SE1351131A1 - Control unit and method for controlling a vehicle in a vehicle train - Google Patents

Control unit and method for controlling a vehicle in a vehicle train Download PDF

Info

Publication number
SE1351131A1
SE1351131A1 SE1351131A SE1351131A SE1351131A1 SE 1351131 A1 SE1351131 A1 SE 1351131A1 SE 1351131 A SE1351131 A SE 1351131A SE 1351131 A SE1351131 A SE 1351131A SE 1351131 A1 SE1351131 A1 SE 1351131A1
Authority
SE
Sweden
Prior art keywords
vehicle
property
control unit
strategy
behavior
Prior art date
Application number
SE1351131A
Other languages
Swedish (sv)
Other versions
SE537578C2 (en
Inventor
Assad Alam
Kuo-Yun Liang
Henrik Pettersson
Jonas Mårtensson
Karl Henrik Johansson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1351131A priority Critical patent/SE537578C2/en
Priority to PCT/SE2014/051120 priority patent/WO2015047179A1/en
Priority to DE112014003982.9T priority patent/DE112014003982T5/en
Publication of SE1351131A1 publication Critical patent/SE1351131A1/en
Publication of SE537578C2 publication Critical patent/SE537578C2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

Sammandrag Styrenhet och metod for att reglera ett fordon fk i ett fordonstag. Metoden innefattar att: ta emot atminstone en fordonsparameter p som beskriver en egenskap for det, sett Than fordonet fk, narmst framforvarande fordonet fk-1 fordonstaget; bestamma omgivningsdata 13 som beskriver en egenskap f6r fordonens omgivning; prediktera ett beteende f6r det framforvarande fordonet fk_i baserat pa fordonsparametern p som beskriver en egenskap for fordonet fk-1 och omgivningsdatat 13 och bestamma en k6rstrategi f6r fordonet fk baserat pa det predikterade beteendet fOr det framfOrvarande fordonet fk-1; varefter fordonet fk regleras i enlighet med korstrategin. (Fig. 3) Summary Control unit and method for regulating a vehicle fk in a vehicle stay. The method comprises: receiving at least one vehicle parameter p describing a property of the, seen Than vehicle fk, nearest vehicle fk-1 vehicle strut; determining ambient data 13 describing a property of the vehicles' surroundings; predict a behavior of the vehicle in front fk_i based on the vehicle parameter p describing a property of the vehicle fk-1 and ambient data 13 and determine a driving strategy for the vehicle fk based on the predicted behavior of the vehicle in use fk-1; after which the vehicle fk is regulated in accordance with the cross strategy. (Fig. 3)

Description

Styrenhet och nnetod for att reglera ett fordon i ett fordonstag Uppfinningens omrade Den foreliggande uppfinningen hanfor sig till en styrenhet och en metod for att reglera ett fordon i ett fordonstag. Fordonstaget innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet och en enhet for tradlOs kommunikation. Field of the Invention The present invention relates to a control unit and a method for regulating a vehicle in a vehicle roof. The vehicle stay comprises at least one conductor vehicle and a further vehicle each having a positioning unit and a unit for wireless communication.

Uppfinningens bakgrund 10 Trafikintensiteten är hog pa Europas st6rre vagar och forvantas 6ka framover. Den okade transporten av manniskor och gods ger inte bara upphov till trafikproblem i form av koer utan kraver aven alit mer energi som i slutanden ger upphov till utslapp av exempelvis vaxthusgaser. Ett nnojligt bidrag till att losa dessa problem är att lata fordon fardas tatare i sa kallade fordonstag (platoons). 15 Med fordonstag menas har ett antal fordon som ' Forare utnyttjar detta valkanda faktum redan idag med en sankt trafiksakerhet som foljd. En grundlaggande fraga kring fordonstag är hur tidsluckan mellan 30 fordon kan minskas tan rekonnnnenderade 3 sek ner till mellan 0,5 och 1 sekund utan att paverka trafiksakerheten. Med avstandssensorer och kameror kan 2 forarens reaktionstid elinnineras, en typ av teknik anvand redan idag av system som ACC (Adaptiv Cruise Control) och LKA (Lane Keeping Assistance). Background of the Invention The traffic intensity is high on Europe's major roads and is expected to increase in the future. The increased transport of people and goods not only gives rise to traffic problems in the form of cows but also requires more energy, which in the end gives rise to emissions of, for example, greenhouse gases. A possible contribution to solving these problems is that lazy vehicles travel more tatare in so-called vehicle stays (platoons). By vehicle roof is meant a number of vehicles which ' Drivers are already taking advantage of this elusive fact today with a sacred traffic safety as a result. A fundamental question about vehicle stays is how the time slot between 30 vehicles can be reduced by the recommended 3 seconds down to between 0.5 and 1 second without affecting traffic safety. With distance sensors and cameras, the 2 driver's response time can be eliminated, a type of technology already used today by systems such as ACC (Adaptive Cruise Control) and LKA (Lane Keeping Assistance).

Adaptiv farthallning baseras pa att man momentant mater hastighet och avstand med sensorer till enbart framforvarande (eller narliggande) fordon och hailer ett onskat avstand. Avstandssensorer och kameror kraver dock fri sikt till malet vilket Or det svart att detektera handelser mer an ett par fordon framat i kon. En ytterligare begransning är att farthallaren inte kan reagera proaktivt, d.v.s. de kan inte reagera pa handelser som hander langre fram i trafiken som kommer att paverka trafikrytmen. Adaptive cruise control is based on momentarily measuring speed and distance with sensors only in front of (or nearby) vehicles and reaching a desired distance. Distance sensors and cameras, however, require a clear view of the ground, which makes it difficult to detect trades more than a couple of vehicles in the front of the cone. A further limitation is that the cruise control cannot react proactively, i.e. they can not react to actions that take place further in the traffic that will affect the traffic rhythm.

En mojlighet att fa fordonen att agera proaktivt är att fa fordonen att kommunicera for att kunna utbyta information nnellan denn. En utvecklig av IEEE-standarden 802.11 for WLAN (Wireless Local Area Networks) kallad 802.11p mojliggor tradlos overforing av information mellan fordon, och mellan fordon och infrastruktur. Olika sorters information kan sandas till och fran fordonen, sasom fordonsparametrar och strategier. One way to get vehicles to act proactively is to get vehicles to communicate in order to exchange information around them. A development of the IEEE standard 802.11 for WLAN (Wireless Local Area Networks) called 802.11p enables wireless transmission of information between vehicles, and between vehicles and infrastructure. Different types of information can be sanded to and from the vehicles, such as vehicle parameters and strategies.

Utvecklingen av kommunikationstekniken har alltsa gjort det mojligt att designa fordon och infrastruktur som kan interagera och agera proaktivt. Fordon kan agera som en enhet och foljaktligen mojliggors kortare avstand och ett battre globalt trafikflode. The development of communication technology has thus made it possible to design vehicles and infrastructure that can interact and act proactively. Vehicles can act as a unit and consequently shorter distances and a better global traffic flow are possible.

