RU2742274C2 - Новое устройство разделения газа/жидкости, предназначенное для реакторов с трехфазным псевдоожиженным слоем, подобных используемым в процессе h-oil - Google Patents

Новое устройство разделения газа/жидкости, предназначенное для реакторов с трехфазным псевдоожиженным слоем, подобных используемым в процессе h-oil Download PDF

Info

Publication number
RU2742274C2
RU2742274C2 RU2019117611A RU2019117611A RU2742274C2 RU 2742274 C2 RU2742274 C2 RU 2742274C2 RU 2019117611 A RU2019117611 A RU 2019117611A RU 2019117611 A RU2019117611 A RU 2019117611A RU 2742274 C2 RU2742274 C2 RU 2742274C2
Authority
RU
Russia
Prior art keywords
gas
liquid
axis
separation
zone
Prior art date
Application number
RU2019117611A
Other languages
English (en)
Other versions
RU2019117611A (ru
RU2019117611A3 (ru
Inventor
Бенжамин АМБЛАР
Даниель ФЕРР
Жан-Франсуа ЛЕ КО
Original Assignee
Ифп Энержи Нувелль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ифп Энержи Нувелль filed Critical Ифп Энержи Нувелль
Publication of RU2019117611A publication Critical patent/RU2019117611A/ru
Publication of RU2019117611A3 publication Critical patent/RU2019117611A3/ru
Application granted granted Critical
Publication of RU2742274C2 publication Critical patent/RU2742274C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/30Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/10Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles
    • C10G49/12Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/22Separation of effluents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00991Disengagement zone in fluidised-bed reactors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к устройству разделения газа/жидкости, размещаемому в зоне рециркуляции реакторов с трехфазным псевдоожиженным слоем, используемых в процессах гидрокрекинга тяжелых углеводородных остатков в присутствии водорода под высоким давлением, где зона (39) рециркуляции образована верхней полусферой реактора, в нижней части ограничена конической поверхностью (30), позволяющей возвращать в каталитическую зону отделенную жидкость. Устройство состоит из множества элементов разделения (27) и (28), функционирующих параллельно и установленных вертикально, начиная от конической поверхности (30) зоны (39) рециркуляции, при этом каждый из элементов разделения (27) и (28) имеет впускной канал (70) для газожидкостной смеси, открытый на конической поверхности (30), поднимающийся до высоты Н во внутреннем пространстве зоны (39) разделения и оканчивающийся последовательностью из двух изгибов. Первый изгиб лежит в плоскости (zy), определяемой осью z, по существу, вертикальной, и осью y, принадлежащей плоскости (ху), перпендикулярной оси z, и его ориентация определяется углом α, составляющим от 45 до 315°, предпочтительно от 60 до 300°, более предпочтительно от 80 до 200°, второй изгиб лежит в плоскости (ху), при этом ось х перпендикулярна оси у, и его ориентация определяется углом β, составляющим от 0 до 135°, предпочтительно от 10 до 110°, более предпочтительно от 30 до 100°, при этом два последовательных изгиба разделены расстоянием D1, составляющим от D/2 до 4D, предпочтительно от D/2 до 2D, где D означает диаметр канала (70). Изобретеие также касается способов гидрокрекинга тяжелых углеводородных остатков в трехфазном пседоожиженном слое с использованием устройства. Технический результат - эффективное разделение газа и жидкости. 3 н. и 2 з.п. ф-лы, 1 пр., 2 табл., 4 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение заключается в усовершенствовании определения параметров верхней части трехфазных реакторов, используемых в процессе «H-Oil», с целью достижения улучшенного разделения газовой и жидкой фаз в указанной верхней зоне, часто именуемой «recycle cup». Англоязычный термин «recycle cup» в настоящем тексте соответствует термину «зона рециркуляции жидкости» или, проще, «зона рециркуляции». Англоязычный термин «spirale riser» в настоящем тексте соответствует выражению «устройство разделения газа/жидкости».
