human decisions are reduced and fuel consumption can be reduced. Studies show that the industry access for the leading vehicle in the vehicle stay can be reduced by 2 to 10 (:) / 0 and for the following vehicle 15 to 20 (:) / 0 compared to a lonely vehicle. This is provided that the distance between the vehicles is 8- 16 meters and that they travel at 80 km / h. The reduced industry access results in a corresponding reduction in CO2 emissions.

Forare utnyttjar della valkanda faktum redan idag med en sankt trafiksakerhet som foljd. En grundlaggande Maga kring fordonstag är hur tidsluckan mellan fordon kan minskas fran rekommenderade 3 sek ner till mellan 0,5 och 1 sekund utan att paverka trafiksakerheten. Med avstandssensorer och kameror kan forarens reaktionstid elinnineras, en typ av teknik anvand redan idag av system som ACC (Adaptiv Cruise Control) och LKA (Lane Keeping Assistance). En begransning är dock att avstandssensorer och kameror kraver fri sikt till malet vilket Or det svart att detektera handelser mer an ett par fordon framat i Icon. En ytterligare begransning är att farthallaren inte kan reagera proaktivt, d.v.s. farthallaren kan inte reagera pa handelser som hander langre fram i trafiken som kommer att paverka trafikrytmen. Drivers are already taking advantage of this fact today with a sacred traffic safety as a result. A basic Maga around vehicle roofs is how the time gap between vehicles can be reduced from the recommended 3 sec down to between 0.5 and 1 second without affecting road safety. With distance sensors and cameras can the driver's reaction time is eliminated, a type of technology already used today by systems such as ACC (Adaptive Cruise Control) and LKA (Lane Keeping Assistance). One limitation, however, is that distance sensors and cameras require a clear view of the target, which means that it is difficult to detect trades more than a couple of vehicles at the front of the Icon. One further limitation is that the cruise control cannot react proactively, i.e. the cruise control cannot react to actions that take place further in the traffic that will affect the traffic rhythm.

En mojlighet att fa fordonen att agera proaktivt är att fa fordonen att kommunicera f6r att kunna utbyta information nnellan denn. En utvecklig av IEEE-standarden 802.11 for WLAN (Wireless Local Area Networks) kallad 802.11p mojliggor tradlos overforing av information nnellan fordon, och nnellan fordon och infrastruktur. Olika sorters information kan sandas till och fran fordonen, sasom fordonsparametrar och strategier. Utvecklingen av kommunikationstekniken har alltsa gjort det mojligt att designa fordon och infrastruktur som kan interagera och agera proaktivt. One way to get vehicles to act proactively is to get vehicles to communicate to be able to exchange information nnellan denn. A developer of the IEEE standard 802.11 for WLAN (Wireless Local Area Networks) called 802.11p enables wireless transmission of information nnellan vehicles, and nnellan vehicles and infrastructure. Different types of information can be sanded to and from the vehicles, such as vehicle parameters and strategies. The development of communication technology has thus made it possible to design vehicles and infrastructure that can interact and act proactively.

Fordon kan agera som en enhet och foljaktligen mojliggors kortare avstand och ett battre globalt trafikflode. Vehicles can act as a unit and consequently shorter distances and a better global traffic flow are possible.

Manga fordon är idag aven utrustade med en farthallare for att underlatta fOr 20 f6raren att framf6ra fordonet. Den 6nskade hastigheten kan da stallas in av foraren genom exempelvis ett reglage i rattkonsolen, och ett farthallarsystem i fordonet paverkar sedan ett styrsystem sa att det gasar respektive bromsar fordonet for att halla den onskade hastigheten. Om fordonet är utrustat med automatvaxlingssystem sa andras fordonets vaxel for att fordonet ska kunna halla onskad hastighet. Many vehicles today are also equipped with a cruise control to facilitate driving The driver to drive the vehicle. The desired speed can then be set by the driver through, for example, a control in the steering console, and a cruise control system in the vehicle then acts on a control system so that it accelerates or brakes the vehicle to maintain the desired speed. If the vehicle is equipped with an automatic shifting system, the other person's vehicle's gearbox so that the vehicle can keep desired speed.

Nar farthallare anvands i backig terrang sa kommer farthallarsystemet att forsoka halla installd hastighet genonn uppforsbackar. Detta far ibland till -160 att fordonet accelererar over kronet och kanske in i en efterkommande nedforsbacke for att darefter behova bromsas f6r att inte overskrida den installda hastigheten, vilket utgor ett bransleslosande satt att framfora fordonet. Vidare paverkar naturligtvis fordonets motorstyrka och massa mojligheten att framfora fordonet branslesnalt, exennpelvis paverkar en svag motor och en stor massa mojligheten att halla installd hastighet i en uppforsbacke. Genom att variera fordonets hastighet i backig terrang kan bransle sparas jamfort med en konventionell farthallare. Om den framtida topologin Ors kand genom att fordonet har kartdata och 5 positioneringsutrustning kan sadana system goras mer robusta samt aven andra fordonets hastighet innan saker har hant vilket astadkommes med sa kallade prediktiva farthallare (Look-Ahead Cruise control, LAC). When cruise control is used in hilly terrain, the cruise control system will try to maintain the set speed through uphill slopes. This sometimes leads to -160 that the vehicle accelerates over the crown and perhaps into a subsequent downhill to then need to be braked so as not to exceed the set speed, which constitutes an industry-free way of driving the vehicle. Furthermore, of course, the engine power and mass of the vehicle affect the ability to drive the vehicle in a commercial manner. for example, a weak engine and a large mass affect the ability to maintain the installed speed on an uphill slope. By varying the vehicle's speed in hilly terrain, fuel can be saved at the same time as a conventional cruise control. About the future topology Ors kand by the vehicle has map data and 5 positioning equipment, such systems can be made more robust as well as the speed of other vehicles before things have happened, which is achieved with so-called predictive cruise control (Look-Ahead Cruise control, LAC).

Da en bransleoptimal kOrstrategi ska tas fram fOr ett helt fordonstag blir dock situationen mer komplex. Ytterligare aspekter maste tas hansyn till, som bibehallet optimalt avstand, fysisk mojlig hastighetsprofil for alla fordonen med varierande massa och motorkapacitet. En ytterligare aspekt f6r ett fordonstag under framfart Over varierande topografi är att nar forsta fordonet har tappat fart i en uppforsbacke, aterupptar den sin sethastighet efter backen. De efterfoljande 15 fordonen som da fortfarande befinner sig i uppforsbacken kommer att tvingas accelerera i backen, vilket inte är bransleeffektivt. Det är inte heller alltid mojligt, vilket innebar att det kommer skapas luckor i fordonstaget som i sin tur maste tappas igen. Detta skapar svangningar i fordonstaget. Snarlikt beteende observeras aven under nedforsbackar, nar forsta fordonet borjar accelerera i nedfOrsbacken p.g.a. den stora nnassan. De efterfoljande fordonen tvingas da att accelerera innan nedforsbacken, eftersom de forsoker bibehalla avstandet till framforvarande fordon. Efter nedforsbacken borjar ledarfordonet att decelerera for att aterga till sethastigheten. De efterfoljande fordonen, som fortfarande befinner sig i nedforsbacken, kommer da att tvingas bromsa fOr att inte orsaka en kollision, vilket inte är bransleeffektivt. However, as an industry-optimal driving strategy must be developed for an entire vehicle roof the situation more complex. Additional aspects must be taken into account, such as maintained optimal distance, physically possible speed profile for all vehicles with varying mass and engine capacity. A further aspect of a vehicle roof during travel Over varying topography is that when the first vehicle has lost speed on an uphill slope, it resumes its seat speed after the hill. The subsequent The vehicles that are then still on the uphill slope will be forced to accelerate on the hill, which is not industry efficient. It is also not always possible, which meant that gaps will be created in the vehicle roof which in turn must be dropped again. This creates oscillations in the vehicle stay. Similar behavior is also observed under downhill slopes when the first vehicle begins to accelerate in nedfOrsbacken p.g.a. the big nnassan. The subsequent vehicles are then forced to accelerate before the downhill slope, as they try to maintain the distance to the vehicle in front. After the downhill slope, the leader vehicle begins to decelerate to return to the set speed. The subsequent vehicles, which are still on the downhill slope, will then be forced to brake so as not to cause a collision, which is not industry efficient.

Ett liknande problem intraffar vid kurvtagning. Gallande ett enskilt fordon kan man berakna vilken maxhastighet ett fordon bOr ha inne i kurvan baseras pa olika faktorer som t.ex. forarkomfort, tyngdpunkt, valtrisk, topologin osv, genom en prediktiv farthallare. Det är dock inte sjalvklart hur ett fordonstag bor ta kurvan. !fall det forsta fordonet i fordonstaget behover decelerera i kurvan fran sin sethastighet for att klara kurvan, kommer det att ateruppta sin sethastighet efter kurvan. De efterfoljande fordonen som da fortfarande befinner sig i kurvan kommer att tvingas accelerera i kurvan, vilket kanske inte är mojligt utan att utsatta fordonen for risker som exempelvis avakning. A similar problem occurs when cornering. Galling an individual vehicle is possible calculate what maximum speed a vehicle should have inside the curve is based on various factors such as. driver comfort, center of gravity, roll risk, topology, etc., through a predictive cruise control. However, it is not obvious how a vehicle roof should take the curve. If the first vehicle in the tie rod needs to decelerate in the curve from its seat speed to complete the curve, it will resume its seat speed after curve. The subsequent vehicles which are then still in the curve will be forced to accelerate in the curve, which may not be possible without exposing the vehicles to risks such as awakening.

Nar ett tungt fordon fardas over varierad topografi, tappar eller Okar fordonet fart beroende pa vagens lutning. Detta sker eftersom massan pa fordonet är stor, vilket nnedfor att motorn inte kan motverka gravitationskraften fullstandigt. Speciellt i svara uppforsbackar kan det tunga fordonet tappa extra mycket fart, da en felaktig vaxel valjs vid nedvaxling. Detta kan aven leda till att fordonet tappar sa pass mycket fart, sa att det maste stanna i uppforsbacken. When a heavy vehicle travels over varied topography, the vehicle loses or increases speed depending on the inclination of the carriage. This is because the mass of the vehicle is large, which means that the engine cannot completely counteract the force of gravity. Especially in heavy uphill slopes, the heavy vehicle can lose extra speed, as an incorrect gear is selected when downshifting. This can also lead to the vehicle losing so much speed, said that it must stay on the uphill slope.

Vaxlar man i en backe, tappar man saledes fart under vaxlingen. Detta kan leda till att bakomvarande fordon i ett fordonstag tror att framforvarande fordon bromsar. Eftersom fordonen i ett fordonstag ligger tatt intill varandra och varje 15 fordon styr sin hastighet baserat pa hur de andra fordonen beter sig, kan en felaktig nedvaxling i uppf6rsbacke leda till att manga bakomvarande fordon tvingas bromsa och aven de i sin tur tappar onodigt mycket fart i uppforsbacken. Det kan alltsa uppsta en kedjereaktion p.g.a. en st6rning i form av fel vaxelval. Den uppenbara foljden av detta är att sakerheten kan bli ett problem och att branslefOrbrukningen akar p.g.a. onodiga bronnsningar och felaktiga vaxelval. If you shift on a hill, you thus lose speed during the shift. This can lead to vehicles behind in a vehicle roof believing that vehicles in front are braking. Because the vehicles in a vehicle stay are taken next to each other and each 15 vehicles control their speed based on how the other vehicles behave, an incorrect downshift on the uphill slope can lead to many vehicles behind being forced to brake and also they in turn lose unnecessarily much speed on the uphill slope. Thus, a chain reaction may occur due to a disturbance in the form of incorrect gear selection. The obvious consequence of this is that security can become a problem and that industry Consumption akar p.g.a. unnecessary burns and incorrect gear selections.

Darfor är ratt vaxel en viktig aspekt vid backkorning och korrekt beslut maste tas om framforvarande fordon i ett fordonstag tvingas vaxla. Therefore, steering gear is an important aspect in reverse cornering and the correct decision must be made if vehicles in front of a vehicle roof are forced to shift.

I det amerikanska patentet US-6405120 later man valet av transmissionsvaxel for det egna fordonet styras av avstandet till ett framforvarande fordon och i den publicerade internationella patentansOkan WO-2013/006826 beskrivs en styranordning for ett fordonstag som bland annat anger rekommendationer avseende vaxelval. U.S. Pat. No. 6,405,120 discloses the choice of transmission shaft for the own vehicle is controlled by the distance to a vehicle in front and in it published international patent application WO-2013/006826 describes a control device for a vehicle roof which, among other things, sets out recommendations regarding gear selection.