I WO-2012105889-A1 namns att det är mojligt att ta hansyn till hinder langre fram langs vagen sasom trafikljus, hastighetsbegransningar etc., f6r att undvika exempelvis onodig inbromsning da hindret upptacks. Da ett fordon Icor i ett fordonstag med korta avstand mellan varandra paverkas fordonet i hog grad av hur det narmst framforvarande fordonet i fordonstaget kommer att bete sig. WO-2012105889-A1 mentions that it is possible to take into account obstacles further along the road such as traffic lights, speed limits, etc., in order to avoid, for example, unnecessary braking when the obstacle is detected. When a vehicle Icor in a vehicle stay with short distances between each other, the vehicle is greatly affected by how the nearest vehicle in the vehicle stay will behave.

Det ar saledes ett syfte att tillhandahalla en metod for att reglera ett fordon i ett fordonstag pa ett bransleeffektivt satt. 3 Sammanfattning av uppfinningen Enligt en forsta aspekt uppnas det ovan beskrivna syftet atminstone delvis genom en metod for att reglera ett fordon fk i ett fordonstag, som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet och en enhet for tradlos kommunikation. Metoden innefattar att ta emot atminstone en fordonsparameter 9 som beskriver en egenskap for det, sett Man fordonet fk, narmst framforvarande fordonet fk_i i fordonstaget; bestamma omgivningsdata 13 som beskriver en egenskap for fordonens omgivning; prediktera ett beteende for 10 det framforvarande fordonet fk_i baserat pa fordonsparametern 9 som beskriver en egenskap for fordonet fk-1 och omgivningsdatat 13 och bestamma en korstrategi f6r fordonet fk baserat pa det predikterade beteendet f6r det framforvarande fordonet fk-1, varefter fordonet fk regleras i enlighet med korstrategin. 15 Genom metoden uppnas en branslesnal och saker reglering, eftersom fordonet fk kan regleras efter det framforvarande fordonet fk_i:s predikterade beteende. Hansyn kan tas till vilken kapacitet det framforvarande fordonet har, om det har daliga bronnsar etc. Avstandet nnellan fordonen kan regleras efter fordonet fk_i:s predikterade beteende sa att sakerheten inte aventyras. It is thus an object to provide a method for regulating a vehicle in a vehicle roof in an industry efficient manner. Summary of the Invention According to a first aspect, the object described above is achieved at least in part by a method for controlling a vehicle fk in a vehicle strut, which comprises at least one conductor vehicle and a further vehicle each having a positioning unit and a unit for wireless communication. The method comprises receiving at least one vehicle parameter 9 which describes a property of the, seen Man vehicle fk, nearest vehicle fk_i in the vehicle roof; determining ambient data 13 describing a property of the vehicle environment; predict a behavior for the front vehicle fk_i based on the vehicle parameter 9 which describes a property of the vehicle fk-1 and the ambient data 13 and determine a cross strategy for the vehicle fk based on the predicted behavior for the front vehicle fk-1, after which the vehicle fk is regulated in accordance with the cross strategy. The method achieves an industry level and matters of regulation, since the vehicle fk can be regulated according to the predicted vehicle fk_i's predicted behavior. Consideration can be given to the capacity of the vehicle in front, if it has poor wells, etc. The distance between the vehicles can be regulated according to the vehicle fk_i's predicted behavior so that the safety is not compromised.

Eftersom information ges onn framtida handelser som kan paverka fordonet fk, sa kan fordonet fk pa ett battre satt planera sin 'corning sa att regleringen av fordonet fk blir mjuk och saker. Metoden är inte beroende av att ha fullstandig information och data am hela fordonstaget, och darigenom minskas berakningskomplexiteten och det ges store mojlighet att genomf6ra regleringen i praktiken. Since information is given about future actions that may affect the vehicle fk, then the vehicle fk can in a better way plan its' corning so that the regulation of the vehicle fk becomes soft and things. The method does not depend on having complete information and data on the entire vehicle stay, and thereby the calculation complexity is reduced and there is a great opportunity to implement the regulation in practice.

Enligt en andra aspekt uppnas det ovan beskrivna syftet atminstone delvis genom en styrenhet fOr att reglera ett fordon fk i ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet och en enhet for tradlos kommunikation. Styrenheten är konfigurerad att: ta emot atminstone en fordonsparameter 9 som beskriver en egenskap for det, sett fran fordonet fk, narmst frannforvarande fordonet fk-1 i fordonstaget; bestarnma 4 onngivningsdata p som beskriver en egenskap for fordonens onngivning; prediktera ett beteende for det framforvarande fordonet fk-1 baserat pa fordonsparametern som beskriver en egenskap for fordonet fk-1 och omgivningsdatat p; bestamma en korstrategi for fordonet fk baserat pa det predikterade beteendet for det framfOrvarande fordonet fk-1, att generera en korstrategisignal som indikerar korstrategin, och reglera fordonet fk i enlighet med korstrategin. According to a second aspect, the object described above is achieved at least in part by a control unit for controlling a vehicle fk in a vehicle strut which comprises at least one conductor vehicle and a further vehicle each having a positioning unit and a unit for wireless communication. The control unit is configured to: receive at least one vehicle parameter 9 which describes a property of it, seen from the vehicle fk, closest to the vehicle fk-1 present in the vehicle roof; consists of 4 indication data p describing a property of the vehicle indication; predict a behavior of the forward vehicle fk-1 based on the vehicle parameter describing a property of the vehicle fk-1 and the ambient data p; determine a crossover strategy for the vehicle fk based on the predicted behavior of the present vehicle fk-1, to generate a crossover strategy signal indicating the crossover strategy, and regulate the vehicle fk in accordance with the crossover strategy.

Enligt en tredje aspekt uppnas atminstone delvis syftet genom ett datorprogram P vid ett system, dar namnda datorprogrann P innefattar program kod fOr att fà 10 systemet att utfora nagot av metodstegen som beskrivs hari. According to a third aspect, the purpose is achieved at least in part by a computer program P in a system, wherein said computer program P comprises program code for causing the system to perform some of the method steps described herein.

Enligt en fjarde aspekt uppnas atminstone delvis syftet genom en datorprogramprodukt innefattande en programkod lagrat pa ett, av en dator lasbart, medium for att utf6ra nagot av metodstegen som beskrivs hari. According to a fourth aspect, the object is achieved at least in part by a computer program product comprising a program code stored on a computer readable medium for performing some of the method steps described herein.

Foredragna utf6ringsformer beskrivs i de osjalvstandiga kraven och i den detaljerade beskrivningen. Preferred embodiments are described in the dependent claims and in the detailed description.