Процесс «H-Oil» представляет собой способ гидрокрекинга тяжелых углеводородных остатков типа вакуумного газойля, в ходе которого образуется фаза жидких углеводородов, фаза газообразного водорода, диспергированная в форме пузырьков, и фаза катализатора, диспергированная в форме частиц, размер которых обычно составляет от 0,2 до 2 мм. Таким образом, в процессе «H-Oil» используется трехфазный псевдоожиженный слой, и для осуществления этого процесса применяют особый реактор, при этом, указанный реактор оборудован устройством разделения газа/жидкости, расположенным в верхней части реактора с тем, чтобы обеспечивать рециркуляцию жидкости, возвращаемой после отделения в реакционную зону реактора. Одним из важных параметров реакторов типа «H-oil» является степень рециркуляции жидкости, определяемая как отношение расхода рециркулируемой жидкости к расходу поступающей жидкости, которая, как правило, лежит в интервале от 1 до 10.
Настоящее изобретение можно определить как усовершенствованное устройство разделения газа/жидкости для реакторов типа «H-oil», которое обеспечивает возвращение большей части жидкости без газа в реакционную зону и выведение газа (который может еще содержать небольшое количество жидкости) из реактора.
Задачей настоящего изобретения является разработка устройства, позволяющего достичь эффективности разделения газа/жидкости, превосходящей соответствующий параметр для «spirale riser» известного уровня техники.
КРАТКОЕ ОПИСАНИЕ ФИГУР
На фиг. 1 представлена соответствующая известному уровню техники схема реактора с трехфазным псевдоожиженным слоем, используемого в процессе «H-oil». На этой фигуре можно видеть реакционную зону (22), соответствующую трехфазному псевдоожиженному слою, содержащему катализатор, зону, расположенную над каталитической зоной и именуемую зона (29) разделения газа/жидкости, которая позволяет рециркулировать жидкость в нижнюю часть реактора при помощи рециркуляционного насоса (20). Устройства разделения газа/жидкости представлены элементами (27) и (28), при этом, нижний край некоторых элементов находится в зоне (29), тогда как нижний край других элементов находится на конической поверхности «recycle cup» (39). Именно эти устройства разделения являются объектом настоящего изобретения, остальное в реакторе относительно известного уровня техники не изменено.
На фиг. 2 схематично представлено более подробное изображение верхней части реактора, именуемой зона рециркуляции жидкости, так как она оканчивается внутренним каналом (25) который, после разделения газа/жидкости, обеспечивает поступление жидкости в нижнюю часть реактора при помощи рециркуляционного насоса (20). Устройства разделения газа/жидкости (27) и (28) установлены вдоль конической поверхности (30) зоны рециркуляции. Поступление газожидкостной смеси осуществляется по каналам (70). Разделение газа/жидкости происходит в устройствах (55). Каждое устройство (55) состоит из трубчатого элемента (70), обеспечивающего поступление газожидкостной смеси, оканчивающегося последовательностью из двух изгибов, лежащих в двух различных плоскостях:
- первая плоскость, обозначенная (yz), перпендикулярна оси х,
- вторая плоскость, обозначенная (xy), перпендикулярна оси z.
По вертикали оба последовательные изгиба находятся на одной высоте. Высота по вертикали (по оси z) первого изгиба и высота по вертикали (по оси z) второго изгиба, по существу, одинаковы. Под «по существу» понимается перепад по вертикали, не превышающий величину D диаметра канала (70) поступления газожидкостной смеси.
Жидкость, стекающая после выхода из элементов разделения вдоль конической стенки (30), отводится по нисходящему выпускному каналу (25), газ выходит из второго изгиба каждого из элементов разделения (27) и (28). Газ занимает верхнюю часть (39V) зоны (39) разделения, находящуюся над межфазной поверхностью (24) газ/жидкость, и выходит из реактора по выпускному каналу (67).
На фиг. 3 представлена информация, позволяющая произвести определение параметров соответствующих изобретению устройств разделения (27) и (28). В частности, отмечены угол альфа первого изгиба и угол бета второго изгиба, а также расстояние D1, разделяющее два последовательных изгиба.