Fordonstag borjar, som diskuterats ovan, bli en verklighet snart och darfor maste nya strategier f6r vaxelval utredas, da ett fordon paverkar narliggande fordon starkt i ett fordonstag. Vehicle struts, as discussed above, are starting to become a reality soon and therefore must New strategies for gear selection are being investigated, as a vehicle strongly affects nearby vehicles in a vehicle roof.

Syftet med foreliggande uppfinning är att minska inverkan pa ett fordonstag vid vaxlingar och felaktiga vaxelval av fordonen i fordonstaget och armed minska bransleforbrukning och aven Oka sakerheten. The object of the present invention is to reduce the impact on a vehicle stay in the event of shifts and incorrect gear selections of the vehicles in the vehicle stay and to reduce fuel consumption and also increase safety.

Sammanfattning av uppfinningen Ovan namnda syfte uppnas av uppfinningen som den definieras av de sjalvstandiga patentkraven, och foredragna utforingsformer definieras av de osjalvstandiga patentkraven och beskrivs i den detaljerade beskrivningen. Summary of the invention The above object is achieved by the invention as defined by the independent claims, and preferred embodiments are defined by the dependent claims and are described in the detailed description.

Genom att utnyttja tradlos kommunikation mellan fordonen, antingen fordon-tillfordon kommunikation (V2V) eller fordon-till-infrastruktur kommunikation (V2I), kan fordonen meddela varandra att de utfor \taxiing. Darigenom undviks onodig bromsning for de narliggande fordonen eftersonn de är informerade att hanstighetsandringen sker pa grund av vaxling. By utilizing wireless communication between the vehicles, either vehicle-vehicle communication (V2V) or vehicle-to-infrastructure communication (V2I), the vehicles can inform each other that they are performing. This avoids unnecessary braking for nearby vehicles as they are informed that The change in gestation occurs due to wobbling.

Baserat pa vane fordons egenskaper kan enligt en utforingsform en gemensam korstrategi for fordonstaget bestannnnas sonn tar hansyn till de vaxlingar som behover genomforas innan exempelvis en backe genom lampliga optinneringsalgoritnner, t.ex. dynannisk progrannnnering. Dynannisk progrannnnering är en generell metod for att losa kombinatoriska optimeringsproblem. Genom att systematiskt berakna lOsningar till delproblem, spara dessa pa ett effektivt satt, samt att lata alla dellosningar beraknas genom att utnyttja andra dellosningar, kan man hitta effektiva algoritmer for annars svarlOsta problem. Detta innebar, i det 25 har sammanhanget, att varje fordonsparameter och egenskaper, t.ex. maximalt motornnoment, massa, vaxelladstyp osv. skickas till en analysenhet, t.ex. i ett berakningscenter eller i det f6rsta fordonet, son-i genomf6r berakningarna. Optimeringsalgoritmen tar hansyn till alla fordonsegenskaper samt vaglutningen och beraknar en for fordonstaget gemensam optimal korstrategi som sedan utnyttjas for att reglera fordonen i fordonstaget. Based on the characteristics of used vehicles, according to one embodiment, a common crossover strategy for the vehicle stay is taken into account the changes that need to be made before, for example, a hill through suitable thinning algorithms, e.g. dynamic programming. Dynamic programming is a general method for solving combinatorial optimization problems. By systematically calculating solutions to sub-problems, saving them in an efficient way, and letting all sub-solutions be calculated by using other sub-solutions, one can find effective algorithms for otherwise unresolved problems. This meant, in it 25 has the context that each vehicle parameter and characteristics, e.g. maximum engine torque, mass, gear type, etc. sent to an analysis unit, e.g. in a calculation center or in the first vehicle, son-i performs the calculations. The optimization algorithm takes into account all vehicle characteristics as well as the vaginal slope and calculates an optimal cross strategy common to the vehicle stay which then used to regulate the vehicles in the vehicle roof.

Alternativt kan varje individuellt fordon i fordonstaget erhalla information fran de narliggande fordonen och berakna en egen gynnsam (optimal) korstrategi utifran de narliggande fordonens predikterade beteenden. Denna strategi är mindre berakningskravande, dock skiljer den sig fran den gemensamma korstrategin 5 genom att man i den gemensamma korstrategin viktar samman och beraknar vilken den mest branslesnala strategin ar for alla fordon. Alternatively, each individual vehicle in the vehicle stay can receive information from the nearby vehicles and calculate its own favorable (optimal) crossover strategy based on the predicted behaviors of the nearby vehicles. This strategy is less demanding, however, it differs from the common cross-strategy 5 by weighting together in the common cross-strategy and calculating which is the most industry-efficient strategy for all vehicles.

Med en gemensam k6rstrategi, som tar hansyn till vaxlingarna, f6r hela fordonstaget, kan fordonen kora narmare varandra. Darigenom minskas luftmotstandet och bransleforbrukningen reduceras avsevart. Ett korrekt vaxelval leder aven i sin tur till minskad bransleforbrukning for vane fordon. For hog eller for lag vaxel under en backe leder till ett genomsnittligt h6gre varvtal, som i sin tur leder till en okad bransleforbrukning. Dessutom kommer inte det optimala avstandet mellan fordonen i fordonstaget att kunna hallas om man maste utfora en oplanerad \taxiing. Detta forsamrar prestandan pa fordontaget. With a common driving strategy, which takes into account the shifts, for the entire vehicle stay, the vehicles can run closer to each other. This reduces air resistance and fuel consumption are significantly reduced. A correct gear choice aven in turn leads to reduced fuel consumption for habitual vehicles. Too high or too low gear under a hill leads to an average higher speed, which in turn leads to an increased fuel consumption. In addition, the optimal distance between the vehicles in the vehicle stay will not be able to be tilted if you have to perform an unplanned \ taxiing. This degrades the performance of the vehicle.

Givetvis forbattras aven sakerhetsaspekterna, d.v.s. kollisionsriskerna, eftersom kedjereaktioner sannt on6diga bronnsningar kan undvikas. Of course, the security aspects are also improved, i.e. the risk of collision, as chain reactions of truly unnecessary wells can be avoided.

En forutsattning är att fordonstaget regleras enligt en gennensann kOrstrategi. Det kan vara en enkel strategi dar avstanden mellan fordonen halls vasentligen konstant. Det kan aven vara nnera avancerade strategier, t.ex. dar vartdera fordonet framfors med en prediktiv farthallare (LAC), eller dar fordonstaget framfors med en gemensam prediktiv farthallarstrategi (LAP). For samtliga varianter som nu komnner att beskrivas är en forutsattning att fordonen i fordonstaget är utrustade med en positioneringsenhet och en enhet fOr kommunikation. A prerequisite is that the vehicle stay is regulated according to a true course strategy. The can be a simple strategy where the distance between the vehicles is kept substantially constant. It can also be more advanced strategies, e.g. where either the vehicle is driven with a predictive cruise control (LAC), or where the vehicle roof is driven with a common predictive speed strategy (LAP). For all variants that will now be described are a prerequisite for the vehicles in the vehicle stays are equipped with a positioning unit and a unit for communication.

Uppfinningen baseras pa det faktum att ett fordon tappar fart i samband med vaxling. Enligt uppfinningen anges en korstrategi for reglering av fordonen i fordonstaget som tar hansyn till detta, exem pelvis genom att lokala hastighetsvariationer tillats, t.ex. da fordonen vaxlar, och att borvardena, t.ex. hastighetsborvardena, i korprofilen har anpassats med hansyn till den sankning av hastighet som sker i samband med vaxling. The invention is based on the fact that a vehicle loses speed in connection with vaxling. According to the invention, a crossover strategy for regulating the vehicles in the vehicle roof that takes this into account, for example by local speed variations are allowed, e.g. when the vehicles shift, and that the drill guards, e.g. the velocity drill values, in the raft profile have been adapted with his view to the decrease in velocity that occurs in connection with switching.

Genom vaxlingsprofilen och med kunskap om vaghorisonten kan man bestamma de hastighetsforandringar som en given \taxiing ger upphov till och nar de intraffar i vaghorisonten. Borvardena korrigeras sa att kOrprofilen fOr varje fordon som ingar i fordonstaget tar hansyn till de hastighetsforandringar som vaxlingarna orsakar. Through the switching profile and with knowledge of the vaginal horizon, one can determine the speed changes that a given \ taxiing gives rise to and when they occur in the vagor horizon. The boron values are corrected so that the choir profile for each vehicle as ings in the vehicle roof take into account the speed changes that the shifts cause.

Enligt en fOrsta aspekt innefattar uppfinningen ett system (4) fOr att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet (2) for tradlos kommunikation. Systemet (4) innefattar en korprofilenhet (6) konfigurerad att bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden ID, for fordonet fk i positioner p, langs vaghorisonten; en vaxlingsprofilenhet (8) konfigurerad att bestamma en transmissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs vaghorisonten. Vidare innefattar systennet en analysenhet (7) som är konfigurerad att bestamma en korstrategi for fordonen i fordonstaget baserat atminstone pa kOrprofilen och transmissionsvaxlingsprofilen for fordonet fk; att generera en korstrategisignal som indikerar k6rstrategin, och att sanda korstrategisignalen till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med korstrategin. According to a first aspect, the invention comprises a system (4) for controlling one vehicle struts comprising at least one conductor vehicle and an additional vehicle each having a positioning unit (1) and a unit (2) for wireless communication. The system (4) comprises a body profile unit (6) configured to determine a body profile for at least one vehicle fk in the vehicle stay along a vagal horizon for the vehicle's future path, based on the characteristics of the vaginal horizon, wherein the carcass profile contains the drill guard ID, for the vehicle fk in positions p, along vaghorisonten; a shift profile unit (8) configured to determine a transmission shift profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vehicle horizon and on vehicle-specific properties, the shift profile containing the type of changes for the vehicle fk in positions along vaghorisonten. Furthermore, the system comprises an analysis unit (7) which is configured to determine a cross-strategy for the vehicles in the vehicle roof based at least on the driving profile and the transmission shift profile for the vehicle fk; to generate a crossover strategy signal indicating the crossover strategy, and to send the crossover strategy signal to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the cross-strategy.

Enligt en andra aspekt innefattar uppfinningen en metod for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet for tradlos kommunikation (2). Metoden innefattar att bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont fOr fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid kOrprofilen innehaller borvarden b, for fordonet fk i positioner langs horisonten; att bestannnna en transmissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs 5 vaghorisonten. Vidare innefattar metoden stegen att bestamma en kOrstrategi fOr fordonen i fordonstaget baserat atminstone pa korprofilen och transmissionsvaxlingsprofilen for fordonet fk; och att meddela korstrategin till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med kOrstrateg in. According to a second aspect, the invention comprises a method of controlling a vehicle strut comprising at least one conductor vehicle and a further vehicle each having a positioning unit (1) and a unit for wireless communication (2). The method involves determining a raven profile for at least a vehicle fk in the vehicle roof along a vagal horizon for the vehicle's future path, based on the characteristics of the vaginal horizon, the body profile containing the drill bit b, for the vehicle fk in positions along the horizon; to endure one transmission gearing profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vaginal horizon and on vehicle-specific properties, the gearing profile containing the type of gearing for the vehicle fk in positions along 5 vaghorisonten. Furthermore, the method comprises the steps of determining a driving strategy for the vehicles in the vehicle roof based at least on the carriage profile and the transmission shift profile of the vehicle fk; and to communicate the cross-strategy to all vehicles in the vehicle stay, after which the vehicles in the vehicle stay are regulated in accordance with the cross-strategy in.

Kort beskrivning av de bifogade figurerna Nedan kommer uppfinningen att beskrivas med hanvisning till de bifogade figurerna, av vilka: Fig. 1 visar ett exempel pa ett fordonstag som fardas uppf6r en backe. Brief description of the attached figures The invention will be described below with reference to the accompanying figures, of which: Fig. 1 shows an example of a vehicle roof traveling up a hill.

Fig. 2 visar ett exempel pa ett fordonstag som fardas i en kurva. Fig. 2 shows an example of a vehicle stay traveling in a curve.

Fig. 3 visar ett exempel pa ett fordon i ett fordonstag. Fig. 3 shows an example of a vehicle in a vehicle roof.