Kort beskrivning av de bifogade figurerna Nedan konnnner uppfinningen att beskrivas med hanvisning till de bifogade figurerna, av vilka: Fig. 1 illustrerar ett fordonstag som tar sig uppfor en backe. Brief description of the accompanying figures The invention can now be described with reference to the accompanying figures, of which: Fig. 1 illustrates a vehicle roof which ascends a hill.

Fig. 2 visar ett exempel pa ett fordon i fordonstaget. Fig. 2 shows an example of a vehicle in the vehicle roof.

Fig. 3 illustrerar en styrenhet enligt en utforingsform. Fig. 3 illustrates a control unit according to an embodiment.

Fig. 4 visar ett flodesschema for en metod enligt en utforingsform. Fig. 4 shows a flow chart of a method according to an embodiment.

Detaljerad beskrivning av f6redragna utf6ringsformer av uppfinningen Definitioner LAC (Look-Ahead cruise control): En farthallare som anvander sig av information 30 om den kommande vagens topografi och beraknar en optimal korprofil i form av en hastighetstrajektoria for ett fordon. KaIlas aven prediktiv farthallare. Detailed Description of Preferred Embodiments of the Invention Definitions LAC (Look-Ahead Cruise Control): A cruise control that uses information about the topography of the oncoming vehicle and calculates an optimal vehicle profile in the form of a speed trajectory for a vehicle. KaIlas is also a predictive speedster.

LAP (Look-Ahead cruise control for platoons): En kooperativ farthallare som anvander sig av information om den kommande vagens topografi och beraknar en optimal hastighetstrajektoria for alla fordon i ett fordonstag. KaIlas aven prediktiv farthallare for fordonstag. Reglerstrategin bestams exempelvis genom dynamisk 5 programmering. vk: hastigheten for fordonet fk i fordonstaget med N fordon. dk,k+i — avstandet mellan fordonet fk och det bakomvarande fordonet fk+i i fordonstaget. ak: lutningen for fordonet fk. LAP (Look-Ahead cruise control for platoons): A cooperative cruise control that uses information about the topography of the oncoming vehicle and calculates an optimal speed trajectory for all vehicles in a vehicle stay. KaIlas is also a predictive cruise control for vehicle roofs. The control strategy is determined, for example, by dynamic programming. vk: the speed of the vehicle fk in the vehicle roof with N vehicle. dk, k + i - the distance between the vehicle fk and the vehicle behind fk + i in the vehicle stay. ak: the slope of the vehicle fk.

V2V-kommunikation (Vehicle to vehicle): Tracilos kommunikation mellan fordon, aven kallad fordon-till-fordon-kommunikation. V2V (Vehicle to vehicle) communication: Tracilo's communication between vehicles, also called vehicle-to-vehicle communication.

V21-kommunikation (Vehicle to infrastructure): Tracilos kommunikation mellan fordon och infrastruktur, exempelvis vagnod eller datorsystem. V21 (Vehicle to infrastructure) communication: Tracilo's communication between vehicle and infrastructure, such as a vehicle or computer system.

Fig. 1 visar ett fordonstag med N tunga fordon fk som tar sig fram med sma mellanrum dk, k+1 mellan fordonen uppfor en backe. Fordonen i fordonstaget k6rs med automatiserad styrning for hastighet och/eller rattstyrning. Lutningen pa fordonet fk nar det Icor uppfor backen visas som ak. Varje fordon fk är forsett med en mottagare och sandare for tradlosa signaler, visat delvis med en antenn. 20 Fordonen fk i fordonstaget kan alltsa konnnnunicera med varandra genom V2Vkommunikation eller andra medel som exempelvis genom mobila kommunikationsenheter, via en applikation i en konnmunikationsenhet eller via en server, och till infrastruktur i form av V21-kommunikation. Kommunikationen kan exempelvis ga Than ett fordon och via en vagnod till ett annat fordon. De olika fordonen fk har olika massor mk. Fordonstaget har ett ledarfordon, d.v.s. det forsta fordonet fi. Varje fordon fk i fordonstaget har exempelvis en unik fordonsidentitet, och en fordonstagsidentitet som är gemensam f6r hela fordonstaget, for att kunna halla reda pa vilka fordon som ingar i fordonstaget. Data som skickas tradlOst mellan fordonen i fordonstaget kan taggas med dessa identiteter sa att data som tas emot kan harledas till raft fordon. 6 I Fig. 2 visas ett exempel pa ett fordon fk i fordonstaget, har ledarfordonet fi, och hur det kan vara utrustat. Fordonet fk är f6rsett med en positioneringsenhet 5 som kan bestamma fordonet fk:s position. Positioneringsenheten 5 kan exempelvis vara konfigurerad att ta emot signaler fran ett globalt positioneringssystem som GNSS (Global Navigation Satellite System) exempelvis GPS (Global Positioning System), GLONASS, Galileo eller Compass. Alternativt kan positioneringsenheten 5 vara konfigurerad att ta emot signaler Than exempelvis en eller flera detektorer i fordonet som mater relativa avstand till exempelvis en vagnod, fordon i omgivningen eller liknande med kand position. Baserat pa de relativa avstanden kan positioneringsenheten 5 sedan bestamma fordonet fk:s egen position. En detektor kan aven vara konfigurerad att avkanna en signatur i exempelvis en vagnod, varvid signaturen representerar en viss position. Positioneringsenheten 5 kan da vara konfigurerad att bestamma sin position genom avkanning av signaturen. Positioneringsenheten 5 kan istallet vara konfigurerad att bestarnma signalstyrkan i en eller flera signaler fran en basstation eller vagnod med kand position, och darigenom bestamma fordonet fk:s position genom triangulering. Pa sa satt kan fk:s egen position bestammas. Naturligtvis kan aven de ovan teknikerna konnbineras for att sakerstalla fordonet fk:s position. Positioneringsenheten 5 är konfigurerad att generera en positionssignal som innehaller fordonet fk:s position p, och att sanda denna till en eller flera enheter i fordonet fk. Fordonet fk är som redan namnts aven forsett med en enhet 4 for tradlOs kommunikation. Enheten 4 är konfigurerad att verka som mottagare och sandare av tradlosa signaler. Enheten 4 kan ta emot tradlosa signaler Than andra fordon och/eller tradlOsa signaler Than infrastrukturen kring fordonet fk, och sanda tradlOsa signaler till andra fordon och/eller tradlOsa signaler till infrastrukturen kring fordonet fk. De tradlOsa signalerna kan innefatta fordonsparannetrar fran andra fordon, exempelvis massa, moment, hastighet, bromseffekt och aven mer komplex information som exempelvis gallande kOrprofil, kOrstrategi etc. De tradlosa signalerna kan aven innehalla information om omgivningen, exempelvis vagens lutning a, kurvradie r etc. Fordonet fk kan aven vara f6rsett med en eller flera detektorer 7 for att avkanna omgivningen, exempelvis en radarenhet, laserenhet, lutningsmatare, accelerationsmatare, rattvinkelmatare, ett gyro etc. 7 Dessa detektorer är i Fig. 2 generellt nnarkerade som en detektorenhet 7, men kan alltsa utgoras av ett flertal olika detektorer placerade pa olika stallen i fordonet fk. Detektorenheten 7 är konfigurerad att avkanna en parameter, exempelvis ett relativt avstand, hastighet, lutning, lateral acceleration, vridning, rattutslag etc., och att generera en detektorsignal som innehaller parametern. Fig. 1 shows a vehicle stay with N heavy vehicles fk which travels at small intervals dk, k + 1 between the vehicles up a hill. The vehicles in the vehicle roof are driven with automated steering for speed and / or steering wheel steering. The inclination of the vehicle when the Icor uphill is shown as ak. Each vehicle fk is equipped with a receiver and transmitter for wireless signals, shown partly with an antenna. The vehicles fk in the vehicle stay can thus communicate with each other by V2V communication or other means such as for example through mobile communication units, via an application in a communication unit or via a server, and to infrastructure in the form of V21 communication. The communication can, for example, give Than a vehicle and via a car node to another vehicle. The different vehicles fk have different masses mk. The vehicle roof has a leader vehicle, i.e. the first vehicle fi. Each vehicle fk in the vehicle roof has, for example, a unique vehicle identity, and a vehicle roof identity that is common to the entire vehicle roof, in order to be able to keep track of which vehicles are included in the vehicle roof. Data sent wirelessly between the vehicles in the vehicle stay can be tagged with these identities so that data received can be routed to the raft vehicle. Fig. 2 shows an example of a vehicle fk in the vehicle stay, has the conductor vehicle fi, and how it can be equipped. The vehicle fk is provided with a positioning unit 5 which can determine the position of the vehicle fk. The positioning unit 5 may, for example, be configured to receive signals from a global positioning system such as GNSS (Global Navigation Satellite System) such as GPS (Global Positioning System), GLONASS, Galileo or Compass. Alternatively, the positioning unit 5 may be configured to receive signals Than for example one or more detectors in the vehicle which feed relative distances to for example a car node, vehicles in the vicinity or the like with a known position. Based on the relative distances, the positioning unit 5 can then determine the vehicle fk's own position. A detector can also be configured to detect a signature in, for example, a car node, the signature representing a certain position. The positioning unit 5 can then be configured to determine its position by scanning the signature. The positioning unit 5 may instead be configured to determine the signal strength of one or more signals from a base station or car node with a known position, and thereby determine the position of the vehicle fk by triangulation. In this way, fk's own position can be determined. Of course, the above techniques can also be combined to secure the position of the vehicle fk. The positioning unit 5 is configured to generate a position signal containing the position p of the vehicle fk, and to transmit it to one or more units in the vehicle fk. As already mentioned, the vehicle fk is also equipped with a unit 4 for wireless communication. The unit 4 is configured to act as a receiver and transmitter of wireless signals. The unit 4 can receive wireless signals Than other vehicles and / or wireless signals Than the infrastructure around the vehicle fk, and true wireless signals to other vehicles and / or wireless signals to the infrastructure around the vehicle fk. The wireless signals can include vehicle parameters from other vehicles, for example mass, torque, speed, braking effect and even more complex information such as gallant choir profile, choir strategy, etc. The wireless signals can also contain information about the surroundings, for example the slope a, curve radius r etc. The vehicle fk may also be provided with one or more detectors 7 for sensing the surroundings, for example a radar unit, laser unit, tilt feeder, acceleration feeder, steering wheel angle feeder, a gyro, etc. 7 These detectors are generally marked in Fig. 2 as a detector unit 7, but can thus consists of a number of different detectors placed in different places in the vehicle fk. The detector unit 7 is configured to sense a parameter, for example a relative distance, speed, inclination, lateral acceleration, rotation, steering angle, etc., and to generate a detector signal which contains the parameter.

