RU2757681C1 - Способ изготовления высокотемпературного термоэлемента - Google Patents
Способ изготовления высокотемпературного термоэлемента Download PDFInfo
- Publication number
- RU2757681C1 RU2757681C1 RU2020141675A RU2020141675A RU2757681C1 RU 2757681 C1 RU2757681 C1 RU 2757681C1 RU 2020141675 A RU2020141675 A RU 2020141675A RU 2020141675 A RU2020141675 A RU 2020141675A RU 2757681 C1 RU2757681 C1 RU 2757681C1
- Authority
- RU
- Russia
- Prior art keywords
- thermoelement
- layer
- branches
- contact
- legs
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 32
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims abstract description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 4
- 239000006104 solid solution Substances 0.000 claims abstract description 4
- -1 doped with P Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 32
- 229910052759 nickel Inorganic materials 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910016339 Bi—Sb—Te Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000426 electronic spectroscopy Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000005493 welding type Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Изобретение относится к термоэлектрическому оборудованию и может быть использовано при производстве термоэлектрических генераторов. Сущность: способ изготовления высокотемпературного термоэлемента с рабочими температурами от 300 до 1000°С, состоящего из двух полупроводниковых ветвей n- и p-типа проводимости, верхние грани которых соединены общей коммутирующей шиной, а к каждой нижней грани ветвей подсоединена своя индивидуальная коммутирующая шина, включает подготовку поверхностей верхней и нижней граней ветвей термоэлемента, создание контактных систем, состоящих из контактных слоев, между гранями ветвей термоэлемента и коммутирующими шинами. Ветви термоэлемента изготавливают из полупроводниковых материалов, представляющих собой твердые растворы SiGe n-типа проводимости, легированного Р, и SiGe p-типа проводимости, легированного В. Поверхности граней ветвей с помощью механической обработки подготавливают до шероховатости, не превышающей толщину первого наносимого слоя контактной системы. В качестве первого слоя используют слой тяжелых металлов Мо или W с низким удельным сопротивлением. Между первым слоем и коммутационным слоем создают дополнительный диффузионно-барьерный слой из аморфной пленки Ta-W-N, обеспечивающей термическую стойкость контактной системы при высоких температурах. Технический результат: обеспечение временной термической стабильности, повышение механической прочности, надежности и эффективности термоэлемента с рабочими температурами из интервала 300-1000°С. 1 табл.
Description
Изобретение относится к термоэлектрическому оборудованию и может быть использовано при производстве термоэлектрических генераторов.
Известно техническое решение по патенту, в котором контактные поверхности полупроводников приводят в контакт с контактным материалом, прижимают, предварительно нагревают и сваривают, при этом как контактный материал, так и полупроводники имеют по крайней мере один из следующих элементов Та, W, Nb, Ti, Cr, Pd, V, Pt, Rh, Re, Cu, Ag, Ni, Fe, Co, Al, In, Sn, Pb, Те, Sb, Bi, Se, S, Au, Zn, Si и Ge /1/. Контактные поверхности полупроводников снабжены диффузионными барьерами. Полупроводники имеют соединения элементов четвертой и шестой главной группы. В техническом решении, в основном, излагаются различные виды сварки, применяют контактную, точечную рельефную или шовную сварки в атмосфере защищенного газа или в вакууме. Однако, предложенное техническое решение сложно в части выполнения подготовки и проведения дополнительных операций, а также используемого оборудования.
Известно техническое решение по патенту, в котором на полупроводники методом вакуумного напыления из электродуговой сепарированной плазмы наносят барьерное покрытие, при этом предварительно обработав их плазмохимическим травлением, а поверх барьерного покрытия наносят адгезионное покрытие из Ni, Mo, Cu /2/. Однако данное техническое решение является нетехнологичным.
