RU2757855C1 - Инициирующая система для катионной полимеризации олефинов - Google Patents

Инициирующая система для катионной полимеризации олефинов Download PDF

Info

Publication number
RU2757855C1
RU2757855C1 RU2020123075A RU2020123075A RU2757855C1 RU 2757855 C1 RU2757855 C1 RU 2757855C1 RU 2020123075 A RU2020123075 A RU 2020123075A RU 2020123075 A RU2020123075 A RU 2020123075A RU 2757855 C1 RU2757855 C1 RU 2757855C1
Authority
RU
Russia
Prior art keywords
initiator
polymerization
ether
alkyl
compound
Prior art date
Application number
RU2020123075A
Other languages
English (en)
Inventor
Жиль АРСЕНО
Кейтера ХЕЙЗИН
Дерек ГЕЙТС
Original Assignee
Арланксео Кэнада Инк.
Дзе Юниверсити Оф Бритиш Коламбиа
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арланксео Кэнада Инк., Дзе Юниверсити Оф Бритиш Коламбиа filed Critical Арланксео Кэнада Инк.
Application granted granted Critical
Publication of RU2757855C1 publication Critical patent/RU2757855C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/005Compounds of elements of Group 5 of the Periodic Table without metal-carbon linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/235Metal derivatives of a hydroxy group bound to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/24Halogenated derivatives
    • C07C39/44Metal derivatives of an hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • C08F10/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • C08F116/16Monomers containing no hetero atoms other than the ether oxygen
    • C08F116/18Acyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/16Monomers containing no hetero atoms other than the ether oxygen
    • C08F16/18Acyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/20Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of antimony, bismuth, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/03Narrow molecular weight distribution, i.e. Mw/Mn < 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Abstract

Изобретение относится к инициирующей системе на основе кислоты Бренстеда-Лоури для катионной полимеризации этиленненасыщенного мономера, причем данная инициирующая система на основе кислоты Бренстеда-Лоури содержит инициатор, имеющий структуру формулы (I), в безводной среде для полимеризации, где: M представляет собой тантал (Ta), ванадий (V) или ниобий (Nb); R1, R2, R3 и R4 являются одинаковыми или различными и независимо представляют собой H, F, Cl, Br, I, C1-C4-алкил или фенил, при условии, что не все из R1, R2, R3 и R4 на одном бензольном кольце являются H; L представляет собой простой алкиловый эфир или простой циклоалкиловый эфир, который координируется с H+; и х равен 2. Изобретение также относится к способу получения полимера с помощью инициирующей системы, описанной выше, и к соединению формулы (I). Технический результат заключается в получении инициирующих систем для катионной полимеризации, которые смогут производить полимер с достаточно высокой молекулярной массой при более высоких температурах. 3 н. и 10 з.п. ф-лы, 7 табл., 1 ил., 36 пр.