Detektorenheten 7 är vidare konfigurerad att sanda detektorsignalen till en eller flera enheter i fordonet fk. Fordonet fk kan aven vara utrustat med en vaghorisontenhet 6 som innefattar kartdata 8 (Fig. 3) om den kommande vagen. Vaghorisontenheten 6 är konfigurerad att generera en vaghorisont h som beskriver den kommande vagen for fordonet fk. Vaghorisonten h innefattar egenskaper som exempelvis lutning och kurvradie i positioner langs horisonten. The detector unit 7 is further configured to transmit the detector signal to one or more units in the vehicle fk. The vehicle fk can also be equipped with a wagon horizon unit 6 which includes map data 8 (Fig. 3) about the coming wagon. The carriage horizon unit 6 is configured to generate a carriage horizon h which describes the upcoming carriage for the vehicle fk. The wagon horizon h includes properties such as inclination and radius of curvature in positions along the horizon.

Fordonet fk kommunicerar internt mellan sina olika enheter genonn exempelvis en buss, exempelvis en CAN-buss (Controller Area Network) som anvander sig av ett meddelandebaserat protokoll. Exempel pa andra kommunikationsprotokoll som kan anvandas är TTP (Time-Triggered Protocol), Flexray m fl. Pa sa satt kan signaler och data som beskrivits ovan utbytas mellan olika enheter i fordonet fk. Signaler och data kan exempelvis istallet overforas tradlost nnellan de olika enheterna. The vehicle fk communicates internally between its various units via, for example, a bus, for example a CAN bus (Controller Area Network) which uses a message-based protocol. Examples of other communication protocols that can be used are TTP (Time-Triggered Protocol), Flexray and others. In this way, signals and data described above can be exchanged between different units in the vehicle fk. Signals and data can, for example, instead be transmitted wirelessly to the various devices.

I fordonet fk kan aven en styrenhet 1 vara arrangerad vilket illustreras i Fig. 2. Styrenheten 1 kan kommunicera med de andra enheterna 4, 5, 6 och 7 som forklarats tidigare, och ta emot data fran dem. Alternativt kan styrenheten 1 vara placerad i en extern enhet, och kommunicera och ta emot data med de andra 25 enheterna 4, 5, 6 och genonn tradlos kommunikation. Aven vaghorisontenheten 6 kan vara placerad i en extern enhet. Styrenhetens 1 uppgift är att prediktera hur fordonet fkl framfor fordonet fk i fordonstaget kommer att bete sig pa den kommande vagen, och anpassa regleringen av fordonet fk_lpa ett bransleoptimalt satt baserat pa fordonet fk:s predikterade beteende. In the vehicle fk a control unit 1 can also be arranged, which is illustrated in Fig. 2. The control unit 1 can communicate with the other units 4, 5, 6 and 7 as previously explained, and receive data from them. Alternatively, the control unit 1 may be located in an external unit, and communicate and receive data with the other units 4, 5, 6 and through wireless communication. The vag horizon unit 6 can also be located in an external unit. The control unit's task is to predict how the vehicle fkl in front of the vehicle fk in the vehicle roof will behave on the next road, and adapt the regulation of the vehicle fk_lpa in an industry-optimal way based on the vehicle fk's predicted behavior.