На фиг. 4 визуально представлена эффективность разделения газа/жидкости, полученная путем трехмерного моделирования при помощи программного обеспечения Fluent™. Это моделирование относится к выходу устройства разделения и к зоне рециркуляции в целом. Оно позволяет посредством оттенков серого цвета отобразить присутствие газа (светло-серый) и локализацию жидкости (темно-серый). Чем темнее оттенок серого, тем больше присутствует жидкости.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
При исследовании известного уровня техники в области разделения газа/жидкости в трехфазных реакторах типа «H-oil» выявлен документ US 4886644, кратко проанализированный ниже:
Патент US 4886644, который можно рассматривать как наиболее современный уровень техники, посвящен концепции «spiral riser» в процессе «H-oil».
Основные пункты формулы изобретения относятся к конструкции «spiral riser» (число оборотов спирали и угол по отношению к горизонтали).
Описываемый в цитируемом тексте «recycle cup» соответствует верхней части реактора, которая позволяет, после разделения газа и жидкости, возвращать жидкость в реакционную зону реактора и выводить газ по соответствующему каналу.
Авторами в нижеследующем тексте вместо «recycle cup» использованы термины «верхняя зона рециркуляции жидкости» или просто «зона рециркуляции».
В документе US 4886644, кроме того, показана компоновка верхней зоны рециркуляции, в которой канал отведения газа/жидкости в верхней части реактора объединен с гидроциклоном.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение можно определить как устройство разделения газа/жидкости, размещаемое в зоне рециркуляции реакторов с трехфазным псевдоожиженным слоем, используемых в процессах гидрокрекинга тяжелых углеводородных остатков в присутствии водорода под высоким давлением, процесса, именуемого авторами «H-oil». Вообще, настоящее устройство может быть использовано в реакторах всех типов с трехфазным псевдоожиженным слоем, где требуется разделение газа и жидкости.
Под процессом, осуществляемым в трехфазном псевдоожиженном слое, понимается процесс, в котором в реакционной зоне присутствуют три фазы: жидкая фаза, представляющая собой, как правило, подлежащий обработке материал, газовая фаза под высоким давлением, как правило, водород, и твердая фаза, соответствующая катализатору в форме твердых частиц, чаще всего, с диаметром в диапазоне от 0,2 до 2 мм, предпочтительно, от 0,7 до 1,5 мм.
Устройство разделения, соответствующее настоящему изобретению, состоит из множества элементов разделения (27) и (28), функционирующих параллельно и установленных вертикально, начиная от конической поверхности (30) зоны (39) рециркуляции.
Зона (39) рециркуляции включает верхнюю часть (39V), соответствующую газу, и нижнюю часть (39L), соответствующую жидкости. Эти две зоны во время функционирования разделены межфазной поверхностью (24) газ/жидкость.
Каждый из элементов разделения (27) и (28) оканчивается последовательностью из двух изгибов:
первый изгиб лежит в плоскости (z,y), второй изгиб лежит в плоскости (x,y).
Ориентация первого изгиба в плоскости (yz) определяется углом α, составляющим от 45° до 315°, предпочтительно, от 60° до 300°, более предпочтительно, от 80° до 200°.
Ориентация второго изгиба в плоскости (xy) определяется углом β, составляющим от 0° до 135°, предпочтительно, от 10° до 110°, более предпочтительно, от 30° до 100°.
Ось z соответствует вертикальной оси, плоскость (xy) представляет собой плоскость, перпендикулярную оси z, таким образом, плоскость, по существу, горизонтальную.
Два последовательных изгиба разделены расстоянием D1, составляющим от D/2 до 4D, предпочтительно, от D/2 до 2D, где D означает диаметр канала (70).
Устройство разделения газа/жидкости, соответствующее настоящему изобретению, характеризуется, вообще, плотностью размещения элементов разделения (27) и (28) от 5 до 70 единиц на м2 пустого корпуса реактора.
