RU2776286C1 - Способ получения волокон смешанного шпинельно-гранатового состава - Google Patents

Способ получения волокон смешанного шпинельно-гранатового состава Download PDF

Info

Publication number
RU2776286C1
RU2776286C1 RU2021111617A RU2021111617A RU2776286C1 RU 2776286 C1 RU2776286 C1 RU 2776286C1 RU 2021111617 A RU2021111617 A RU 2021111617A RU 2021111617 A RU2021111617 A RU 2021111617A RU 2776286 C1 RU2776286 C1 RU 2776286C1
Authority
RU
Russia
Prior art keywords
fibres
mgal
mixed oxide
oxide composition
fibers
Prior art date
Application number
RU2021111617A
Other languages
English (en)
Inventor
Галина Игоревна Щербакова
Наталья Борисовна Кутинова
Артем Андреевич Воробьев
Олег Николаевич Абрамов
Наталья Сергеевна Кривцова
Анастасия Сергеевна Похоренко
Максим Сергеевич Варфоломеев
Татьяна Леонидовна Апухтина
Дмитрий Владимирович Жигалов
Павел Аркадьевич Стороженко
Original Assignee
Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС")
Filing date
Publication date
Application filed by Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") filed Critical Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС")
Application granted granted Critical
Publication of RU2776286C1 publication Critical patent/RU2776286C1/ru

Links

Images

Abstract

Изобретение относится к способам получения волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 для создания высокотемпературных керамокомпозитов с улучшенными механическими свойствами. Способ заключается в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al/Y 5,8-6,0 и Al/Mg 2,4-2,5 с дальнейшей ступенчатой термообработкой в атмосфере воздуха при 500 и 1500°С, при которой образуются керамические волокна смешанного оксидного состава: MgAl2O4 и Y3Al5O12. 1 пр., 7 ил.