I Fig. 3 visas ett exempel pa styrenheten 1. Styrenheten 1 kan exempelvis vara en ECU (Electronic Control Unit). Styrenheten 1 innefattar en processorenhet 2 och 8 en nninnesenhet 3 som innefattar ett datorprogram P. Datorprogrannnnet P innefattar programkod for att fà styrenheten 1 att utfora nagot av metodstegen som kommer att beskrivas i det foljande med hanvisning till flodesschemat i Fig. 4 och styrenheten 1 i Fig. 3. De ovriga enheterna 4, 5, 6, 7 kan innefatta en eller 5 flera processorenheter och en eller flera minnesenheter. En processorenhet kan utgoras av en CPU (Central Processing Unit). En minnesenhet kan innefatta ett flyktigt- och/eller ett icke-flyktigt minne, exempelvis flashminne eller RAM (Random Access Memory). I Fig. 3 visas aven en befintlig farthallare 9 till vilken en kOrstrategisignal kan sandas, vilket kommer att fOrklaras mer i det fOljande. Fig. 3 shows an example of the control unit 1. The control unit 1 may, for example, be an ECU (Electronic Control Unit). The control unit 1 comprises a processor unit 2 and 8 a memory unit 3 comprising a computer program P. The computer program P comprises program code for causing the control unit 1 to perform some of the method steps which will be described in the following with reference to the flow chart in Fig. 4 and the control unit 1 in Fig. 3. The other units 4, 5, 6, 7 may comprise one or more processor units and one or more memory units. A processor unit can be a CPU (Central Processing Unit). A memory device may include a volatile and / or non-volatile memory, such as flash memory or RAM (Random Access Memory). Fig. 3 also shows an existing cruise control 9 to which a cross-strategy signal can be sanded, which will be explained more in the following.

Metoden innefattar att ta emot atminstone en fordonsparameter p som beskriver en egenskap f6r det, sett fran fordonet fk, narmaste framforvarande fordonet fkl i fordonstaget (Al). Denna fordonsparameter p kan exempelvis beskriva en av fordonetmassa, motereffekt, bromseffekt, frontarea, egenskap hos drivlina eller egenskap hos vaxellada. Fordonsparametern cp kan exempelvis sandas via V2V fran det framforvarande fordonet fk_i till styrenheten 1 via enheten 4 for tradlos kommunikation i fordonet fk eller via en server, vagnod, mobila komnnunikationsnatet eller en applikation i en konnnnunikationsenhet. Metoden innefattar vidare att bestamma omgivningsdata 13 som beskriver en egenskap for 20 fordonens onngivning (A2). Omgivningsdatat 13 kan exempelvis beskriva en egenskap for fordonens framtida vag, exempelvis lutning, kurvatur eller hastighetsbegransning. Denna information kan fas genom att detektera vagens lutning eller kurvatur med lamplig detektor 7. Informationen kan ocksa fas via tradlOs kommunikation fran ett annat fordon eller infrastruktur som exempelvis en vagnod eller ett datorsystem. Exempelvis kan en hastighetskylt ange sin hastighetsbegransning via tradlOs kommunikation som kan skickas till fordonet fk. Information om kommande hinder som exempelvis ett annat fordonstag langre fram langs vagen, trafikstockning etc. kan sandas via V2V eller V2I till fordonet fk. Enligt en utforingsform sa far styrenheten 1 tillgang till en vaghorisont h fran 30 vaghorisontenheten 6. Vaghorisonten h innefattar egenskaper for den framtida vagen, och alltsa omgivningsdata 13. Omgivningsdatat 13 kan aven innefatta ett eller flera scenarior for den framtida vagen, alltsa flera olika lutningar, kurvaturer 9 etc. Metoden innefattar vidare att prediktera ett beteende for det frannforvarande fordonet fk-1 baserat pa fordonsparametern p som beskriver en egenskap for fordonet fk_loch omgivningsdatat [3. (A3). Prediktionen kan aven baserat pa ett flertal fordonsparametrer eller en kombination av fordonsparametrar Beteendet fOr det framforvarande fordonet fkl kan exempelvis predikteras baserat pa en modell av fordonet fk_i. En modell som beskriver de huvudsakliga krafter som paverkar fordonet fkl kan beskrivas enligt: dv Mt — Fmotor Fbroms Fluftmotst5nd(V) Frullning(a) Fgravitet(a) dt ttifiltilf vwe,6) — Fbra ke — -1 CDAapa122 — CrTrtg cos a — mg sin a, (1) rw2 dar a betecknar vagens lutning, CD och cr är karakteristiska koefficienter, g betecknar gravitationskraften, pa är luftdensiteten, r är hjulradien, och it, if, qt, nf är transmission och vaxelspecifika konstanter. Den accelererande 15 fordonsnnassan mt(mdwie, it, if, qt,beror pa bruttomassan m, hjultroghet Jw, motortrogheth, vaxelladans utvaxling och effektivitet it, qt liksom den slutliga kOrutvaxlingen och effektiviteten if, rip Att prediktera ett beteende for fordonet fk-1 innefattar enligt en utforingsfornn att bestamma hastigheten vk_i for fordonet fk-i langs den framtida vagen. Da den framtida vagen är kand genom horisontenheten 6 (Fig. 3) och det finns en fordonsmodell av fordonet fkl kan ocksa den predikterade hastigheten Vk1 for fordonet fk-1 langs vaghorisonten h bestammas, givet en set-hastighet for fordonet fkl som denne ska halla. Vanligtvis är sethastigheten lika for alla fordon i fordonstaget och finns tillganglig i fordonet fk. Den predikterade hastigheten kan bestannnnas baserat pa en lokal LAC strategi, eller 25 en baserat pa en gemensam LAP-strategi. Exempelvis kan hastigheten for fordonet fk-1 beraknas baserat pa att nnininnera bransleforbrukning och nnininnera tiden for ett koruppdrag. En optimering kan da utforas baserat pa fordonsmodellen enligt ekvationen (1). 10 Metoden innefattar vidare att bestannnna en korstrategi f6r fordonet fk baserat pa det predikterade beteendet for det framforvarande fordonet fk-1 (A4). Korstrategin for fordonet fk kan exempelvis bestamas sa att fordonet fk huvudsakligen hailer ett forutbestamt avstand till det framforvarande fordonet fk-1. Denna k6rstrategi kan 5 exempelvis bestammas genom lam pliga optimeringsalgoritmer som exempelvis dynamisk programmering. Styrenheten 1 kan aven vara konfigurerad att ta emot en forutvarande korstrategi for fordonet fk genom exempelvis V2V eller V2I, och anpassa denna forutvarande korstrategi efter beteendet hos fordonet fkl f6r att skapa en bestamd kOrstrategi. Styrenheten 1 (Fig. 3) är konfigurerad att generera en korstrategisignal som indikerar den bestamda korstrategin. Darefter regleras fordonet fk i enlighet med korstrategin (A5). Korstrategisignalen kan exempelvis innehalla en korprofil med hastighetsreferensvarden vref i olika positioner langs den framtida vagen. Korstrategisignalen kan sandas till en befintlig farthallare 9 (Fig. 3), som reglerar gas och brains till fordonet fk sa att fordonet fk vasentligen far hastigheten Vref. The method comprises receiving at least one vehicle parameter p which describes a property of, as seen from the vehicle fk, the nearest forward vehicle fkl in the vehicle roof (A1). This vehicle parameter p can, for example, describe one of vehicle net mass, engine power, braking power, front area, property of the driveline or property of the gearbox. The vehicle parameter cp can for instance be sanded via V2V from the forward vehicle fk_i to the control unit 1 via the unit 4 for wireless communication in the vehicle fk or via a server, car node, mobile communication network or an application in a communication unit. The method further comprises determining ambient data 13 describing a property of the vehicle (13). The ambient data 13 can, for example, describe a property of the vehicles' future vagueness, for example slope, curvature or speed limit. This information can be phased by detecting the inclination or curvature of the carriage with a suitable detector 7. The information can also be phased via wireless communication from another vehicle or infrastructure such as a carriage node or a computer system. For example, a speed plate can indicate its speed limit via wireless communication which can be sent to the vehicle fk. Information about upcoming obstacles such as another vehicle roof further along the road, traffic jams, etc. can be sanded via V2V or V2I to the vehicle fk. According to one embodiment, the control unit 1 has access to a wagon horizon h from the wagon horizon unit 6. The wagon horizon h comprises properties for the future road, and thus ambient data 13. The ambient data 13 may also comprise one or more scenarios for the future road, i.e. several different slopes. curvatures 9 etc. The method further comprises predicting a behavior of the absent vehicle fk-1 based on the vehicle parameter p which describes a property of the vehicle fk_loch ambient data [3. (A3). The prediction can also be based on a number of vehicle parameters or a combination of vehicle parameters. The behavior of the vehicle in front can be predicted, for example, based on a model of the vehicle fk_i. A model that describes the main forces that affect the vehicle fkl can be described according to: dv Mt - Fmotor Fbroms Fluftmotst5nd (V) Frullning (a) Fgravitet (a) dt ttifiltilf vwe, 6) - Fbra ke - -1 CDAapa122 - CrTrtg cos a - mg sin a, (1) rw2 dar a denotes the inclination of the carriage, CD and cr are characteristic coefficients, g denotes the gravitational force, pa is the air density, r is the wheel radius, and it, if, qt, nf are transmission and gear-specific constants. The accelerating vehicle mass mt (mdwie, it, if, qt, depends on the gross mass m, wheel inertia Jw, engine inertia, gearshift gear ratio and efficiency it, qt as well as the final car gear ratio and efficiency if, rip according to an embodiment to determine the speed vk_i for the vehicle fk-i along the future road, since the future road is known through the horizon unit 6 (Fig. 3) and there is a vehicle model of the vehicle fkl, the predicted speed Vk1 for the vehicle fk-1 can also along the vaginal horizon h is determined, given a set speed for the vehicle fkl which it is to hold.Usually the set speed is the same for all vehicles in the vehicle stay and is available in the vehicle fk. On a common LAP strategy, for example, the speed of the vehicle fk-1 can be calculated based on reducing fuel consumption and reducing the time for a choir assignments. An optimization can then be performed based on the vehicle model according to equation (1). The method further comprises determining a crossover strategy for the vehicle fk based on the predicted behavior of the forward vehicle fk-1 (A4). The cross strategy for the vehicle fk can, for example, be determined so that the vehicle fk mainly has a predetermined distance to the forward vehicle fk-1. This running strategy can be determined, for example, by appropriate optimization algorithms such as dynamic programming. The control unit 1 can also be configured to receive a previous crossover strategy for the vehicle fk through, for example, V2V or V2I, and adapt this previous crossover strategy to the behavior of the vehicle fkl to create a specific crossover strategy. The control unit 1 (Fig. 3) is configured to generate a cross strategy signal indicating the determined cross strategy. Thereafter, the vehicle fk is regulated in accordance with the cross strategy (A5). The cross strategy signal may, for example, contain a raven profile with the velocity reference value vref in different positions along the future path. The cross-strategy signal can be sent to an existing cruise control 9 (Fig. 3), which regulates gas and brains to the vehicle fk so that the vehicle fk essentially has the speed Vref.

