RU97100791A - HIGH-STRENGTH, HIGH-PLASTIC TITANIUM ALLOY AND METHOD OF ITS MANUFACTURE - Google Patents
HIGH-STRENGTH, HIGH-PLASTIC TITANIUM ALLOY AND METHOD OF ITS MANUFACTUREInfo
- Publication number
- RU97100791A RU97100791A RU97100791/02A RU97100791A RU97100791A RU 97100791 A RU97100791 A RU 97100791A RU 97100791/02 A RU97100791/02 A RU 97100791/02A RU 97100791 A RU97100791 A RU 97100791A RU 97100791 A RU97100791 A RU 97100791A
- Authority
- RU
- Russia
- Prior art keywords
- titanium alloy
- content
- strength
- mpa
- reinforcing elements
- Prior art date
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims 29
- 238000004519 manufacturing process Methods 0.000 title claims 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 40
- 229910052742 iron Inorganic materials 0.000 claims 24
- 229910052760 oxygen Inorganic materials 0.000 claims 24
- 229910052757 nitrogen Inorganic materials 0.000 claims 18
- 239000001301 oxygen Substances 0.000 claims 18
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 18
- 239000011651 chromium Substances 0.000 claims 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 17
- 230000003014 reinforcing Effects 0.000 claims 16
- 239000010936 titanium Substances 0.000 claims 14
- 229910052804 chromium Inorganic materials 0.000 claims 13
- 229910052759 nickel Inorganic materials 0.000 claims 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 8
- 229910052719 titanium Inorganic materials 0.000 claims 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 6
- 229910000831 Steel Inorganic materials 0.000 claims 4
- 239000010959 steel Substances 0.000 claims 4
- 238000002844 melting Methods 0.000 claims 3
- 238000000034 method Methods 0.000 claims 3
- 229910000975 Carbon steel Inorganic materials 0.000 claims 2
- 239000010962 carbon steel Substances 0.000 claims 2
- 239000002994 raw material Substances 0.000 claims 2
- 239000010935 stainless steel Substances 0.000 claims 2
- 229910001220 stainless steel Inorganic materials 0.000 claims 2
- 238000005275 alloying Methods 0.000 claims 1
- 230000004927 fusion Effects 0.000 claims 1
Claims (12)
Q = [O] + 2,77 [N] + 0,1 [Fe],
где [O] - содержание кислорода, вес.%;
[N] - содержание азота, вес.%;
[Fe] - содержание железа, вес.%,
причем титановый сплав имеет прочность на разрыв по крайней мере 700 МПа и коэффициент удлинения по крайней мере 15%.1. High-strength, high-ductile titanium alloy containing O, N and Fe as reinforcing elements and Ti the rest, while the content of reinforcing elements is as follows: 0.9 - 2.3 wt.% Fe, up to 0.05 wt.% N , the value of oxygen equivalent Q, which is determined by the formula below, 0.34 - 1.00
Q = [O] + 2.77 [N] + 0.1 [Fe],
where [O] is the oxygen content, wt.%;
[N] - nitrogen content, wt.%;
[Fe] - iron content, wt.%,
moreover, the titanium alloy has a tensile strength of at least 700 MPa and an elongation ratio of at least 15%.
Q = [O] + 2,77 [N] + 0,1{[Fe] + [Cr] + [Ni]},
где [O] - содержание кислорода, вес.%;
[N] - содержание азота, вес.%;
[Fe] - содержание железа, вес.%,
[Cr] - содержание хрома, вес.%;
[Ni] - содержание никеля, вес.%,
причем титановый сплав имеет прочность на разрыв по крайней мере 700 МПа и коэффициент удлинения по крайней мере 15%.2. High-strength, high-ductile titanium alloy containing O, N, Fe and at least one element selected from the group including Cr and Ni as reinforcing elements and the rest Ti, the content of reinforcing elements being the following: 0.9 - 2, 3 wt.% - the total amount of Fe, Cr and Ni, at least 0.4 wt.% Fe, up to 0.25 wt.% Cr, up to 0.25 wt. % Ni, up to 0.05 wt.% N, the value of oxygen equivalent Q, which is determined by the formula below, 0.34 - 1.00
Q = [O] + 2.77 [N] + 0.1 {[Fe] + [Cr] + [Ni]},
where [O] is the oxygen content, wt.%;
[N] - nitrogen content, wt.%;
[Fe] - iron content, wt.%,
[Cr] - chromium content, wt.%;
[Ni] - Nickel content, wt.%,
moreover, the titanium alloy has a tensile strength of at least 700 MPa and an elongation ratio of at least 15%.
