SE537598C2 - Method and system for organizing vehicle trains - Google Patents

Method and system for organizing vehicle trains Download PDF

Info

Publication number
SE537598C2
SE537598C2 SE1351132A SE1351132A SE537598C2 SE 537598 C2 SE537598 C2 SE 537598C2 SE 1351132 A SE1351132 A SE 1351132A SE 1351132 A SE1351132 A SE 1351132A SE 537598 C2 SE537598 C2 SE 537598C2
Authority
SE
Sweden
Prior art keywords
vehicle
ratio
location
mass
maximum engine
Prior art date
Application number
SE1351132A
Other languages
Swedish (sv)
Other versions
SE1351132A1 (en
Inventor
Assad Alam
Kuo-Yun Liang
Henrik Pettersson
Jonas Mårtensson
Karl Henrik Johansson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1351132A priority Critical patent/SE537598C2/en
Priority to PCT/SE2014/051123 priority patent/WO2015047182A1/en
Priority to EP14850032.5A priority patent/EP3053156A4/en
Publication of SE1351132A1 publication Critical patent/SE1351132A1/en
Publication of SE537598C2 publication Critical patent/SE537598C2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/695Coordinated control of the position or course of two or more vehicles for maintaining a fixed relative position of the vehicles, e.g. for convoy travelling or formation flight
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Marketing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Sammandraci Ett system och en metod far aft organisera ett fordonstag. Systemet innefattar en processorenhet som är konfigurerad aft bestamma en kvot bx for ett fordon fx som onskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa, jamfora kvoten b„ med atminstone en annan kvot bk fOr ett fordon fk i fordonstaget som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa, och bestamma en placering f6r fordonet fx i fordonstaget baserat pa resultatet av jamforelsen. Systemet ãr vidare konfigurerat aft generera en placeringssignal som indikerar placeringen av fordonet fx och sanda placeringssignalen till en indikeringsenhet i fordonet fx, varvid placeringen av fordonet f anvisas for foraren av fordonet fx. Summary A system and method may organize a vehicle roof. The system comprises a processor unit which is configured to determine a ratio bx for a vehicle, for example, which does not want any in the vehicle tie which describes the ratio between the vehicle's maximum engine power and vehicle mass or the ratio between the vehicle's maximum engine torque and vehicle mass, cf. at least one other ratio bk for a vehicle fk in the vehicle stay which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass, and determine a location for the vehicle eg in the vehicle stay based on the result of the comparison. The system is further configured to generate a location signal indicating the location of the vehicle eg and the true location signal to an indicator unit in the vehicle e.g., the location of the vehicle f being indicated to the driver of the vehicle e.g.

Description

Metod och system for organisering av fordonstag Uppfinningens omrade Den foreliggande uppfinningen hanfor sig till ett system och en metod for att 5 organisera ett fordonstag. I synnerhet anges satt aft organisera ett fordonstag infor reglering av fordonen. FIELD OF THE INVENTION The present invention relates to a system and a method for organizing a vehicle roof. In particular, it is stated that a vehicle roof can be organized before regulation of the vehicles.

Uppfinningens bakorund Trafikintensiteten är hag pa Europas store \Agar och forvantas oka framover. Background of the Invention The traffic intensity is high on Europe's major roads and is expected to increase in the future.

Den okade transporten av manniskor och gods ger inte bara upphov till trafikproblem i form av koer utan kraver aven alit mer energi som i slutanden ger upphov till utslapp av exem pelvis vaxthusgaser. Ett mojligt bid rag till aft losa dessa problem är aft lata fordon fardas tatare i sa kallade fordonstag (platoons). Med fordonstag menas har ett antal fordon som kors med korta avstand mellan varandra och framfors som en enhet. De korta avstanden leder till all mer trafik kan fardas pa vagen, och aven all energiforbrukningen for ett enskilt fordon minskar eftersom luftmotstandet reduceras. Fordonen i fordonstaget [(ors med en automatiserad styrning for fordonens hastighet och/eller rattstyrning. Della medf6r aft fordonsforare sasom lastbilschaufforer blir avlastade, olyckor baserat pa felaktiga manniskobeslut minskas och bransleforbrukningen kan reduceras. Studier visar aft bransleatgangen for det ledande fordonet i fordonstaget kan reduceras med 2 till 10 % och for det foljande fordonet 15 till 20 % jamfort med ett ensamt fordon. Della under forutsattning all avstandet mellan lastbilarna ãr 8 - 16 meter och aft de fardas i 80 km/h. Den minskade bransleatgangen ger en motsvarande reduktion i CO2 utslaPP. The increased transport of people and goods not only gives rise to traffic problems in the form of cows but also requires more energy, which in the end gives rise to emissions of greenhouse gases, for example. A possible way to solve these problems is to let lazy vehicles travel in so-called platoons. By vehicle roof is meant a number of vehicles that cross at short distances between each other and drive forward as a unit. The short distances lead to more and more traffic being able to travel on the road, and also all the energy consumption for an individual vehicle decreases as the air resistance is reduced. The vehicles in the vehicle roof are [(equipped with an automated control for the vehicle's speed and / or steering wheel steering. Della entails vehicle drivers as truck drivers are relieved, accidents based on incorrect manpower decisions are reduced and fuel consumption can be reduced. Studies show that fuel consumption can be reduced in the leading vehicle with 2 to 10% and for the following vehicle 15 to 20% compared to a single vehicle. Assuming all the distance between the trucks is 8 - 16 meters and even they travel at 80 km / h. The reduced fuel consumption gives a corresponding reduction in CO2 emissions.

Forare utnyttjar detta valkanda faktum redan idag med en sankt trafiksakerhet som foljd. En grundlaggande fraga kring fordonstag är hur tidsluckan mellan fordon kan minskas fran rekommenderade 3 sekunder ner till mellan 0,5 och 1 sekund utan all paverka trafiksakerheten. Med avstandssensorer och kameror kan forarens reaktionstid elimineras, en typ av teknik anvand redan idag av system som ACC (Adaptiv Cruise Control) och LKA (Lane Keeping Assistance). 1 En begransning är dock att avstandssensorer och kameror kraver fri sikt till malet vilket gar det svart att detektera handelser mer an ett par fordon framat i Icon. En ytterligare begransning är att farthallare inte kan reagera proaktivt, d.v.s. farthallaren kan inte reagera pa handelser som hander langre fram i trafiken som kommer att paverka trafikrytmen. Drivers are already taking advantage of this elusive fact today with a sacred traffic safety as a result. A fundamental question about vehicle stays is how the time slot between vehicles can be reduced from the recommended 3 seconds down to between 0.5 and 1 second without affecting road safety. With distance sensors and cameras, the driver's reaction time can be eliminated, a type of technology already used today by systems such as ACC (Adaptive Cruise Control) and LKA (Lane Keeping Assistance). 1 A limitation, however, is that distance sensors and cameras require a clear view of the target, which makes it difficult to detect trades more than a couple of vehicles up front in Icon. A further limitation is that cruise control cannot react proactively, i.e. the cruise control cannot react to actions that take place further in the traffic that will affect the traffic rhythm.

En mojlighet att fa fordonen att agera proaktivt är att fa fordonen att kommunicera och utbyta information. En utvecklig av IEEE-standarden 802.11 for WLAN (Wireless Local Area Networks) kallad 802.11p mojliggor tradlos overforing av information mellan fordon, och mellan fordon och infrastruktur. Olika sorters information kan sandas till och fran fordonen, sasom fordonsparametrar och strategier. Utvecklingen av kommunikationstekniken har gjort det mojligt att designa fordon och infrastruktur som kan interagera och agera proaktivt. Fordon kan regleras som en enhet och foljaktligen mojliggors kortare avstand och ett battre globalt trafikflode. One way to get vehicles to act proactively is to get vehicles to communicate and exchange information. A development of the IEEE standard 802.11 for WLAN (Wireless Local Area Networks) called 802.11p enables wireless transmission of information between vehicles, and between vehicles and infrastructure. Different types of information can be sanded to and from the vehicles, such as vehicle parameters and strategies. The development of communication technology has made it possible to design vehicles and infrastructure that can interact and act proactively. Vehicles can be regulated as a unit and consequently shorter distances and a better global traffic flow are possible.