Fig. 4A-4D visar olika exempel pa systemets utformning. Figs. 4A-4D show different examples of the system design.

Fig. 5 visar ett flodesschenna f6r nnetoden enligt en utf6ringsform av uppfinningen. Fig. 5 shows a river rail for the method according to an embodiment of the invention.

Detaljerad beskrivning av foredragna utforingsfornner av uppfinningen Definitioner LAC (Look-Ahead cruise control): En farthallare som anvander sig av information om den kommande vagens topografi och beraknar en optimal korprofil i form av en hastighetstrajektoria for ett fordon. Kailas aven prediktiv farthallare. Detailed Description of Preferred Embodiments of the Invention Definitions LAC (Look-Ahead cruise control): A cruise control that uses information about the topography of the oncoming lane and calculates an optimal vehicle profile in the form of a speed trajectory for a vehicle. Kailas is also a predictive speedster.

LAP (Look-Ahead cruise control for platoons): En kooperativ farthallare som anvander sig av information om den kommande vagens topografi och beraknar en optimal hastighetstrajektoria for alla fordon i ett fordonstag. Kailas aven prediktiv farthallare fOr fordonstag. Reglerstrategin bestams exempelvis genom dynamisk programmering. LAP (Look-Ahead cruise control for platoons): A cooperative cruise control that uses information about the topography of the oncoming vehicle and calculates an optimal speed trajectory for all vehicles in a vehicle roof. Kailas also predictive cruise control for vehicle roofs. The control strategy is determined, for example, by dynamic programming.

Vk: hastigheten for fordonet fk i fordonstaget med N fordon. Vk: the speed of the vehicle fk in the vehicle roof with N vehicle.

Dk,k+i - avstandet mellan fordonet fk och det bakomvarande fordonet fk.i i fordonstaget. ak: lutningen for fordonet fk. Dk, k + i - the distance between the vehicle fk and the vehicle behind fk.i in the vehicle stay. ak: the slope of the vehicle fk.

V2V-kommunikation (Vehicle to vehicle): Tracilos kommunikation mellan fordon, aven kallad fordon-till-fordon kommunikation. V2V (Vehicle to vehicle) communication: Tracilo's communication between vehicles, also called vehicle-to-vehicle communication.

V21-kommunikation (Vehicle to infrastructure): Tracilos kommunikation mellan fordon och infrastruktur, exempelvis vagnod eller datorsystem. V21 communication (Vehicle to infrastructure): Tracilo's communication between vehicles and infrastructure, such as wagons or computer systems.

Fig. 1 visar ett fordonstag med N tunga fordon fk som tar sig fram med sma mellanrum dk, k+1 mellan fordonen och som tar sig over en backe. Lutningen pa fordonet fk nar det kOr Over backen visas som ak. Varje fordon fk är fOrsett med en mottagare och sandare for tradlosa signaler, visat delvis med en antenn. Fig. 1 shows a vehicle stay with N heavy vehicles fk which travels at small intervals dk, k + 1 between the vehicles and which crosses a hill. The inclination of the vehicle when driving Over the hill is shown as ak. Each vehicle fk is provided with one receiver and transmitter for wireless signals, shown in part by an antenna.

Fordonen fk i fordonstaget kan alltsa kommunicera med varandra genom V2Vkommunikation och till infrastruktur i form av V21-kommunikation. De olika fordonen fk har olika massor mk. The vehicles fk in the vehicle stay can thus communicate with each other through V2V communication and to infrastructure in the form of V21 communication. The different vehicles fk have different masses mk.

Fig. 2 visar ett fordonstag med N=6 tunga fordon fk som i likhet med exemplet i Fig. 1 tar sig fram med sma mellanrum dk, k+1 mellan fordonen, men som istallet tar sig igenom en kurva. Aven har är vane fordon fk forsett med en mottagare och sandare 2 (Fig. 3) for tradlosa signaler, och kan konnnnunicera via V2V- och V21kommunikation. Kurvan visas har med kurvradien r. Fig. 2 shows a vehicle stay with N = 6 heavy vehicles fk which, like the example in Fig. 1 moves forward at small intervals dk, k + 1 between the vehicles, but instead takes through a curve. Even vehicles are accustomed to being equipped with a receiver and transmitter 2 (Fig. 3) for wireless signals, and can communicate via V2V and V21 communication. The curve shown has with the curve radius r.

Fordonstagen har vardera ett ledarfordon, d.v.s. det forsta fordonet f1. Varje fordon fk i fordonstaget har exempelvis en unik fordonsidentitet, och en fordonstagsidentitet som är gemensam for hela fordonstaget, f6r att kunna halla reda pa vilka fordon som ingar i fordonstaget. Data som skickas tradlost mellan 25 fordonen i fordonstaget kan taggas med dessa identiteter sa att data som tas emot kan harledas till ratt fordon. The vehicle stays each have a leader vehicle, i.e. the first vehicle f1. Each vehicle fk in the vehicle roof has, for example, a unique vehicle identity, and a vehicle roof identity that is common to the entire vehicle roof, in order to be able to keep track of which vehicles are included in the vehicle roof. Data sent wirelessly between The vehicles in the vehicle stay can be tagged with these identities so that data received can be routed to the steering wheel of the vehicle.

I Fig. 3 visas ett exempel pa ett fordon fk i fordonstaget och hur det kan vara utrustat. Fordonet fk är forsett med en positioneringsenhet 1 som kan bestamma fordonet fk:s position. Positioneringsenheten 1 kan exempelvis vara konfigurerad att ta emot signaler fran ett globalt positioneringssystem som exempelvis GPS (Global Positioning System) eller GNSS (Global Navigation Satellite System) 10 exempelvis GLONASS, Galileo eller Compass. Positioneringsenheten 1 är konfigurerad att generera en positionssignal som innehaller fordonet fk:s position, och att sanda denna till en eller flera enheter i fordonet fk. Fordonet fk är som redan namnts aven forsett med en enhet 2 for tradlos kommunikation. Enheten 2 är konfigurerad att verka som mottagare och sandare av tradlOsa signaler. Fig. 3 shows an example of a vehicle fk in the vehicle roof and how it can be equipped. The vehicle fk is provided with a positioning unit 1 which can determine the vehicle's position. The positioning unit 1 can for example be configured to receive signals from a global positioning system such as GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) 10 for example GLONASS, Galileo or Compass. The positioning unit 1 is configured to generate a position signal containing the position of the vehicle fk, and to transmit this to one or more units in the vehicle fk. As already mentioned, the vehicle fk is also equipped with a unit 2 for wireless communication. Unit 2 is configured to act as a receiver and transmitter of wireless signals.

Enheten 2 kan ta emot tradlosa signaler Than andra fordon och/eller tradlosa signaler fran infrastrukturen kring fordonet fk, och sanda tradlosa signaler till andra fordon och/eller tradlosa signaler till infrastrukturen kring fordonet fk. De tradlosa signalerna kan innefatta fordonsparametrar fran andra fordon, exempelvis massa, 10 moment, hastighet, och aven mer komplex information som exempelvis gallande korprofil, korstrategi etc. De tradlosa signalerna kan aven innehalla information om omgivningen, exempelvis vagens lutning a, kurvradie r etc. Fordonet fk kan aven vara forsett med en eller flera detektorer 3 for att avkanna omgivningen, exempelvis en radarenhet, laserenhet, lutningsmatare etc. Dessa detektorer är i Fig. 3 generellt markerade som en detektorenhet 3, men kan alltsa utgoras av ett flertal olika detektorer placerade pa olika stallen i fordonet. Detektorenheten 3 är konfigurerad att avkanna en parameter, exempelvis ett relativt avstand, hastighet, lutning, lateral acceleration, vridning etc., och att generera en detektorsignal som innehaller parametern. Detektorenheten 3 är vidare konfigurerad att sanda detektorsignalen till en eller flera enheter i fordonet fk. Fordonet 2 kan aven vara utrustat med en kartenhet som kan ge kartinformation om den kommande vagen. Foraren kan exempelvis ange en slutposition och kartenheten kan da genom att veta fordonets nuvarande position ge relevant kartdata om den kommande vagen mellan den nuvarande positionen och slutdestinationen. Vidare visas i figur 3 ett 25 system 4 som kommer att beskrivas utforligt nedan. The unit 2 can receive wireless signals Than other vehicles and / or wireless signals from the infrastructure around the vehicle fk, and true wireless signals to other vehicles and / or wireless signals to the infrastructure around the vehicle fk. The wireless signals may include vehicle parameters from other vehicles, for example mass, Moments, speed, and even more complex information such as gallant raft profile, crossover strategy, etc. The wireless signals may also contain information about the environment, for example the inclination of the carriage, curve radii, etc. The vehicle may also be equipped with one or more detectors 3 for to detect the environment, for example a radar unit, laser unit, tilt feeder, etc. These detectors are in Fig. 3 is generally marked as a detector unit 3, but can thus consist of one several different detectors placed in different places in the vehicle. The detector unit 3 is configured to sense a parameter, for example a relative distance, speed, inclination, lateral acceleration, rotation, etc., and to generate a detector signal which contains the parameter. The detector unit 3 is further configured to sand the detector signal to one or more units in the vehicle fk. Vehicle 2 can also be equipped with a map device that can provide map information about the upcoming route. The driver can, for example, indicate an end position and the map unit can then, by knowing the current position of the vehicle, provide relevant map data about the coming road between the current position and the final destination. Furthermore, Figure 3 shows one System 4 which will be described in detail below.

Fordonet fk kommunicerar internt mellan sina olika enheter genonn exempelvis en buss, exempelvis en CAN-buss (Controller Area Network) som anvander sig av ett meddelandebaserat protokoll. Exempel pa andra kommunikationsprotokoll 30 som kan anvandas är TTP (Time-Triggered Protocol), Flexray m fl. Pa sa satt kan signaler och data som beskrivits ovan utbytas mellan olika enheter i fordonet fk. 11 Signaler och data kan exennpelvis istallet overforas tradlost nnellan de olika enheterna. The vehicle fk communicates internally between its various units via, for example, a bus, for example a CAN bus (Controller Area Network) which uses a message-based protocol. Examples of other communication protocols 30 that can be used are TTP (Time-Triggered Protocol), Flexray and others. In this way, signals and data described above can be exchanged between different units in the vehicle fk. 11 Signals and data can, for example, instead be transmitted wirelessly between the various devices.

I fordonet fk finns aven helt eller delvis ett system 4 som harnast kommer att forklaras nned hanvisning till figurerna 4A-4D, som visar olika exempel pa systemet 4. De streckade linjerna i figurerna indikerar att det galler tradlos overforing av data. Generellt sa är systemet 4 till for att reglera fordonstaget, och att komma fram till en gemensam k6rstrategi f6r hela fordonstaget baserat pa information om den framtida vagen. Systemet 4 implennenterar alltsa, enligt en utforingsform, en typ av kooperativ farthallare for fordonstaget, en LAP. Sarskilt är systemet 4 till for att reglera fordonstaget nar det Icor i backar och/eller i kurvor. Genom att ta fram en gemensam korprofil som galler f6r hela fordonstaget sa far man ett val organiserat fordonstag dar hansyn tas till vad som är bast for hela fordonstaget vid 'corning i backe och/eller kurva. In the vehicle fk there is also a complete or partial system 4 that will be the fastest is explained below with reference to Figures 4A-4D, which show various examples of system 4. The dashed lines in the figures indicate that wireless data transmission is required. In general, the system 4 is there to regulate the vehicle roof, and to arrive at a common driving strategy for the entire vehicle roof based on information about the future road. System 4 thus implements, according to one embodiment, a type of cooperative cruise control for the vehicle stay, a LAP. Separate is system 4 to regulate the vehicle stay when it Icor in slopes and / or curves. By developing a common raft profile that applies to the entire vehicle roof, you get a choice of organized vehicle roof where the consideration is given to what is best for the entire vehicle roof when cornering on slopes and / or curves.

I det foljande anges en beskrivning f6r en kooperativ farthallare f6r fordonstaget (LAP) baserat pa de enskilda fordonens korstrategi, exem pelvis en prediktiv korstrategi LAC. LAP är en korstrategi dar det är fordelaktigt att aven ta hansyn till de hastighetsforandringar som fordonens vaxlingar ger upphov till. Dessa definieras nnera i detalj av en transnnissionsvaxlingsprofil som kommer att beskrivas nedan. The following is a description of a cooperative cruise control for the vehicle roof (LAP) based on the cross-strategy of the individual vehicles, for example a predictive cross-strategy LAC. LAP is a cross-strategy where it is advantageous to also take into account the speed changes that the vehicles' changes cause. These is defined in more detail by a transmission transmission profile that will described below.