Известно техническое решение по патенту, в котором для соединения термоэлементов на их ветви производят ионно-плазменное нанесение слоя молибдена или вольфрама, а затем наносят слой никеля или кобальта, чередующееся с его обработкой ионами инертного газа, затем производят вакуумный отжиг, нанесение припоя и пайку ветвей термоэлемента с коммутационными шинами /3/. Вышеуказанные операции производят при определенных режимах. Однако данный способ не обеспечивает временную термическую стабильность контактов при высоких температурах.
Известно техническое решение «Термоэлектрический модуль и способ его получения» по патенту, в котором способ изготовления термоэлектрического элемента состоит из нескольких этапов: подготовка граней термоэлектрического полупроводника, состоящего из Bi-Sb-Te или Bi-Te-Se, нанесения слоя олова с его последующим нагревом и с формированием взаимодиффузии, нанесения диффузионного барьера, состоящего из группы элементов, в которую входят Mo, W, Nb или Ni, а также материала припоя /4/. Слой олова наносится распылением или способом осаждения из паровой фазы, а последующие все слои образуются непрерывно в вакууме. Однако данное техническое решение сложно в производстве, а кроме того данный способ не обеспечивает получение термостабильных контактов с достаточной адгезионной прочностью слоев.
Известно техническое решение, где исследована возможность применения тонкопленочных контактных слоев для формирования омического контакта к термоэлектрическим материалам на основе (Bi, Sb)2Те3 с рабочим диапазон температур до 600 К /5/. Методом магнетронного ионно-плазменного распыления было получено три варианта контактов: Ni; Mo/Ni и Ni/Ta-W-N/Ni. Установлена, надежность контактов Mo/Ni и Ni/Ta-W-N/Ni до 577 К. Однако выше указанных температур исследования не проводились. Отсутствие необходимой механической обработки поверхности термоэлектрических материалов и ее высокая шероховатость приводит к деформации наносимых пленок, через контакты из Ni из-за этого идет интенсивная диффузия теллура, по этой же причине при температуре 577 К через контакты Mo/Ni также начинается диффузия теллура. Одновременно, при повышенных температурах, происходит интенсивная диффузия Ni в термоэлектрический материал, что приводит к деградации полупроводникового материала и увеличению контактного сопротивления. Такая же ситуация наблюдается при использовании контактов на основе Ni/Ta-W-N/Ni. В связи с этим элементы Cu, Ag, Au, Со, Ni, при повышенных температурах не целесообразно применять в качестве непосредственного контакта с полупроводниковыми материалами без диффузионного барьерного слоя.
Наиболее близким техническим решением является «Способ изготовления термоэлектрического элемента» по патенту, в котором способ изготовления термоэлектрического элемента состоит из нескольких этапов: создание системы контактных слоев из гомогенного многокомпонентного сплава А - В - С, где компонент А включает по крайней мере один из металлов второй подгруппы первой и восьмой группы периодической системы элементов и сплавов между ними, например Co, Ni, Fe, Pb, компонент В - элементы второй подгруппы четвертой, пятой и шестой групп, например, Ti, Zr, Та, Nb, компонент С - включает азот, углерод, кислород, бор; термообработка либо в вакууме, либо в восстановительной среде, либо в инертной атмосфере, формирование многослойной структуры; формирование диффузионно-барьерного слоя, формирование низкоомного контактного слоя; рост наноструктурированного материала на диффузионно-барьерном слое; заполнение металлами с высокой электропроводностью свободного пространства; образование композиционного проводящего материала; коммутацию ветвей n- и p-типа /6/. Однако данное техническое решение очень сложно в производстве, кроме того компонент А, формируемый на границе с полупроводниковой ветвью и состоящий из одного из металлов второй подгруппы первой и восьмой группы периодической системы элементов, взаимодействует с материалом полупроводника. Это приводит к образованию на границе интерметаллических соединений и деградации полупроводникового материала, снижению механической прочности и увеличению контактного сопротивления. Все указанное снижает эффективность термоэлемента. В связи, с этим при высоких температурах элементы второй подгруппы первой и восьмой групп периодической таблицы элементов не целесообразно применять в качестве непосредственного контакта с полупроводниковыми материалами без диффузионного барьерного слоя.