Beteendet for fordonet fk-1 kan exempelvis vara att det komnner att fa en lite lagre hastighet an set-hastigheten i en uppf6rsbacke p.g.a. att det inte har tillracklig fordonseffekt for att klara uppforsbacken. Det bakomvarande fordonet fk kan da planera sin 'corning och bestannnna kOrstrategin att det ska nninska gaspadraget vid en viss position eller tidpunkt langs vagen sa att det ocksa kommer att fà samma lagre hastighet som fordonet fk-1 uppforsbacken. Fordonet fk behover da inte bronnsa i uppf6rsbacken f6r att kunna halla ett forutbestamt avstand mellan fordonen. Styrenheten 1 kan aven bestamma hur fordonet fk paverkas av olika krafter enligt ekvation (1), och berakna vilken eller vilka hastigheter fordonet fk [Dor reglera efter vid vilka positioner eller tidpunkter fOr att uppna fordonet fk-1:s predikterade hastighet enligt dess predikterade beteende. The behavior of the vehicle fk-1 may, for example, be that it will have a slightly lower speed than the set speed on an uphill slope due to that it does not have a sufficient vehicle effect to cope with the uphill slope. The vehicle behind fk can then plan its' corning and persist the driving strategy that it will reduce the throttle at a certain position or time along the road so that it will also have the same lower speed as the vehicle fk-1 uphill. The vehicle then does not need to bronze in the uphill slope to be able to maintain a predetermined distance between the vehicles. The control unit 1 can also determine how the vehicle fk is affected by different forces according to equation (1), and calculate which speed or speeds the vehicle fk [Dor regulates according to which positions or times To achieve the vehicle fk-1's predicted speed according to its predicted behavior .

Enligt ett ytterligare exempel kan styrenheten 1 bestamma avstandet mellan fordonen fk och fk-1 och/eller hastigheten for fordonet fk enligt forutbestamda regler f6r olika fordonsparametrar 9. !fall p exempelvis anger en viss bronnseffekt etc. for 11 fordonet fk-1, kan exennpelvis styrenheten 1 bestannnna att ett visst avstand nnellan fordonen fk och fk-1 ska hallas for att sakerstalla sakerheten. According to a further example, the control unit 1 can determine the distance between the vehicle fk and fk-1 and / or the speed of the vehicle fk according to predetermined rules for different vehicle parameters 9. In this case, for example, indicates a certain well power etc. for the vehicle fk-1, for example the control unit 1 insist that a certain distance between the vehicles fk and fk-1 be kept to secure the security.

