RU2760249C1 - Установка для нетермической деаэрации воды - Google Patents
Установка для нетермической деаэрации воды Download PDFInfo
- Publication number
- RU2760249C1 RU2760249C1 RU2021103612A RU2021103612A RU2760249C1 RU 2760249 C1 RU2760249 C1 RU 2760249C1 RU 2021103612 A RU2021103612 A RU 2021103612A RU 2021103612 A RU2021103612 A RU 2021103612A RU 2760249 C1 RU2760249 C1 RU 2760249C1
- Authority
- RU
- Russia
- Prior art keywords
- water
- pipeline
- filter
- supplying
- regeneration
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Water Treatments (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Изобретение относится к теплоэнергетике в области защиты теплообменного оборудования, котлов, трубопроводов и других металлических элементов на электростанциях, в котельных, на промышленных предприятиях при производстве пара, получении горячей воды для водопроводных сетей, получении обессоленной и умягченной воды для подпитки паровых котлов. Установка для нетермической деаэрации воды включает средства для фильтрации обрабатываемой воды, содержащей растворенный кислород, через фильтрующий материал с последующей регенерацией. Средства для фильтрации обрабатываемой воды через фильтрующий материал выполнены в виде двух последовательно соединенных адсорбционных фильтров: фильтра-преаэратора и фильтра-деаэратора, заполненных фильтрующим материалом с высокоразвитой разветвленной открытой пористой структурой. Установка содержит узел приготовления и подачи регенерационного раствора, включающий расходный бак и насос-дозатор для подачи реагента на фильтр, трубопровод подачи водопроводной воды на фильтры и в расходный бак, трубопровод подачи натрий-катионированной воды для регенерации фильтров, трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации и трубопровод для подачи деаэрированной воды потребителям. Технический результат: глубокое обескислороживание питательной воды и снижение остаточной концентрации кислорода до нормативных величин, при этом не требуется дополнительный нагрев воды, постоянное использование электроэнергии для бесперебойной работы вакуумных насосов, отсутствует необходимость в постоянном использовании дорогостоящего расходного материала. 1 з.п. ф-лы, 1 ил.
Description
Изобретение относится к теплоэнергетике в области защиты теплообменного оборудования, котлов, трубопроводов и других металлических элементов на электростанциях, в котельных, на промышленных предприятиях при производстве пара, получении горячей воды для водопроводных сетей, получении обессоленной и умягченной воды для подпитки паровых котлов.
Решаемая изобретением техническая задача заключается необходимости проведения обязательной химводоподготовки воды для приведения ее качества в соответствие с требованиями потребителя путем коррекции ее химических свойств, что позволяет остановить коррозию и образование накипи в котле и трубопроводе всей отопительной системы и продлить срок эксплуатации дорогостоящего оборудования. Химводоподготовка воды в основном сводится к умягчению воды, что предотвращает накипи, а также к деаэрации питательной воды в котельной, которая представляет собой этот технологический процесс водоподготовки для котельных, в результате которого происходит удаление агрессивных газов (кислорода и свободного углекислого газа) из воды, а также хлора, который попадает в теплосеть вместе с водопроводной водой.
Большинство способов обескислороживания воды основаны на термический и вакуумной деаэрации, которая существенно повышает энергозатраты при подготовке воды и требует применения габаритного оборудования.
Атмосферный деаэратор имеет основной недостаток - необходимость нагрева воды до 102-104°С, что невозможно без наличия парового котла, дополнительные потери при энтальпии и выпаривании в результате технологического процесса, как следствие - перерасход газа.
Вакуумный деаэратор в котельной имеет ряд недостатков:
- резкое снижение качества деаэрации при нагрузках деаэратора выше 50%;
- снижение качества деаэрированной воды при переменных нагрузках;
- потери пара на обеспечение вакуума паровыми эжекторами;
- дополнительные расходы электроэнергии на создание вакуума в деаэраторе;
- высокие затраты труда на обслуживание и ремонт деаэраторов.
Реагентная обработка воды (сульфатирование) также имеет недостатки:
- необходимость постоянно покупать реагенты;
- раствор интенсивно поглощает кислород как в воде, так и из окружающего воздуха и через трое суток его нужно менять на новый (что никогда не происходит на практике и в сеть дозируют уже неработающий раствор сульфита натрия);
- скорость вступления в реакцию сульфита натрия с кислородом очень длительна по времени (до 7 минут) и неподготовленная вода полностью проходит через котел, нанося вред, и уже после прохождения вступает в полную реакцию непосредственно в тепловой сети;
- за счет дозированного добавления реагента в воду возрастает минерализация воды, что приводит к электрохимической и биохимической коррозии всей системы отопления.
Для оценки новизны заявленного решения рассмотрим ряд известных технических средств аналогичного назначения, характеризуемых совокупностью сходных с заявленным устройством признаков.