Задачей изобретения является обеспечение временной термической стабильности термоэлемента, повышение механической прочности, надежности и эффективности термоэлемента с рабочими температурами из интервала 300 - 1000°С.
Для достижения указанного результата предложен способ изготовления высокотемпературного термоэлемента, состоящего из двух полупроводниковых ветвей n-и p-типа проводимости, верхние грани которых соединены общей коммутирующей шиной, а к каждой нижней грани ветвей подсоединена своя индивидуальная коммутирующая шина, включающий подготовку поверхностей верхней и нижней граней ветвей термоэлемента, создание контактных систем, состоящих из контактных слоев, между гранями ветвей термоэлемента и коммутирующими шинами, отличающийся тем, что ветви термоэлемента изготавливают из полупроводниковых материалов, представляющих собой твердые растворы SiGe n-типа проводимости, легированного Р, и SiGe р-типа проводимости, легированного В, поверхности граней ветвей с помощью механической обработки подготавливаются до шероховатости, не превышающей толщину первого наносимого слоя контактной системы, использованием в качестве первого слоя тяжелых металлов Мо или W с низким удельным сопротивлением, созданием между первым слоем и коммутационным слоем дополнительного диффузионно-барьерного слоя из аморфной пленки Ta-W-N, обеспечивающей термическую стойкость контактной системы при высоких температурах.
Предлагаемый способ осуществляется следующим образом.
На ветвях, изготовленных из SiGe n-типа проводимости, легированного Р, и SiGe р-типа проводимости, легированного В, поверхности граней ветвей с помощью механической обработки подготавливаются до шероховатости, которая не должна превышать толщину первого контактного слоя контактной системы, формируемого на поверхностях граней ветвей. При шероховатости поверхностей граней выше толщины контактного слоя, происходит его деформация, приводящая к разрывам и, как следствие, взаимной диффузии элементов полупроводниковых материалов и материалов контактных слоев через разрывы, снижение адгезии и увеличение электрического сопротивления контактов.
После механической обработки производят удаление остатков отработанного полупроводникового материала. Финишную подготовку поверхности проводят с помощью изопропилового спирта с последующей сушкой азотом.
На подготовленных поверхностях граней ветвей, изготовленных из полупроводниковых материалов, производят последовательно формирование любым известным методом контактных слоев контактной системы, например, вакуумным напылением, химическим, или электрохимическим осаждением. В качестве первого слоя, непосредственно на поверхности полупроводникового материала, формируется слой, состоящий из Мо или W, обеспечивающий омический контакт и адгезионную прочность с полупроводниковым материалом, а также выполняющий функции диффузионно-барьерного слоя. Мо и W являются тяжелыми металлами, обладающими низкой диффузионной проницаемостью. Кроме того, Мо и W имеют низкое удельное сопротивление, что способствует получению омических контактов. Контактные системы в эффективных термоэлементах должны обладать адгезионной прочностью порядка 15 МПа и выше и удельным контактным сопротивление не превышающим 10-9 Ом⋅м2.
На первом слое формируется дополнительный диффузионно-барьерный слой из аморфной пленки, состоящий из сплава Ta-W-N. Для аморфного состояния характерна идеальная атомно-структурная однородность, а отсутствие дефектов кристаллического строения (дислокации, вакансий, границ зерен и т.д.) предопределяет исключительно высокую химическую инертность аморфных пленок, их малую диффузионную проницаемость и, соответственно, высокую термическую стабильность. В результате устраняется взаимная диффузия элементов полупроводникового материала и контактных слоев до 1000°С, которая приводит к деградации полупроводникового материала, снижению адгезии и увеличению контактного сопротивления
Третий слой, обеспечивающий коммутацию ветвей термоэлементов с шиной, формируется из элементов второй подгруппы первой и восьмой групп периодической таблицы элементов, например Cu, Ag, Au, Co, Ni.
После формирования контактных систем на ветвях термоэлемента производится коммутация ветвей, верхние грани которых соединяются общей коммутирующей шиной путем неразъемного соединения, образуя горячий спай термоэлемента, а к каждой нижней грани ветвей подсоединяется своя индивидуальная коммутирующая шина, которые образуют холодный спай термоэлемента.