Manga fordon är idag aven utrustade med en farthallare for att underlatta for Waren att framfora fordonet. Den onskade hastigheten kan da stallas in av foraren genom exempelvis ett reglage i rattkonsolen, och ett farthallarsystem i fordonet paverkar sedan ett styrsystem sa att det gasar respektive bromsar fordonet for att halla den onskade hastigheten. Om fordonet är utrustat med automatvaxlingssystem sa andras fordonets vaxel for att fordonet ska kunna halla onskad hastighet. Many vehicles today are also equipped with a cruise control to make it easier for Waren to drive the vehicle. The desired speed can then be set by the driver through, for example, a control in the steering console, and a cruise control system in the vehicle then acts on a control system so that it accelerates or brakes the vehicle to maintain the desired speed. If the vehicle is equipped with an automatic shifting system, the other person's the vehicle's gearbox so that the vehicle can maintain the desired speed.

Nar farthallare anvands i backig terrang sa kommer farthallarsystemet att forsoka halla installd hastighet genom uppforsbackar. Detta far ibland till foljd all fordonet accelererar Over kr6net och kanske in i en efterkommande nedforsbacke for att darefter behova bromsas for att inte overskrida den installda hastigheten, vilket utgor ett bransleslosande satt att framfora fordonet. Genom att variera fordonets hastighet i backig terrang kan bransle sparas jamfort med en konventionell farthallare. Om den framtida topologin gars kand genom att fordonet har kartdata och positioneringsutrustning kan sadana system gams mer robusta samt aven 2 andra fordonets hastighet innan saker har hant vilket astadkommes med sa kallade prediktiva farthallare (Look-Ahead Cruise control, LAC). When cruise control is used in hilly terrain, the cruise control system will try to maintain the set speed through uphill slopes. This sometimes results in all the vehicle accelerating over the crown and perhaps into a subsequent downhill slope and then having to be braked so as not to exceed the set speed, which constitutes an industry-free way of driving the vehicle. By varying the vehicle's speed in hilly terrain, fuel can be saved at the same time as a conventional cruise control. If the future topology is known because the vehicle has map data and positioning equipment, such systems can be more robust and also the speed of 2 other vehicles before things have happened, which is achieved with so-called predictive cruise control (LAC).

Da en bransleoptimal korstrategi ska tas fram for ett helt fordonstag blir dock situationen mer komplex. Ytterligare aspekter maste tas hansyn till, som bibehallet optimalt avstand, fysisk mojlig hastighetsprofil for alla fordonen med varierande massa och motorkapacitet. En ytterligare aspekt for ett fordonstag under framfart aver varierande topografi är all nar forsta fordonet har tappat fart i en uppforsbacke, aterupptar den sin sethastighet efter backen. De efterfoljande fordonen som da fortfarande befinner sig i uppforsbacken kommer all tvingas accelerera i backen, vilket inte är bransleeffektivt. Det är inte heller alltid mojligt, vilket innebar aft det kommer skapas luckor i fordonstaget som i sin tur maste tappas igen. Della skapar svangningar i fordonstaget. Snarlikt beteende observeras aven under nedfOrsbackar, nar forsta fordonet borjar all accelerera i nedf6rsbacken p.g.a. den stora massan. De efterfoljande fordonen tvingas da all accelerera innan nedf6rsbacken, eftersom de fOrsoker bibehalla avstandet till framforvarande fordon. Efter nedforsbacken borjar ledarfordonet aft decelerera for aft aterga till sethastigheten. De efterfoljande fordonen, som fortfarande befinner sig i nedforsbacken, kommer da att tvingas bromsa for att inte orsaka en kollision, vilket inte ãr bransleeffektivt. However, as an industry-optimal crossover strategy must be developed for an entire vehicle roof, the situation becomes more complex. Additional aspects must be taken into account, such as maintaining the optimal distance, physically possible speed profile for all vehicles with varying mass and engine capacity. A further aspect of a vehicle roof during travel with varying topography is that once the first vehicle has lost speed on an uphill slope, it resumes its seat speed along the hill. The subsequent vehicles that are then still on the uphill slope will all be forced to accelerate on the hill, which is not industry efficient. It is also not always possible, which meant that gaps will be created in the vehicle roof, which in turn must be dropped again. Della creates oscillations in the vehicle stay. Similar behavior is also observed under downhill slopes, when the first vehicle begins to accelerate on the downhill slope due to the great mass. The following vehicles are then forced to accelerate before the downhill slope, as they try to maintain the distance to the vehicle in front. After the downhill, the leader vehicle begins to decelerate to return to the set speed. The subsequent vehicles, which are still on the downhill slope, will then be forced to brake so as not to cause a collision, which is not industry efficient.

I WO-2012105889-Al namns att ett tungt fordon som fardas nedfor en backe bakom ett lattare fordon kommer aft narma sig den senare och maste bromsas. Det beskrivs att korrekt val av tidsavstand eller korrekt positionering av fordonen i fordonstaget fore nedf6rsbacken b6rjar mojligtvis kan undvika denna inbromsning och foljaktligen minska bransleforbrukningen. WO-2012105889-Al mentions that a heavy vehicle traveling down a hill behind a lighter vehicle will often approach the latter and must be braked. It is described that the correct choice of time interval or the correct positioning of the vehicles in the vehicle roof before the downhill slope can possibly begin to avoid this deceleration and consequently reduce the fuel consumption.

Det saknas dock fortfarande en generell losning pa hur ett fordonstag ska vara organiserat for all klara bade uppfor- och nedforsbackar med samma ordning pa 30 de i fordonstaget ingaende fordonet pa ett bransleeffektivt satt. 3 Syftet med uppfinningen är att tillhandahalla en forbattrad metod for aft organisera eft fordonstag sa aft fordonstaget kan framforas pa ett bransleeffektivt satt i varierande topografi. However, there is still a lack of a general solution on how a vehicle roof should be organized for all clear both uphill and downhill slopes with the same order of the vehicles included in the vehicle roof in an industry-efficient manner. The object of the invention is to provide an improved method for organizing by vehicle roof so that the vehicle roof can be driven in an industry-efficient manner in varying topography.

Sammanfattnino av uppfinninoen Enligt en aspekt uppnas det ovan beskrivna syftet atminstone delvis genom en metod for aft organisera ett fordonstag. Metoden innefattar aft bestamma en kvot bx for eft fordon fx som 6nskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa; jamfora kvoten bx med atminstone en annan kvot bk far ett fordon fk i fordonstaget, som beskriver farhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa; bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamforelsen; generera en placeringssignal som indikerar placeringen av fordonet fx; sanda placeringssignalen till en indikeringsenhet i fordonet fx, varvid placeringen av fordonet fx anvisas far foraren av fordonet fx. SUMMARY OF THE INVENTION According to one aspect, the object described above is achieved at least in part by a method for organizing a vehicle roof. The method includes determining a ratio bx for eft vehicle eg which does not want any in the vehicle roof which describes the ratio between the vehicle fx's maximum engine power and vehicle mass or the ratio between the vehicle fx:'s maximum engine torque and vehicle mass; compare the ratio bx with at least one other ratio bk for a vehicle fk in the vehicle roof, which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass; determine a location for the vehicle eg in the vehicle roof based on the result of the comparison; generate a location signal indicating the location of the vehicle e.g.; the location signal to an indicating unit in the vehicle e.g., wherein the location of the vehicle e.g. is indicated by the driver of the vehicle e.g.