Q = [O] + 2,77 [N] + 0,1 [Fe],
где [O] - содержание кислорода, вес.%;
[N] - содержание азота, вес.%;
[Fe] - содержание железа, вес.%,
причем титановый сплав имеет прочность на разрыв по крайней мере 700 МПа и коэффициент удлинения по крайней мере 15%, включающий загрузку и плавление по крайней мере одной стали, выбранной из группы, включающей нержавеющие стали и углеродистые стали, в процессе изготовления титанового сплава путем сплавления таким образом, что по крайней мере часть Fe в качестве упрочняющего элемента вносится из стали.9. Method for the production of high-strength, highly ductile titanium alloy containing O, N and Fe as reinforcing elements and Ti else, the content of reinforcing elements is as follows: 0.9 - 2.3 wt.% Fe, up to 0.05 wt. % N, the value of oxygen equivalent Q, which is determined by the formula below, 0.34 - 1.00
Q = [O] + 2.77 [N] + 0.1 [Fe],
where [O] is the oxygen content, wt.%;
[N] - nitrogen content, wt.%;
[Fe] - iron content, wt.%,
moreover, the titanium alloy has a tensile strength of at least 700 MPa and an elongation ratio of at least 15%, including loading and melting at least one steel selected from the group including stainless steel and carbon steel, in the process of making a titanium alloy by fusing such This means that at least part of Fe is added from steel as a reinforcing element.
Q = [O] + 2,77 [N] + 0,1 {[Fe] + [Cr] + [Ni]},
где [O] - содержание кислорода, вес.%;
[N] - содержание азота, вес.%;
[Fe] - содержание железа, вес.%,
причем титановый сплав имеет прочность на разрыв по крайней мере 700 МПа и коэффициент по крайней мере 15%, включающий загрузку и плавление по крайней мере одной стали, выбранной из группы, включающей углеродистые стали и нержавеющие стали, в процессе изготовления титанового сплава путем сплавления, таким образом, что по крайней мере часть Fe, Cr и Ni в качестве упрочняющих элементов вносятся из стали.10. Method for the production of high-strength, highly ductile titanium alloy containing O, N, Fe and at least one element selected from the group including Cr and Ni as reinforcing elements, Ti the rest, while the content of reinforcing elements is as follows: 0.9 - 2.3 wt.% - the total content of Fe, Cr and Ni, at least 0.4 wt.% Fe, up to 0.25 weight. % Cr, up to 0.25 wt.% Ni, up to 0.05 wt.% N, the value of oxygen equivalent Q, which is defined by the formula below, 0.34 - 1.00
Q = [O] + 2.77 [N] + 0.1 {[Fe] + [Cr] + [Ni]},
where [O] is the oxygen content, wt.%;
[N] - nitrogen content, wt.%;
[Fe] - iron content, wt.%,
moreover, the titanium alloy has a tensile strength of at least 700 MPa and a coefficient of at least 15%, including loading and melting at least one steel selected from the group including carbon steel and stainless steel, in the process of manufacturing a titanium alloy by alloying, This means that at least part of Fe, Cr and Ni as reinforcing elements are made from steel.