Пример осуществления способа изготовления высокотемпературного термоэлемента с ветвями, изготовленных из полупроводниковых материалов на основе SiGe, с рабочими температурами термоэлемента из интервала 300 - 1000°С.
Поверхности граней ветвей термоэлемента, изготовленных из твердых растворов на основе SiGe n-типа проводимости, легированного Р, и SiGe р-типа проводимости, легированного В, механически обрабатываются до шероховатостей 0,6 и 0,2 мкм. После механической обработки производят удаления остатков отработанного полупроводникового материала в растворителе Нефрас С2-80/120 и затем деионизованной воде. Финишную подготовку поверхностей граней ветвей перед загрузкой в вакуумную камеру напылительной системы проводят с помощью изопропилового спирта (Kontakt IPA) с последующей сушкой азотом. В вакуумной камере производят вакуумно-термический отжиг ветвей при начальном давлении 4×10-5 Па и температуре 200°С. После отжига проводят очистку поверхностей граней ветвей бомбардировкой ионами аргона в течение 30 секунд.
Нанесение слоев контактных систем на обработанные грани ветвей производят методом магнетронного ионно-плазменного напыления в едином вакуумном цикле, на не нагретые ветви полупроводниковых материалов. Остаточное давление в вакуумной камере не выше 1×10-3 Па, при давлении рабочего газа Ar 6×10-1 Па.
Для сравнительного анализа характеристик контактных систем сформированных на поверхностях граней ветвей с шероховатостью большей и меньшей толщины первого наносимого слоя контактной системы их формируют на поверхностях с шероховатостью 0,6 и 0,2 мкм.
Для определения влияния наличия дополнительного диффузионно-барьерного слоя на характеристики контактной системы формируют эти системы с наличием слоя Ta-W-N, толщиной 0,4 мкм и без него.
Для определения термической стабильности контактных систем проводят их термотренировку (термическое воздействие) при температурах 300 и 1000°С в течении 600 мин.
Затем исследуют с помощью ОЖЕ электронной спектроскопии взаимную диффузию полупроводниковых материалов и материалов контактных слоев, а также измеряют адгезионную прочность, методом прямого отрыва и удельное сопротивление контакта (контактная система - полупроводниковый материал), методом линейной аппроксимации.
Нанесение контактной системы Mo,0.4/Ni,0.2 на нижние грани ветвей термоэлемента, образующие его холодный спай, работающий при температурах 300°С, производят путем последовательного распыления, сначала мишени Мо, затем мишени Ni. Осаждение Мо осуществляется при скорости 0,10 нм/с, толщина слоя 0,4 мкм. Осаждения Ni осуществляется при скорости 0,35 нм/с, толщина слоя 0,2 мкм.
Нанесение трехслойной контактной системы Mo,0.4/Ta-W-N,0.4/Ni,0.2, на нижние и верхние грани ветвей термоэлемента, производят путем последовательного распыления сначала мишени Мо в среде аргона, затем мишени Ta-W в среде смеси газов аргона и азота, затем мишени Ni. Осаждение слоев Мо и Ni проводят при режимах, указанных выше, при тех же толщинах слоев. Осаждение слоя сплава Ta-W-N реактивное и производится в следующих режимах: остаточное давление в вакуумной камере не выше 1×10-3 Па; давление реактивного рабочего газа N2 в вакуумной камере 4×10-2 Па; давление рабочего газа Ar в вакуумной камере 6×10-1 Па; скорость осаждения слоя Ta-W-N, 0,1 нм/с; толщина осаждаемой пленки 0,4 мкм.
После формирования контактных систем производится коммутация ветвей, верхние грани которых соединяются общей коммутирующей шиной путем неразъемного соединения, образуя горячий спай термоэлемента, а к каждой нижней грани ветвей подсоединяется своя индивидуальная коммутирующая шина, которые образуют холодный спай термоэлемента.