Description

Область техники
Данная заявка относится к способу получения полимера из одного или нескольких этиленненасыщенных мономеров. Кроме того, заявка относится к инициирующей системе для данного способа и к соединениям в данной инициирующей системе.
Уровень техники
В данной области техники известны различные типы инициирующих систем для катионной полимеризации этиленненасыщенных мономеров, включая системы, основанные на протонных кислотах или кислотах Бренстеда-Лоури, кислотах Льюиса (например, катализаторы Фриделя-Крафтса), солях иона карбения и ионизирующем излучении. Обычные протонные кислоты включают фосфорную, серную, фторзамещенные и трифлатную кислоты, которые имеют тенденцию образовывать низкомолекулярные полимеры.
Кислоты Льюиса являются наиболее распространенными соединениями, используемыми для инициирования катионной полимеризации, и включают, например, SnCl4, AlCl3, BF3 и TiCl4. Хотя полимеризацию могут вызывать сами кислоты Льюиса, реакция происходит намного быстрее с коинициатором, который действует как подходящий источник катионов (например, водой, спиртами, HCl). Однако такие реакции катионной полимеризации обычно требуют очень низкой температуры (от приблизительно -100°C до приблизительно -90°C) для получения полимеров подходящей молекулярной массы. Кроме того, способы полимеризации, выполняемые при таких низких температурах, являются энергоемкими; следовательно, способ, с помощью которого можно было бы производить полимеры с такими же молекулярными массами при более высоких температурах, позволил бы значительно снизить потребление энергии и производственные затраты.
Недавно была разработана инициирующая система для катионной полимеризации на основе комплекса пятивалентного фосфора (V) с дигидроксисоединением (публикация патента США US 2012/0208971, опубликованная 16 августа 2012 г.). Однако эта инициирующая система производит при более высоких температурах низкомолекулярные продукты, требуя для получения полимеров с желаемой высокой молекулярной массой более низких температур. Например, полимеризация α-метилстирола при -50°C дает поли(α-метилстирол) с Mn меньше чем приблизительно 7000 г/моль. А для того, чтобы получить полистирол с Mn больше чем 100000 г/моль, полимеризация должна проводиться при температуре ниже -80°C. Кроме того, с фосфорным комплексом может быть трудно обращаться из-за недостаточной стабильности.
Сохраняется потребность в инициирующих системах для катионной полимеризации, которые смогут производить полимер с достаточно высокой молекулярной массой при более высоких температурах.
Сущность изобретения
Сильная кислота Бренстеда-Лоури на основе комплексов ионов тантала (V) или других ионов изоэлектронных металлов (например, ионов ванадия (V) или ниобия (Nb)) обеспечивает эффективную инициирующую систему для катионной полимеризации этиленненасыщенных мономеров при более высоких температурах. Полимеры с высокой молекулярной массой могут быть получены с использованием инициирующей системы настоящего изобретения при более высоких температурах.
В одном аспекте предлагается способ получения полимера, причем данный способ включает полимеризацию одного или нескольких этиленненасыщенных мономеров в безводных условиях в присутствии инициатора полимеризации, представляющего собой кислоту Бренстеда-Лоури, причем данный инициатор полимеризации, представляющий собой кислоту Бренстеда-Лоури, имеет структуру формулы (I):
Figure 00000001
(I)
где:
M представляет собой тантал (Ta), ванадий (V) или ниобий (Nb);
R1, R2, R3 и R4 являются одинаковыми или различными и независимо представляют собой H, F, Cl, Br, I, алкил или арил, или два или более из R1, R2, R3 и R4 на одном и том же бензольном кольце, взятые вместе, образуют бициклический, трициклический или тетрациклический фрагмент с бензольным кольцом, при условии, что не все из R1, R2, R3 и R4 на одном бензольном кольце являются H;
L отсутствует или представляет собой молекулу, которая координируется с H+; и
х равен 0, когда L отсутствует, или х равен 0,5 или более, когда L присутствует.
В другом аспекте предлагается инициирующая система на основе кислоты Бренстеда-Лоури для катионной полимеризации этиленненасыщенного мономера, причем данная инициирующая система на основе кислоты Бренстеда-Лоури содержит инициатор, имеющий структуру формулы (I), определенной выше, в безводной среде для полимеризации.
В другом аспекте предлагается соединение формулы (I), где M, R1, R2, R3, R4, L и x определены выше.
Дополнительные признаки будут описаны или станут очевидными при прочтении нижеследующего подробного описания. Следует понимать, что каждый признак, описанный в настоящем документе, может использоваться в любой комбинации с любыми одним или несколькими другими описанными признаками, и что каждый признак не обязательно зависит от наличия другого признака, за исключением случаев, когда это очевидно для специалиста в данной области техники.
Краткое описание чертежей
Для более ясного понимания предпочтительные варианты осуществления далее будут описаны подробно с помощью примера со ссылкой на прилагаемые чертежи, на которых:
фиг. 1 представляет собой 1H-ЯМР-спектр полиизобутилена (PIB), полученного с использованием с использованием инициатора (III).
Подробное описание
Сильная кислота Бренстеда-Лоури содержит комплекс органических лигандов с металлом, как описано выше для формулы (I).
M, предпочтительно, представляет собой тантал.
Когда два или более из R1, R2, R3 и R4 на одном бензольном кольце взятые вместе образуют бициклический, трициклический или тетрациклический фрагмент с бензольным кольцом, данный фрагмент, предпочтительно, представляет собой конденсированную кольцевую систему, например, нафтильный фрагмент или антрацильный фрагмент. R1, R2, R3 и R4, предпочтительно, независимо представляют собой H, F, Cl, Br, I, алкил или арил, при условии, что не все из R1, R2, R3 и R4 на одном бензольном кольце являются H. Более предпочтительно, R1, R2, R3 и R4 независимо представляют собой H, F, Cl или Br, при условии, что не все из R1, R2, R3 и R4 на одном бензольном кольце являются H. Когда R1, R2, R3 и R4 на одном бензольном кольце представляют собой одновременно водород и галоген (например, F, Cl, Br), бензольное кольцо может быть моно-, ди- или тригалогенированным, предпочтительно ди- или тригалогенированным. Предпочтительно, все R1, R2, R3 и R4 независимо представляют собой F, Cl или Br. Более предпочтительно, R1, R2, R3 и R4 независимо представляют собой F или Cl. Еще более предпочтительно, R1, R2, R3 и R4 являются одинаковыми и представляют собой F или Cl, что обеспечивает тетрафторированные или тетрахлорированные бензольные кольца.
Алкил, предпочтительно, представляет собой C1-6 алкил, более предпочтительно C1-4 алкил (например, метил, этил, н-пропил, и-пропил, н-бутил, в-бутил, т-бутил), еще более предпочтительно метил. Алкил может быть незамещенным или замещенным одним или несколькими заместителями. Заместителями могут быть, например, F, Cl, Br или арил. Арил, предпочтительно, представляет собой
C1-18 арил, более предпочтительно C1-10 арил, еще более предпочтительно C1-6 арил, например фенил. Арил может быть незамещенным или замещенным одним или несколькими заместителями. Заместителями могут быть, например, F, Cl, Br или алкил, причем алкил определен выше.
В одном варианте осуществления M представляет собой Ta; R1, R2, R3 и R4 представляют собой F или Cl; L представляет собой Et2O, и х равен 2. В другом варианте осуществления M представляет собой Ta; R1, R2, R3 и R4 представляют собой F или Cl; L представляет собой Et2O, и х равен 2.
Инициатор полимеризации, представляющий собой кислоту Бренстеда-Лоури, особенно полезен для инициирования полимеризации или сополимеризации этиленненасыщенных мономеров. Этиленненасыщенные мономеры представляют собой соединения, в которых содержится по меньшей мере одна олефиновая связь. Данные мономеры, предпочтительно, содержат от 2 до 20 атомов углерода. Некоторые примеры этиленненасыщенных мономеров включают алкилвиниловые соединения (например, алкилвиниловые эфиры и т.п.), арилвиниловые соединения (например, стирол, α-метилстирол, п-метилстирол, п-метоксистирол, 1-винилнафталин, 2-винилнафталин, 4-винилтолуол и т.п.), изобутилен и изопрен. Особо следует отметить н-бутилвиниловый эфир, стирол, α-метилстирол, изобутилен и изопрен.
Полимеры, образованные в результате полимеризации мономеров, могут представлять собой гомополимеры, сополимеры, терполимеры или другие формы полимеров. Полимеры могут быть линейными, разветвленными или звездообразно-разветвленными. Смеси двух или более мономеров могут быть полимеризованы в сополимеры или терполимеры. Некоторые примеры полимеров включают полистирол, поли(α-метилстирол), поли(N-винилкарбазол), политерпены, полиизопрены, полиизобутилены и т.п. Особо следует отметить сополимеры изобутилена и изопрена (например, бутилкаучук), полиизобутилен, полиизопрен, полистиролы (например, полистирол и поли(α-метилстирол) и поли(н-бутилвиниловый эфир).