Q = [O] + 2,77 [N] + 0,1 [Fe],
где [O] - содержание кислорода, вес.%;
[N] - содержание азота, вес.%;
[Fe] - содержание железа, вес.%,
причем титановый сплав имеет прочность на разрыв по крайней мере 700 МПа и коэффициент удлинения по крайней мере 15%, включающий изготовление губчатого титана посредством использования реактора, содержащего Fe на этапе изготовления губчатого титана, таким образом, что губчатый титан содержит Fe, который перенесен из реактора и захвачен, и подачу губчатого титана по крайней мере как часть загрузки сырьевого материала, содержащего Fe в качестве упрочняющего элемента, в процессе изготовления титанового сплава сплавлением.11. Method for the production of high-strength, highly ductile titanium alloy containing O, N, Fe as reinforcing elements and Ti else, the content of reinforcing elements is as follows: 0.9 - 2.3 wt.% Fe, up to 0.05 weight. % N, the value of oxygen equivalent Q, which is determined by the formula below, 0.34 - 1.00
Q = [O] + 2.77 [N] + 0.1 [Fe],
where [O] is the oxygen content, wt.%;
[N] - nitrogen content, wt.%;
[Fe] - iron content, wt.%,
moreover, the titanium alloy has a tensile strength of at least 700 MPa and an elongation ratio of at least 15%, including the manufacture of titanium spongy by using a reactor containing Fe in the manufacture of sponge titanium, so that the titanium sponge contains Fe, which is transferred from the reactor and captured, and the supply of titanium sponge at least as part of the loading of the raw material containing Fe as a reinforcing element, in the process of manufacturing a titanium alloy by fusion.
Q = [O] + 2,77 [N] + 0,1 {[Fe] + [Cr] + [Ni]},
где [O] - содержание кислорода, вес.%;
[N] - содержание азота, вес.%;
[Fe] - содержание железа, вес.%,
при этом титановый сплав имеет прочность на разрыв по крайней мере 700 МПа и коэффициент удлинения по крайней мере 15%, включающий изготовление губчатого титана путем использования реактора, содержащего по крайней мере один элемент, выбранный из группы, включающей Fe, Cr и Ni, на этапе изготовления губчатого титана таким образом, что губчатый титан содержит по крайней мере один элемент, который перенесен и захвачен, и подачу губчатого титана в качестве по крайней мере части загрузки сырьевого материала, содержащего по крайней мере один элемент, выбранный из группы, содержащей Fe, Cr и Ni, в качестве упрочняющего элемента в процессе изготовления титанового сплава путем сплавления.12. Method for the production of high-strength, highly ductile titanium alloy containing O, N, Fe and at least one element selected from the group comprising Cr and Ni as reinforcing elements, and Ti else, the content of reinforcing elements as follows: 0.9 - 2.3 wt.% - the total amount of Fe, Cr and Ni, at least 0.4 wt.% Fe, up to 0.25 weight. % Cr, up to 0.25 wt.% Ni, up to 0.05 wt.% N, the value of oxygen equivalent Q, which is defined by the formula below, 0.34 - 1.00
Q = [O] + 2.77 [N] + 0.1 {[Fe] + [Cr] + [Ni]},
where [O] is the oxygen content, wt.%;
[N] - nitrogen content, wt.%;
[Fe] - iron content, wt.%,
while the titanium alloy has a tensile strength of at least 700 MPa and an elongation ratio of at least 15%, including the manufacture of titanium sponge by using a reactor containing at least one element selected from the group including Fe, Cr and Ni, in step fabricating titanium sponge in such a way that titanium sponge contains at least one element that has been transferred and captured, and the supply of titanium sponge as at least part of the raw material load containing at least one element, The selected from the group consisting of Fe, Cr and Ni, as the reinforcing member during manufacture of the titanium alloy by melting.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9730195 | 1995-04-21 | ||