В таблице 1 представлены результаты исследования контактных систем с различными контактными слоями, сформированными на гранях ветвей, изготовленных из полупроводниковых материалов на основе SiGe. Результаты исследований показывают, что высокая шероховатость с наличием резких пиков и впадин приводит к деформации контактного слоя. При шероховатости (0,6 мкм) выше толщины первого наносимого слоя Мо (0,4 мкм), происходит диффузия материала через разрывы, снижение адгезии и увеличение электрического сопротивления контактов.
По результатам, представленным в таблице видно, что контактная система Mo,0.4/Ni,0.2 без дополнительного диффузионно-барьерного слоя не обеспечивает временную термическую стойкость даже при температуре 300°С. Взаимная диффузия элементов полупроводниковых материалов и никеля снижает адгезионную прочность и увеличивает контактное сопротивление. Это устраняется при введении дополнительного барьерного слоя Ta-W-N толщиной 0,4 мкм.
Таким образом, предложенный способ изготовления высокотемпературного термоэлемента обеспечивает термическую стойкость, высокую адгезию, низкое контактное сопротивление контактной системы к полупроводниковому материалу, обеспечивая временную термическую стабильность термоэлемента, повышение механической прочности, надежности и эффективности термоэлемента и термоэлектрических генераторов, использующих термоэлементы, полученные предложенным способом, с рабочими температурами из интервала 300 - 1000°С.
Источники информации:
1. Патент РФ №2475889.
2. Патент РФ №2425434.
3. Патент РФ №2150160.
4. Патент РФ №2151450.
5. Gromov D.G., Shtern Yu.I., Rogachev M.S., Shulyat'ev A.S., Kirilenko E.P., Shtern M.Yu., Fedorov V.A., Mikhailova M.S. Mo/Ni and Ni/Ta-W-N/Ni Thin-Film Contact Layers for (Bi, Sb)2Te3-Based Intermediate-Temperature Thermoelectric Elements // Inorganic Materials.-2016.-V. 52, №11.-P. 1132-1136.
6. Патент РФ №2601243.
Claims (1)
- Способ изготовления высокотемпературного термоэлемента, состоящего из двух полупроводниковых ветвей n- и p-типа проводимости, верхние грани которых соединены общей коммутирующей шиной, а к каждой нижней грани ветвей подсоединена своя индивидуальная коммутирующая шина, включающий подготовку поверхностей верхней и нижней граней ветвей термоэлемента, создание контактных систем, состоящих из контактных слоев между гранями ветвей термоэлемента и коммутирующими шинами, отличающийся тем, что ветви термоэлемента изготавливают из полупроводниковых материалов, представляющих собой твердые растворы SiGe n-типа проводимости, легированного Р, и SiGe p-типа проводимости, легированного В, поверхности граней ветвей с помощью механической обработки подготавливаются до шероховатости, не превышающей толщину первого наносимого слоя контактной системы, используют в качестве первого слоя тяжелые металлы Мо или W с низким удельным сопротивлением, создают между первым слоем и коммутационным слоем дополнительный диффузионно-барьерный слой из аморфной пленки Ta-W-N, обеспечивающей термическую стойкость контактной системы при высоких температурах.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020141675A RU2757681C1 (ru) | 2020-12-17 | 2020-12-17 | Способ изготовления высокотемпературного термоэлемента |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020141675A RU2757681C1 (ru) | 2020-12-17 | 2020-12-17 | Способ изготовления высокотемпературного термоэлемента |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2757681C1 true RU2757681C1 (ru) | 2021-10-20 |
Family