Полимеры, получаемые в результате полимеризации этиленненасыщенных мономеров могут иметь среднечисленную молекулярную массу (Mn) по меньшей мере приблизительно 2000 г/моль, или по меньшей мере приблизительно 5000 г/моль, или по меньшей мере приблизительно 10000 г/моль, или по меньшей мере приблизительно 20000 г/моль, или по меньшей мере приблизительно 30000 г/моль, или по меньшей мере приблизительно 50000 г/моль, или по меньшей мере приблизительно 100000 г/моль, в зависимости от мономера или мономеров, подвергающихся полимеризации, относительного количества мономера и инициатора, температуры, при которой проводят полимеризацию, и других условий способа. Полимер может иметь среднечисленную молекулярную массу (Mn) вплоть до приблизительно 1000000 г/моль, или вплоть до приблизительно 500000 г/моль, или вплоть до приблизительно 250000 г/моль.
Инициатор представляет собой катионный инициатор, потому что инициатор представляет собой кислоту Бренстеда-Лоури, а значит он дополнительно содержит ион водорода (H+) в качестве противоиона для анионного металлического комплекса. Ион водорода может быть связан с металлическим комплексом как "голый" ион (т.е. x=0). Для стабилизации иона водорода инициатор может дополнительно содержать стабилизирующую молекулу (L) для иона водорода. Стабилизирующая молекула представляет собой молекулу, которая способна стабилизировать ион водорода, не делая ион водорода недоступным для катализа полимеризации. Значение x может быть целым или дробным числом в зависимости от того, имеют ли ионы H+, связанные с соседними комплексами в объемном материале инициатора полимеризации, общую молекулу L. Когда молекула L является общей для соседних ионов H+, значение х может быть дробным. Значение х составляет, предпочтительно, 0,5, 1, 1,5, 2, 2,5 или 3. В одном варианте осуществления имеется две стабилизирующие молекулы для каждого иона H+ (т.е. x=2). Стабилизирующая молекула может представлять собой молекулу, которая может образовывать водородные связи с ионом водорода. Следовательно, стабилизирующая молекула может содержать один или несколько атомов, которые имеют неподеленные пары электронов, например атомов O или N. Стерически затрудненные стабилизирующие молекулы, имеющие одну или несколько неподеленных пар электронов, особенно полезны, поскольку они в достаточной степени стабилизируют ион водорода, позволяя иону водорода инициировать карбокатионную полимеризацию. Некоторые примеры стабилизирующих молекул включают простые эфиры и т.п. Апротонные стабилизирующие молекулы являются предпочтительными. Алкиловые и циклоалкиловые эфиры являются особенно предпочтительными. Некоторыми примерами подходящих стабилизирующих молекул являются тетрагидрофуран, тетрагидропиран, диоксан, диметиловый эфир, диэтиловый эфир, бис(2-хлорэтиловый) эфир, дипропиловый эфир, диизопропиловый эфир, метилэтиловый эфир, метил-н-пропиловый эфир, метилизопропиловый эфир, бис(2-хлоризопропиловый) эфир, метил-трет-бутиловый эфир, этил-трет-бутиловый эфир, диизобутиловый эфир, дигексиловый эфир, 2,5-диметилтетрагидрофуран, 2-хлорэтиловый эфир, 2-метилтетрагидрофуран, циклопентилметиловый эфир, диметиловый эфир диэтиленгликоля (диглим), диметиловый эфир тетраэтиленгликоля, дифениловый эфир, 2,6-ди-трет-бутилпиридин и т.п. В одном варианте осуществления стабилизирующая молекула представляет собой диэтиловый эфир. Когда стабилизирующая молекула является растворителем, стабилизирующая молекула может образовывать сольват с ионом водорода.
Соединение формулы (I) можно синтезировать путем приведения соединения-предшественника металлического иона в реакционной смеси в контакт с органическим α-,β-дигидрокси-соединением-лигандом формулы (II):
Figure 00000002
(II)
где R1, R2, R3 и R4 определены выше. Можно использовать смеси различных органических соединений-лигандов.
Соединение-предшественник металлического иона и органические соединения-лиганды могут присутствовать в реакционной смеси в количествах, обеспечивающих молярное соотношение, которое приводит к металлическому комплексу, имеющему достаточно лигандов для придания металлическому комплексу отрицательного заряда. При получении металлических комплексов формулы (I) требуется приблизительно 3 молярных эквивалента органического α-,β-дигидрокси-соединения-лиганда формулы (II) для получения металлического комплекса с тремя бидентатными лигандами.
Соединение-предшественник металлического иона может представлять собой соединение металлического иона с уходящими группами в качестве лигандов. Подходящие уходящие группы включают, например, галоген (Cl, Br), CO, CN и т.п. Соединение-предшественник металлического иона и органические соединения-лиганды, предпочтительно, являются сухими и имеют высокую чистоту. Приведение соединения-предшественника металлического иона в контакт с органическими соединениями-лигандами можно осуществлять в присутствии или в отсутствие растворителя, предпочтительно в присутствии растворителя. Растворитель может содержать апротонный органический растворитель, предпочтительно некоординирующий растворитель. Некоторые примеры подходящих растворителей включают алкилгалогениды (например, дихлорметан), ароматические углеводороды (например, толуол) и ацетонитрил. В реакционную смесь может быть включена стабилизирующая молекула для ионов водорода, предпочтительно после образования металлического комплекса, для сольватации иона водорода. Реакцию, предпочтительно, проводят в безводных условиях. Реакцию можно проводить при повышенной температуре, например при нагревании растворителя с обратным холодильником. Реакцию можно проводить в течение времени, достаточного для максимизации выхода инициатора, например в течение вплоть до приблизительно 3 часов. Реакцию, предпочтительно, проводят путем медленного добавления соединения-лиганда в реакционную смесь, содержащую соединение-предшественник металлического иона, хотя можно использовать другие схемы добавления. Инициатор может быть извлечен из реакционной смеси стандартными методами, например фильтрацией, промыванием, перекристаллизацией и сушкой.
Инициатор, предпочтительно, используют в количестве, обеспечивающем мольное соотношение мономера и инициатора ([M]:[I]) по меньшей мере приблизительно 20:1. В некоторых вариантах осуществления предпочтительным может быть более высокое [M]:[I] для получения высоких выходов высокомолекулярного полимера. В некоторых вариантах осуществления [M]:[I] может составлять по меньшей мере приблизительно 100:1. В некоторых вариантах осуществления [M]:[I] может находиться в диапазоне от приблизительно 100:1 до приблизительно 1000:1, или от приблизительно 200:1 до приблизительно 800:1, или от приблизительно 300:1 до приблизительно 500:1.
Полимеризацию обычно проводят в среде для полимеризации. Среда для полимеризации может быть обеспечена, например, растворителем или разбавителем. Растворители или разбавители для полимеризации могут включать, например, галогенированную органическую жидкость, негалогенированную органическую жидкость или их смеси. Галогенированные органические жидкости включают, например, хлорированные или фторированные органические соединения. Хлорированные органические соединения включают, например, C1-C4 алкилхлориды (например, дихлорметан (DCM) и метилхлорид (MeCl)). DCM обычно используют в качестве растворителя для полимеризации в растворе, тогда как MeCl обычно используют в качестве разбавителя для суспензионной полимеризации. Фторированные органические соединения включают, например, гидрофторуглероды (HFC), такие как 1,1,1,2-тетрафторэтан и т.п., и гидрофторированные олефины (HFO), такие как 2,3,3,3-тетрафтор-1-пропен и т.п. Фторированные органические соединения обычно используют в качестве разбавителей для суспензионной полимеризации. Негалогенированные органические жидкости включают, например, алифатические углеводороды (например, циклогексан, циклопентан, 2,2-диметилбутан, 2,3-диметилбутан, 2-метилпентан, 3-метилпентан, н-гексан, метилциклопентан и 2,2-диметилпентан). Предпочтительными являются галогенированные органические растворители, в частности C1-C4 алкилхлориды. Особенно предпочтительными являются дихлорметан (CH2Cl2) или метилхлорид (MeCl).
Растворитель или разбавитель, предпочтительно, присутствуют в среде для полимеризации в количестве приблизительно 10-80 об.% в расчете по объему среды для полимеризации. В предпочтительных вариантах осуществления среда может содержать разбавитель в количестве приблизительно 55-80 об.% или растворитель в количестве приблизительно 10-50 об.%.
Полимеризацию проводят в безводных условиях. Предпочтительно, вода присутствует в количестве меньше чем приблизительно 1 ч./млн., более предпочтительно меньше чем приблизительно 0,5 ч./млн., еще более предпочтительно меньше чем приблизительно 0,1 ч./млн. Предпочтительно полностью удалить воду из среды для полимеризации. Уменьшение или устранение влаги в среде для полимеризации помогает получать полимеры с более высокой молекулярной массой с более высоким выходом.
Преимуществом инициирующей системы настоящего изобретения является то, что полимеризацию можно проводить при более высокой температуре, чем с помощью других инициирующих систем на основе кислот Бренстеда-Лоури или кислот Льюиса, причем можно получать полимеры с достаточно высокой молекулярной массой с хорошим выходом. Температура при которой проводят полимеризацию, может составлять -90°C или больше, или -85°C или больше, или -80°C или больше, или -70°C или больше, или -60°C или больше, или -50°C, или -40°C или больше. Температура может достигать 30°C или меньше, или 20°C или меньше, или 10°C или меньше, или 0°C или меньше, или -10°C или меньше, или -15°C или меньше, или -20°C или меньше, или -25°C или меньше, -30°C или меньше или -35°C или меньше.