Systemet innefattar en vaxlingsprofilenhet 8 konfigurerad att bestamma en vaxlingsprofil f6r atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper. Vaxlingsprofilen innehaller typ av vaxlingar fOr fordonet fk i positioner langs horisonten, dar typ av \taxiing innefattar exempelvis att ange fran vilken vaxel och till vilken vaxel vaxlingen avser. 30 Systemet 4 innefattar vidare en analysenhet 7 som är konfigurerad att emottaga en korprofil Than en korprofilenhet 6 for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, varvid korprofilen innehaller 12 borvarden bi (till exennpel hastighetsborvarden vi, accelerationsborvarden ai eller avstandsborvarden di) for fordonet fk i positioner pi langs vaghorisonten. Analysenheten är vidare konfigurerad att ta emot en transmissionsvaxlingsprofil fran vaxlingsprofilenheten. The system comprises a shift profile unit 8 configured to determine a shift profile for at least one vehicle fk in the vehicle stay based on the horizon properties and on vehicle-specific properties. The shift profile contains type of gear changes for the vehicle fk in positions along the horizon, where the type of \ taxiing includes, for example, indicating from which gear and to which gear the gear refers. The system 4 further comprises an analysis unit 7 which is configured to receive a body profile Than a body profile unit 6 for at least one vehicle fk in the vehicle roof along a vagal horizon for the vehicle's future vag, the body profile containing 12 the drilling value bi (for example the speed drilling value vi, the acceleration drilling value ai or the distance drilling value di) for the vehicle fk in positions pi along the vagus horizon. The analysis unit is further configured to receive a transmission shift profile from the shift profile unit.

Transnnissionsvaxlingsprofilen innefattar information om nuvarande och foretradesvis ocksa framtida vaxlingar i vaghorisonten. Med hansyn till den framtida vagens egenskaper, t.ex. dess lutning, och exempelvis fordonets motorstyrka, bestams vaxlingspositioner i den framtida vaghorisonten. FOr respektive vaxling bestams en vaxlingstid och en samhorande hastighetsforandring orsakad av vaxlingen. Mera specifikt komnner vaxlingsprofilen att innehalla ett antal varden Avt som representerar hastighets-, avstands- och/eller accelerationsforandringar langs vaghorisonten. Vaxlingsprofilen är lag rad pa ett sadant satt att informationen enkelt kan mappas med information i korprofilen, dvs. hastighets-, avstands- och/eller accelerationsforandringar orsakade av vaxlingar och hastighets-, avstandsoch/eller accelerationsforandringar angivna i korprofilen kan identifieras i positioner i den framtida vaghorisonten. The transmission transition profile includes information on current and preferably also future changes in the vaginal horizon. With regard to the properties of the future carriage, e.g. its inclination, and for example the engine power of the vehicle, the shift positions are determined in the future vaginal horizon. FOr each change is determined by a change time and a cohort speed change caused by the waxing. More specifically, the shift profile will contain a number of values Avt that represent changes in speed, distance and / or acceleration along the vagus horizon. The shift profile is arranged in such a way that the information can be easily mapped with information in the corps profile, ie. speed, distance and / or acceleration changes caused by changes and velocity, distance and / or acceleration changes indicated in the raft profile can be identified in positions in the future vaginal horizon.

Korprofilen Than korprofilenheten 6 kan exempelvis ha bestannts av en existerande farthallare, exempelvis en LAC eller annan form av prediktiv farthallare, och meddelas till analysenheten 7. Analysenheten 7 är vidare konfigurerad att bestamma en korstrategi, exempelvis en positionsbaserad k6rstrategi, f6r fordonen i fordonstaget baserat atminstone pa korprofilen for fordonet 1k och pa transmissionsvaxlingsprofilen for fordonet fk. Med en positionsbaserad korstrategi avses generellt en kOrstrategi dar det finns bOrvarden avseende t.ex. hastigheten som hor samman med positioner i en framtida vaghorisont. Respektive fordon i fordonstaget regleras efter de bOrvarden som hOr samman med de positioner som fordonet passerar. The choir profile Than the choir profile unit 6 may, for example, have consisted of an existing one cruise control, for example a LAC or other form of predictive cruise control, and communicated to the analysis unit 7. The analysis unit 7 is further configured to determine a cross strategy, for example a position-based driving strategy, for the vehicles in the vehicle roof based at least on the vehicle profile 1k and on the transmission shift profile for the vehicle fk. With a position-based cross strategy generally refers to a course strategy where there is a barrier regarding e.g. the velocity associated with positions in a future vaginal horizon. The respective vehicles in the vehicle roof are regulated according to the boreholes that are associated with the positions that the vehicle passes.

Fordonen i fordonstaget regleras sedan i enlighet med korstrategin. The vehicles in the vehicle stay are then regulated in accordance with the cross strategy.

Analysenheten 7 är enligt en utforingsform konfigurerad att generera en korstrategisignal som indikerar korstrategin, och att sanda korstrategisignalen till 13 alla fordon i fordonstaget varefter fordonen i fordonstaget regleras i enlighet med korstrategin. Enligt en annan utforingsform sa regleras fordonen i fordonstaget efter kOrstrategin aliteftersom den bestams, vilket kommer att forklaras mer i detalj i det foljande. The analysis unit 7 is according to an embodiment configured to generate a cross-strategy signal indicating the cross-strategy, and to send the cross-strategy signal to 13 all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the cross strategy. According to another embodiment, the vehicles in the vehicle roof are regulated according to the driving strategy as it is determined, which will be explained in more detail in the following.

Den resulterande korstrategin kan saledes avse antingen en positionsbaserad \taxiing, varvid namnda vaxiingar tillampas fOr vartdera fordonet i for varje \taxiing samhorande position eller avse en tidsbaserad vaxling, varvid samtliga fordon i fordonstaget vaxiar samtidigt. The resulting cross strategy can thus refer either to a position-based \ taxiing, wherein said waxings are applied to each vehicle in each associated position or to a time-based shifting, whereby all vehicles in the vehicle stay wax at the same time.

Enligt en utforingsform är analysenheten konfigurerad att ange i korstrategisignalen att ett framforvarande fordon vaxiar och att meddela detta till ett eller flera bakomvarande fordon i fordonstaget och att ange positionen dar vaxiingen sker. According to one embodiment, the analysis unit is configured to enter in the cross-strategy signal that a vehicle in front is growing and to notify this one or more vehicles behind in the vehicle stay and to indicate the position where the waxing takes place.

En korprofil for det enskilda fordonet fk kan alitsa astadkommas genom att anvanda en redan bestamd korprofil utformad av en prediktiv farthallare placerad i fordonet eller annan extern enhet. Prediktiv farthalining, aven kallad forutseende farthalining, är ett prediktivt styrschema med kunskap om nagra av de franntida storningarna, t.ex. vagtopografin. En optinnering utfors med avseende pa ett kriterium som involverar ett predikterat framtida upptradande av systemet. En optimal losning s6ks har over problemet over en vaghorisont, som fas genom trunkera hela koruppdragets horisont. Met med optimeringen är att minimera den erforderliga energin och tiden for koruppdraget, medan fordonets hastighet halls inom ett bestamt intervall. Optimeringen kan utforas med exempelvis MPC (Model Predictive Control) eller en LQR (Linear Quadratic Regulator) m.a.p. att minimera bransleatgang och tid i en kostnadsfunktion J baserat pa en olinjar dynamik- och bransleatgangsmodell for fordonet fk, begransningar pa reglerinsignaler och begransningar pa den nnaximala absoluta deviationen fran 30 vaghastigheten, exempelvis 5 km/h. Ett exempel pa hur en sadan optimering kan utforas beskrivs i "Look-ahead control of heavy vehicles", E. Helistrom, Link6ping 14 University, 2010. En fordonsnnodell sonn beskriver de huvudsakliga krafterna sonn paverkar ett fordon i rorelse beskrivas dari enligt: dv int —dt = cmotor Fbroms Fluftmotstand(v) Frullning (a) — Fgravitet(a) = itifritrif T (We, 8) — Fbrake — CDAapa122 — c mg cos a — mg sin a, (1) rw2 dar a betecknar vagens lutning, CD och cr är karakteristiska koefficienter, g betecknar gravitationskraften, pa är luftdensiteten, rw är hjulradien, och it, if, nt, qf är transmission och vaxelspecifika konstanter. Den accelererande 10 fordonsnnassan mt(mjwje, it, if, qt, iv) beror pa bruttomassan m, hjultroghet Jw, motortroghet Je, vaxelladans utvaxling och effektivitet tont liksom den slutliga korutvaxlingen och effektiviteten if,gf. A raft profile for the individual vehicle fk can alitsa be achieved by using an already determined raft profile designed by a predictive cruise control located in the vehicle or other external unit. Predictive speed lag, also called predictive speed lag, is a predictive control scheme with knowledge of some of the ancient the disturbances, e.g. vagtopografin. An optimization is performed with respect to one criterion involving a predicted future behavior of the system. An optimal solution is sought over the problem over a vaginal horizon, which phase by truncating the entire horizon of the choir assignment. The goal of the optimization is to minimize the required energy and time for the chore mission, while speeding up the vehicle halls within a certain range. The optimization can be performed with, for example, MPC (Model Predictive Control) or an LQR (Linear Quadratic Regulator) m.a.p. to minimize industry access and time in a cost function J based on a non-linear dynamics and industry access model for the vehicle fk, limitations on control inputs and limitations on the naxial absolute deviation from The carriage speed, for example 5 km / h. An example of how such optimization can be performed is described in "Look-ahead control of heavy vehicles", E. Helistrom, Link6ping 14 University, 2010. A vehicle node sonn describes the main forces sonn affecting a vehicle in motion described therein according to: dv int —dt = cmotor F Brake Air resistance (v) Rolling (a) - F gravity (a) = itifritrif T (We, 8) - Fbrake - CDAapa122 - c mg cos a - mg sin a, (1) rw2 where a denotes the inclination of the carriage, CD and cr are characteristic coefficients, g denotes the gravitational force, pa is the air density, rw is the wheel radius, and it, if, nt, qf are transmission and gear-specific constants. The accelerating 10 vehicle mass mt (mjwje, it, if, qt, iv) depends on gross mass m, wheel inertia Jw, motor inertia Je, the gearshift gear ratio and efficiency ton as well as the final chore gear ratio and the efficiency if, gf.

Den prediktiva farthallaren LAC okar fordonets hastighet i forvag infor en brant uppfOrsbacke som da erhaller en hOgre medelhastighet nar fordonet fardas langs den branta uppf6rsbacken. Pa samma satt minskas hastigheten innan fordonet gar in i en brant nerforsbacke. Eftersom fordonets hastighet tillats att minska till minimumhastigheten i en uppf6rsbacke och alltsa vantar med att accelerera igen tappad hastighet tills efter kronet, d.v.s. pa plan vag, erhalls en branslebesparing 20 jamfort nned om fordonet ska halla sethastigheten vset under uppf6rsbacken eftersom det kravs mer bransle for att uppratthalla hastigheten i uppforsbacken an att ta igen hastigheten efter backen. Om uppf6rsbacken foljs av en nedf6rsbacke sa kan hastigheten hallas pa en lagre niva i uppforsbacken for att slippa bromsa i nedforsbacken for att fordonets hastighet blir for hog och istallet utnyttja den potentiella energin fordonet far av sin vikt i nedforsbacken. Bade tid och bransle kan sparas. The predictive cruise control LAC increases the vehicle's speed in front of a precipice uphill which then receives a higher average speed when the vehicle is traveling along the steep uphill slope. In the same way, the speed is reduced before the vehicle enters a steep downhill slope. Since the speed of the vehicle is allowed to decrease to the minimum speed on an uphill slope and thus is accustomed to accelerating again lost speed until after the crown, i.e. on the plane vag, obtain an industry saving Even if the vehicle is to keep the seat speed well below the uphill slope, as more industry is required to maintain the speed on the uphill slope than to catch up with the speed after the hill. If the uphill slope is followed by a downhill slope, the speed can be kept at a lower level in the uphill slope to avoid braking on the downhill slope so that the vehicle's speed becomes too high and instead use it potential energy the vehicle derives from its weight on the downhill slope. Both time and industry can be saved.