Genom aft berakna en kvot som beskriver forhallandet mellan fordonets maximala motoreffekt och fordonets massa alternativt mellan fordonets maximala motormoment och fordonsmassa, sa kan man bestamma det mest begransade fordonet. Det mest begransade fordonet ar det fordon som far starst hastighetsvariationer da det ska ta sig uppfor respektive nedfor en backe. Genom aft placera det mest begransade fordonet forst i fordonstaget, och placera det nast mest beg ransade darefter etc., kan man vara saker pa all fordonen efter det forsta fordonet kommer aft klara av de hastighetsvariationer som det forsta fordonet kommer all Ora. Detta innebar aft vane fordon kommer aft kunna halla samma hastighet som det forsta fordonet i en uppforsbacke. Delia blir da bransleoptimalt, eftersom avstandet mellan fordonen kan bibehallas under hela farden vilket ger maximal luftmotstandsreduktion och darigenom lagst bransleforbrukning. Delia innebar ocksa aft inget fordon i fordonstaget kommer aft tvingas bromsa da det forsta fordonet akar i hastighet vid exempelvis frirullning 4 eller motorbromsning vid framforande over en nedforsbacke. Della blir cla bransleoptimalt, eftersom onoclig bromsning undviks. By calculating a ratio that describes the ratio between the vehicle's maximum engine power and the vehicle's mass or alternatively between the vehicle's maximum engine torque and vehicle mass, one can determine the most limited vehicle. The most limited vehicle is the vehicle that gets the most speed variations as it has to go up and down a hill, respectively. By placing the most limited vehicle first in the vehicle roof, and placing the second most limited thereafter, etc., one can be things on all the vehicles after the first vehicle will be able to cope with the speed variations that the first vehicle will all Ora. This meant that used vehicles will often be able to maintain the same speed as the first vehicle on an uphill slope. Delia then becomes industry-optimal, as the distance between the vehicles can be maintained throughout the journey, which gives maximum air resistance reduction and thereby the lowest fuel consumption. Delia also meant that no vehicle in the vehicle roof will often be forced to brake as the first vehicle accelerates at, for example, free roll 4 or engine braking when driving over a downhill slope. Della becomes cla industry optimal, as unreasonable braking is avoided.

Enligt en andra aspekt sá uppnas syftet atminstone delvis genom ett system far 5 all organisera ett fordonstag. Systemet innefattar en processorenhet som är konfigurerad all bestamma en kvot bx for ett fordon fx som onskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa, jamfora kvoten bx med atminstone en annan kvot bk for ett 10 fordon fk i fordonstaget som beskriver farhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa, och bestamma en placering for fordonet f i fordonstaget baserat pa resultatet av jamforelsen. Systemet är vidare konfigurerat all generera en placeringssignal som indikerar placeringen av fordonet f och sanda placeringssignalen till en indikeringsenhet i fordonet fx, varvid placeringen av fordonet fx anvisas for foraren av fordonet fx. According to a second aspect, the object is achieved at least in part by a system for organizing a vehicle roof. The system comprises a processor unit which is configured to determine a ratio bx for a vehicle, for example, which does not want any in the vehicle tie which describes the ratio between the vehicle's maximum engine power and vehicle mass or the ratio between the vehicle's maximum engine torque and vehicle mass, compare the ratio bx with at least another ratio bk for a vehicle fk in the vehicle tie which describes the relationship between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass, and determine a location for the vehicle in the vehicle tie based on the result of the comparison. The system is further configured to generate a location signal indicating the location of the vehicle f and the true location signal to an indicator unit in the vehicle e.g., the location of the vehicle e.g. being indicated to the driver of the vehicle e.g.

Uppfinningen är sarskilt fordelaktig aft anvanda da en gemensam korstrategi ska anvandas for hela fordonstaget. Manga tunga berakningar kan undvikas under fard genom aft i forvag ha organiserat fordonstaget. Alla fordonen kan enkelt folja det forsta fordonets bestamda korprofil och uppna bransleoptimalitet, eftersom det mest begransade fordonet dikterar den bransleoptimala korprofilen. Detta system blir dá aven robust (string stable), eftersom alla eventuella storningar kommer aft dampas da de efterfoljande fordonen alltid kommer all ha en snabbare dynamik och alltsa kunna reagera snabbare pa farandringar an fordonet framfar. The invention is particularly advantageous to use as a common crossover strategy is to be used for the entire vehicle stay. Many heavy calculations can be avoided while driving by having organized the vehicle roof in advance. All vehicles can easily follow the determined vehicle profile of the first vehicle and achieve industry optimality, as the most limited vehicle dictates the industry-optimal crew profile. This system will then also be robust (string stable), as all possible faults will be evaporated as the subsequent vehicles will always have a faster dynamics and thus be able to react more quickly to changes than the vehicle drives.

Styrstrategin kan exempelvis innebara all alla fordonen i fordonstaget ska foga ett av fordonen i fordonstagets framraknade korprofil. lfall fordonen i fordonstaget ar organiserade enligt uppfinningen betrayer man endast bestamma ledarfordonets korprofil, alltsa det forsta fordonets korprofil, och behover inte ta hansyn till bakomvarande fordon p.g.a. deras snabbare dynamik. Delta innebar exempelvis aft inga korprofiler behover skickas mellan fordonen utan de bakomvarande fordonen behover endast positionsbaserat folja det framforvarande fordonet. The steering strategy can, for example, mean that all the vehicles in the vehicle stay must join one of the vehicles in the vehicle stay's protruding body profile. If the vehicles in the vehicle roof are organized according to the invention, it is only necessary to determine the carcass profile of the leader vehicle, ie the carcass profile of the first vehicle, and it is not necessary to take into account the vehicle behind due to their faster dynamics. Delta meant, for example, that no crane profiles need to be sent between the vehicles, but the vehicles behind need only position-follow the forward vehicle.

En ytterligare fordel med aft organisera fordonen enligt uppfinningen är aft fordonstaget blir mer robust, eftersom organiseringen sakerstaller aft de bakomvarande fordonen alltid har mojlighet aft anpassa sig rent fysiskt efter framfOrvarande fordon, d.v.s. inga fysiska begransningar hos fordonen kommer aft skapa problem med regleringen. A further advantage of organizing the vehicles according to the invention is that the vehicle roof becomes more robust, since the organization of the vehicles behind it always has the possibility of adapting physically to the vehicle in front, i.e. no physical restrictions on vehicles will create problems with regulation.

Enligt en tredje aspekt uppnas atminstone delvis syftet genom ett datorprogram P vid ett system, dar namnda datorprogram P innefattar programkod far att fa systemet aft utfora nagot av metodstegen som beskrivs had. According to a third aspect, the purpose is achieved at least in part by a computer program P in a system, where said computer program P includes program code for causing the system to perform some of the method steps described.

Enligt en fjarde aspekt uppnas atminstone delvis syftet genom en datorprogramprodukt innefattande en programkod lagrat pa eft, av en dator 15 lasbart, medium for aft utfora nagot av metodstegen som beskrivs had. According to a fourth aspect, the object is achieved at least in part by a computer program product comprising a program code stored on a computer-readable medium for performing some of the method steps described.

Foredragna utforingsformer beskrivs i de osjalvstandiga kraven och i den detaljerade beskrivningen. Preferred embodiments are described in the dependent claims and in the detailed description.

Kort beskrivnina av de bifoqade fiqurerna Nedan kommer uppfinningen aft beskrivas med hanvisning till de bifogade fig urerna, av vilka: Fig. 1 illustrerar ett fordonstag som tar sig uppfor en backe. Brief Description of the Attached Figures The invention will be described below with reference to the accompanying figures, of which: Fig. 1 illustrates a vehicle roof ascending a hill.

Fig. 2 visar ett exempel pa ett fordon i fordonstaget. Fig. 2 shows an example of a vehicle in the vehicle roof.

Fig. 3 visar eft system enligt en utforingsform av uppfinningen. Fig. 3 shows a system according to an embodiment of the invention.

Fig. 4 visar eft flodesschema f6r en metod for aft organisera fordonstag. Fig. 5A-5C visar ett organisationsscenario. Fig. 4 shows a flow chart for a method for organizing vehicle roofs. Figs. 5A-5C show an organizational scenario.

Fig. 6 visar ett ytterligare organisationsscenario. Fig. 6 shows a further organizational scenario.