ПРИМЕРЫ:
Общие материалы и методы:
Все эксперименты проводились с использованием стандартных методов Шленка или перчаточного бокса в атмосфере азота.
Дихлорметан (CH2Cl2) и диэтиловый эфир (Et2O) дезоксигенировали азотом и сушили, пропуская через колонку, содержащую активированный оксид алюминия. Тетрагидрофуран (THF) (Fisher Scientific) перед использованием сушили и перегоняли над бензофенонкетилом. CH2Cl2 (Sigma Aldrich), Et2O (Fisher Scientific), стирол (Sigma Aldrich) и н-бутилвиниловый эфир (Sigma Aldrich) сушили над гидридом кальция, перегоняли и дегазировали охлаждением-откачкой-нагреванием (×3) перед использованием. CH2Cl2, Et2O и метил-трет-бутиловый эфир хранили перед использованием на молекулярных ситах.
Пентахлорид тантала (Aldrich) и пентахлорид ниобия (Aldrich) использовали без дополнительной очистки. Тетрахлоркатехол получали в соответствии с процедурой, описанной в документе Lübbecke H., Boldt P. Tetrahedron 1978, 34, 1577-1579, содержание которого включено в настоящий документ посредством ссылки, и затем азеотропно перегоняли и перекристаллизовывали из горячего толуола перед использованием. Тетрафторокатехол получали в соответствии с описанной в литературе процедурой, описанной в документе Barthel J, Buestrich R, Carl E, Gores HJ. J. Electrochem. Soc. 1996, 143, 3572-3575, содержание которого включено в настоящий документ посредством ссылки. Гексафтор-2,3-бис(трифторметил)-2,3-бутандиол (Matrix Scientific) и 3-фторкатехол (Sigma Aldrich) использовали без дополнительной очистки.
1H и 13C{1H} ЯМР-спектры регистрировали на спектрометрах Bruker Avance 300 или 400 МГц при комнатной температуре, если не указано иное. Точку отсчета 1H ЯМР и 13C{1H} ЯМР-спектров определяли по дейтерированным растворителям.
Молекулярную массу полимеров определяли с помощью гель-проникающей хроматографии с тройным детектированием (GPC-LLS) с использованием стандартного автодозатора Agilent серии 1260, изократического насоса Agilent серии 1260, микронасадочных колонок Phenomenex Phenogel™ 5 мкм (4,6×300 мм) 104
Figure 00000003
(5000-500000), 500
Figure 00000003
(1000-15000) и 103
Figure 00000003
(1000-75000), дифференциального рефрактометра Wyatt Optilab™ rEx (λ=658 нм, 25°C), а также Wyatt tristar miniDAWN (детектор лазерного светорассеяния (λ=690 нм)) и вискозиметра Wyatt ViscoStar. Образцы растворяли в THF (ок. 2 мг мл-1), и применяли скорость потока 0,5 мл мин-1. Дифференциальный показатель преломления (dn/dc) поли(н-бутилвинилового эфира) (dn/dc=0,068 мл г-1) в THF рассчитывали с использованием программного обеспечения Wyatt ASTRA 6.1. Дифференциальные показатели преломления (dn/dc) поли(стирола) (dn/dc=0,185 мл г-1) и поли(α-метилстирола) (dn/dc=0,204 мл г-1) приведены в документе McManus NT, Penlidis A.J. Appl. Polym. Sci. 1998, 70, 1253-1254. Дифференциальный показатель преломления (dn/dc) поли(изопрена) (dn/dc=0,129 мл г-1) известен (Jackson C, Chen YJ, Mays JW. J. Appl. Polym. Sci. 1996, 61, 865).
Инициатор (III)
Синтез H(OEt 2 ) 2 [Ta(12-O 2 C 6 Cl 4 ) 3 ] (III)
Figure 00000004
(III)
TaCl5 (0,48 г, 13,4 ммоль) перемешивали в безводном CH2Cl2 (6 мл), и белую суспензию медленно нагревали до рефлюкса в атмосфере N2. В другой колбе Шленка получали тетрахлоркатехол (1,00 г, 40,3 ммоль) в теплом безводном CH2Cl2 (6 мл), и ярко-оранжево-красный раствор добавляли через канюлю в кипящий раствор TaCl5 при 90°C, получая темно-зеленую реакционную смесь. Через 10 мин получали зеленоватый осадок. Реакционную смесь кипятили с обратным холодильником 100 мин и охлаждали до температуры окружающей среды. После добавления Et2O (22 мл) образовывался зеленый прозрачный раствор. Раствор охлаждали на ледяной бане, получая зеленый осадок в течение 20 мин. Твердое вещество собирали фильтрацией, промывали CH2Cl2 (3 мл) и сушили в вакууме. Выход = (1,28 г, 11,9 ммоль, 89% в пересчете на TaCl5).
1H ЯМР (400 МГц, CD2Cl2, 25°C): δ=7,54 (br, 1H, H(OEt2)2), 4,00 (br, 8H, CH 2CH3), 1,40 м.д. (br, 12H, CH2CH 3).
1H ЯМР (400 МГц, CD2Cl2, -85°C): δ=16,74 (s, 1H, H(OEt2)2), 4,04 (br, 8H, CH 2CH3), 1,38 (br, 12H, CH2CH 3).
13C{1H} ЯМР (75 МГц, CD2Cl2, 25°C): δ=140,4 (s, Ar-C), 123,4 (s, Ar-C), 118,9 (s, Ar-C), 67,9 (s, OCH2CH3), 14,2 (s, OCH2 CH3) м.д.
Элементный анализ (%): C, 27,51; H, 1,74. Рассчитано для C26H21Cl12O8Ta⋅1,35 CH2Cl2: C, 27,78; H, 2,02.
MALDI-TOF MS (355 нм) m/z=918,6 [M]-.
Полимеризация мономеров с использованием инициатора (III)
Полимеризацию мономеров с инициатором (III) проводили по следующей общей методике.
Первоначально инициатор и мономер хранятся при -30°C в морозильной камере в перчаточном боксе в положительной атмосфере сухого газа N2. Инициатор (0,010 г, 0,010 ммоль) переносят в колбу Шленка объемом 25 мл, которую герметично закрывают резиновой прокладкой, а затем выносят из перчаточного бокса, сохраняя изоляцию от внешней атмосферы, чтобы подключить к линии сухого газа N2. Инициатор в колбе охлаждают до -78°C на бане ацетон/сухой лед. Безводный дегазированный CH2Cl2 (2,0 мл), который хранили на активированных молекулярных ситах, добавляют к инициатору с помощью шприца в потоке сухого газа N2 и перемешивают для обеспечения гомогенности раствора при -78°C. Смесь выдерживают при -78°C в течение 10 минут или нагревают или охлаждают до другой требуемой температуры и выдерживают при этой температуре в течение 10 минут перед добавлением мономера.
Свежеприготовленный и дегазированный мономер в количестве, необходимом для достижения желаемого соотношения мономера и инициатора ([M]:[I]), собирают в одноразовый пластиковый шприц объемом 1 мл в перчаточном боксе. Затем мономер быстро вводят через резиновую прокладку на колбе Шленка в раствор инициатора при желаемой температуре при постоянном потоке сухого газа N2, и реакционную смесь непрерывно перемешивают в течение 15 минут, пока происходит полимеризация. Через 15 минут реакцию гасят 0,2 мл раствора NH4OH в MeOH (10 об.%), колбу Шленка удаляют из охлаждающей бани, и все летучие вещества удаляют в вакууме. Сырой продукт растворяют в 2 мл CH2Cl2 и добавляют одну каплю за один раз через шприц в энергично перемешиваемый MeOH (40 мл) для осаждения маслянистого остатка. Полимер собирают центрифугированием и сушат в вакууме. Абсолютную молекулярную массу (Mn) определяют с использованием GPC с тройным детектированием.
Влияние температуры на полимеризацию н-бутилвинилового эфира
В таблице 1 приведены данные по полимеризации н-бутилвинилового эфира с использованием инициатора (III) при различных температурах. Данные для каждого примера представляют среднее по меньшей мере трех отдельных реакций полимеризации. Mn расч. = 40000 г/моль. Таблица 1 показывает, что при температурах значительно выше -90°C может быть достигнут значительный выход поли(н-бутилвинилового эфира) с достаточно высокой молекулярной массой (Mn).
Таблица 1
Пр. T (°C) [M]:[I] Выход (%) Mn (г/моль) PDI
1 19,3 400 33 16300 1,54
2 0 400 31 19400 1,69
3 -50 400 61 18200 1,57
4 -78 400 72 34100 1,45
5 -84 400 77 53100 1,14
Влияние температуры на полимеризацию α-метилстирола
В таблице 2 приведены данные по полимеризации α-метилстирола с использованием инициатора (III) при различных температурах. Данные для каждого примера представляют среднее по меньшей мере трех отдельных реакций полимеризации. Mn расч. = 40000 г/моль. Таблица 2 показывает, что при температурах, намного превышающих -90°C, для поли(α-метилстирола) может быть достигнут хороший баланс высокого выхода и высокой молекулярной массы.
Таблица 2
Пр. T (°C) [M]:[I] Выход (%) Mn (г/моль) PDI
6 19 400 1 н.о. н.о.
7 0 400 38 3500 1,67
8 -38 400 75 10100 1,86
9 -50 400 65 17000 1,59
10 -78 400 53 205000 1,28
н.о. = не определено
Инициатор (IV) :
Синтез H(CH 3 ) 3 COCH 3 ) 2 [Ta(12-O 2 C 6 Cl 4 ) 3 ] (IV)
Figure 00000005
(IV)
Синтез инициатора (III), описанный выше, можно адаптировать, заменив диэтиловый эфир на метил-трет-бутиловый эфир в качестве координирующего лиганда для протона, чтобы получить H(CH3)3COCH3)2[Ta(12-O2C6Cl4)3] (IV).
Соответственно, TaCl5 (0,22 г, 6,2 ммоль) перемешивали в безводном CH2Cl2 (6 мл), и белую суспензию медленно нагревали до рефлюкса в атмосфере N2. В другой колбе Шленка получали тетрахлоркатехол (0,46 г, 18,5 ммоль) в теплом безводном CH2Cl2 (8 мл), и ярко-оранжево-красный раствор добавляли через канюлю в кипящий раствор TaCl5 при 90°C, получая темно-зеленую реакционную смесь. Через 10 мин получали бесцветный осадок. Реакционную смесь кипятили с обратным холодильником в течение 85 мин и охлаждали до температуры окружающей среды. После добавления метил-трет-бутилового эфира (16 мл) образовывался зеленый прозрачный раствор. Раствор охлаждали на ледяной бане, получая небольшое количество светло-зеленого осадка в течение 60 мин. Реакционную смесь откачивали досуха и промывали CH2Cl2 (2 мл) и сушили в вакууме. Выход = (0,30 г, 2,7 ммоль, 44% в пересчете на TaCl5).
1H ЯМР (400 МГц, CD2Cl2, 25°C): δ=8,35 (br, 1H, H[(CH3)3COCH3)]2), 3,24 (br, 6H, (CH 3)3COCH3)), 1,22 (br, 18H, (CH3)3COCH 3)).
1H ЯМР (400 МГц, CD2Cl2, -85°C): δ=16,18 (s, 1H, H[(CH3)3COCH3)]2), 3,30 (br, 6H, (CH 3)3COCH3)), 1,21 м.д. (br, 18H, (CH3)3COCH 3)) м.д.