Известен способ получения фильтрующего материала и деаэрации воды по патенту Украины №99903, основанный на фильтровании воды через смесь катионита и анионита, обработанную соединениями железа, щелочью, сульфитом и тиосульфатом натрия.
Недостатком данного способа является использование растворов сульфата железа концентрацией 5-10%, тиосульфата натрия, сульфита натрия и щелочи при обработке смеси катионита и анионита, что приводит к образованию больших объемов жидких отходов, которые сложно утилизировать. Кроме того, вследствие заполнения пор ионообменного материала гидроксидом железа (III) в процессе его использования при обескислороживании воды и повторных регенерациях резко снижается поглотительная способность ионита по кислороду при возрастании количества фильтроциклов. При 3-х-4-x фильтроциклах емкость фильтрующего материала по кислороду снижается в 3-5 раз.
Известна загрузка для биофильтров по патенту РФ №2021214, содержащая плоский пористый элемент, установленный в жесткой рамке, отличающаяся тем, что плоский элемент выполнен из материала редоксид с высокоразвитой разветвленной открытой пористой структурой в форме многоугольных пластин или дисков с отношением площади поверхности Sпов.п пор в плоском элементе к общей площади поверхности плоского элемента Sпов.п.э (2-3)⋅103, при этом отношение толщины δ плоского элемента к его большему характерному размеру а равно 0,05-0,15, рамка выполнена из соединенных между собой корпуса и крышки с окнами на всех их гранях, а плоский пористый элемент установлен в рамке с возможностью поджатая его к опорным площадкам корпуса и крышки.
Известен способ удаления из воды кислорода по патенту РФ №2217382, заключающийся в фильтрации воды, содержащей растворенный кислород, через ионит с последующей регенерацией, характеризующийся тем, что фильтрацию осуществляют через высокоосновный анионит AM гелевой структуры в SO3-форме, а регенерацию отработанного анионита производят раствором сульфита натрия с концентрацией не выше 8%. Время контакта исходной воды с ионитом составляет не менее 7,5 мин.
Данное техническое решение, как наиболее близкое к заявленному по техническому существу и достигаемому результату, принято в качестве его прототипа.
К недостаткам данного метода следует отнести использование концентрированных растворов сульфита натрия при регенерации ионита, что приводит к образованию значительных объемов жидких отходов и значительных потерь сульфита натрия, который при регенерации используется в значительных излишках от стехиометрического количества. Такие растворы загрязнены десорбованными хлоридами или сульфатами, поэтому непригодные для повторного использования.
В основу изобретения поставлена задача повышения эффективности удаления кислорода из воды при фильтровании через анионит в сульфитной форме при снижении потерь сульфита в процессах регенерации анионита, повышение эффективности его использования и минимизации объемов жидких отходов в процессах получения и регенерации фильтрующего материала.
Сущность заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для решения указанной заявителем технической проблемы и получения обеспечиваемого изобретением технического результата.
Установка для осуществления вышеописанного способа нетермической деаэрации воды, включающая средства для фильтрации обрабатываемой воды, содержащей растворенный кислород, через фильтрующий материал с последующей регенерацией, характеризуется тем, что средства для фильтрации обрабатываемой воды через фильтрующий материал выполнены в виде двух последовательно соединенных адсорбционных фильтров - фильтр-преаэратор и фильтр-деаэратор, заполненных фильтрующим материалом с высокоразвитой разветвленной открытой пористой структурой, кроме того установка содержит узел приготовления и подачи регенерационного раствора, включающий расходный бак и насос-дозатор для подачи реагента на фильтр, трубопровод подачи водопроводной воды на фильтры и в расходный бак, трубопровод подачи натрий-катионированной воды для регенерации фильтров, трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации и трубопровод для подачи деаэрированной воды потребителям.
Кроме того, заявленное техническое решение характеризуется наличием ряда дополнительных факультативных признаков, а именно:
- установка снабжена совокупностью пробоотборных средств и манометров для контроля за работой оборудования.
Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что при использовании заявленной установки достигается глубокое обескислороживание питательной воды и остаточная концентрация кислорода снижается до нормативных величин. При применении данного оборудования очевиден ряд преимуществ, по сравнению с аналогами:
- нет необходимости в дополнительном нагреве воды, по сравнению с атмосферными или вакуумными деаэраторами, что экономит количество потребления газа на 10% и позволяет до 4 раз снизить затраты на деаэрацию подпиточной воды;
- нет необходимости в постоянном использовании электроэнергии для бесперебойной работы вакуумных насосов, по сравнению с вакуумными деаэраторами, что экономит количество потребляемой электроэнергии на 98%;
- отсутствует необходимость в постоянном использовании дорогостоящего расходного материала по сравнению с химическими деаэраторами, что значительно снижает эксплуатационные затраты;
- загрузочный материал в фильтрах - редоксид, требует замены 1 раз в 10 лет, и не является расходным материалом;
- расходный материал для технологического процесса регенерации, является доступным и выпускается на территории РФ;
- применяемые в технологическом процессе реагенты полностью безвредны для человека, при условии соблюдения элементарных мер предосторожности (ГОСТ 6981-94, 55064-2012, 12.1.005-88);
- использование данного оборудования не требует никаких дополнительных мер по очистке стоков. Образующиеся в результате применения оборудования стоки являются нейтральными и соответствуют требованиям санитарно-эпидемиологической службы (ГОСТ 12.4.016 и 12.1.007). Использование данного оборудования не требует установки дополнительной системы вентиляции в связи с отсутствием выделения вредных испарений в процессе эксплуатации оборудования.
Сущность заявляемого технического решения поясняется чертежом, на котором представлена технологическая схема заявленной установки.
На блок-схеме позициями обозначены: 1 - фильтр-преаэратор, 2 - фильтр-деаэратор,, 3 - расходный бак, 4 - насос-дозатор, 5 - смеситель, 6 - трубопровод подачи водопроводной воды на фильтры, 7 - трубопровод подачи натрий-катионированной воды для регенерации фильтров, 8 - трубопровод подачи водопроводной воды в расходный бак, 9 - трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации, 10 - трубопровод сброса разведенного отработанного регенерационного раствор в канализацию, 11 - трубопровод для подачи деаэрированной воды потребителям.
Заявленная установка работает следующим образом.
Водопроводную воду в по трубопроводу 8 в расчетном количестве подают в расходный бак 3. В этот же бак засыпают расчетное количество пиросульфита (метабисульфита) натрия. С помощью насоса-дозатора 4 воду в расходном баке 3 рециркулируют до полного растворения метабисульфита натрия. Метабисульфит натрия поступает в цех в мешках весом 25,5 кг. Реагент первого сорта содержит основного компонента 95,0%, второго сорта - 92,5%.
Перед подачей раствора метабисульфита в фильтрах 1 и 2 проводят вспушивание редоксида. Вспушивание проводят при интенсивной подаче воды снизу-вверх по трубопроводу 6. Интенсивность подачи воды qпр.=3-4 дм3/м2с. Время вспушивания 5-7 мин. Раствор метабисульфита натрия подают по трубопроводу 7 и фильтруют последовательно через фильтры 1 и 2 со скоростью 1,5 м/час. Подача раствора из расходного бака 3 в фильтры 1 и 2 осуществляют с помощью насоса-дозатора 4. Отработанный регенерационный раствор по трубопроводу 9 подают в смеситель 5, где его смешивают с водопроводной водой, разводят до уровня минерализации <1000 мг/дм3 и по трубопроводу 10 сбрасывают в канализацию. Трубопровод 11 обеспечивает подачу обработанной деаэрированной воды потребителям. Система трубопроводов и арматуры заявленной установки позволяет осуществить распределение потоков исходной и обработанной воды, регенерационных и промывных растворов в необходимых направлениях при работе установки.
Заявленная установка для удаления кислорода из воды основана на использовании фильтрующих материалов с высокоразвитой разветвленной открытой пористой структурой, например, редоксида или сорбента «Оксисорб», которые эффективно поглощает кислород из воды при низких температурах (от 10 до 30°С) и имеет емкость по кислороду в 2-3 раза выше по сравнению с другими материалами.
Использование в установке предварительных узлов деаэрации при низких температурах позволяет повысить длительность фильтроцикла в 3-4 раза в сравнении с аналогами. Объем деаэрированной воды на загрузке объемом 1 м3 достигает 40-80 тыс. м3.
Оригинальность фильтрующей загрузки в преаэраторе состоит в том, что в процессе ее использования нет необходимости в регенерации используемых сорбентов.
Используемые сорбенты обеспечивают полное удаление кислорода из воды при низких температурах, эффективно связывает растворенный в воде кислород, углекислый газ, а разработанный новый способ его регенерации обеспечивает полное восстановление его емкости по кислороду.
Заявленная установка может быть реализована с использованием известного оборудования, технических и технологических средств и эффективно использована для удаления из воды растворенных газов, и, тем самым, предотвращения развития коррозионных процессов металлических конструкций энергетического оборудования и тепловых сетей теплотрасс (защита котлов и тепловых сетей от коррозии).