Detalierad beskrivninq av foredraqna utforinqsformer av uppfinninqen Definitioner vk: hastigheten for fordonet fk i ett fordonstag med N fordon. 6 dk,k+1 — avstandet mellan fordonet fk och det bakomvarande fordonet fk+i fordonstaget. ak: lutningen far fordonet fk. Detailed Description of Preferred Embodiments of the Invention Definitions vk: the speed of the vehicle fk in a vehicle stay with N vehicles. 6 dk, k + 1 - the distance between the vehicle fk and the vehicle behind fk + in the vehicle stay. ak: the slope father vehicle fk.

V2V-kommunikation (Vehicle to vehicle): Tradlos kommunikation mellan fordon, aven kallad fordon-till-fordon kommunikation. V2V (Vehicle to vehicle) communication: Wireless communication between vehicles, also called vehicle-to-vehicle communication.

V21-kommunikation (Vehicle to infrastructure): TradlOs kommunikation mellan fordon och infrastruktur, exempelvis vagnod eller datorsystem. V21 communication (Vehicle to infrastructure): TradlO's communication between vehicle and infrastructure, for example carriage or computer system.

Fig. 1 visar ett fordonstag med N tunga fordon fk som tar sig fram med sma mellanrum dk, k+1 mellan fordonen uppfor en backe. Lutningen pa fordonet fk nar det kor uppfor backen visas som ak. Varje fordon fk ar forsett med en mottagare och sandare f6r tradlosa signaler, visat delvis med en antenn. Fordonen fk i fordonstaget kan alltsa kommunicera med varandra genom V2V-kommunikation eller andra medel som exempelvis genom mobila kommunikationsenheter, via en applikation i en kommunikationsenhet eller via en server, och till infrastruktur i form av V21-kommunikation. Kommunikationen kan exempelvis ga fran ett fordon och via en vagnod till ett annat fordon. De olika fordonen fk har olika massor mk. Fordonstaget har ett ledarfordon, d.v.s. det forsta fordonet f1. Varje fordon fk i fordonstaget har exempelvis en unik fordonsidentitet, och en fordonstagsidentitet som ar gemensam for hela fordonstaget, for att kunna halla reda pa vilka fordon som ingar i fordonstaget. Data som skickas tradlost mellan fordonen i fordonstaget kan taggas med dessa identiteter sa all data som tas emot kan harledas till rail fordon. Fig. 1 shows a vehicle stay with N heavy vehicles fk which travels at small intervals dk, k + 1 between the vehicles up a hill. The inclination of the vehicle when it is uphill is shown as ak. Each vehicle is equipped with a receiver and transmitter for wireless signals, shown in part by an antenna. The vehicles fk in the vehicle stay can thus communicate with each other through V2V communication or other means such as through mobile communication units, via an application in a communication unit or via a server, and to infrastructure in the form of V21 communication. The communication can, for example, go from one vehicle and via a car node to another vehicle. The different vehicles fk have different masses mk. The vehicle roof has a leader vehicle, i.e. the first vehicle f1. Each vehicle fk in the vehicle roof has, for example, a unique vehicle identity, and a vehicle roof identity that is common to the entire vehicle roof, in order to be able to keep track of which vehicles are in the vehicle roof. Data sent wirelessly between the vehicles in the vehicle stay can be tagged with these identities so all data received can be routed to rail vehicles.

I Fig. 2 visas ett exempel pa ett fordon fk i fordonstaget och hur det kan vara utrustat. Fordonet fk är forsett med en positioneringsenhet 5 som kan bestamma fordonet fk:s position. Positioneringsenheten 5 kan exempelvis vara konfigurerad all ta emot signaler fran ett globalt positioneringssystem GNSS (Global Navigation Satellite System) exempelvis GPS (Global Positioning System), GLONASS, Galileo eller Compass. Alternativt kan positioneringsenheten 5 vara konfigurerad all ta emot signaler fran exempelvis en eller flera detektorer i fordonet som mater relativa avstand till exempelvis en vagnod, fordon i omgivningen eller liknande 7 med kand position. Baserat pa de relativa avstanden kan positioneringsenheten 5 sedan bestamma fordonet fk:s egen position. En detektor kan aven vara konfigurerad aft avkanna en signatur i exempelvis en vagnod, varvid signaturen representerar en viss position. Positioneringsenheten 5 kan dá vara konfigurerad att bestamma sin position genom avkanning av signaturen. Positioneringsenheten 5 kan istallet vara konfigurerad aft ta bestamma signalstyrkan i en eller flera signaler fran flera basstationer och/eller vagnoder etc. med kand position, och darigenom bestamma fordonet fk:s position genom triangulering. Pa sa sail kan fk:s egen position bestammas. Naturligtvis kan aven de ovan teknikerna kombineras for aft sakerstalla fordonet fk:s position. Positioneringsenheten 5 är konfigurerad aft generera en positionssignal som innehaller fordonet fk:s position, och aft sanda denna till en eller flera enheter i fordonet fk. Fordonet fk är som redan namnts aven forsett med en enhet 4 for tradlos kommunikation. Enheten 4 är konfigurerad aft verka som mottagare och sandare av tradlosa signaler. Fig. 2 shows an example of a vehicle fk in the vehicle roof and how it can be equipped. The vehicle fk is provided with a positioning unit 5 which can determine the position of the vehicle fk. The positioning unit 5 can, for example, be configured to receive all signals from a global positioning system GNSS (Global Navigation Satellite System), for example GPS (Global Positioning System), GLONASS, Galileo or Compass. Alternatively, the positioning unit 5 may be configured to receive signals from, for example, one or more detectors in the vehicle which feed relative distances to, for example, a car node, vehicles in the vicinity or the like 7 with a known position. Based on the relative distances, the positioning unit 5 can then determine the vehicle fk's own position. A detector can also be configured to detect a signature in, for example, a car node, the signature representing a certain position. The positioning unit 5 can then be configured to determine its position by scanning the signature. The positioning unit 5 can instead be configured to determine the signal strength in one or more signals from several base stations and / or car nodes etc. with a known position, and thereby determine the position of the vehicle fk by triangulation. On such a sail, fk's own position can be determined. Of course, the above techniques can also be combined to secure the position of the vehicle fk. The positioning unit 5 is configured to generate a position signal containing the position of the vehicle fk, and to transmit it to one or more units in the vehicle fk. As already mentioned, the vehicle fk is also equipped with a unit 4 for wireless communication. The unit 4 is configured to act as a receiver and transmitter of wireless signals.

Enheten 4 kan ta emot tradlosa signaler fran andra fordon och/eller tradlosa signaler fran infrastrukturen kring fordonet fk, och sanda tradlosa signaler till andra fordon och/eller tradlosa signaler till infrastrukturen kring fordonet fk. De tradlosa signalerna kan innefatta fordonsparametrar fran andra fordon, exempelvis massa, moment, maximal motoreffekt, hastighet, och aven mer komplex information som exempelvis gallande korprofil, korstrategi etc. De tradlosa signalerna kan aven innehalla information om omgivningen, exempelvis vagens lutning a, kurvradie r etc. Fordonet fk kan aven vara forsett med en eller flera detektorer 8 for aft avkanna omgivningen, exempelvis en radarenhet, laserenhet, lutningsmatare, accelerationsmatare, rattvinkelmatare, ett gyro etc. En detektorenhet ar konfigurerad aft avkanna en parameter, exempelvis ett relativt avstand, hastighet, lutning, lateral acceleration, vridning, rattutslag etc., och aft generera en detektorsignal som innehaller parametern. Detektorenheten ar vidare konfigurerad aft sanda detektorsignalen till en eller flera enheter i fordonet fk. Fordonet fk kan aven vara utrustat med en kartenhet som kan ge kartinformation om den kommande vagen. Kartenheten kan exempelvis vara en del av positioneringsenheten 5. Foraren kan exempelvis ange en slutposition och kartenheten kan da genom aft veta fordonets nuvarande position ge relevant 8 kartdata om den kommande vagen mellan den nuvarande positionen och slutdestinationen. The unit 4 can receive wireless signals from other vehicles and / or wireless signals from the infrastructure around the vehicle fk, and true wireless signals to other vehicles and / or wireless signals to the infrastructure around the vehicle fk. The wireless signals can also include vehicle parameters from other vehicles, such as mass, torque, maximum engine power, speed, and even more complex information such as gallbladder profile, crossover strategy, etc. The wireless signals can also contain information about the environment, such as car slope a, curve radius r etc. The vehicle fk may also be provided with one or more detectors 8 for sensing the environment, for example a radar unit, laser unit, tilt feeder, acceleration feeder, steering angle feeder, a gyro etc. A detector unit is configured to detect a parameter, for example a relative distance, speed , slope, lateral acceleration, rotation, steering angle, etc., and aft generate a detector signal containing the parameter. The detector unit is further configured by the true detector signal to one or more units in the vehicle fk. The vehicle fk can also be equipped with a map unit that can provide map information about the upcoming road. The map unit can, for example, be part of the positioning unit 5. The driver can, for example, enter an end position and the map unit can then, by knowing the current position of the vehicle, provide relevant map data about the coming road between the current position and the final destination.