ID=78286453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020141675A RU2757681C1 (ru) | 2020-12-17 | 2020-12-17 | Способ изготовления высокотемпературного термоэлемента |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2757681C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820509C1 (ru) * | 2023-12-27 | 2024-06-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" | Способ коммутации высокотемпературных термоэлементов |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09243201A (ja) * | 1996-03-08 | 1997-09-19 | Ngk Insulators Ltd | 熱電変換装置およびその製造方法 |
RU2150160C1 (ru) * | 1999-02-16 | 2000-05-27 | Московский государственный институт электронной техники | Способ коммутации термоэлемента |
JP2008010612A (ja) * | 2006-06-29 | 2008-01-17 | Komatsu Ltd | 熱電素子及びその製造方法、並びに、熱電モジュール |
RU2425434C2 (ru) * | 2009-10-22 | 2011-07-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э. Баумана" | Способ изготовления термоэлектрического модуля с увеличенным сроком службы |
RU2601243C1 (ru) * | 2015-06-25 | 2016-10-27 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) | Способ получения термоэлектрического элемента |
-
2020
- 2020-12-17 RU RU2020141675A patent/RU2757681C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09243201A (ja) * | 1996-03-08 | 1997-09-19 | Ngk Insulators Ltd | 熱電変換装置およびその製造方法 |
RU2150160C1 (ru) * | 1999-02-16 | 2000-05-27 | Московский государственный институт электронной техники | Способ коммутации термоэлемента |
JP2008010612A (ja) * | 2006-06-29 | 2008-01-17 | Komatsu Ltd | 熱電素子及びその製造方法、並びに、熱電モジュール |
RU2425434C2 (ru) * | 2009-10-22 | 2011-07-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э. Баумана" | Способ изготовления термоэлектрического модуля с увеличенным сроком службы |
RU2601243C1 (ru) * | 2015-06-25 | 2016-10-27 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) | Способ получения термоэлектрического элемента |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820509C1 (ru) * | 2023-12-27 | 2024-06-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" | Способ коммутации высокотемпературных термоэлементов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100310478B1 (ko) | 열전소자및그제조방법 | |
US10147859B2 (en) | Thermoelectric power module | |
Bae et al. | Diffusion at interfaces of micro thermoelectric devices | |
CN107427967B (zh) | 用于预处理用于金属化、互连和接合的半导电热电材料的方法 | |
CN110178234B (zh) | 热电模块 | |
US7545043B2 (en) | Device comprising multi-layered thin film having excellent adhesive strength and method for fabricating the same | |
KR102487993B1 (ko) | 열전 모듈 | |
RU2757681C1 (ru) | Способ изготовления высокотемпературного термоэлемента | |
Gromov et al. | Mo/Ni and Ni/Ta–W–N/Ni thin-film contact layers for (Bi, Sb) 2 Te 3-based intermediate-temperature thermoelectric elements | |
RU2601243C1 (ru) | Способ получения термоэлектрического элемента | |
Chen et al. | Pd/Ag thin film deposited on negative temperature coefficient (NTC) ceramics by direct current magnetron sputtering | |
KR102340798B1 (ko) | 열전 소자 및 이를 포함하는 열전 모듈 | |
Lin et al. | Bonding/barrier layers on bismuth telluride (Bi 2 Te 3) for high temperature applications | |
WO2021077095A9 (en) | Integrated thermoelectric devices on insulating media | |
RU2150160C1 (ru) | Способ коммутации термоэлемента | |
Shtern et al. | Contact Systems for Multisectional Generator Thermoelements | |
CN116914558B (zh) | 一种半导体激光器接触电极及其制备方法 | |
JPH07122724A (ja) | n型半導体立方晶窒化ホウ素のオ−ミック電極およびその形成方法 | |
JPS6360537A (ja) | 金属積層体及びその製造方法 | |
CN110178235A (zh) | 热电模块 | |
KR102363224B1 (ko) | 다층 확산방지층을 포함하는 열전 소재 및 이를 구비하는 열전 소자 | |
Shtern et al. | Chemical and Electrochemical Methods for Producing Contacts to Thermoelements Based on Bismuth and Antimony Chalcogenides | |
CN118251112A (zh) | 一种多层薄膜热电器件及其制备方法 | |
Antonyuk et al. | Imroved reliability contact connecting structures for bismuth telluride based thermoelectric materials | |
TWI300255B (en) | Composite material as barrier layer in cu diffusion |