En mindre vaglutning a kan beskrivas enligt: al < a <(2) 30 dar kfTe(omax,coe)-4v7f(cii_Li)—kfr >0 a11=9 k. t kr Te(a) e)-4121 f (di_ij)—k[r 1 < 0 ai = kg. t är den brantaste lutning f6r vilken hastigheten kan bibehallas i en uppf6rsbacke med maximalt motormoment, och a1 är den brantaste vaglutningen for vilken ett tungt fordon kan bibehalla en konstant hastighet genom utrullning och inte behova bromsa och/eller gasa. Branta backar definieras som vagsegment med en lutning utanfor intervallet i (2). A minor vagal slope a can be described as: al <a <(2) 30 dar kfTe (omax, coe) -4v7f (cii_Li) —kfr > 0 a11 = 9 k. t kr Te (a) e) -4121 f (di_ij) —k [r 1 <0 ai = kg. t is the steepest slope for which the speed can be maintained on an uphill slope with maximum engine torque, and a1 is the steepest slope for which a heavy vehicle can maintain a constant speed by rolling out and do not need to brake and / or accelerate. Steep slopes are defined as road segments with a slope outside the range in (2).

Enligt en utforingsform innefattar systemet 4 atminstone en horisontenhet 5 och en korprofilenhet 6. Horisontenheten 5 är konfigurerad att bestamma en vaghorisont for atminstone ett fordon fk i fordonstaget med hjalp av positionsdata och kartdata av en framtida vag, som innehaller en eller flera egenskaper for den framtida vagen. Vaghorisonten kan delas in i olika vagsegment. En egenskap kan exempelvis vara att ett vagsegnnent i horisonten klassas som en brant uppfors- eller nedf6rsbacke med en lutning utanf6r intervallet i (2). Korprofilenheten 6 är konfigurerad att bestamma en kOrprofil fOr atminstone ett fordon fk i fordonstaget baserat p6 vaghorisontens egenskaper, varvid korprofilen innehaller borvarden b, och samhorande positioner p, for fordonet fk langs vaghorisonten. Borvardena kan exempelvis vara hastighetsborvarden vi, accelerationsborvarden ai, eller avstandsborvarden di. Systemet 4 kan alltsa vara konfigurerat att sjalvstandigt bestamma en eller flera korprofiler f6r fordonen i fordonstaget, exempelvis genom att korprofilenheten 6 bestammer en optimal hastighetskorprofil pa samma satt som den ovan beskrivna LAC:en. According to one embodiment, the system 4 comprises at least one horizon unit 5 and a raft profile unit 6. The horizon unit 5 is configured to determine one road horizon for at least one vehicle fk in the vehicle roof with the help of position data and map data of a future road, which contains one or more properties for the future road. The road horizon can be divided into different road segments. One characteristic may be, for example, that a carriage on the horizon is classified as a steep or downhill slope with a slope outside the range in (2). The raft profile unit 6 is configured to determine a chassis profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vag horizon, the chore profile containing the drill bit b, and associated positions p, for the vehicle fk along the vaginal horizon. The drilling values can be, for example, the speed drilling value vi, the acceleration drilling value ai, or distance drill guard di. System 4 can thus be configured to be independent determine one or more carcass profiles for the vehicles in the vehicle stay, for example by the carcass profile unit 6 determining an optimal velocity carcass profile in the same way as the LAC described above.

Systennets 4 fun ktion kan vara konfigurerat att sattas igang da vagen uppvisar sarskilda egenskaper som exempelvis en brant lutning eller liten kurvradie (en snav kurva). Dessa egenskaper finns reflekterade i korprofilen som tas frann genom de borvarden b, som genererats, och aven som egenskaper i vaghorisonten. Fordonen i fordonstaget foljer vanligtvis en vaghastighet, aven kallad sethastighet v„t, som är den hogsta hastighet som 16 hastighetsbegransningen enligt vagen tillater. Vid backar, kurvor etc. kan det vara lampligt att variera hastigheten for att uppna branslebesparingar eller forbattra eller uppratthalla sakerheten. I en kurva kan det vara lampligt att sanka hastigheten ifall kurvradien är life. Ett samband som uttrycker hur hog fordonets 5 hastighet som mest kan vara baserat pa fordonets massa och kurvradien kan anvandas for att rakna ut fordonens maximala hastighet i kurvan. LAC:en raknar fram optimala hastighetsbOrvarden vi i positioner pi, och dessa hastighetsborvarden vi kan alltsa variera fran sethastigheten vset for att uppna en branslesnal och/eller saker kOrning. Analysenheten 7 ar enligt en utfOringsform konfigurerad att jamfora hastighetsborvarden vi med en sethastighet vset och bestamma en skillnad v mellan vi och vset. Analysenheten 7 är vidare konfigurerad att jamfora Ay med ett troskelvarde, och initiera bestamningen av den positionsbaserade korstrategin ifall iv overstiger troskelvardet. Pa sa satt kan fordonstaget regleras efter den gemensamma korstrategin i utvalda situationer eller under sarskilda vagsegment, och i andra fall kan fordonen i fordonstaget regleras utifran sin vanliga korprofil. Nar fordonstaget i sin helhet har kommit ur kurvan eller är uppfor respektive nedfor backen, kan alla fordonen i fordonstaget aterga till sin vanliga korprofil. The system's 4 function can be configured to be started when the carriage shows special properties such as a steep slope or small curve radius (a narrow curve). These properties are reflected in the raft profile taken from the boron values b, which are generated, and also as properties in the vaginal horizon. The vehicles in the vehicle roof usually follow a vagal speed, even called set speed v „t, which is the highest speed that 16 the speed limit according to the road allows. On slopes, curves, etc., it can be convenient to vary the speed to achieve industry savings or to improve or maintain safety. In a curve, it can be appropriate to slow down the speed if the curve radius is life. A connection that expresses how hog the vehicle's 5 speed which can mostly be based on the mass of the vehicle and the radius of curvature can be used to calculate the maximum speed of the vehicles in the curve. The LAC brings out the optimal speed bores we are in positions in, and these speed bores we can thus vary from the set speed vset to achieve an industry level and / or things driving. The analysis unit 7 is according to an embodiment configured to compare the speed drill we with a set speed vset and determine a difference v between us and vset. The analysis unit 7 is further configured to compare Ay with a threshold value, and initiate the determination of the position-based cross strategy if iv exceeds the threshold value. In this way, the vehicle stay can be regulated according to the common cross strategy in selected situations or under separate road segments, and in other cases the vehicles may be in the drawbar regulated on the basis of its usual raven profile. When the vehicle stay in its entirety has come out of the curve or is up or down the hill, all the vehicles in the vehicle stay can return to their normal raft profile.

I Fig. 4A visas ett exennpel av systennet 4, dar systennet 4 är placerat i fordonet fk, exempelvis ledarfordonet fi. Systemet 4 kan da vara en del av en styrenhet i fordonet fi. Systemet 4 visas har innefatta en horisontenhet 5 och en korprofilenhet 6 som tillhandahaller en korprofil for fordonet f1 till analysenheten 7 och en vaxlingsprofilenhet 8 konfigurerad att bestamma en transmissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs horisonten. Kartdata och posit ionsdata skickas da exempelvis via det intema natverket i fordonet f1 till horisontenheten 5. Alternativt kan en befintlig LAC i fordonet fi tillhandahalla en korprofil for fordonet f1 till analysenheten 7. Systemet 4 kan istallet vara placerat i en extern enhet som exempelvis en vagnod eller ett datorsystem. Positionsdata etc. kan da skickas via V2I till den externa enheten. 17 Enligt exennplet som illustreras schematiskt i Fig. 4A bestannnner analysenheten 7 korstrategin att det är korprofilen fOr fordonet f1 och vaxlingsprofilen for fi som är den utvalda korprofilen och vaxlingsprofilen for hela fordonstaget. KOrstrategin meddelas till fordonen i fordonstaget via en tradlos signal. Korstrategin innefattar exempelvis ett meddelande med inneborden att alla fordonen i fordonstaget forutorn ledarfordonet ska mata hur det framforvarande fordonet i fordonstaget beter sig och anpassa sin fart darefter for att uppratthalla avstandet d,j nnellan fordonen. Exem pelvis kan fordonen anvanda radar for att bestamma det framfOrvarande fordonets hastighet. Pa sa satt kommer fordonen i fordonstaget att folja ledarfordonethastighetsprofil utan att sjalva behova vara medvetna om sjalva hastighetsprofilen. Fig. 4A shows an example column of the systene 4, where the systene 4 is placed in the vehicle fk, for example the conductor vehicle fi. The system 4 can then be part of a control unit in the vehicle fi. The system 4 shown has comprised a horizon unit 5 and a raft profile unit 6 which provides a raft profile for the vehicle f1 to the analysis unit 7 and a shift profile unit 8 configured to determine a transmission gear profile for at least one vehicle fk in the vehicle stay based on the characteristics of the horizon and the vehicle-specific characteristics, the shift profile containing the type of changes for the vehicle fk in positions along the horizon. Map data and position data are then sent, for example, via the internal network in the vehicle f1 to the horizon unit 5. Alternatively, an existing LAC in the vehicle fi provide a carcass profile for the vehicle f1 to the analysis unit 7. The system 4, the stall can be placed in an external unit such as a carriage node or a computer system. Position data etc. can then be sent via V2I to the external device. 17 According to the example shown schematically in Fig. 4A, the analysis unit 7 determines the cross strategy that it is the raft profile for the vehicle f1 and the shift profile for fi which is the selected raft profile and the shift profile for the entire vehicle stay. The driving strategy is communicated to the vehicles in the vehicle roof via a wireless signal. The cross strategy includes for example, a message with the inside tables that all the vehicles in the vehicle stay the front vehicle of the leader vehicle shall feed how the vehicle in front of the vehicle stays behaving and adjust its speed thereafter in order to maintain the distance between the vehicles. For example, vehicles may use radar to determine the speed of the vehicle in front. In this way, the vehicles enter the vehicle roof to follow the leader vehicle speed profile without having to be aware themselves about the speed profile itself.

Enligt en utforingsform är fordonen i fordonstaget ordnade i en viss ordning, sa att det mest begransade fordonet är placerat frannst i fordonstaget som ledarfordonet 15 f1, och de resterande fordonen i nedatgaende ordning sa att det minst begransade fordonet är placerat sist i fordonstaget. Pa sa satt kan man sakerstalla att alla fordon i fordonstaget klarar av ledarfordonets korprofil och vaxlingsprofil. Det mest begransade fordonet är exempelvis det fordon som har storst massa, eller nninst tillgangligt motormoment, eller en kombination av !Dada. According to one embodiment, the vehicles in the vehicle roof are arranged in a certain order, so that the most limited vehicle is located at the front of the vehicle roof as the leader vehicle. 15 f1, and the remaining vehicles in descending order said that the least limited vehicle is located last in the vehicle stay. In this way, it can be ensured that all vehicles in the vehicle stay can handle the lead vehicle's body profile and shift profile. The most limited vehicle is, for example, the vehicle with the largest mass, or at least available engine torque, or a combination of! Dada.

Enligt en utforingsform är analysenheten 7 konfigurerad att ennottaga en korprofil och en vaxlingsprofil for vartdera av ett flertal fordon i fordonstaget. Analysenheten 7 är enligt denna utfOringsform konfigurerad att analysera kOrprofilerna tillsammans med respektive vaxlingsprofil fOr att bestamma en utvald korprofil som positionsbaserad korstrategi for fordonen i fordonstaget. Den utvalda kOrprofilen med hastighetsvarden som justerats i beroende av vaxlingsprofilens hastighetsvarden kan sedan exempelvis meddelas till alla fordon i fordonstaget, varefter vane enskilt fordon i fordonstaget kommer att fOlja samma utvalda korprofil i samma positioner. According to one embodiment, the analysis unit 7 is configured to receive a crane profile and a shift profile for each of a plurality of vehicles in the vehicle stay. According to this embodiment, the analysis unit 7 is configured to analyze the choir profiles together with the respective switching profile in order to determine a selected corps profile as a position-based crossover strategy for the vehicles in the vehicle roof. The The selected choir profile with the speed value that has been adjusted depending on the speed profile of the shift profile can then, for example, be communicated to all vehicles in the vehicle stay, after which the habit of individual vehicles in the vehicle stay will follow the same selected choir profile in the same positions.