Fordonet fk kommunicerar internt mellan sina olika enheter genom exempelvis en 5 buss, exempelvis en CAN-buss (Controller Area Network) som anvander sig av ett meddelandebaserat protokoll. Exempel pa andra kommunikationsprotokoll som kan anvandas är UP (Time-Triggered Protocol), Flexray m fl. Pa sa sail kan signaler och data som beskrivits ovan utbytas mellan olika enheter i fordonet fk. The vehicle fk communicates internally between its various units through, for example, a bus, for example a CAN bus (Controller Area Network) which uses a message-based protocol. Examples of other communication protocols that can be used are UP (Time-Triggered Protocol), Flexray and others. On that sail, signals and data described above can be exchanged between different units in the vehicle fk.

Signaler och data kan exempelvis istallet overforas tradlost mellan de olika 10 enheterna. Signals and data can, for example, instead be transmitted wirelessly between the various units.

I Fig. 2 visas aven en processorenhet 2, som ingar i ett system 1 enligt uppfinningen. I Fig. 3 visas detta system 1 enligt en utforingsform, som nu kommer all forklaras med hanvisning till denna figur. Som visas i figuren är processorenheten 2 kopplad till en minnesenhet 3. Minnesenheten 3 kan innefatta ett flyktigt- och/eller ett icke-flyktigt minne, exempelvis flashminne eller RAM (Random Access Memory). Pa minnesenheten 3 finns ett program P lagrat. Programmet P innefattar programkod for all fa processorenheten 2 all utf6ra en metod for all organisera fordonstaget som kommer all forklaras i det foljande. Fig. 2 also shows a processor unit 2, which is part of a system 1 according to the invention. Fig. 3 shows this system 1 according to an embodiment, which will now all be explained with reference to this figure. As shown in the figure, the processor unit 2 is connected to a memory unit 3. The memory unit 3 may comprise a volatile and / or a non-volatile memory, for example flash memory or RAM (Random Access Memory). A program P is stored on the memory unit 3. The program P includes program code for all the processor unit 2 all perform a method for all organize the vehicle stay which will all be explained in the following.

Processorenheten 2 är alltsa konfigurerad all utfora de olika metodstegen som kommer aft beskrivas. Programmet P kan aven lagras pa en datorprogramprodukt pa ett av en dator lasbart medium som en programkod. Processorenheten 2 kan utg6ras av en eller flera CPU:er (Central Processing Unit). Processorenheten 2 kan vara en del av ett dator eller datorsystem, exempelvis en ECU (Electronic Control Unit) i ett fordon fk. Alternativt kan systemet 1 med processorenheten 2 vara placerad i infrastrukturen i exempelvis en vagnod eller central enhet 7 (Fig. 5A-6). The processor unit 2 is thus configured to perform the various method steps that will be described. The program P can also be stored on a computer program product on a computer readable medium as a program code. The processor unit 2 can be constituted by one or more CPUs (Central Processing Unit). The processor unit 2 may be part of a computer or computer system, for example an ECU (Electronic Control Unit) in a vehicle fk. Alternatively, the system 1 with the processor unit 2 can be located in the infrastructure in, for example, a carriage node or central unit 7 (Figs. 5A-6).

Enheten 4 fOr tradlos kommunikation kan ta emot data gallande fordonsmassa 30 och maximal motoreffekt for respektive fordon fk. Processorenheten 2 är konfigurerad aft generera en placeringssignal som indikerar en placering av fordonet fx och sanda placeringssignalen till en indikeringsenhet 6 i fordonet fx, 9 varvid placeringen av fordonet fx anvisas for foraren av fordonet fx. Foraren av fordonet f vet da vilken plats denne ska ha i fordonstaget och kan placera in sig pa raft position i taget. Placeringssignalen kan aven sandas till ett fordon fk eller flera av de ovriga fordonen i fordonstaget sa att de bereder plats till fordonet fx, antingen genom att forarna manuellt reglerar fordonen sa att en lucka oppnas mellan fordonen, eller genom automatisk reglering av fordonen i fordonstaget. The unit 4 for wireless communication can receive data galloning vehicle mass 30 and maximum engine power for each vehicle fk. The processor unit 2 is configured to generate a location signal indicating a location of the vehicle eg and the true location signal to an indicator unit 6 in the vehicle e.g., 9 wherein the location of the vehicle e.g. is indicated to the driver of the vehicle e.g. The driver of the vehicle then knows what place he should have in the vehicle roof and can place himself in the raft position at a time. The placement signal can also be sent to a vehicle fk or several of the other vehicles in the vehicle stay so that they prepare space for the vehicle, for example, either by the drivers manually regulating the vehicles so that a gap is opened between the vehicles, or by automatic regulation of the vehicles in the vehicle stay.

I Fig. 4 visas ett flodesschema far metoden att organisera fordonstaget, och metoden kommer nu all forklaras med hanvisning till denna figur. Fig. 4 shows a flow chart of the method of organizing the vehicle stay, and the method will now all be explained with reference to this figure.

Processorenheten 2 (Fig. 2) är alltsa konfigurerad att utfora denna metod enligt de olika utforingsformema av metoden. Metoden innefattar att bestamma en kvot f6r ett fordon fx som 6nskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa (Al). Kvoten bxjamfors sedan med atminstone en annan kvot bk far ett fordon fk i fordonstaget, som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa (A2). Enligt en utforingsform innefattar metoden all bestamma kvoten b for fordonet f och kvoten bk far fordonet fk genom att 20 berakna Maximal motoreffekt for fordonet fordonets massa for respektive fordon. Alternativt kan kvoten bx for fordonet fx och kvoten bk for 25 fordonet fk genom all berakna Maximalt motormoment for fordonet f ordonets mosso Kvoterna bx och bk som ska jamforas med varandra är alltsa bada bestamda med 30 antingen ekvation (1) eller ekvation (2). Kvoten ger ett matt pa hur begransat fordonet är, alltsa hur svart det har all Walla en bestamd hastighet i en uppforsbacke. Det mest begransade fordonet är det fordon som far storst hastighetsvariationer da det ska ta sig uppfor respektive nedfor en backe. Det som har lagst kvot av fordonen har alltsa svarast aft Ora bada delarna. Den maximala motoreffekten respektive det maximala motormomentet far vane fordon är en kand motorparameter. Varje fordons massa är aven den en kand parameter far vane fordon som dock uppdateras da lasten andras. Varje fordons respektive parametrar finns tillgangliga via det interna natverket hos varje fordon. Parametrarna kan skickas till systemet 1 genom V2V eller V2I. Genom all exempelvis tagga parametrarna med fordonsidentitet respektive fordonstagsidentitet kan man halla reda pa vilken parameter som UM& vilket fordon. Metoden innefattar vidare aft bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamforelsen (A3). Enligt en utfaringsform bestams en placering framfor fordonet fk ifall bx < bk, och en placering bakom fordonet fk ifall bk bk. Pa sa satt kan fordonet fx ordnas in i fordonstaget enligt sin kvot bx som anger hur begransat det är. Fordonet fx placeras alltsa in i fordonstaget sa all det placeras efter det eller de fordon som är men begransade an fordonet fx sjalv, fast fore det eller dem som är mindre begransade. Placeringen av fordonet fx anvisas sedan for fordonet fx (A4). The processor unit 2 (Fig. 2) is thus configured to perform this method according to the different embodiments of the method. The method comprises determining a ratio for a vehicle, for example, which does not want any in the vehicle roof which describes the ratio between the vehicle's maximum engine power and vehicle mass or the ratio between the vehicle's maximum engine torque and vehicle mass (A1). The ratio is then compared with at least one other ratio fk a vehicle fk in the vehicle stay, which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass (A2). According to one embodiment, the method comprises all determining the ratio b of the vehicle f and the ratio bk of the vehicle fk by calculating the maximum engine power of the vehicle the mass of the vehicle for each vehicle. Alternatively, the ratio bx for the vehicle, for example, and the ratio bk for the vehicle fk by all calculated Maximum engine torque for the vehicle for the vehicle's moss The quotas bx and bk to be compared with each other are thus both determined by either equation (1) or equation (2). The ratio gives a measure of how limited the vehicle is, ie how black it is, all Walla has a certain speed on an uphill slope. The most limited vehicle is the vehicle that has the greatest speed variations as it has to go up and down a hill, respectively. That which has added quota of the vehicles has thus been answered by Ora both parts. The maximum engine power and the maximum engine torque used by vehicles are a known engine parameter. The mass of each vehicle is also a familiar parameter used for vehicles that are, however, updated when the load is different. The respective parameters of each vehicle are accessible via the internal network of each vehicle. The parameters can be sent to system 1 via V2V or V2I. By tagging the parameters with vehicle identity and vehicle stay identity, for example, you can keep track of which parameter UM & which vehicle. The method further comprises determining a location for the vehicle, for example in the vehicle roof, based on the result of the comparison (A3). According to one embodiment, a location in front of the vehicle is determined if bx <bk, and a location behind the vehicle fk if bk bk. In this way, the vehicle can, for example, be arranged in the vehicle roof according to its quota, which indicates how limited it is. The vehicle, for example, is thus placed in the vehicle stay, so that it is placed after the vehicle or vehicles that are but limited by the vehicle, for example itself, but before that or those that are less limited. The location of the vehicle, for example, is then indicated for the vehicle, for example (A4).