Den foreliggande uppfinningen är inte begransad till de ovan beskrivna utforingsformerna. Olika alternativ, modifieringar och ekvivalenter kan anvandas. The present invention is not limited to the embodiments described above. Various alternatives, modifications and equivalents can be used.

Darfor begransar inte de ovan namnda utforingsformerna uppfinningens omfattning, som definieras av de bifogade kraven. 12 Therefore, the above-mentioned embodiments do not limit the scope of the invention, which is defined by the appended claims. 12

Claims (15)

Patentkrav 1. Metod for att reglera ett fordon fk i ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (5) och en enhet (4) for tradlos kommunikation, varvid metoden innefattar att:A method of controlling a vehicle fk in a vehicle strut comprising at least one conductor vehicle and a further vehicle each having a positioning unit (5) and a unit (4) for wireless communication, the method comprising: 1. ta emot atminstone en fordonsparameter cp som beskriver en egenskap for det, sett fran fordonet fk, narmst framforvarande fordonet fk_i i fordonstaget; - bestamma omgivningsdata 13 som beskriver en egenskap for fordonens omgivning; 2. prediktera ett beteende f6r det framforvarande fordonet fk_i baserat pa fordonsparametern 9 som beskriver en egenskap for fordonet fk-1 och omgivningsdatat 13; - bestamma en korstrategi for fordonet fk baserat pa det predikterade beteendet for det framforvarande fordonet fk_i; varefter fordonet fk regleras i enlighet med korstrategin.1. receive at least one vehicle parameter cp which describes a property of it, seen from the vehicle fk, nearest vehicle fk_i in the vehicle roof; - determining ambient data 13 which describes a property of the vehicles' surroundings; 2. predict a behavior of the vehicle in front fk_i based on the vehicle parameter 9 which describes a property of the vehicle fk-1 and the ambient data 13; - determine a crossover strategy for the vehicle fk based on the predicted behavior of the vehicle in front fk_i; after which the vehicle fk is regulated in accordance with the cross strategy. 2. Metoden enligt krav 1, som innefattar att omgivningsdatat 13 beskriver en egenskap for fordonens franntida vag, exempelvis lutning, kurvatur eller hastighetsbegransning.The method according to claim 1, which comprises the ambient data 13 describing a property of the vehicles' frantic vagueness, for example inclination, curvature or speed limitation. 3. Metoden enligt nagot av foregaende krav, som innefattar att prediktera beteendet for det framforvarande fordonet fk_i baserat pa en modell av fordonet fk-i.The method according to any of the preceding claims, which comprises predicting the behavior of the forward vehicle fk_i based on a model of the vehicle fk-i. 4. Metoden enligt nagot av foregaende krav, varvid fordonsparametern beskriver en av fordonet fk_1:s massa, motereffekt, bromseffekt, frontarea, egenskap hos drivlina eller egenskap hos vaxellada. 13The method according to any of the preceding claims, wherein the vehicle parameter describes one of the vehicle fk_1's mass, engine power, braking power, front area, property of the driveline or property of the gearbox. 13 5. Metoden enligt nagot av foregaende krav, som innefattar att bestamma en k6rstrategi f6r fordonet fk sa att fordonet fk huvudsakligen hailer ett forutbestamt avstand till det framforvarande fordonet fk-1.The method according to any one of the preceding claims, which comprises determining a driving strategy for the vehicle fk so that the vehicle fk mainly has a predetermined distance to the vehicle in front fk-1. 6. Metoden enligt nagot av foregaende krav, varvid prediktera ett beteende f6r fordonet fk-1 innefattar att bestamma hastigheten f6r fordonet fkl langs den framtida vagen.The method according to any of the preceding claims, wherein predicting a behavior of the vehicle fk-1 comprises determining the speed of the vehicle fkl along the future road. 7. Styrenhet (1) fOr att reglera ett fordon fk i ett fordonstag som innefattar atminstone ett ledarfordon och ett ytterligare fordon som vardera har en positioneringsenhet (5) och en enhet (4) for tradlos kommunikation, ka nnetec kn at av att styrenheten (1) är konfigurerad att: 1. ta emot atminstone en fordonsparameter p som beskriver en egenskap for det, sett Than fordonet fk, narmst framforvarande fordonet fkl i 15 fordonstaget; 2. bestamma omgivningsdata 13 som beskriver en egenskap for fordonens omgivning; 3. prediktera ett beteende f6r det frannforvarande fordonet fk-1 baserat pa fordonsparametern p som beskriver en egenskap for fordonet fk-1 och onngivningsdatat 6; 4. bestamma en korstrategi for fordonet fk baserat pa det predikterade beteendet for det framforvarande fordonet fk-1; 5. generera en korstrategisignal som indikerar korstrategin, och reglera fordonet fk i enlighet med korstrategin.7. Control unit (1) for controlling a vehicle fk in a vehicle stay comprising at least one conductor vehicle and a further vehicle each having a positioning unit (5) and a unit (4) for wireless communication, can be characterized in that the control unit ( 1) is configured to: 1. receive at least one vehicle parameter p which describes a property of the, seen Than vehicle fk, nearest vehicle fkl in the vehicle roof; 2. determine environmental data 13 describing a property of the vehicle environment; 3. predict a behavior of the absent vehicle fk-1 based on the vehicle parameter p which describes a property of the vehicle fk-1 and the rendering data 6; 4. determine a cross-strategy for the vehicle fk based on the predicted behavior of the forward vehicle fk-1; 5. generate a cross-strategy signal indicating the cross-strategy, and regulate the vehicle fk in accordance with the cross-strategy. 8. Styrenheten (1) enligt krav 7, varvid omgivningsdatat 13 beskriver en egenskap f6r fordonens franntida vag, exempelvis lutning, kurvatur eller hastighetsbegransning.The control unit (1) according to claim 7, wherein the ambient data 13 describes a property of the vehicle's initial wave, for example inclination, curvature or speed limitation. 9. Styrenheten (1) enligt nagot av kraven 7 till 8, som är konfigurerad att prediktera beteendet f6r det framforvarande fordonet fk_i baserat pa en modell av fordonet fk-1. 14The control unit (1) according to any one of claims 7 to 8, which is configured to predict the behavior of the vehicle in front fk_i based on a model of the vehicle fk-1. 14 10. Styrenheten (1) enligt nagot av kraven 7 till 9, varvid fordonsparametern p beskriver en av fordonetmassa, motereffekt, bromseffekt, frontarea, egenskap hos drivlina eller egenskap hos vaxellada.The control unit (1) according to any one of claims 7 to 9, wherein the vehicle parameter p describes one of the vehicle mass, engine power, braking power, front area, property of the driveline or property of the gearbox. 11. Styrenheten (1) enligt nagot av kraven 7 till 10, som är konfigurerad att bestamma en kOrstrategi fOr fordonet fk sa att fordonet fk hailer ett fOrutbestamt avstand till det framforvarande fordonet fk-1.The control unit (1) according to any one of claims 7 to 10, which is configured to determine a driving strategy for the vehicle fk so that the vehicle fk has a predetermined distance to the vehicle in front fk-1. 12. Styrenheten (1) enligt nagot av kraven 7 till 11, som är konfigurerad att prediktera ett beteende f6r fordonet fkl som innefattar att bestamma hastigheten for fordonet fk-1 langs den framtida vagen.The control unit (1) according to any one of claims 7 to 11, which is configured to predict a behavior of the vehicle fkl which comprises determining the speed of the vehicle fk-1 along the future road. 13. Styrenheten (1) enligt nagot av kraven 7 till 12, som är konfigurerat att ta emot fordonsparametern cp via tradlos kommunikation.The control unit (1) according to any one of claims 7 to 12, which is configured to receive the vehicle parameter cp via wireless communication. 14. Datorprogram (P) vid en styrenhet (1), dar namnda datorprogram (P) innefattar programkod for att fà styrenheten (1) att utfora nagot av stegen enligt patentkraven 1 till 6.Computer program (P) at a control unit (1), wherein said computer program (P) comprises program code for causing the control unit (1) to perform some of the steps according to claims 1 to 6. 15. Datorprogrannprodukt innefattande en progrannkod lagrat pa ett, av en dator lasbart, medium for att utfora metodstegen enligt nagot av patentkraven 1 till 6.A computer program product comprising a program code stored on a computer readable medium for performing the method steps according to any one of claims 1 to 6.
SE1351131A 2013-09-30 2013-09-30 Control unit and method for controlling a vehicle in a vehicle train SE537578C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1351131A SE537578C2 (en) 2013-09-30 2013-09-30 Control unit and method for controlling a vehicle in a vehicle train
PCT/SE2014/051120 WO2015047179A1 (en) 2013-09-30 2014-09-26 Control unit and method to control a vehicle in a vehicle platoon based on the predicted behaviour of the preceeding vehicle
DE112014003982.9T DE112014003982T5 (en) 2013-09-30 2014-09-26 Control unit and method for controlling a vehicle in a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1351131A SE537578C2 (en) 2013-09-30 2013-09-30 Control unit and method for controlling a vehicle in a vehicle train