Элементный анализ (%): C, 30,39; H, 2,30. Рассчитано для C28H25Cl12O8Ta: C, 30,69; H, 2,30. MALDI-TOF MS (355 нм) m/z=918,9 [M]-.
Полимеризация мономеров с использованием инициатора (IV)
Полимеризацию мономеров с инициатором (IV) проводили, следуя общей методике, описанной выше для инициатора (III). В таблице 3 приведены данные по полимеризации н-бутилвинилового эфира. Таблица 3 показывает, что при температурах, намного превышающих -90°C, для поли(н-бутилвинилового эфира) может быть достигнут хороший баланс высокого выхода и высокой молекулярной массы.
Таблица 3
Пр. Мономер T (°C) [M]:[I] Выход (%) Mn (г/моль) PDI
11 н-бутилвиниловый эфир 19,8 400 37 17300 1,55
12 н-бутилвиниловый эфир 0 400 66 16600 1,62
13 н-бутилвиниловый эфир -50 400 71 30200 1,87
14 н-бутилвиниловый эфир -78 400 76 46900 1,29
Инициатор (V) :
Синтез H(THF) 2 [Ta(12-O 2 C 6 Cl 4 ) 3 ] (V)
Figure 00000006
(V)
Синтез инициатора (III), описанный выше, можно адаптировать, заменив диэтиловый эфир на тетрагидрофуран (THF) в качестве координирующего лиганда для протона, чтобы получить H(THF)2[Ta(12-O2C6Cl4)3] (V).
Соответственно, TaCl5 (0,37 г, 10,4 ммоль) перемешивали в безводном CH2Cl2 (6 мл), и белую суспензию медленно нагревали до рефлюкса в атмосфере N2. В другой колбе Шленка получали тетрахлоркатехол (0,77 г, 31,2 ммоль) в теплом безводном CH2Cl2 (6 мл), и ярко-оранжево-красный раствор добавляли через канюлю в кипящий раствор TaCl5 при 90°C, получая темно-зеленую реакционную смесь. Через 10 мин получали бесцветный осадок. Реакционную смесь кипятили с обратным холодильником в течение 120 мин и охлаждали до температуры окружающей среды. После добавления THF (2 мл) образовывался зеленый прозрачный раствор. Раствор охлаждали на ледяной бане, получая небольшое количество светло-зеленого осадка в течение 30 мин. Твердое вещество откачивали досуха, промывали CH2Cl2 (2 мл) и сушили в вакууме. Выход = (0,74 г, 6,9 ммоль, 67% в пересчете на TaCl5).
1H ЯМР (400 МГц, CD2Cl2, 25°C): δ=6,42 (br, 1H, H(THF2), 4,34 (br, 8H, OCH 2CH2), 2,08 м.д. (br, 8H, OCH2CH 2).
1H ЯМР (400 МГц, CD2Cl2, -85°C): δ=16,97 (s, 1H, H(THF)2), 3,92 (br, 8H, OCH 2CH2), 1,96 м.д. (br, 8H, OCH 2CH2).
Элементный анализ (%): C, 29,26; H, 1,79. Рассчитано для C26H17Cl12O8Ta: C, 29,36; H, 1,61.
MALDI-TOF MS(355 нм) m/z=918,5 [M]-.
Полимеризация мономеров с использованием инициатора (V)
Полимеризацию мономеров с инициатором (V) проводили, следуя общей методике, описанной выше для инициатора (III). В таблице 4 приведены данные по полимеризации н-бутилвинилового эфира, стирола и α-метилстирола с использованием инициатора (V). Таблица 4 показывает, что при температурах, намного превышающих -90°C, для поли(н-бутилвинилового эфира), поли(стирола) и поли(α-метилстирола) может быть достигнут хороший баланс высокого выхода и высокой молекулярной массы.
Таблица 4
Пр. Мономер T (°C) [M]:[I] Выход (%) Mn (г/моль) PDI
15 н-бутилвиниловый эфир 19,3 400 14 20400 1,59
16 н-бутилвиниловый эфир 0 400 48 19300 1,61
17 н-бутилвиниловый эфир -50 400 66 28100 2,07
18 н-бутилвиниловый эфир -78 400 62 117000 1,13
19 стирол 19,8 400 83 14400 1,86
20 стирол 0 400 83 26500 1,69
21 стирол -50 400 6 143600 1,31
22 стирол -78 400 н.о. н.о. н.о.
24 α-метилстирол -78 400 24 53300 1,52
н.о. = не определено
Инициатор (VI) :
Синтез H(OEt 2 ) 2 [Nb(12-O 2 C 6 Cl 4 ) 3 ] (VI)
Figure 00000007
(VI)
Синтез инициатора (III), описанный выше, можно адаптировать, заменив металлический ион на ниобий (Nb), чтобы получить H(OEt2)2[Nb(12-O2C6Cl4)3] (VII).
Соответственно, NbCl5 (0,25 г, 9,4 ммоль) перемешивали в безводном CH2Cl2 (8 мл), и желтую суспензию медленно нагревали до рефлюкса в атмосфере N2. В другой колбе Шленка получали тетрахлоркатехол (0,77 г, 31,1 ммоль) в теплом безводном CH2Cl2 (6 мл), и ярко-оранжево-красный раствор добавляли через канюлю в кипящий раствор NbCl5 при 90°C с получением темно-красной реакционной смеси. Реакционную смесь кипятили с обратным холодильником 100 мин и охлаждали до температуры окружающей среды. Добавляли Et2O (20 мл), и реакционную смесь перемешивали в течение 30 мин. Растворитель удаляли при пониженном давлении при 0°C. Твердое вещество собирали фильтрацией, промывали CH2Cl2 (2 мл) и сушили в вакууме. Выход = (0,42 г, 4,0 ммоль, 42%).
1H ЯМР (400 МГц, CD2Cl2, -80°C): δ=16,73 (s, 1H, H(Et2O)2), 4,08 (br, 8H, OCH 2CH3), 1,44 м.д. (br, 12H, OCH2CH 3) м.д.
Полимеризация мономеров с использованием инициатора (VI)
Полимеризацию мономеров с инициатором (VI) проводили, следуя общей методике, описанной выше для инициатора (III). В таблице 5 приведены данные по полимеризации н-бутилвинилового эфира и стирола с использованием инициатора (VI). Таблица 5 показывает, что ниобиевый комплекс также может инициировать катионную полимеризацию н-бутилвинилового эфира и стирола.
Таблица 5
Пр. Мономер T (°C) [M]:[I] Выход (%) Mn (г/моль) PDI
25 н-бутилвиниловый эфир -78 400 76 32800 1,39
26 стирол -78 400 71 10400 4,41
Инициатор (VII) :
Синтез H[(OEt 2 )] 2 [Ta(12-O 2 C 6 H 4 ) 3 ]/H(OEt 2 ) 2 [Ta(12-O 2 C 6 H 4 ) 2 (12-O 2 C 6 H 5 ) 2 ] (VII)
Figure 00000008
(VII)
Реакция 4 эквивалентов катехола с TaCl5 способом, аналогичным описанному для синтеза хлорированного аналога (III), дает смесь (VII) соответствующего негалогенированного H[(OEt2)]2[Ta(12-O2C6H4)3] и танталового комплекса, координированного с четырьмя катехоловыми лигандами (два бидентатных и два монодентатных катехоловых лиганда).
Соответственно, TaCl5 (0,81 г, 22,7 ммоль) перемешивали в безводном CH2Cl2 (6 мл), и белую суспензию медленно нагревали до рефлюкса в атмосфере N2. В другой колбе Шленка получали катехол (1,00 г, 90,8 ммоль) в смеси растворителей, содержащей безводный CH2Cl2 (6 мл) и безводный толуол (8 мл), и ярко-оранжево-красную смесь растворов нагревали вплоть до 50°C и добавляли через канюлю в кипящий раствор TaCl5 при 90°C с получением темно-оранжевой реакционной смеси. Через 10 мин получали бесцветный осадок. Реакционную смесь кипятили с обратным холодильником в течение 60 мин и охлаждали до температуры окружающей среды. Реакционную смесь перемешивали в течение еще 120 мин при температуре окружающей среды. После добавления диэтилового эфира (18 мл) образовывался желтый прозрачный раствор. Раствор охлаждали на ледяной бане, получая желтый осадок в течение 30 мин. Твердое вещество собирали фильтрацией, промывали CH2Cl2 (2 мл) и сушили в вакууме. Выход = (0,58 г).
1H ЯМР (400 МГц, CD2Cl2, 25°C): δ=8,07-6,28 (m, Ar-H), 3,62 (br, 8H, OCH 2CH3), 1,24 (t, 3 J HH =6,7H, OCH2CH 3).
1H ЯМР (400 МГц, CD2Cl2, -85°C): δ=15,57 (s, 1H, H(OEt2)2), 10,28 (s, OH), 8,27-6,78 (m, Ar-H), 4,19 (br, 8H, OCH 2CH3), 1,51 м.д. (br, 12H, OCH2CH 3) м.д.
Полимеризация мономеров с использованием смеси инициатора (VII) с соответствующим 4-лигандным танталовым комплексом
Полимеризацию мономеров с инициатором (VII) проводили, следуя общей методике, описанной выше для инициатора (III). В таблице 6 приведены данные по полимеризации н-бутилвинилового эфира, стирола и α-метилстирола с использованием инициатора (VII) вместе с соответствующим 4-лигандным танталовым комплексом. Таблица 6 показывает, что баланс выхода и молекулярной массы, как правило, хуже, чем для хлорированного аналога (III).
Таблица 6
Пр. Мономер T (°C) [M]:[I] Выход (%) Mn (г/моль) PDI
27 н-бутилвиниловый эфир 19,6 400 29 14500 1,48
28 н-бутилвиниловый эфир -78 400 17 96400 1,33
29 стирол 19,6 400 <1 43300 1,28
30 стирол -50 400 1,2 н.о. н.о.
31 α-метилстирол 19,6 400 <1 6000 4,18
32 α-метилстирол -50 400 1,7 10900 1,60
33 α-метилстирол -78 400 1,8 31500 1,32
н.о. = не определено
Применение инициатора (III) для полимеризации изобутилена:
Изобутиленовые полимеры (PIB) и изобутилен-изопреновые сополимеры (IIR - бутилкаучук) получали с использованием инициатора (III) по следующей методике.
Инициатор (100 мг) перемешивали в безводном CH2Cl2 (25 мл) в течение 30 минут при -30°C. В другой реакционной колбе 6 мл сухого изобутилена (или 6 мл сухого изобутилена и 0,25 мл изопрена при получении IIR) и 50 мл CH2Cl2 перемешивали при -30°C, затем добавляли 7 мл раствора инициатора. Реакционную смесь перемешивали в течение 17 минут при -30°C. После этого полимеризацию останавливали добавлением 0,1 мл спирта, содержащего 1-молярный тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (CAS# 6683-19-8). Растворитель выпаривали из реакционной смеси. Остаток полимера растворяли в гексане, фильтровали, а затем удаляли гексан с получением полимера. В таблице 7 приведены данные по получению PIB и IIR.
Таблица 7
Пр. Мономер Инициатор Выход (%) Mn (г/моль) PDI
34 изобутилен (III) 28 1500 2,29
35 изобутилен (III) 27 1700 2,01
36 изобутилен-изопрен (III) 45 2000 2,35
В соответствии с фиг. 1, 1H-ЯМР-спектром полиизобутилена (PIB), полученного в пр. 34, он представляет собой реакционноспособный PIB без концевого хлорида. PIB имеет значительную долю терминальной этиленовой ненасыщенности. Таким образом, инициаторы дают возможность получения PIB и бутиловых полимеров с реакционноспособными концами.
Новые признаки станут очевидными для специалистов в данной области техники после изучения описания. Следует понимать, однако, что объем формулы изобретения не следует ограничивать вариантами осуществления, но ему следует давать самую широкую интерпретацию, соответствующую содержанию формулы изобретения и описания изобретения в целом.