Enligt en utforingsform sa bereds plats for fordonet fx i fordonstaget enligt den anvisade placeringen i fordonstaget. Della kan exempelvis ufforas genom all ett eller flera fordon i fordonstaget far veta aft fordonet fx ska placeras i fordonstaget i den anvisade placeringen. Dessa fordon kan sedan manuellt eller automatisk bli reglerade sá aft det skapas en lucka dar fordonet fx ska placeras. Foraren av fordonet fx kan sedan styra in fordonet fx i luckan. Alternativt kan fordonet fx automatiskt regleras sa aft det placeras i luckan. According to one embodiment, the place for the vehicle is prepared, for example, in the vehicle roof according to the designated location in the vehicle roof. Della can, for example, be carried out through all one or more vehicles in the vehicle stay, knowing that the vehicle, for example, is to be placed in the vehicle stay in the designated location. These vehicles can then be adjusted manually or automatically so that a gap is created where the vehicle is to be placed, for example. The driver of the vehicle, for example, can then steer the vehicle, for example, into the door. Alternatively, the vehicle can, for example, be automatically adjusted so that it is placed in the door.

I figurerna 5A-5C visas ett scenario for att sortera in ett fordon fx i ett befintligt fordonstag. I Fig. 5A visas fx som onskar inga i det befintliga fordonstaget som innefattar de tre fordonen fl, f2 och f3. Fordonet fx kat' pa en pafart och det befintliga fordonstaget Icor pa den vag som fordonet fx ska kora in pa. Fordonet fx kan exempelvis avsoka omgivningen efter fordonstag och skicka ut en forfragan 11 all fa inga i fordonstaget till ett lampligt fordonstag. Alternativt kan detta sk6tas av en central enhet 7 som tar emot signaler fran fordonen och sedan organiserar lampliga fordonstag dá det är mojligt. Placeringssignaler etc. kan sedan skickas ut till fordonen fran den centrala enheten 7 for att organisera fordonstaget. Den centrala enheten 7 innefattar dá hela eller delar av systemet 1. Alternativt kan systemet 1 vara arrangerat i ett eller flera av fordonen i fordonstaget, exempelvis ledarfordonet fl, eller i fordonet fx. 'fall fordonet fx far lov all inga i fordonstaget sa bestams fordonet f),:s kvot bx ifall den inte redan är bestamd. Sedan janitors kvoten bx med ledarfordonet fi:s kvot b1. I detta fall är bx st6rre an b1, och fordonet fx ska alltsa placeras bakom ledarfordonet fi. Darefter jamfors kvoten bx med kvoten b2 for nasta fordon f2 i fordonstaget. I detta fall är bx mindre an b2, och fordonet fx ska placeras framfOr fordonet f2. Kvoten bx fordonet fx jamfors alltsa konsekutivt med kvoterna bk for fordonen fk i fordonstaget. Jamforelserna fortsatter tills ett fordon har hittats som fordonet fx ska stalla sig framfor, eller tills det inte finns fler fordon i fordonstaget. Fordonet fx far dá placera sig sist i fordonstaget. Resultatet ar har all fordonet fx ska placeras mellan fordonen f1 och f2. Placeringen anvisas till foraren av fordonet fx. Denna kan dá ta stallning till om den vill inga i fordonstaget. Placeringen kan aven anvisas till ett eller flera fordon i fordonstaget. I Fig. 5B visas hur fordonen i fordonstaget oppnar upp en lucka mellan fordonen f1 och f2 genom all Oka avstandet d1,2 mellan fordonen. For all tillfalligt Oka avstandet mellan fordonen kan fordonen hastighetsregleras manuellt, eller automatiskt fran eft eller flera av fordonen i fordonstaget eller fran central enhet 7. Fordonet fx Icor sedan in i luckan som skapats vilket visas i Fig. 5C, och ingar sedan i fordonstaget. Figures 5A-5C show a scenario for sorting a vehicle, eg into an existing vehicle roof. Fig. 5A shows, for example, those who want none in the existing vehicle tie which comprises the three vehicles f1, f2 and f3. The vehicle, for example, is cut at an exit and the existing vehicle roof Icor on the road that the vehicle, for example, is to drive into. The vehicle, for example, can scan the surroundings for vehicle stays and send out a request 11 in the vehicle stay to a suitable vehicle stay. Alternatively, this can be handled by a central unit 7 which receives signals from the vehicles and then organizes suitable vehicle stays where possible. Placement signals etc. can then be sent to the vehicles from the central unit 7 to organize the vehicle stay. The central unit 7 then comprises all or parts of the system 1. Alternatively, the system 1 may be arranged in one or more of the vehicles in the vehicle stay, for example the conductor vehicle f1, or in the vehicle e.g. 'If the vehicle, for example, is allowed to have no one in the vehicle stay, the vehicle f),'s quota will be determined, if it is not already determined. Then the janitor's quota bx with the leader vehicle fi's quota b1. In this case, bx is larger than b1, and the vehicle, for example, must therefore be placed behind the conductor vehicle fi. Then the quotient bx is compared with the quotient b2 for the next vehicle f2 in the vehicle roof. In this case, bx is smaller than b2, and the vehicle, for example, must be placed in front of the vehicle f2. The quota bx the vehicle, for example, is thus compared consecutively with the quotas bk for the vehicles fk in the vehicle roof. The comparisons continue until a vehicle has been found that the vehicle, for example, is to stand in front of, or until there are no more vehicles in the drawbar. The vehicle, for example, may then be placed last in the vehicle roof. The result is that all the vehicle, for example, must be placed between the vehicles f1 and f2. The location is assigned to the driver of the vehicle e.g. This can then take a stand if it does not want anyone in the vehicle stay. The location can also be assigned to one or more vehicles in the vehicle stay. Fig. 5B shows how the vehicles in the vehicle stay open up a gap between the vehicles f1 and f2 through all the Oka distance d1,2 between the vehicles. For all incidentals Increase the distance between the vehicles, the vehicles can be speed controlled manually, or automatically from behind or more of the vehicles in the vehicle stay or from central unit 7. The vehicle eg Icor then into the hatch created as shown in Fig. 5C, and then enters the vehicle stay.