Innan korprofilen meddelas till fordonen, kan positionerna pi i korprofilen mappas till verkliga posit ioner langs den kommande vagen, sa att fordonen i fordonstagen 18 kan reglera sin hastighet efter hastighetsborvardena vi (och/eller sitt avstand efter avstandsborvardena och/eller sin acceleration efter accelerationsborvardena) i samma verkliga positioner langs vagen. Den korprofil som avses har är en korprofil som justerats med avseende pa vaxlingsprofilen. Detta galler for alla utfOringsformer har. Before the vehicle profile is communicated to the vehicles, the positions pi in the vehicle profile can be mapped to actual positions along the coming road, so that the vehicles in the vehicle stays 18 can regulate its speed according to the velocity drilling values vi (and / or its distance according to the distance drilling values and / or its acceleration according to the acceleration drilling values) in the same actual positions along the road. The raft profile referred to is a raft profile that has been adjusted with respect to the shift profile. This applies to everyone embodiments have.

Det finns olika satt att bestamma en utvald korprofil. Exempelvis kan den utvalda korprofilen bestammas att vara den korprofil som bestamts for det mest begransade fordonet i fordonstaget och da hansyn tas till vaxlingsprofilen och hastighetsvardena i vaxlingsprofilen. Exempel pa det mest begransade fordonet har beskrivits oven. Det mest begransade fordonet kan aven bestammas att vara det fordon som har de storsta hastighetsfluktuationema i sin korprofil i och/eller omkring en kommande backe och/eller kurva. For att bestamma vilken korprofil det är, som alltsa da blir den utvalda korprofilen, sa är analysenheten 7 konfigurerad att bestamma ett skillnadsvarde Ay for vane korprofil som indikerar den storsta skillnaden mellan en maxhastighet vmax och minhastighet vmin, jamfora skillnadsvarden Av for de olika korprofilerna med varandra och att bestamma en utvald korprofil som har det storsta skillnadsvardet Ay baserat pa jannforelsen. Maxhastigheten vmax är ett av hastighetsborvardena vi i korprofilen, och nninhastigheten vmin är ett av hastighetsborvardena vi i korprofilen i och/eller omkring en kommande backe och/eller kurva. There are different ways to determine a selected corps profile. For example, the selected raft profile can be determined to be the raft profile determined for the most limited vehicle in the vehicle stay and when consideration is given to the shift profile and the speed values in the shift profile. Example of the most limited vehicle has been described above. The most limited vehicle can also be determined to be the vehicle that has the largest speed fluctuations in its body profile in and / or around an upcoming hill and / or curve. In order to determine which raven profile it is, that is, the selected ravenous profile, the analysis unit 7 is configured to determine a difference value Ay for habit corps profile indicating the largest difference between a maximum velocity vmax and a minimum velocity vmin, compare the difference value Off for the different choir profiles with each other and to determine a selected choir profile that has the largest difference value Ay based on the comparison. The maximum velocity vmax is one of the velocity drill values we in the raft profile, and The nmin velocity vmin is one of the velocity drill values we in the raft profile in and / or around an upcoming hill and / or curve.

I Fig. 4B visas ett exempel pa systemet 4, i vilket en korprofil och en vaxlingsprofil bestams fOr vartdera fordonet i vartdera fordon fk. Korprofilerna och vaxlingsprofilerna sands sedan till analysenheten 7 fOr att bestamma en positionsbaserad kOrstrategi baserat pa en utvald kOrprofil. Analysenheten 7 är har placerad i en extern enhet, och de olika korprofilerna skickas till analysenheten via V21-kommunikation. Efter att analysenheten 7 bestamt en utvald korprofil med hansyn taget till vaxlingsprofilen, nneddelas korstrategin till fordonen i fordonstaget via V21-kommunikation, alltsa en eller flera tradlosa signaler. K6rstrategin innefattar exempelvis ett meddelande med inneb6rden att alla fordonen i fordonstaget forutom ledarfordonet ska mate hur det 19 frarnforvarande fordonet i fordonstaget beter sig och anpassa sin fart darefter for att uppratthalla avstandetmellan fordonen. Exempelvis kan fordonen anvanda radar for att bestamma det framforvarande fordonets hastighet. Korstrategin innefattar aven ett meddelande till ledarfordonet fi att det ska folja den utvalda kOrprofilen, samt kOrprofilen i sig ifall det inte redan är ledarfordonets kOrprofil. Pa sa satt kommer fordonen i fordonstaget att folja den utvalda hastighetsprofilen utan att sjalva behova vara medvetna om vilken hastighetsprofil de foljer. Alternativt kan den utvalda korprofilen meddelas till alla fordonen i fordonstaget, varefter varje enskilt fordon i fordonstaget kommer att fOlja samma utvalda korprofil. Fig. 4B shows an example of the system 4, in which a carcass profile and a shift profile are determined for each vehicle in each vehicle fk. The corps profiles and the switching profiles are then sanded to the analysis unit 7 to determine one position-based driving strategy based on a selected driving profile. The analysis unit 7 is located in an external unit, and the various corpus profiles are sent to the analysis unit via V21 communication. After the analysis unit 7 has determined a selected corps profile with regard to the shift profile, the cross strategy is divided into the vehicles in the vehicle roof via V21 communication, ie one or more wireless signals. The driving strategy includes, for example, a message that all vehicles in the vehicle stay, except the leader vehicle, must measure how 19 the vehicle present in the vehicle roof behaves and adjusts its speed accordingly to maintain the distance between the vehicles. For example, vehicles can use radar to determine the speed of the vehicle in front. The crossover strategy also includes a message to the leader vehicle fi that it should follow the chosen one the choir profile, as well as the choir profile itself if it is not already the leader vehicle's choir profile. Pa In this way, the vehicles in the vehicle stay will follow the selected speed profile without having to be aware of the speed profile they are following. Alternatively, the selected vehicle profile can be communicated to all vehicles in the vehicle stay, after which each individual vehicle in the vehicle stay will follow the same selected corpus profile.

I Fig. 40 visas ett ytterligare exempel, i vilket analysenheten 7 i systemet 4 är placerat i ett fordon, härledarfordonetf1. I likhet med exemplet i Fig. 4B bestams en korprofil och en vaxlingsprofil for vartdera fordonet fk. Korprofilerna och vaxlingsprofilerna sands via V2V-kommunikation till analysenheten 7 eller meddelas till analysenheten 7 for att bestamma en positionsbaserad korstrategi baserat pa en utvald korprofil. Efter att analysenheten 7 bestamt en utvald korprofil, meddelas korstrategin till fordonen i fordonstaget via V2Vkommunikation, alltsa en eller flera tradlosa signaler, samt via meddelande eller signal till fordonet fk i vilken analysenheten 7 befinner sig i, har f1. Korstrategin kan har vara densamma som de i exemplet som illustreras i Fig. 4B. Fordonen i fordonstaget reglerar sedan sin hastighet efter den utvalda korprofilen. Fig. 40 shows a further example, in which the analysis unit 7 in the system 4 is placed in a vehicle, the derivative vehicle f1. Similar to the example in Fig. 4B, a carcass profile and a gearing profile are determined for each vehicle fk. The corps profiles and the switching profiles are sent via V2V communication to the analysis unit 7 or is communicated to the analysis unit 7 to determine a position-based crossover strategy based on a selected crane profile. After the analysis unit 7 has determined a selected corps profile, the cross strategy is communicated to the vehicles in the vehicle stay via V2V communication, i.e. one or more wireless signals, and via message or signal to the vehicle fk in which the analysis unit 7 is located, has f1. The cross strategy can has to be the same as those in the example illustrated in Fig. 4B. The vehicles in the vehicle roof then regulate their speed according to the selected raft profile.

I Fig. 4D visas ett exempel pa hur en positionsbaserad strategi kan bestamnflas sekventiellt. Varje fordon fk är har fOrsett med en analysenhet 7k, eller en del av analysenheten 7. Det sista fordonet fN bestammer sin kOrprofil och vaxlingsprofil, och skickar den till analysenheten 7N-1 i det narmsta framforvarande fordonet fN-1. Fordonet fN-1 bestammer sin kOrprofil och de [Dada korprofilerna och vaxlingsprofilerna jamfors i analysenheten 7N-1 for att bestamma vilken av korprofilerna och vaxlingsprofilerna som ar mest begransad. Analysenheten 7 är har alltsa konfigurerad att jamfora skillnadsvarden Av sekventiellt. Hur det kan utforas har beskrivits tidigare. Den mest beg ransade korprofilen, dar hansyn tages till vaxlingsprofilen, av de !Ada skickas sedan vidare till nasta narnnsta framforvarande fordon fN_2 for fortsatt jamforelse. Efter en sista jamforelse i ledarfordonet har en utvald korprofil som kraver storst hastighetsandringar bestamts. Ledarfordonet foljer denna utvalda korprofil, och de andra fordonen i fordonstaget fOljer direkt narmast framfOrvarande fordons hastighet i fordonstaget utan ytterligare kommunikation, genom exempelvis radaravkanning som forklaras tidigare. Som alternativ kan de andra fordonen i fordonstaget meddelas samma utvalda korprofil som de sedan foljer. Fig. 4D shows an example of how a position-based strategy can be determined sequentially. Each vehicle fk is has provided with an analysis unit 7k, or part of analysis unit 7. The last vehicle fN determines its chassis profile and shift profile, and sends it to the analysis unit 7N-1 in the nearest forward vehicle fN-1. The vehicle fN-1 determines its core profile and the [Dada core profiles and shift profiles are compared in the analysis unit 7N-1 to determine which of the the corps profiles and the switching profiles that are most limited. The analysis unit 7 is has thus been configured to compare the difference values Off sequentially. How it can be performed has been described previously. The most beg ransacked corps profile, where hansyn is taken to the change profile, by the! Ada is then forwarded to the next nearest vehicle fN_2 for further comparison. After a final comparison in the leader vehicle, a selected corps profile that requires the greatest speed changes has been determined. The leader vehicle follows this selected corps profile, and the other vehicles in The vehicle roof follows directly the speed of the vehicle in the vehicle roof without further communication, for example through radar detection as explained earlier. Alternatively, the other vehicles in the vehicle stay can be notified of the same selected body profile which they then follow.

Analysenheten 7, korprofilenheten 6, vaxlingsprofilenheten 8 och horisontenheten 5 kan utgoras av en eller flera processorenheter och en eller flera minnesenheter. En processorenhet kan utg6ras av en CPU (Central Processing Unit). En minnesenhet kan innefatta ett flyktigt- och/eller ett icke-flyktigt minne, exempelvis flashminne eller RAM (Random Access Memory). Processorenheten kan vara en del av en dator eller ett datorsystem, exempelvis en ECU (Electronic Control Unit), i ett fordon 2. The analysis unit 7, the raft profile unit 6, the shift profile unit 8 and the horizon unit 5 may be one or more processor units and one or more memory units. A processor unit can be a CPU (Central Processing Unit). A memory device may include a volatile and / or non-volatile memory, such as flash memory or RAM (Random Access Memory). The processor unit can be one part of a computer or computer system, such as an ECU (Electronic Control) Unit), in a vehicle 2.

I Fig. 5 visas ett flodesschenna f6r en nnetod f6r att reglera fordonstaget som beskrivits ovan. Metoden kan implementeras som programkod i ett datorprogram P. Program koden kan fà systemet 4 att utfora nagot av stegen enligt nnetoden nar den '<ors pa en processorenhet i systemet 4. Metoden kommer nu att forklaras med hanvisning till flOdesschemat i Fig. 5. Det hanvisas ocksa till beskrivningen ovan av systemet; bland annat med avseende pa beskrivningen och forklaringen av prediktiva korstrategier LAC och LAP. Vidare hanvisas specifikt till beskrivningen av vad transmissionsvaxlingsprofilen innefattar. Fig. 5 shows a river rail for a method for regulating the vehicle stay as described above. The method can be implemented as a program code in a computer program P. The program code can cause the system 4 to perform some of the steps according to the method when the method of a processor unit in the system 4. The method will now be explained with reference to the flow chart in Fig. 5. Reference is also made to the above description of the system; among other things with regard to the description and explanation of predictive cross strategies LAC and LAP. Furthermore, he is specifically referred to the description of what the transmission shift profile includes.