Claims (25)

1. Инициирующая система на основе кислоты Бренстеда-Лоури для катионной полимеризации этиленненасыщенного мономера, причем данная инициирующая система на основе кислоты Бренстеда-Лоури содержит инициатор, имеющий структуру формулы (I), в безводной среде для полимеризации:
Figure 00000009
(I)
где:
M представляет собой тантал (Ta), ванадий (V) или ниобий (Nb);
R1, R2, R3 и R4 являются одинаковыми или различными и независимо представляют собой H, F, Cl, Br, I, C1-C4-алкил или фенил, при условии, что не все из R1, R2, R3 и R4 на одном бензольном кольце являются H;
L представляет собой простой алкиловый эфир или простой циклоалкиловый эфир, который координируется с H+; и
х равен 2.
2. Система по п. 1, в которой M представляет собой Ta.
3. Система по п. 1 или 2, в которой L представляет собой диэтиловый эфир.
4. Система по любому из пп. 1-3, в которой R1, R2, R3 и R4 являются одинаковыми и представляют собой F или Cl.
5. Система по п. 1, в которой M представляет собой Ta; R1, R2, R3 и R4 представляют собой Cl; L представляет собой Et2O; и х равен 2.
6. Система по любому из пп. 1-5, в которой среда для полимеризации содержит дихлорметан или метилхлорид.
7. Система по любому из пп. 1-6, содержащая воду в количестве менее 1 ч./млн.
8. Способ получения полимера, причем данный способ включает полимеризацию одного или нескольких этиленненасыщенных мономеров с помощью инициирующей системы, определенной в любом из пп. 1-7.
9. Способ по п. 8, в котором полимеризацию проводят при температуре -85°C или выше.
10. Соединение формулы (I):
Figure 00000010
(I)
где:
M представляет собой тантал (Ta), ванадий (V) или ниобий (Nb);
R1, R2, R3 и R4 являются одинаковыми или различными и независимо представляют собой H, F, Cl, Br, I, C1-C4-алкил или фенил, при условии, что не все из R1, R2, R3 и R4 на одном бензольном кольце являются H;
L представляет собой простой алкиловый эфир или простой циклоалкиловый эфир, который координируется с H+; и
х равен 2.
11. Соединение по п. 10, в котором M представляет собой Ta.
12. Соединение по п. 10 или 11, в котором R1, R2, R3 и R4 являются одинаковыми и представляют собой F или Cl.
13. Соединение по п. 10, в котором M представляет собой Ta; R1, R2, R3 и R4 представляют собой Cl; L представляет собой Et2O; и х равен 2.
RU2020123075A 2017-12-14 2017-12-14 Инициирующая система для катионной полимеризации олефинов RU2757855C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2017/051515 WO2019113674A1 (en) 2017-12-14 2017-12-14 Initiator system for cationic polymerization of olefins