I Fig. 6 visas ett annat organisationsscenario i vilket ett flertal fordon f1-f4 forst befinner sig oorganiserat pa exempelvis en rastplats eller ett akeri. For all organisera eft fordonstag av fordonen f1-f4 sa bestams fordonens respektive kvot enligt ekvation (1), och jamfors med varandra f6r all bestamma den kvot som är lagst och alltsa anger det mest begransade fordonet. Darefter placeras det fordon med den nast lagsta kvoten etc. Placeringarna anvisas for fordonen ifraga, som installer sig pa sin respektive plats i taget. Exempelvis kan man utse eft fordon fk 12 till aft inga i fordonstaget, och de andra fordonen far stalla in sig i fordonstaget utifran dess kvot bk. Fig. 6 shows another organizational scenario in which a plurality of vehicles f1-f4 first find themselves disorganized at, for example, a rest area or a haulage company. For all organizing after vehicle take-off of the vehicles f1-f4, the respective quotient of the vehicles is determined according to equation (1), and compared with each other for all determining the quotient that is lowest and thus indicates the most limited vehicle. Then the vehicle with the next lowest quota, etc. is placed. The locations are indicated for the vehicles in question, which are installed at their respective places at a time. For example, you can appoint vehicles fk 12 to aft none in the vehicle roof, and the other vehicles may line up in the vehicle roof based on its quota bk.

Ett organiserat fordonstag är en fordel da en gemensam reglerstrategi ska appliceras pa fordonen i fordonstaget. Exempelvis kan fordonen i fordonstaget da agera enligt en LAP-farthallare (Look-Ahead cruise control for platoons), som är en kooperativ farthallare som anvander sig av information om den kommande vagens topografi och beraknar en optimal hastighetstrajektoria far alla fordon i fordonstaget. Kailas aven prediktiv farthallare for fordonstag. Reglerstrategin bestams exempelvis genom dynamisk programmering. En LAP kan exemeplvis anvanda sig av en eller flera framraknade trajektorier fran LAC-farthallare (Look-Ahead cruise control), som är farthallare som anvander sig av information om den kommande vagens topografi och beraknar en optimal korprofil i form av en hastighetstrajektoria for ett fordon. KaIlas aven prediktiv farthallare. !fall ett fordonstag är organiserat sa aft ledarfordonet ar det mest begransade fordonet etc., sa kan de efterfoljande fordonen folja den bestamda hastighetstrajektorian for ledarfordonet. PA sA satt uppnAs en optimerad farthallning for hela fordonstaget avseende branslefarbrukning och tid. An organized vehicle roof is an advantage as a common control strategy must be applied to the vehicles in the vehicle roof. For example, the vehicles in the drawbar can then act according to a LAP (Look-Ahead cruise control for platoons) cruise control, which is a cooperative cruise control that uses information about the topography of the oncoming vehicle and calculates an optimal speed trajectory for all vehicles in the drawbar. Kailas also predictive cruise control for vehicle roofs. The control strategy is determined, for example, by dynamic programming. An LAP can, for example, use one or more projected trajectories from the LAC (Look-Ahead cruise control) cruise control, which is a carrier that uses information about the topography of the oncoming lane and calculates an optimal body profile in the form of a speed trajectory for a vehicle. . KaIlas is also a predictive speedster. If a vehicle roof is organized so that the leader vehicle is the most limited vehicle, etc., then the subsequent vehicles can follow the determined speed trajectory for the leader vehicle. PA sA sat achieved an optimized cruise control for the entire vehicle stay regarding industry use and time.

Den foreliggande uppfinningen ar inte begransad till de oven beskrivna utforingsformerna. Olika alternativ, modifieringar och ekvivalenter kan anvandas. Darfor begransar inte de oven namnda utforingsformerna uppfinningens omfattning, som definieras av de bifogade kraven. 13 The present invention is not limited to the embodiments described above. Various alternatives, modifications and equivalents can be used. Therefore, the above-mentioned embodiments do not limit the scope of the invention, which is defined by the appended claims. 13

Claims (12)

PatentkravPatent claims 1. Metod far aft organisera ett fordonstag, varvid metoden innefattar aft - bestamma en kvot bx far ett fordon fx som onskar inga i fordonstaget 5 som beskriver farhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och fordonsmassa; - jamfora kvoten bx med atminstone en annan kvot bk for ett fordon fk fordonstaget som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt 10 och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa; - bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamforelsen, - generera en placeringssignal som indikerar placeringen av fordonet fx; - sanda placeringssignalen till en indikeringsenhet (6) i fordonet fx, varvid placeringen av fordonet fx anvisas for foraren av fordonet fx. 20A method may aft organize a vehicle strut, the method comprising aft - determining a ratio bx of a vehicle fx which desires none in the vehicle strut 5 which describes the relationship between the vehicle fx's maximum engine power and vehicle mass or the ratio between the vehicle fx's maximum engine torque and vehicle mass; - compare the ratio bx with at least one other ratio bk for a vehicle fk vehicle tie which describes the ratio between the vehicle fk's maximum engine power 10 and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass; determine a location for the vehicle eg in the vehicle roof based on the result of the comparison, - generate a location signal indicating the location of the vehicle eg; send the location signal to an indicating unit (6) in the vehicle, for example, the location of the vehicle, for example, being indicated to the driver of the vehicle, for example. 20 2.Metoden enligt krav 1, som innefattar aft bestamma kvoten bx for fordonet fx och kvoten bk for fordonet fk genom aft berakna Maximal motore f f ekt for f ordonet for respektive fordon, respektive f ordonets massa 25The method according to claim 1, which comprises determining the quotient bx for the vehicle, for example, and the quotient bk for the vehicle fk by calculating the maximum engine power for the vehicle for the respective vehicle, and the mass of the vehicle, respectively. 3.Metoden enligt krav 2, som innefattar aft bestamma en placering framfor fordonet fk ifall bx < bk, och en placering bakom fordonet fk ifs II bx bk.The method according to claim 2, which comprises determining a location in front of the vehicle fk if bx <bk, and a location behind the vehicle fk ifs II bx bk. 4. Metoden enligt nagot av foregaende krav, som innefattar att bereda plats for fordonet fx i fordonstaget enligt den anvisade placeringen i fordonstaget. fordonets massa Maximalt motormoment for fordonet for respektive fordon. 14The method according to any one of the preceding claims, which comprises preparing a place for the vehicle, for example in the vehicle roof according to the designated location in the vehicle roof. vehicle mass Maximum engine torque for the vehicle for each vehicle. 14 5. Metoden enligt nagot av foregaende krav, som innefattar aft konsekutivt jamfora kvoten bx for fordonet f med kvotema bk for fordonen fk i fordonstaget.The method according to any of the preceding claims, which comprises consecutively comparing the ratio bx for the vehicle f with the quotas bk for the vehicles fk in the vehicle roof. 6. System (1) for att organisera ett fordonstag, kannetecknat av aft systemet (1) innefattar en processorenhet (2) som är konfigurerad aft - bestamma en kvot bx for eft fordon fx som onskar inga i fordonstaget som beskriver forhallandet mellan fordonet fx:s maximala motoreffekt och fordonsmassa eller forhallandet mellan fordonet fx:s maximala motormoment och 10 fordonsmassa; - jamfora kvoten bx med atminstone en annan kvot bk for eft fordon fk fordonstaget som beskriver forhallandet mellan fordonet fk:s maximala motoreffekt och fordonsmassa respektive forhallandet mellan fordonet fk:s maximala motormoment och fordonsmassa; - bestamma en placering for fordonet fx i fordonstaget baserat pa resultatet av jamforelsen; 1. generera en placeringssignal som indikerar placeringen av fordonet fx; 2. sanda placeringssignalen till en indikeringsenhet (6) i fordonet fx, 20 varvid placeringen av fordonet fx anvisas far foraren av fordonet fx.System (1) for organizing a vehicle roof, characterized by the aft system (1) comprises a processor unit (2) which is configured aft - determine a ratio bx for eft vehicle eg which does not want any in the vehicle roof which describes the relationship between the vehicle eg: s maximum engine power and vehicle mass or the ratio between the vehicle eg maximum engine torque and vehicle mass; - compare the ratio bx with at least one other ratio bk for eft vehicle fk vehicle tie which describes the ratio between the vehicle fk's maximum engine power and vehicle mass and the ratio between the vehicle fk's maximum engine torque and vehicle mass; - determine a location for the vehicle eg in the vehicle roof based on the result of the comparison; 1. generate a location signal indicating the location of the vehicle e.g.; 2. the location signal to an indicating unit (6) in the vehicle e.g., wherein the location of the vehicle e.g. is indicated by the driver of the vehicle e.g. 7. Systemet (1) enligt krav 6, varvid processorenheten (2) är konfigurerad aft bestamma kvoten bx for fordonet fx och kvoten bk for fordonet fk Maximal motoreffekt f ekt f or fordonet genom aft berakna for respektive fordon, respektive f ordonets massa Maximalt motormoment f Or f ordonet far respektive fordon. f ordonets massaThe system (1) according to claim 6, wherein the processor unit (2) is configured to determine the ratio bx for the vehicle fx and the ratio bk for the vehicle fk Maximum engine power for the vehicle by calculating for each vehicle, respectively for the vehicle mass Maximum engine torque f Or f the vehicle father respective vehicle. f ordonets mass 8. Systemet (1) enligt krav 7, varvid processorenheten (2) är konfigurerad aft bestamma en placering framfor fordonet fk ifall bx < bk, och en placering bakom fordonet fk ifall b. bk.The system (1) according to claim 7, wherein the processor unit (2) is configured to determine a location in front of the vehicle fk if bx <bk, and a location behind the vehicle fk if b. Bk. 9. Systemet (1) enligt nagot av kraven 6 till 8, varvid processorenheten (2) är konfigurerad att sanda placeringssignalen till atminstone ett fordon fk i fordonstaget, varefter plats bereds f6r fordonet fx i fordonstaget enligt den anvisade placeringen i fordonstaget.The system (1) according to any one of claims 6 to 8, wherein the processor unit (2) is configured to send the location signal to at least one vehicle fk in the vehicle stay, after which space is prepared for the vehicle eg in the vehicle stay according to the designated location in the vehicle stay. 10. Systemet (1) enligt nagot av kraven 6 till 9, varvid processorenheten (2) är konfigurerad aft konsekutivt jamfora kvoten IN far fordonet fx med kvoterna bk far fordonen fk i fordonstaget. 10 11.Datorprogram, P, vid ett system (4), dar namnda datorprogram, P, innefattar programkod f6r aft fa processorenheten (2) aft utfora nagot av stegen enligt patentkraven 1 tillThe system (1) according to any one of claims 6 to 9, wherein the processor unit (2) is configured to consecutively compare the ratio IN for the vehicle, for example with the quotas bk for the vehicles fk in the vehicle stay. A computer program, P, in a system (4), wherein said computer program, P, comprises program code for performing the processor unit (2) to perform some of the steps according to claims 1 to 11. 5.11. 5. 12. Datorprogramprodukt innefattande en programkod lagrat pa ett, av en dator lasbart, medium for all utfora metodstegen enligt nagot av patentkraven 1 till 5. 16 1/4A computer program product comprising a program code stored on a computer readable medium for performing all the method steps according to any one of claims 1 to 5. 16 1/4
SE1351132A 2013-09-30 2013-09-30 Method and system for organizing vehicle trains SE537598C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1351132A SE537598C2 (en) 2013-09-30 2013-09-30 Method and system for organizing vehicle trains
PCT/SE2014/051123 WO2015047182A1 (en) 2013-09-30 2014-09-26 Method and system for the organisation of vehicle platoons
EP14850032.5A EP3053156A4 (en) 2013-09-30 2014-09-26 Method and system for the organisation of vehicle platoons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1351132A SE537598C2 (en) 2013-09-30 2013-09-30 Method and system for organizing vehicle trains