Настоящее изобретение также может быть определено как способ гидрокрекинга тяжелых углеводородных остатков в трехфазном псевдоожиженном слое с использованием устройства разделения газа/жидкости, соответствующего отличительным особенностям, изложенным выше, при этом, указанный способ осуществляют при следующих рабочих условиях:
- абсолютное давление от 2 до 35 МПа, предпочтительно, от 5 до 25 МПа, более предпочтительно, от 6 до 20 МПа, и
- температура от 300°С до 550°С, предпочтительно, от 350°С до 500°С, более предпочтительно, от 370°С до 430°С, наиболее предпочтительный диапазон температуры составляет от 380°С до 430°С,
- поверхностная скорость восходящего потока внутри каждого из впускных каналов (70), вообще, составляет от 0,1 до 20 м/с, предпочтительно, от 0,2 до 15 м/с, более предпочтительно, от 0,3 до 10 м/с.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Для лучшего понимания изобретения необходимо кратко описать функционирование реактора известного уровня техники типа «H-oil», подобного изображенного на фиг. 1. На фиг. 1 представлена типичная схема, отражающая принципиальные элементы реактора типа «H-oil», соответствующего известному уровню техники. Этот реактор сконструирован особым образом с использованием надлежащих материалов, позволяющих производить операции с реакционноспособными жидкостями, суспензиями жидкость/твердая фаза (то есть, жидкостями, содержащими суспендированные в них мелкие твердые частицы), твердыми телами и газами при повышенных температуре и давлении, и предназначен, предпочтительно, для обработки водородом жидких углеводородных остатков при высокой температуре и высоком давлении, то есть, давлении от 2 до 35 МПа, предпочтительно, от 5 до 25 МПа, более предпочтительно, от 6 до 20 МПа и температуре от 300°С до 550°С, предпочтительно, от 350°С до 500°С, более предпочтительно, от 370°С до 460°С, при этом, наиболее предпочтительный диапазон температуры составляет от 380°С до 440°С.
Реактор (10) типа «H-oil» снабжен надлежащим впускным каналом (12) для подачи загрузки тяжелых углеводородов (11) и газа (13), содержащего водород. Выпускные каналы расположены в верхней части реактора (10). Выпускной канал (40) предназначен для отведения паров, которые могут содержать некоторое количество жидкости, и, по выбору, канал (24) позволяет отводить, преимущественно, жидкость. В реакторе также имеется система, позволяющая вводить и выводить частицы катализатора, схематично показанная как канал (15) для подачи свежего катализатора (16) и канал (17) для отведения использованного катализатора (14).
Загрузку тяжелых углеводородов производят по каналу (11), тогда как газ, содержащий водород, подают по каналу (13). Затем загруженная смесь и газообразный водород поступают по каналу (12) в реактор (10), в нижнюю часть реактора.
Поступившая текучая среда проходит через пластину (18) с надлежащими распределителями. На данной схеме показаны распределители типа «bubble-cap» (колпачки) (19), однако, понятно, может быть использован любой распределитель, известный специалистам в данной области, позволяющий распределять текучую среду, поступающую по каналу (12), по всей площади сечения реактора 10 наиболее равномерным образом.
Смесь жидкость/газ поднимается вверх, частицы катализатора вовлекаются в движение кипящего слоя потоком газа и потоком жидкости, создаваемым циркуляционным насосом (20), который может находиться внутри или вне реактора (10).
Восходящего потока жидкости, подаваемой насосом (20), достаточно для того, чтобы катализатор, находящийся в зоне реакции или каталитическом слое (22), увеличился в объеме, по меньшей мере, на 10%, предпочтительно, от 20 до 100% относительно объема в статичном состоянии (то есть, неподвижном) слоя катализатора, благодаря чему также возможен поток газа и жидкости через реактор (10), как показано стрелкой (21).