JP7-97301 | 1995-04-21 | ||
JP7-97302 | 1995-04-21 | ||
JP9730295 | 1995-04-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2117065C1 RU2117065C1 (en) | 1998-08-10 |
RU97100791A true RU97100791A (en) | 1999-02-10 |
Family
ID=26438486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU97100791A RU2117065C1 (en) | 1995-04-21 | 1996-04-19 | Highly strong and highly plastic titanium alloy and method of manufacturing thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US6063211A (en) |
EP (1) | EP0767245B1 (en) |
JP (1) | JP3426605B2 (en) |
DE (1) | DE69610544T2 (en) |
RU (1) | RU2117065C1 (en) |
WO (1) | WO1996033292A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3742558B2 (en) * | 2000-12-19 | 2006-02-08 | 新日本製鐵株式会社 | Unidirectionally rolled titanium plate with high ductility and small in-plane material anisotropy and method for producing the same |
CA2729418C (en) * | 2002-08-20 | 2014-08-19 | Daido Tokushuko Kabushiki Kaisha | Polymer electrolyte fuel cell material and method of manufacturing the same, metal component for fuel cell, and fuel cell |
JP2004269982A (en) * | 2003-03-10 | 2004-09-30 | Daido Steel Co Ltd | High-strength low-alloyed titanium alloy and its production method |
JP4116983B2 (en) * | 2004-03-31 | 2008-07-09 | 本田技研工業株式会社 | Titanium valve spring retainer |
JP2006274392A (en) * | 2005-03-30 | 2006-10-12 | Honda Motor Co Ltd | BOLT MADE OF TITANIUM ALLOY AND METHOD FOR PRODUCING BOLT MADE OF TITANIUM ALLOY HAVING TENSILE STRENGTH OF AT LEAST 800 MPa |
JP5010309B2 (en) * | 2007-02-26 | 2012-08-29 | 新日本製鐵株式会社 | High strength titanium alloy material for cold forging |
JP5088876B2 (en) * | 2008-01-29 | 2012-12-05 | 株式会社神戸製鋼所 | Titanium alloy plate with high strength and excellent formability and manufacturing method thereof |
JP4666271B2 (en) * | 2009-02-13 | 2011-04-06 | 住友金属工業株式会社 | Titanium plate |
JP5808894B2 (en) * | 2010-08-20 | 2015-11-10 | 日本発條株式会社 | High strength titanium alloy member and manufacturing method thereof |
CN103392019B (en) | 2011-02-24 | 2015-07-08 | 新日铁住金株式会社 | Alfa and Beta type titanium alloy sheet with excellent cold rolling properties and cold handling properties, and production method therefor |
JP5758204B2 (en) * | 2011-06-07 | 2015-08-05 | 日本発條株式会社 | Titanium alloy member and manufacturing method thereof |
JP5871490B2 (en) | 2011-06-09 | 2016-03-01 | 日本発條株式会社 | Titanium alloy member and manufacturing method thereof |
CN106133159B (en) | 2014-04-10 | 2018-01-19 | 新日铁住金株式会社 | Alpha and beta type titan alloy cold rolled annealed plate and its manufacture method with high intensity and high Young's modulus |
CN106133160B (en) * | 2014-04-10 | 2018-02-16 | 新日铁住金株式会社 | The alpha and beta type titan alloy welded pipe of the intensity, excellent rigidity in length of tube direction and its manufacture method |
RU2583556C2 (en) * | 2014-09-16 | 2016-05-10 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Sparingly alloyed titanium alloy |
JP6536317B2 (en) * | 2015-09-17 | 2019-07-03 | 日本製鉄株式会社 | α + β-type titanium alloy sheet and method of manufacturing the same |
JP6927418B2 (en) * | 2018-04-10 | 2021-08-25 | 日本製鉄株式会社 | Titanium alloy and its manufacturing method |
KR102434519B1 (en) * | 2021-12-29 | 2022-08-22 | 한국재료연구원 | Method of manufacturing high strength titanium alloy using ferrochrome and high strength titanium alloy |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2640773A (en) * | 1952-01-25 | 1953-06-02 | Allegheny Ludlum Steel | Titanium base alloys |