Publications (2)

Publication Number Publication Date
SE1351132A1 SE1351132A1 (en) 2015-03-31
SE537598C2 true SE537598C2 (en) 2015-07-14

Family

ID=52744114

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1351132A SE537598C2 (en) 2013-09-30 2013-09-30 Method and system for organizing vehicle trains

Country Status (3)

Country Link
EP (1) EP3053156A4 (en)
SE (1) SE537598C2 (en)
WO (1) WO2015047182A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US20180210463A1 (en) 2013-03-15 2018-07-26 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
DE102015016758A1 (en) * 2015-12-23 2017-06-29 Daimler Ag Method for moving, in particular for controlling or regulating, a vehicle convoy
EP3465371A4 (en) 2016-05-31 2019-12-18 Peloton Technology Inc. Platoon controller state machine
JP6690056B2 (en) 2016-08-22 2020-04-28 ぺロトン テクノロジー インコーポレイテッド Control system architecture for motor vehicle
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10497268B2 (en) 2016-12-20 2019-12-03 Honeywell International Inc. System and method for virtual flight interval management
US10482767B2 (en) 2016-12-30 2019-11-19 Bendix Commercial Vehicle Systems Llc Detection of extra-platoon vehicle intermediate or adjacent to platoon member vehicles
SE541386C2 (en) * 2017-12-15 2019-09-10 Scania Cv Ab Method and control arrangement for arranging driving order of a platoon
KR102395308B1 (en) 2017-12-29 2022-05-09 현대자동차주식회사 Apparatus for controlling lamp of platooning vehicles and method thereof
DE102018210020A1 (en) * 2018-06-20 2019-12-24 Robert Bosch Gmbh Method for controlling a traffic flow
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
KR20200083683A (en) 2018-12-14 2020-07-09 현대자동차주식회사 Vehicle, Server communicating with the vehicle and method for controlling the same
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
CN111222535B (en) * 2019-11-18 2024-05-07 腾讯科技(深圳)有限公司 Method and device for identifying difference degree of motorcade and storage medium
EP3836110A1 (en) * 2019-12-09 2021-06-16 Ningbo Geely Automobile Research & Development Co. Ltd. A method for autonomous control of vehicles of a transportation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899914B2 (en) * 2007-02-19 2012-03-21 トヨタ自動車株式会社 Convoy travel control device
SE1150075A1 (en) * 2011-02-03 2012-08-04 Scania Cv Ab Method and management unit in connection with vehicle trains
US8744666B2 (en) * 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
WO2013006826A2 (en) * 2011-07-06 2013-01-10 Peloton Technology Inc. Systems and methods for semi-autonomous vehicular convoying

Also Published As

Publication number Publication date
EP3053156A1 (en) 2016-08-10
EP3053156A4 (en) 2017-07-05
SE1351132A1 (en) 2015-03-31
WO2015047182A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
SE537598C2 (en) Method and system for organizing vehicle trains
SE537618C2 (en) Method and system for common driving strategy for vehicle trains
JP6748213B2 (en) Platooning management system
SE1351125A1 (en) Method and system for handling obstacles for vehicle trains
EP3052356B1 (en) System and method for controlling a vehicle platoon with a common position-based driving strategy
SE537482C2 (en) Method and system for common driving strategy for vehicle trains
SE537469C2 (en) A system and method for correcting map data and vehicle train position data
SE1351131A1 (en) Control unit and method for controlling a vehicle in a vehicle train
DE102016003450B4 (en) Method and control unit for determining a speed profile
CN112277942A (en) Queue control method for automatically driving vehicle, vehicle-mounted device and system
US9354034B2 (en) Positive location system for a locomotive consist
EP2732240B1 (en) Managing errors in geographical data
JP2019098914A (en) Pre-congestion deceleration notification apparatus
DE102016003252A1 (en) Speed profiling
JP5644373B2 (en) Information processing device
JP2015225384A (en) Drive assist system and drive assist method
CN112969975B (en) Method for controlling a train of vehicles
DE102016003433A1 (en) Method and control unit for determining a speed profile
CN112519776B (en) Control method of automatic driving fleet, vehicle-mounted device and automatic driving vehicle

Legal Events

Date Code Title Description
NUG Patent has lapsed