Description

Изобретение относится к керамическим волокнам смешанного оксидного состава: алюмомагниевой шпинели (MgAl2O4) и алюмоиттриевого граната (Y3Al5O12) на основе волокнообразующих органомагний-оксаниттрийоксаналюмоксановых олигомеров.
Керамические волокна смешанного оксидного состава, например, α-Al2O3 и t-ZrO2, YAG-ZrO2, α-Al2O3 и MgO (Akram M.Y., Ferraris М, Casalegno V., Salvo M., Puchas G., Knohl S., Krenkel W. Joining and testing of alumina fibre reinforced YAG-ZrO2 matrix composites. J. Europ.Ceram. Soc, 2018. Vol. 38(4), 1802-1811. Chandradass J., Balasubramanian M. Effect of magnesium oxide on sol-gel spun alumina and alumina-zirconia fibres. J. Europ.Ceram. Soc, 2006. Vol. 26(13), 2611-2617) широко востребованы для создания высокотемпературных керамокомпозитов с улучшенными механическими свойствами, которые необходимы для изготовления деталей авиационных и наземных газотурбинных двигателей, гиперзвуковых и летательных аппаратов, а также систем тепловой защиты космических аппаратов и гиперзвуковых транспортных средств (Armani C.J., Ruggles-Wrenn М.В., Fair G.E., Hay R.S., Creep of Nextel™ 610 fiber at 1100°C in air and in steam, Int. J. Appl. Ceram. Technol. 2012. Vol. 10(2), 276-284).
Оксиды структуры шпинели и граната обладают не только высокой температурой плавления (2135 и 1940°С соответственно), но и сложной кристаллической структурой, препятствующей движению и распространению трещин.
Описан способ получения оксидных волокон смешанного шпинельно-гранатового состава: (MAS/YAG). Порошок оксида иттрия, порошок алюминия и хлорида алюминия растворяли в уксусной кислоте, смесь нагревали при перемешивании, используя магнитную мешалку, и кипятили с обратным холодильником при 80°С. Мольное соотношение AlCl3 ⋅ 6H2O и Al составляло 3: 1, мольное отношение Al/Y = 5:3, а мольное соотношение уксусной кислоты и Y составляло 1,5:1, мольное соотношение H2O и Al составляло 20:1. В качестве прядильной добавки (28% масс. от массы сырья) использовался поливинилпирролидон (ПВП). Согласно расчетной массе YAG, в раствор было добавлено 5% масс. MgO. Затем смешанный раствор концентрировали с получением прядильного золя на водяной бане (60°С). Волокна геля были приготовлены путем погружения тонкого стеклянного стержня в прядильный золь и его медленного вытягивания (вручную) при комнатной температуре, максимальная длина гелевого волокна составляла около 80 см. Затем гелевые волокна сушили при температуре 60°С в течение 24 ч. Высушенные волокна спекали со скоростью нагрева 2°С /мин. до 1400-1600°С. После нагрева при 1400°С в течение 2 ч получали композитные волокна MAS/YAG. (Ma X, Lv Z, Tan Н, Nan J, Wang С, Preparation and grain-growth of magnesia-alumina spinel/yttrium aluminum garnet composite fibers, J.
Figure 00000001
, 2018. Vol. 62(3), 279-284,).
Способы получения волокон смешанного оксидного состава: алюмо-магниевой шпинели (MgAl2O4) и алюмоиттриевого граната (Y3Al5O12) из расплава предкерамического полимера из патентной литературы не известны.
Наиболее близким к предлагаемому и принятый нами в качестве прототипа является способ получения модифицированных волокон оксида алюминия, заключающийся в расплавном формовании полимерных волокон при 60-160°С из волокнообразующих органоиттрийоксаналюмоксанов с мольным отношением Al:Y=100-200 или органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al:Y=160-200 и Al:Mg=160-200 с дальнейшей ступенчатой термообработкой до 1200-1300°С, приводящей к образованию керамических алюмооксидных волокон, модифицированных высокотемпературными соединениями иттрия или иттрия и магния, причем нагрев проводят по следующему режиму: от комнатной температуры до 500°С со скоростью 1°С/мин, от 500°С до 1300°С со скоростью 10°С/мин и последующей выдержкой в течение 10 мин, при этом термообработку осуществляют в атмосфере воздуха. (РФ №2716621, МПК: С04В 35/111, С04В 35/634, D01F 1/07, 2020 г.).
Задачей предлагаемого изобретения является получение керамических волокон смешанного оксидного состава: алюмомагниевой шпинели (MgAl2O4) и алюмоиттриевого граната (Y3Al5Oi2), формованием из расплава волокнообразующего полимера, с последующим пиролизом полимерных волокон до керамических волокон.
Для решения поставленной задачи предложен способ получения керамических волокон смешанного оксидного состава: алюмомагниевой шпинели и алюмоиттриевого граната (MgAl2O4/Y3Al5O12), заключающийся в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al/Y=5,8-6,0 и Al/Mg=2,4-2,5 с дальнейшей ступенчатой термообработкой в атмосфере воздуха при 50 и 1500°С.
Получение волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 осуществляют следующим образом: волокнообразующие органомагнийоксаниттрийоксаналюмоксаны, полученные согласно изобретению, описанному в патенте РФ №2644950 (МПК: С04В 35/443, C07F19/00, C08G79/14, 2018 г.) формуют на машине расплавного формования при температурах 110-180°С и наматывают на приемную шпулю с выбранной скоростью, выбранную в диапазоне 150-300 об/мин, в зависимости от получения желаемого диаметра волокна. Далее полимерные волокна снимают с приемной шпули, перекладывают на корундовые маты и подвергают их ступенчатой термообработке сначала с медленным нагревом (0,4-2°С/мин) до 500°С для удаления органической составляющей волокна, затем нагревают со скоростью 5-20°С/мин до 1300-1500°С с выдержкой до 30 мин. В результате получают высокотемпературные керамические волокна смешанного оксидного состава MgAl2O4/Y3Al5O12, диаметром 10-150 мкм.
Сущность изобретения иллюстрируется следующим примером.
Пример 1.
В предварительно нагретый до 110°С экструдер формовочной машины загружают 200 г волокнообразующего органомагнийоксаниттрийоксаналюмоксана с мольным отношением A1:Y≈6,0 и Al:Mg≈2,5. Задают скорость вращения приемной шпули 250 об/мин для вытягивания и намотки полимерного волокна. Затем намотанное полимерное волокно (Фиг. 1) снимают с приемной шпули, укладывают на корундовый мат и помещают в печь для дальнейшей термообработки (Фиг. 2). Нагрев проводят в атмосфере воздуха по следующему режиму: от комнатной температуры до 500°С со скоростью 1°С/мин. - отверждение волокна (Фиг. 3), от 500°С до 1300 и далее до 1500°С со скоростью 10°С/мин с выдержкой в течение 10 мин. Термообработка осуществляется в атмосфере воздуха. В результате получают керамические волокна смешанного оксидного состава MgAl2O4/Y3Al5O12 (Фиг. 4).
Элементный и фазовый составы керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 доказаны с помощью СЭМ и РФА.
Изучение морфологии поверхности полимерных и керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 и их элементного состава осуществлялось с использованием сканирующего электронного микроскопа (СЭМ) совмещенного с энергодисперсионным анализатором (ЭДС). Результаты представлены на фиг. 5, 6.
Методом РФА определен фазовый состав керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 при 1300 и 1500°С (Фиг. 7а и 7б).
По данным РФА фазовый состав керамических волокон на основе органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al:Y≈6,0 и Al:Mg≈2,5 после пиролиза при 1300°С: MgAl2O4 - 79%масс., A12Y4O9 - 17%масс, Al5Y3Oi2 - 4%масс., следы A13Y5, а при 1500°С: MgAl2O4 - 77% масс. и Y3Al5Oi2 - 23% масс.(Фиг. 7а и 7б).