Publications (2)

Publication Number Publication Date
SE1351131A1 true SE1351131A1 (en) 2015-03-31
SE537578C2 SE537578C2 (en) 2015-06-30

Family

ID=52744112

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1351131A SE537578C2 (en) 2013-09-30 2013-09-30 Control unit and method for controlling a vehicle in a vehicle train

Country Status (3)

Country Link
DE (1) DE112014003982T5 (en)
SE (1) SE537578C2 (en)
WO (1) WO2015047179A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US20180210463A1 (en) 2013-03-15 2018-07-26 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
JP7005526B2 (en) 2016-05-31 2022-01-21 ぺロトン テクノロジー インコーポレイテッド State machine of platooning controller
JP6690056B2 (en) 2016-08-22 2020-04-28 ぺロトン テクノロジー インコーポレイテッド Control system architecture for motor vehicle
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
CN112088343A (en) * 2018-05-11 2020-12-15 沃尔沃卡车集团 Method for establishing a vehicle path
US10860025B2 (en) 2018-05-15 2020-12-08 Toyota Research Institute, Inc. Modeling graph of interactions between agents
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
US11636405B2 (en) 2019-11-20 2023-04-25 Here Global B.V. Method, apparatus and computer program product for vehicle platooning
DE102019218464A1 (en) * 2019-11-28 2021-06-02 Robert Bosch Gmbh Method for operating a vehicle group

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003625B4 (en) * 2006-01-26 2017-06-08 Maik Ziegler Method for regulating the distance of a vehicle to a leading vehicle ahead
WO2011125185A1 (en) * 2010-04-07 2011-10-13 トヨタ自動車株式会社 Vehicle driving assistance device
SE1150075A1 (en) * 2011-02-03 2012-08-04 Scania Cv Ab Method and management unit in connection with vehicle trains
SE536649C2 (en) * 2012-06-14 2014-04-29 Scania Cv Ab System and method for controlling vehicles in vehicles
US8948995B2 (en) * 2012-06-28 2015-02-03 Toyota Motor Engineering & Manufacturing North America, Inc. Preceding vehicle state prediction

Also Published As

Publication number Publication date
WO2015047179A1 (en) 2015-04-02
DE112014003982T5 (en) 2016-06-16
SE537578C2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
SE1351131A1 (en) Control unit and method for controlling a vehicle in a vehicle train
EP3052356B1 (en) System and method for controlling a vehicle platoon with a common position-based driving strategy
EP3053154B1 (en) System and method to control a vehicle platoon with two different driving strategies
US10006779B2 (en) Transmission necessity determination apparatus and route planning system
CN112689588B (en) Control method and device for automatically driving vehicle
US8315756B2 (en) Systems and methods of vehicular path prediction for cooperative driving applications through digital map and dynamic vehicle model fusion
US20190346845A1 (en) Autonomous control of a motor vehicle on the basis of lane data; motor vehicle
JP6219312B2 (en) Method for determining the position of a vehicle in a lane traffic path of a road lane and a method for detecting alignment and collision risk between two vehicles
US20180113472A1 (en) Estimate of geographical position of a vehicle using wireless vehicle data
EP3052355B1 (en) A system and a method for vehicle platoons comprising at least two vehicles.
SE1351132A1 (en) Method and system for organizing vehicle trains
SE537618C2 (en) Method and system for common driving strategy for vehicle trains
SE537482C2 (en) Method and system for common driving strategy for vehicle trains
SE538458C2 (en) Method, apparatus and system comprising the apparatus for supporting the creation of vehicle trains
US9981660B2 (en) Operation of a vehicle by classifying a preceding vehicle lane
US20180329421A1 (en) Road link information updating device and vehicle control system
WO2020116264A1 (en) Vehicle travel assistance method, vehicle travel assistance device and autonomous driving system
US10845814B2 (en) Host vehicle position confidence degree calculation device
CN116935693A (en) Collision early warning method, vehicle-mounted terminal and storage medium
WO2020012209A1 (en) Path calculation method, driving control method, and path calculation device
JP2021068315A (en) Estimation method and estimation system of lane condition
US10037698B2 (en) Operation of a vehicle while suppressing fluctuating warnings
US20240124060A1 (en) A method for determining whether an automatic collision avoidance steering maneuver should be executed or not
US20230031485A1 (en) Device and method for generating lane information
CN117917701A (en) Identifying unknown traffic objects