US3258335A (en) * | 1963-11-12 | 1966-06-28 | Titanium Metals Corp | Titanium alloy |
JPS52115713A (en) * | 1976-03-25 | 1977-09-28 | Sumitomo Metal Ind Ltd | High tensile titanium having excellent hydrogen brittleness resistance |
JPS5534856A (en) * | 1978-09-04 | 1980-03-11 | Hitachi Ltd | Voltage controlling method of inverter |
JPH01252747A (en) * | 1987-12-23 | 1989-10-09 | Nippon Steel Corp | High strength titanium material having excellent ductility and its manufacture |
US5188677A (en) * | 1989-06-16 | 1993-02-23 | Nkk Corporation | Method of manufacturing a magnetic disk substrate |
JPH04272146A (en) * | 1991-02-25 | 1992-09-28 | Sumitomo Metal Ind Ltd | Production of titanium and titanium alloy product |
US5219521A (en) * | 1991-07-29 | 1993-06-15 | Titanium Metals Corporation | Alpha-beta titanium-base alloy and method for processing thereof |
JPH07268516A (en) * | 1994-03-31 | 1995-10-17 | Nippon Steel Corp | Low-strength titanim alloy rod suitable for intake engine valve |
-
1996
- 1996-04-19 JP JP53162796A patent/JP3426605B2/en not_active Expired - Lifetime
- 1996-04-19 DE DE69610544T patent/DE69610544T2/en not_active Expired - Lifetime
- 1996-04-19 EP EP96910213A patent/EP0767245B1/en not_active Expired - Lifetime
- 1996-04-19 WO PCT/JP1996/001078 patent/WO1996033292A1/en active IP Right Grant
- 1996-04-19 RU RU97100791A patent/RU2117065C1/en active
- 1996-04-19 US US08/750,627 patent/US6063211A/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU97100791A (en) | HIGH-STRENGTH, HIGH-PLASTIC TITANIUM ALLOY AND METHOD OF ITS MANUFACTURE | |
EP1114876B1 (en) | Titanium alloy and method for producing the same | |
DE2827440C2 (en) | Method for producing a prosthetic hip attachment | |
EP1728877A4 (en) | Process for producing low-alloy steel excelling in corrosion resistance | |
CA2234752A1 (en) | Titanium-aluminum-vanadium alloys and products made therefrom | |
AU615366B2 (en) | Process for the production by `spray deposition' of alloys of A1 of the series 7000 and composite materials with discontinuous reinforcements having a matrix formed by said alloys with a high level of mechanical strength and good ductility | |
EP0309587A4 (en) | Abrasion-resistant composite roll and process for its production. | |
GB2311997A (en) | Oxide-dispersed powder metallurgically produced alloys. | |
JPS5950146A (en) | Cobalt chromium dental alloy | |
DE59007249D1 (en) | Process for the production of connecting elements from a fully austenitic Cr-Mn steel. | |
WO2005098070A3 (en) | Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts | |
JPH06306403A (en) | High-strength and high-toughness cr alloy steel powder sintered compact and its production | |
KR940021174A (en) | Stainless steel and carbon steel composite materials and manufacturing method | |
DE3411011C2 (en) | Process for producing a titanium-containing hydrogen storage alloy | |
US5885377A (en) | Equestrian bit composition | |
JPH06336658A (en) | High strength and high toughness ni-co steel | |
JP2592123B2 (en) | Welding material | |
JPH0339430A (en) | High strength titanium alloy | |
JPH08311625A (en) | Working method of aluminium-magnesium alloy excellent in formability | |
JPS64245A (en) | Spheroidal graphite cast iron | |
JPS57164950A (en) | High toughness ni alloy for build-up welding | |
GB2297095A (en) | Alloy | |
JPS57120646A (en) | Nickel superalloy | |
RU1770441C (en) | Cast steel | |
Takuji et al. | High Strength Titanium Material Having Improved Ductility and Method for Producing Same |