Publications (1)

Publication Number Publication Date
RU2757855C1 true RU2757855C1 (ru) 2021-10-21

Family

ID=66818807

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020123075A RU2757855C1 (ru) 2017-12-14 2017-12-14 Инициирующая система для катионной полимеризации олефинов

Country Status (9)

Country Link
US (1) US11168100B2 (ru)
EP (1) EP3724159A4 (ru)
JP (1) JP2021507017A (ru)
KR (1) KR20200123088A (ru)
CN (1) CN111699169A (ru)
CA (1) CA3084606A1 (ru)
RU (1) RU2757855C1 (ru)
SG (1) SG11202004889UA (ru)
WO (1) WO2019113674A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097557A1 (en) * 2019-11-19 2021-05-27 ARLANXEO Canada Inc. Initiator system for cationic polymerization of olefins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135509C1 (ru) * 1994-05-12 1999-08-27 Дзе Дау Кемикал Компани Комплексы титана (ii) или циркония (ii), каталитическая композиция, способ полимеризации этиленненасыщенных олефинов
EA025279B1 (ru) * 2010-01-05 2016-12-30 ЛУСАЙТ ИНТЕРНЭШНЛ ЮКей ЛИМИТЕД Способ карбонилирования этиленненасыщенных соединений, новые лиганды для карбонилирования и каталитические системы, содержащие подобные лиганды