Claims (2)
1. Установка для нетермической деаэрации воды, включающая средства для фильтрации обрабатываемой воды, содержащей растворенный кислород, через фильтрующий материал с последующей регенерацией, отличающаяся тем, что средства для фильтрации обрабатываемой воды через фильтрующий материал выполнены в виде двух последовательно соединенных адсорбционных фильтров - фильтр-преаэратор и фильтр-деаэратор, заполненных фильтрующим материалом с высокоразвитой разветвленной открытой пористой структурой, кроме того установка содержит узел приготовления и подачи регенерационного раствора, включающий расходный бак и насос-дозатор для подачи реагента на фильтр, трубопровод подачи водопроводной воды на фильтры и в расходный бак, трубопровод подачи натрий-катионированной воды для регенерации фильтров, трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации и трубопровод для подачи деаэрированной воды потребителям.
2. Установка по п. 1, отличающаяся тем, что она снабжена совокупностью пробоотборных средств и манометров для контроля за работой оборудования.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021103612A RU2760249C1 (ru) | 2021-02-12 | 2021-02-12 | Установка для нетермической деаэрации воды |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021103612A RU2760249C1 (ru) | 2021-02-12 | 2021-02-12 | Установка для нетермической деаэрации воды |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2760249C1 true RU2760249C1 (ru) | 2021-11-23 |
Family
ID=78719295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2021103612A RU2760249C1 (ru) | 2021-02-12 | 2021-02-12 | Установка для нетермической деаэрации воды |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2760249C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU454180A1 (ru) * | 1973-01-02 | 1974-12-25 | Военная Инженерная Краснознаменная Академия Им.А.Ф.Можайского | Установка дл обработки воды |
RU2217382C1 (ru) * | 2002-06-17 | 2003-11-27 | Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" | Способ удаления из воды кислорода |
JP2010269287A (ja) * | 2009-05-25 | 2010-12-02 | Immatek Corp | 液体中の溶存酸素除去方法及び液体中の溶存酸素除去装置 |
CN104284864A (zh) * | 2012-05-17 | 2015-01-14 | 株式会社雷肯 | 脱氧装置 |
RU2655141C1 (ru) * | 2017-01-13 | 2018-05-23 | Олег Владимирович Кленин | Способ удаления кислорода из воды |
-
2021
- 2021-02-12 RU RU2021103612A patent/RU2760249C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU454180A1 (ru) * | 1973-01-02 | 1974-12-25 | Военная Инженерная Краснознаменная Академия Им.А.Ф.Можайского | Установка дл обработки воды |
RU2217382C1 (ru) * | 2002-06-17 | 2003-11-27 | Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" | Способ удаления из воды кислорода |
JP2010269287A (ja) * | 2009-05-25 | 2010-12-02 | Immatek Corp | 液体中の溶存酸素除去方法及び液体中の溶存酸素除去装置 |
CN104284864A (zh) * | 2012-05-17 | 2015-01-14 | 株式会社雷肯 | 脱氧装置 |
RU2655141C1 (ru) * | 2017-01-13 | 2018-05-23 | Олег Владимирович Кленин | Способ удаления кислорода из воды |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Onyango et al. | Fluoride removal from water using adsorption technique | |
JP5836392B2 (ja) | バイポーラ膜を用いた水処理 | |
CN111533230A (zh) | 一种矿井水除氟系统及方法 | |
KR101768882B1 (ko) | 공기 정화 장치 | |
JP5267380B2 (ja) | 給湯機 | |
RU2760249C1 (ru) | Установка для нетермической деаэрации воды | |
RU2762595C1 (ru) | Способ нетермической деаэрации воды | |
CN108751325A (zh) | 一种氨氮废水处理系统及氨氮废水处理方法 | |
KR20200109867A (ko) | 여과기용 활성탄의 재생시스템 | |
RU175364U1 (ru) | Установка очистки отработанных буровых растворов и буровых сточных вод электросорбционным способом | |
CN212864252U (zh) | 一种矿井水除氟系统 | |
RU2655141C1 (ru) | Способ удаления кислорода из воды | |
CN209468236U (zh) | 铅冶炼生产过程中的零排放水循环系统 | |
RU2217382C1 (ru) | Способ удаления из воды кислорода | |
JP6211779B2 (ja) | ホウ素含有排水の処理方法 | |
RU2598432C1 (ru) | Способ получения опресненной и обессоленной воды для ядерных энергетических установок из засоленных вод | |
CN209039110U (zh) | 一种利用废树脂去除高cod的工业废水处理装置 | |
RU2257265C1 (ru) | Способ регенерации слабокислотных карбоксильных катионитов | |
CN210656477U (zh) | 一种重金属废水处理装置 | |
CN205528108U (zh) | 一种小型工业锅炉给水装置 | |
RU2150587C1 (ru) | Способ получения и реализации пара на нефте-, или газо-, или нефтегазоперерабатывающем предприятии | |
CN215049260U (zh) | 一种软水处理系统 | |
RU2150433C1 (ru) | Способ химической очистки воды | |
Shuryberko et al. | Study of the sorption and desorption processes of sulfites on the anion-exchange redoxites | |
CN212894268U (zh) | 烧碱生产用循环水超低排放系统 |