Uppfinningen avser saledes aven en metod f6r att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet och en enhet for tradlos kommunikation. Metoden innefattar att bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, dar korprofilen innehaller borvarden bi for fordonet fk i positioner langs horisonten 21 (Al). Vidare innefattar nnetoden att bestannnna en transnnissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa horisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk i positioner langs horisonten (A2). Baserat atminstone pa kOrprofilen och transmissionsvaxlingsprofilen for fordonet fk bestams en korstrategi for fordonen i fordonstaget (A3). Slutligen meddelas korstrategin till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med korstrategin (A4). The invention thus also relates to a method for regulating a vehicle strut which comprises at least one conductor vehicle and a further vehicle which each have a positioning unit and a unit for wireless communication. The method includes to determine a body profile for at least one vehicle fk in the vehicle stay along one vaginal horizon for the vehicle's future path, based on the characteristics of the vaginal horizon, where the core profile contains the drill bit bi for the vehicle fk in positions along the horizon 21 (Al). Furthermore, the net method comprises determining a transmission transmission profile for at least one vehicle fk in the vehicle roof based on the characteristics of the horizon and on vehicle-specific properties, the gearing profile containing type of gear changes for the vehicle fk in positions along the horizon (A2). Based at least on The driving profile and the transmission shift profile of the vehicle are determined crossover strategy for the vehicle in the vehicle roof (A3). Finally, the cross strategy is communicated to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the cross strategy (A4).

Korstrategin innefattar antingen en positionsbaserad vaxling, varvid namnda vaxlingar tillampas for vartdera fordonet i for varje vaxling samhorande position, eller en tidsbaserad vaxling, varvid samtliga fordon i fordonsthget vaxlar vasentligen samtidigt. 15 Uppfinningen omfattar aven en datorprogramprodukt innefattande programkoden P lagrat pa ett, av en dator lasbart, medium for att utfora metodstegen som beskrivits hari. Datorprogramprodukten kan exempelvis vara en CD-skiva. The cross strategy involves either a position-based shifting, wherein said gear changes are applied to each vehicle in the corresponding position for each change, or a time-based change, whereby all vehicles in the vehicle stage change substantially simultaneously. The invention also comprises a computer program product comprising the program code P stored on a computer readable medium for performing the method steps described herein. The computer program product may be, for example, a CD.

Ett antal olika varianter pa hur uppfinningen kan tillampas kommer nu att 20 exennplifieras. A number of different variants of how the invention may be practiced will now be exemplified.

Exempel 1 Ledarfordonet meddelar i realtid att det kommer att vaxla. 25 Ovriga fordon far samtidigt detta meddelande och kan direkt och synkront med ledarfordonet vaxla och/eller gOra en hastighetsandring som overensstammer med den som ledarfordonet g6r i samband med vaxlingen. Detta kan vara en fOrutbestarnd hastighetsandring under en fOrutbestarnd tidsperiod, fOretradesvis relaterad till den hastighet som foreligger. Example 1 The leader vehicle announces in real time that it will shift. Other vehicles receive this message at the same time and can directly and synchronously with the conductor vehicle change and / or make a speed change that corresponds to that which the conductor vehicle makes in connection with the changeover. This can be a predetermined speed change over a predetermined time period, preferably related to the speed available.

Exempel 2 22 Ledarfordonet meddelar i realtid att det kommer att vaxla. I nneddelandet ingar ocksa positionen som ledarfordonet är i da vaxlingen kommer att ske. Example 2 22 The leader vehicle announces in real time that it will shift. The division also indicates the position that the leader vehicle is in when the changeover will take place.

Ovriga fordon far samtidigt detta meddelande och kan sedan genomfora vaxlingen och/eller Ora den hastighetsandring som overensstamer med den som 5 ledarfordonet gOr i sam band med vaxlingen da de Ovriga fordonen passerar positionen dar vaxlingen skedde. Det kan vara en forutbestamd hastighetsandring under en forutbestamd tidsperiod, foretradesvis relaterad till den hastighet som foreligger. 10 Exempel 3 Ledarfordonet regleras med en prediktiv farthallare (LAC) och &riga fordon foljer samma korprofil som ledarfordonet. De ovriga fordonen foljer korprofilen positionsbaserat, dvs. samma hastighetsforandring sker for vartdera fordonet vid en forutbestarnd position. Other vehicles receive this message at the same time and can then carry out the shifting and / or Ora the speed change that corresponds to the one that The leader vehicle is in contact with the changeover as the Other vehicles pass the position where the changeover took place. It may be a predetermined velocity change over a predetermined period of time, preferably related to the velocity available. Example 3 The leader vehicle is regulated with a predictive cruise control (LAC) and other vehicles follow the same corps profile as the leader vehicle. The other vehicles follow the corps profile based on position, ie. the same speed change occurs for each vehicle at a predetermined position.

Ledarfordonet bestammer aven en transmissionsvaxlingsprofil baserat pa en framtida vaghorisont och fordonsspecifika egenskaper. Med hansyn till den framtida vagens egenskaper, t.ex. dess lutning, och exempelvis fordonets motorstyrka, bestams vaxlingspositioner i den framtida vaghorisonten. For respektive vaxling bestams en vaxlingstid och en samhorande hastighetsforandring orsakad av vaxlingen. Vaxlingsprofilen nnappas sedan med den korprofil som LAC tagit fram for samma vaghorisont. Mera specifikt kommer vaxlingsprofilen att innehalla ett antal varden Avt som representerar hastighetsforandringar langs vaghoristonen. The conductor vehicle also determines a transmission shift profile based on one future vaginal horizon and vehicle-specific characteristics. With regard to the properties of the future carriage, e.g. its inclination, and for example the engine power of the vehicle, the shift positions are determined in the future vaginal horizon. For each change, a change time and a cohort are determined speed change caused by the waxing. The shift profile is then entered with the corpus profile that LAC has developed for the same vaginal horizon. More specifically, the shift profile will contain a number of values Avt that represent changes in velocity along the vagus horizon.

Vid berakningarna av hastighetsborvardena som genomfors av det prediktiva 25 farthallarsystemet tas hansyn aven till Avt och de beraknade hastighetsbOrvardena justeras darefter sa att korprofilen fortfarande hailer hastigheten inom uppstallda gransvarden. In the calculations of the speed drill values carried out by the predictive 25 the cruise control system is also taken into account in Avt and the calculated speed bar values are then adjusted so that the raft profile still reaches the speed within the raised branch barriers.

Exempel 4 Fordonstaget framfors med en gemensam prediktiv farthallarstrategi (LAP) vilket beskrivits ovan. LAP-korprofilen har bestamts baserat pa LAC-korprofilerna for 23 vartdera fordonet enligt berakningar som forklarats i detalj, exennpelvis i sannband med beskrivningen av figur 4A. Example 4 The vehicle roof is driven with a common predictive speedway strategy (LAP) which described above. The LAP raft profile has been determined based on the LAC raft profiles for 23 each vehicle according to calculations explained in detail, for example in true band with the description of Figure 4A.

Vartdera fordonet beraknar dessutom en transmissionsvaxlingsprofil pa samma satt som beskrivits ovan i anslutning till exempel 3. Each vehicle also calculates a transmission shift profile in the same manner as described above in connection with Example 3.

Dessa transmissionsvaxlingsprofiler jamfors med varandra. Den transmissionsvaxlingsprofil bland fordonstagens profiler som har mest paverkan pa hastigheten kommer att valjas till att galla for hela fordonstaget, dvs. fordonet som är det mest begransade fordonet kommer att valjas. Det mest begransande fordonet är exempelvis det fordon som har stOrst massa, eller minst tillgangligt motornnoment, eller en kombination av !pada. These transmission shift profiles are compared with each other. The transmission gear profile among the vehicle roof profiles that have the most impact on the speed will be chosen to apply to the entire vehicle roof, ie. the vehicle that is the most limited vehicle will be selected. The most restrictive vehicle is, for example, the vehicle that has the largest mass, or the least accessible engine name, or a combination of! pada.

Denna transmissionsvaxlingsprofil mappas sedan med den gemensamma korprofil som LAP-farthallarsystemet bestamt och en justerad korprofil bestams som aven tar hansyn till vaxlingar. Denna justerade korprofil, dvs. korstrategin anvands sedan for att reglera fordonen i fordonstaget. This transmission shift profile is then mapped with the common raft profile determined by the LAP cruise control system and an adjusted raft profile determined which also takes into account changes. This adjusted raven profile, ie. the cross strategy is then used to regulate the vehicles in the vehicle roof.

Exempel Varje fordon i fordonstaget far information om ett eller flera framforvarande fordons transnnissionsvaxlingsprofil(er) som bestannts pa sannnna satt som beskrivits i exempel 3 och kan sedan anpassa sin korprofil med hansyn till de narliggande fordonens vaxlingar. Example Each vehicle in the vehicle roof receives information about the transmission transmission profile (s) of one of the preceding vehicles which has been determined in a true manner as described in Example 3 and can then adapt its corpus profile with the male to those nearby vehicle swings.

Exempel 6 En variant av exempel 1 är att vane fordon far meddelande om en forestaende \taxiing -Iran ett framfOrvarande fordon och kan darigenom tillata, och ta hansyn till, 25 den hastighetsforandring, och samhorande avstandsforandring, som det framfOrvarande fordonet uppvisar. Example 6 A variant of Example 1 is that a habitual vehicle is notified of an impending taxiing of a vehicle present and can thereby allow, and take into account, the change in speed and associated distance change which the vehicle in question exhibits.

Den fOreliggande uppfinningen är inte begransad till de ovan beskrivna utforingsformerna. Olika alternativ, modifieringar och ekvivalenter kan anvandas. The present invention is not limited to the embodiments described above. Various alternatives, modifications and equivalents can be used.

Darfor begransar inte de ovan namnda utforingsformerna uppfinningens omfattning, som definieras av de bifogade kraven. Therefore, the above-mentioned embodiments do not limit the invention scope, as defined by the appended claims.

Claims (16)