Claims (1)

  1. Способ получения керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12, заключающийся в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al/Y 5,8-6,0 и Al/Mg 2,4-2,5 с дальнейшей ступенчатой термообработкой в атмосфере воздуха при 500 и 1500°С, приводящей к образованию керамических волокон смешанного оксидного состава: MgAl2O4 и Y3Al5O12.
RU2021111617A 2021-04-23 Способ получения волокон смешанного шпинельно-гранатового состава RU2776286C1 (ru)

Publications (1)

Publication Number Publication Date
RU2776286C1 true RU2776286C1 (ru) 2022-07-18

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1011602A1 (ru) * 1981-03-13 1983-04-15 Усть-Каменогорский Строительно-Дорожный Институт Способ подготовки шихты
US5378665A (en) * 1992-10-30 1995-01-03 General Atomics Crystalline yttrium aluminate and process for making
RU2584187C1 (ru) * 2015-01-19 2016-05-20 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук (ИХВВ РАН) Способ получения прозрачной керамики алюмоиттриевого граната
RU2644950C1 (ru) * 2017-02-09 2018-02-15 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения органомагнийоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе
RU2716621C1 (ru) * 2018-10-22 2020-03-13 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения модифицированных волокон оксида алюминия
RU2730229C1 (ru) * 2019-07-17 2020-08-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Шихта на основе оксида алюминия и способ получения прочной керамики

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1011602A1 (ru) * 1981-03-13 1983-04-15 Усть-Каменогорский Строительно-Дорожный Институт Способ подготовки шихты
US5378665A (en) * 1992-10-30 1995-01-03 General Atomics Crystalline yttrium aluminate and process for making
RU2584187C1 (ru) * 2015-01-19 2016-05-20 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук (ИХВВ РАН) Способ получения прозрачной керамики алюмоиттриевого граната
RU2644950C1 (ru) * 2017-02-09 2018-02-15 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения органомагнийоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе
RU2716621C1 (ru) * 2018-10-22 2020-03-13 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения модифицированных волокон оксида алюминия
RU2730229C1 (ru) * 2019-07-17 2020-08-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Шихта на основе оксида алюминия и способ получения прочной керамики

Similar Documents

Publication Publication Date Title
US4772524A (en) Fibrous monolithic ceramic and method for production
US4460639A (en) Fiber reinforced glass matrix composites
Cooke Inorganic fibers—a literature review
DE69728060T2 (de) Mit siliciumcarbid verstärktes siliciumcarbid-verbundwerkstoff
EP0126017A1 (en) High strength, thermally stable magnesium aluminosilicate glass-ceramic matrix-silicon carbide fibre composites
King et al. Polycrystalline yttrium aluminum garnet fibers from colloidal sols
JP2017031396A (ja) Cmc材料における繊維間隔の改善された均一性
US20220185742A1 (en) Coating layer-attached continuous ceramic fiber and method for producing same, and ceramic matrix composite material and method for producing same
JP4507138B2 (ja) セラミック系マトリックス複合材料の誘電特性の変更方法
EP3124459A2 (en) Improved uniformity of fiber spacing in cmc materials
CN104131363B (zh) 一种多孔莫来石纤维制品
RU2776286C1 (ru) Способ получения волокон смешанного шпинельно-гранатового состава
Lu et al. Fabricating hollow turbine blades using short carbon fiber-reinforced SiC composite
Parthasarathy et al. Evaluation of porous ZrO2‐SiO2 and monazite coatings using NextelTM 720‐Fiber‐Reinforced blackglas™ minicomposites
Sacks et al. Characterization of Polymer‐Derived Silicon Carbide Fibers with Low Oxygen Content. Near‐Stoichiometric Composition. and Improved Thermomechanical Stability
Callender et al. Novel route to alumina and aluminate interlayer coatings for SiC, carbon, and Kevlart® fiber-reinforced ceramic matrix composites using carboxylate–alumoxane nanoparticles
Joo et al. Facile synthesis and morphological study of Si–Zr–C–O fiber felts with high-thermal resistance
JPH0967165A (ja) 炭化けい素セラミックスおよびその製造方法
Vijay et al. Effect of boron inclusion in SiOC polymer derived matrix on the mechanical and oxidation resistance properties of fiber reinforced composites
Cinibulk et al. Constituent Development for Higher-Temperature Capable Ceramic Matrix Composites
RU2716621C1 (ru) Способ получения модифицированных волокон оксида алюминия
CN109370148A (zh) 一种适用于rfi成型工艺的高致密高温可瓷化酚醛树脂渗透膜及其制备方法
US5281559A (en) Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite
JP3141512B2 (ja) 炭化ケイ素系無機繊維強化セラミックス複合材料
RU2767236C1 (ru) Способ получения гранатовых волокон, модифицированных хромом