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA203168A (en) 1920-08-17 Joseph Walshe Lawrence Illuminated visible license number plate and tail light
US3361778A (en) 1964-04-20 1968-01-02 Du Pont Chelated compounds of vanadium and substituted phenols
US3919180A (en) 1968-07-03 1975-11-11 Bridgestone Tire Co Ltd Method of producing alternating copolymers of donor monomer and acceptor monomer from not less than three monomers
DE19627529A1 (de) * 1996-07-09 1998-01-15 Bayer Ag Neue, vanadiumhaltige Initiatorsysteme für die (Co)polymerisation von Isoolefinen
DE19704482A1 (de) 1997-02-06 1998-08-13 Basf Ag Verfahren zur Herstellung von halogenfreiem, reaktivem Polyisobuten
TWI246520B (en) 1997-04-25 2006-01-01 Mitsui Chemicals Inc Processes for olefin polymerization
US20100273964A1 (en) 2009-04-22 2010-10-28 Stewart Lewis Heterogeneous lewis acid catalysts for cationic polymerizations
WO2011054785A1 (de) 2009-11-04 2011-05-12 Basf Se Verfahren zur herstellung von homo- oder copolymeren
EP3336111A1 (en) 2016-12-16 2018-06-20 ARLANXEO Canada Inc. Initiator system for cationic polymerization of olefins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135509C1 (ru) * 1994-05-12 1999-08-27 Дзе Дау Кемикал Компани Комплексы титана (ii) или циркония (ii), каталитическая композиция, способ полимеризации этиленненасыщенных олефинов
EA025279B1 (ru) * 2010-01-05 2016-12-30 ЛУСАЙТ ИНТЕРНЭШНЛ ЮКей ЛИМИТЕД Способ карбонилирования этиленненасыщенных соединений, новые лиганды для карбонилирования и каталитические системы, содержащие подобные лиганды

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. LEVINA et al., Vanadium Speciation by XANES Spectroscopy: A Three-Dimensional Approach, Chemistry-European Journal, 2014, 20, 12056-12060. *
A. LEVINA et al., Vanadium Speciation by XANES Spectroscopy: A Three-Dimensional Approach, Chemistry-European Journal, 2014, 20, 12056-12060. ANDREA KLAUS Cyclic Niobium (V) and Tantalum (V) Acid Esters, Journal of the Less Common Metals, 1969, 17(3), 297-303. F. CALDERAZZO AND G. PAMPALONI, Reaction of hexacarbonyl derivatives of group 5 metals (V, Nb, Ta) with 9,10-phenanthrenequinone, Journal of Organometallic Chemistry, 1987, 330, 47-59. STEPHEN R. COOPER et al., Synthetic, Structural, and Physical Studies of Bis(triethylammonium) Tris (catecholato)vanadate(IV), Potassium Bis(catecholato)oxovanadate(IV), and Potassium Tris(catecholato)vanadate(III), J.Am.Chem.Soc., 1982, 104, 5092-5102. CINDY-XING YIN AND RICHARD G. FINKE, Vanadium-Based, Extended Catalytic Lifetime Catechol Dioxygenases: Evidence for a Common Catalyst, J.Am.Chem.Soc., 2005, 127, 9003-9013. *
ANDREA KLAUS Cyclic Niobium (V) and Tantalum (V) Acid Esters, Journal of the Less Common Metals, 1969, 17(3), 297-303. *
CINDY-XING YIN AND RICHARD G. FINKE, Vanadium-Based, Extended Catalytic Lifetime Catechol Dioxygenases: Evidence for a Common Catalyst, J.Am.Chem.Soc., 2005, 127, 9003-9013. *
F. CALDERAZZO AND G. PAMPALONI, Reaction of hexacarbonyl derivatives of group 5 metals (V, Nb, Ta) with 9,10-phenanthrenequinone, Journal of Organometallic Chemistry, 1987, 330, 47-59. *
STEPHEN R. COOPER et al., Synthetic, Structural, and Physical Studies of Bis(triethylammonium) Tris (catecholato)vanadate(IV), Potassium Bis(catecholato)oxovanadate(IV), and Potassium Tris(catecholato)vanadate(III), J.Am.Chem.Soc., 1982, 104, 5092-5102. *
В.И. ЦВЕТКОВА, Металлоценовый катализ в процессах полимеризации α-олефинов, Высокомолекулярные соединения, Серия С, 2000, т. 42, номер 11, с. 1954-1973. *

Also Published As

Publication number Publication date
EP3724159A1 (en) 2020-10-21
WO2019113674A1 (en) 2019-06-20
JP2021507017A (ja) 2021-02-22
KR20200123088A (ko) 2020-10-28
CA3084606A1 (en) 2019-06-20
US11168100B2 (en) 2021-11-09
US20210171550A1 (en) 2021-06-10
CN111699169A (zh) 2020-09-22
EP3724159A4 (en) 2021-07-28
SG11202004889UA (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP2010255008A (ja) 星型ブロックコポリマー
Wang et al. Carbocationic Initiation of Polymerization of Vinyl Ethers and N-Vinylcarbazole Induced by (. eta. 5-C5Me5) TiMe2 (. mu.-Me) B (C6F5) 3. The First Examples of Polymerization of This Class of Electron-Rich Olefins by a Metallocene-like Initiator
Stille et al. The spontaneous homopolymerization of vinylidene cyanide and unsaturated ethers on mixing the two monomers, and the formation of 1: 1 alternating copolymers in the presence of a free radical initiator
Brits et al. A new echelon of precision polypentenamers: highly isotactic branching on every five carbons
Rad'kova et al. Bis (alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant Ph 2 P [double bond, length as m-dash] O and Ph 2 P [double bond, length as m-dash] NR groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization
Lapienis et al. Kinetics and thermodynamics of the polymerization of the cyclic phosphate esters. II. Cationic polymerization of 2-methoxy-2-oxo-1, 3, 2-dioxaphosphorinane (1, 3-propylene methyl phosphate)
RU2757855C1 (ru) Инициирующая система для катионной полимеризации олефинов
KR20190116949A (ko) 가공성이 향상된 고반응성 부텐 올리고머 및 이의 제조방법
EP0166536B1 (en) Block copolymer
JP4623690B2 (ja) 星型ブロックコポリマー
RU2756274C2 (ru) Инициаторная система для катионной полимеризации олефинов
CN114174353B (zh) 催化剂组合物和使用该催化剂组合物制备异丁烯类低聚物的方法
CN113728018B (zh) 催化剂组合物和使用该催化剂组合物制备聚异丁烯的方法
WO2021097557A1 (en) Initiator system for cationic polymerization of olefins
Miao et al. A novel approach for synthesis of poly (norbornene)‐co‐poly (styrene) block copolymers via metathesis polymerization and free‐radical polymerization
KR102570890B1 (ko) 유기 보레이트계 촉매, 이를 이용한 이소부텐 올리고머의 제조방법 및 이로부터 제조된 이소부텐 올리고머
EP1867666A1 (en) Optically active copolymer, process for producing the same, and packing for chromatography comprising the copolymer
KR20220050416A (ko) 촉매 조성물 및 이를 이용한 이소부텐-이소프렌 공중합체의 제조방법
CN114945610A (zh) 催化剂组合物和使用该催化剂组合物制备异丁烯-异戊二烯共聚物的方法
木越 et al. Design of New Initiating Systems for
KR20210071658A (ko) 폴리이소부텐의 제조방법
Hohberger Observation of main chain chirality in isotactic polystyrene
Okonkwo Aspects of Addition Polymerisation