24 Patentkrav 1. System (4) for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (1) och en enhet (2) for tradlos kommunikation; varvid systemet (4) innefattar: - en korprofilenhet (6) konfigurerad att bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden bi for fordonet fk i positioner pi langs vaghorisonten;A system (4) for controlling a vehicle strut comprising at least one conductor vehicle and a further vehicle each having a positioning unit (1) and a unit (2) for wireless communication; wherein the system (4) comprises: - a raft profile unit (6) configured to determine a raft profile for at least one vehicle fk in the vehicle roof along a vagal horizon for the vehicle's future wave, based on the characteristics of the vagal horizon, the raft profile containing the drill bit bi for the vehicle fk in positions vaghorisonten; 1. en vaxlingsprofilenhet (8) konfigurerad att bestamma en transmissionsvaxlingsprofil for atminstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar f6r fordonet fk i positioner langs vaghorisonten, 2. en analysenhet (7) som är konfigurerad att: - bestamma en korstrategi for fordonen i fordonstaget baserat atminstone pa korprofilen och transmissionsvaxlingsprofilen f6r fordonet fk; - generera en korstrategisignal som indikerar korstrategin, och - sanda korstrategisignalen till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med korstrategin.A shift profile unit (8) configured to determine a transmission shift profile for at least one vehicle fk in the vehicle roof based on the characteristics of the vag horizon and on vehicle specific characteristics, the shift profile containing type of changes for the vehicle fk in positions along the vag horizon, 2. an analysis unit (7) is configured to: - determine a crossover strategy for the vehicles in the vehicle stay based at least on the carcass profile and the transmission shift profile for the vehicle fk; - generate a crossover strategy signal indicating the crossover strategy, and - true crossover strategy signal to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the crossover strategy. 2. Systemet enligt krav 1, varvid namnda k6rstrategi innefattar positionsbaserad \taxiing, varvid namnda vaxlingar tillampas fOr vartdera fordonet i f6r varje \taxiing samhorande position.The system of claim 1, wherein said driving strategy comprises position-based taxiing, said shifting being applied to each vehicle in each taxiing associated position. 3. Systemet enligt krav 1, varvid namnda korstrategi innefattar tidsbaserad \taxiing, varvid samtliga fordon i fordonstaget vaxlar samtidigt.The system of claim 1, wherein said crossover strategy comprises time-based \ taxiing, wherein all vehicles in the vehicle stay shift at the same time. 4. Systemet enligt nagot av kraven 1-3, varvid namnda korstrategi innebar att lokala hastighetsvariationer tillats for enskilda fordon i fordonstaget da vaxling sker.The system according to any one of claims 1-3, wherein said cross strategy meant that local speed variations were allowed for individual vehicles in the vehicle stay when shifting takes place. 5. Systemet enligt nagot av kraven 1-4, varvid namnda korstrategi är en gemensann kooperativ prediktiv farthallarstrategi for fordonstag (LAP).The system according to any one of claims 1-4, wherein said crossover strategy is a common cooperative predictive speedboat strategy for vehicle stays (LAP). 6. Systemet enligt krav 1, varvid analysenheten är anpassad att ange i korstrategisignalen att ett framfOrvarande fordon vaxlar och att meddela detta till ett eller flera bakomvarande fordon i fordonstaget och att ange positionen dar vaxlingen sker.The system of claim 1, wherein the analysis unit is adapted to indicate in the cross-strategy signal that a vehicle in front is shifting and to notify this to one or more vehicles behind in the vehicle stay and to indicate the position where the shifting takes place. 7. Systemet enligt nagot av kraven 1-6, varvid typ av vaxling innefattar att ange fran vilken vaxel och till vilken vaxel vaxlingen avser.The system of any one of claims 1-6, wherein the type of waxing comprises indicating from which wax and to which wax the waxing refers. 8. Metod for att reglera ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon sonn vardera har en positioneringsenhet (1) och en enhet for tradlos kommunikation (2), metoden innefattar att: bestamma en korprofil for atminstone ett fordon fk i fordonstaget langs en vaghorisont for fordonets framtida vag, baserat pa vaghorisontens egenskaper, varvid korprofilen innehaller borvarden bi for fordonet fk i positioner langs horisonten; - bestannnna en transnnissionsvaxlingsprofil for atnninstone ett fordon fk i fordonstaget baserat pa vaghorisontens egenskaper och pa fordonsspecifika egenskaper, varvid vaxlingsprofilen innehaller typ av vaxlingar for fordonet fk positioner langs vaghorisonten, 1. bestamma en kOrstrategi fOr fordonen i fordonstaget baserat atminstone pa korprofilen och transmissionsvaxlingsprofilen f6r fordonet fk; 2. meddela kOrstrategin till alla fordon i fordonstaget, varefter fordonen i fordonstaget regleras i enlighet med korstrategin.A method of controlling a vehicle stay comprising at least one conductor vehicle and a further vehicle each having a positioning unit (1) and a unit for wireless communication (2), the method comprising: determining a body profile of at least one vehicle fk in the vehicle stay along a vaginal horizon for the vehicle's future vaginal, based on the characteristics of the vaginal horizon, the core profile containing the drill bit bi for the vehicle fk in positions along the horizon; - determine a transmission gear shift profile for atnninstone a vehicle fk in the vehicle roof based on the vehicle horizon characteristics and on vehicle-specific characteristics, the gearshift profile contains type of gear changes for the vehicle fk positions along the vagor horizon, 1. determine a driving strategy for the vehicle in the vehicle profile fk; 2. announce the crossing strategy to all vehicles in the vehicle roof, after which the vehicles in the vehicle roof are regulated in accordance with the crossing strategy. 9. Metoden enligt krav 8, varvid namnda korstrategi innefattar positionsbaserad vaxling, varvid namnda vaxlingar tillampas for vartdera fordonet i for varje vaxling samhorande position. 26The method of claim 8, wherein said crossover strategy comprises position-based shifting, said shifting being applied to each vehicle in a position associated with each shifting. 26 10. Metoden enligt krav 8, varvid nannnda korstrategi innefattar tidsbaserad vaxling, varvid samtliga fordon i fordonstaget vaxiar vasentligen samtidigt.The method of claim 8, wherein said crossover strategy comprises time-based switching, wherein all vehicles in the vehicle roof wax substantially simultaneously. 11. Metoden enligt nagot av kraven 8-10, varvid namnda korstrategi innebar att lokala hastighetsvariationer tillats f6r enskilda fordon i fordonstaget da \taxiing sker.The method according to any one of claims 8-10, wherein said crossing strategy meant that local speed variations were allowed for individual vehicles in the vehicle roof when taxiing takes place. 12. Metoden enligt nagot kraven 8-11, varvid namnda kOrstrategi är en gemensann kooperativ prediktiv farthallarstrategi for fordonstag (LAP).The method according to any of claims 8-11, wherein said driving strategy is a common cooperative predictive speedway strategy for vehicle roofs (LAP). 13. Metoden enligt krav 8, varvid korstrategin innefattar att ett framforvarande fordon meddelar ett eller fiera bakomvarande fordon i fordonstaget att \taxiing sker och anger positionen dar vaxiingen sker.The method of claim 8, wherein the crossover strategy comprises that a forward vehicle notifies one or more rear vehicles in the vehicle stay that taxiing is taking place and indicates the position where the waxing is taking place. 14. Metoden enligt nagot av kraven 8-13, varvid typ av vaxling innefattar att ange fran vilken vaxel och till vilken vaxel vaxlingen avser.The method of any of claims 8-13, wherein the type of waxing comprises indicating from which wax and to which wax the waxing refers. 15. Datorprogram (P) vid ett system (4), dar nannnda datorprogram (P) innefattar programkod for att fa systennet (4) att utfOra nagot av stegen enligt patentkraven 8-14.Computer program (P) in a system (4), wherein said computer program (P) comprises program code for causing the system (4) to perform some of the steps according to claims 8-14. 16. Datorprogramprodukt innefattande en progrannkod lagrat pa ett, av en dator lasbart, medium for att utfora metodstegen enligt nagot av patentkraven 825 14. 1/4A computer program product comprising a program code stored on a computer readable medium for performing the method steps of any of claims 825 14. 1/4
SE1351126A 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains SE537482C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1351126A SE537482C2 (en) 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains
DE112014004049.5T DE112014004049T5 (en) 2013-09-30 2014-09-26 Method and system for a common driving strategy for vehicles
PCT/SE2014/051112 WO2015047175A1 (en) 2013-09-30 2014-09-26 Method and system for a common driving strategy for vehicle platoons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1351126A SE537482C2 (en) 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains

Publications (2)

Publication Number Publication Date
SE1351126A1 true SE1351126A1 (en) 2015-03-31
SE537482C2 SE537482C2 (en) 2015-05-12

Family

ID=52744108

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1351126A SE537482C2 (en) 2013-09-30 2013-09-30 Method and system for common driving strategy for vehicle trains

Country Status (3)

Country Link
DE (1) DE112014004049T5 (en)
SE (1) SE537482C2 (en)
WO (1) WO2015047175A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060148A (en) * 2019-12-16 2021-07-02 克诺尔商用车制动系统有限公司 Method and device for determining driving characteristics of vehicles in a train and vehicle having such a device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
WO2018039134A1 (en) 2016-08-22 2018-03-01 Peloton Technology, Inc. Automated connected vehicle control system architecture
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US20180210463A1 (en) 2013-03-15 2018-07-26 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
WO2016168213A2 (en) * 2015-04-13 2016-10-20 Honeywell International, Inc. System and approach for vehicle cruise control
JP7005526B2 (en) 2016-05-31 2022-01-21 ぺロトン テクノロジー インコーポレイテッド State machine of platooning controller
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
DE102016224108A1 (en) * 2016-12-05 2018-06-07 Robert Bosch Gmbh Method and apparatus for providing a signal for operating at least two vehicles
DE102016224396A1 (en) * 2016-12-07 2018-06-07 Volkswagen Aktiengesellschaft Method and control unit for controlling a powertrain of an ego vehicle
US10073464B2 (en) 2016-12-30 2018-09-11 Bendix Commercial Vehicle Systems Llc Varying the distance between vehicles in a platoon
DE102017202551A1 (en) * 2017-02-16 2018-08-16 Robert Bosch Gmbh Method and apparatus for providing a signal for operating at least two vehicles
US10551842B2 (en) * 2017-06-19 2020-02-04 Hitachi, Ltd. Real-time vehicle state trajectory prediction for vehicle energy management and autonomous drive
JP6822386B2 (en) * 2017-11-30 2021-01-27 トヨタ自動車株式会社 Formation running system
DE112017008199T5 (en) 2017-12-13 2020-07-30 Ford Global Technologies, Llc RANGE-BASED ORDER OF A VEHICLE PLATOON
WO2019118833A1 (en) 2017-12-14 2019-06-20 Cummins Inc. Interfaces for engine controller and platooning controller
WO2019214828A1 (en) * 2018-05-11 2019-11-14 Volvo Truck Corporation A method for establishing a path for a vehicle
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
EP3871058B1 (en) * 2018-10-25 2022-09-07 Volvo Truck Corporation A method for controlling a platoon of vehicles
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
DE102019208142B3 (en) * 2019-06-05 2020-11-12 Volkswagen Aktiengesellschaft Method for specifying a driving strategy and vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277837B2 (en) * 1996-03-15 2002-04-22 トヨタ自動車株式会社 Transmission control device
US6405120B1 (en) * 1999-05-20 2002-06-11 Nissan Motor Co., Ltd. Vehicular velocity controlling apparatus and method to follow up a preceding vehicle running ahead of vehicle
JP3661496B2 (en) * 1999-06-15 2005-06-15 日産自動車株式会社 Preceding vehicle tracking control device
DE19949448A1 (en) * 1999-10-14 2001-05-03 Daimler Chrysler Ag Vehicle control system determines drive state variables and operating values of vehicles based on received signals representing drive state variable and operating value of front vehicle
DE102006042419A1 (en) * 2006-09-09 2008-03-27 Zf Friedrichshafen Ag Predictive driving with ACC
US8086396B1 (en) * 2006-12-07 2011-12-27 Itt Manufacturing Enterprises, Inc. Close-spaced leader-follower navigation using control mimic
GB2455584A (en) * 2007-12-15 2009-06-17 Anatolijs Fjodorovics Distance based traffic control system for a vehicle
JP4983732B2 (en) * 2008-06-20 2012-07-25 アイシン・エィ・ダブリュ株式会社 Driving support device, driving support method, and driving support program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060148A (en) * 2019-12-16 2021-07-02 克诺尔商用车制动系统有限公司 Method and device for determining driving characteristics of vehicles in a train and vehicle having such a device
CN113060148B (en) * 2019-12-16 2024-03-19 克诺尔商用车制动系统有限公司 Method and device for determining driving characteristics of vehicles in a train and vehicle having such a device

Also Published As

Publication number Publication date
DE112014004049T5 (en) 2016-08-11
WO2015047175A1 (en) 2015-04-02
SE537482C2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
SE1351126A1 (en) Method and system for common driving strategy for vehicle trains
SE1351128A1 (en) Method and system for common driving strategy for vehicle trains
SE1351125A1 (en) Method and system for handling obstacles for vehicle trains
CN102458944B (en) Method and module for determining of velocity reference values for a vehicle control system
EP3052356B1 (en) System and method for controlling a vehicle platoon with a common position-based driving strategy
CN102458943B (en) Method and module for determining of velocity reference values for a vehicle control system
CN102803039B (en) Method and module for controlling a velocity of a vehicle
KR101601891B1 (en) Method and module for determining of reference values for a vehicle control system
EP3053154B1 (en) System and method to control a vehicle platoon with two different driving strategies
CN102458953B (en) Module in a vehicle control system
SE1351132A1 (en) Method and system for organizing vehicle trains
SE537469C2 (en) A system and method for correcting map data and vehicle train position data
CN102803040B (en) For determining method and the module of the reference value of vehicle control system
SE536264C2 (en) Method and module for controlling the speed of a vehicle through simulation
CN102458952B (en) Module for determining of reference values for a vehicle control system
WO2015047179A1 (en) Control unit and method to control a vehicle in a vehicle platoon based on the predicted behaviour of the preceeding vehicle
CN102481932B (en) System and method for maintaining driving times
CN102227331B (en) Determination of acceleration behaviour
SE1151248A1 (en) Method and module for determining at least one reference value for a control system in a vehicle
SE1050335A1 (en) Method and module in connection with cruise control
CN110546056A (en) Method and control device for determining a control scheme for a vehicle
Jones et al. Energy-efficient cooperative adaptive cruise control strategy using V2I
EP4246486A1 (en) Non-selfish traffic lights passing advisory systems
CN112969975A (en) Method for controlling a queue of vehicles
WO2015177238A1 (en) Device for assisting in the management of the energy consumption of a vehicle, method, program and vehicle

Legal Events

Date Code Title Description
NUG Patent has lapsed