Из-за равновесия сил трения, порожденных восходящим потоком газа и жидкости, и силы тяжести, направленной вниз, слой частиц катализатора достигает верхнего уровня расширения, тогда как более легкие жидкость и газ продолжают двигаться в верхнюю часть реактора (10), выше уровня твердой фазы. На схеме максимальный уровень расширения катализатора соответствует межфазной поверхности (23). Ниже межфазной поверхности (23) находится зона (22) каталитической реакции, которая простирается от решетки (18) до уровня (23).
Выше межфазной поверхности (23) находится зона (39), в которой присутствуют только газ и жидкость. Частицы катализатора в реакционной зоне (22) движутся хаотично и находятся в псевдоожиженном состоянии, из-за чего такую реакционную зону называют трехфазной псевдоожиженной зоной.
Зона (29) с незначительной концентрацией катализатора, находящаяся выше уровня (23), заполнена движущимися жидкостью и газом. Газ отделяют от жидкости в верхней части реактора, именуемой «recycle cap» (30), с целью сбора и рециркуляции большей части жидкости по центральному каналу (25). Важно, что жидкость, рециркулируемая по центральному каналу (25), содержит как можно меньше газа или вообще не содержит газа, чтобы исключить явление кавитации в насосе (20).
Жидкие продукты, остающиеся после разделения газа/жидкости, могут быть отведены по каналу (24). Канал (40) используют для отведения газа.
Расширяющаяся часть на верхнем конце канала (25) образует зону рециркуляции жидкости 39V и 39L. Множество элементов разделения (27) и (28), ориентированных вертикально, связывает зону (29) газа/жидкости и зону (39) рециркуляции.
Газожидкостная смесь поднимается вверх по каналам элементов разделения (27) и (28). Часть отделенной жидкости затем направляется по центральному каналу (25) в направлении стрелки (31) к рециркуляционном насосу (20) и, таким образом, рециркулируется в нижнюю часть реактора (10) под решеткой (18).
Газ, отделенный от жидкости, движется в верхнюю часть реактора (10), откуда его отводят по верхнему каналу (40). Отведенный газ затем подвергают обычной обработке, направленной на как можно более полное отделение водорода, который рециркулируют в реактор по каналу (13).
В настоящем изобретении общая схема рециркуляции текучих сред не изменена относительно известного уровня техники, описанного выше. Модифицирована только геометрия элементов разделения (27) и (28) и геометрические параметры зоны (39) рециркуляции.
На фиг. 2 представлена более подробная схема зоны (39) рециркуляции, показанной на фиг. 1.
Газ и жидкость движутся в восходящем потоке, направление которого показано стрелкой (41), и поступают во впускные каналы (70), где направление потока сразу меняется, примерно, на 90° в первом изгибе и втором изгибе, которыми оканчиваются элементы разделения (27) и (28).
Уровень (24) отделяет верхнюю часть (39V), содержащую, преимущественно, отделенный газ, от нижней части (39L), содержащей, преимущественно, рециркулируемую жидкость. Разные порции (45) отделенной жидкости, выходящие из разных элементов разделения (27) и (28), текут вниз по конической стенке (30), собираются к центральному каналу (25) рециркуляции, по которому снова поступают в рециркуляционный насос (20).
Таким образом, большая часть жидкости (31) рециркулируется по центральному каналу (25) к насосу (20), создающему псевдоожиженное состояние. Газ и небольшую часть неотделенной жидкости отводят по каналу (40) в направлении, показанном стрелкой (67). Канал (40), как правило, на нижнем конце снабжен прорезями (65), которые позволяют зафиксировать высоту межфазной поверхности (24) газ/жидкость.
На фиг. 3 подробно показана геометрия устройства разделения газа/жидкости, соответствующего изобретению, и геометрические размеры, существенные для определения параметров указанного устройства.
Диаметр впускного канала (70) каждого из элементов разделения (27) и (28), как правило, составляет от 0,02 м до 0,5 м, предпочтительно, от 0,05 м до 0,4 м, более предпочтительно, от 0,1 м до 0,3 м.
Поверхностная скорость жидкости в восходящем потоке, направление которого показано стрелкой (41), как правило, составляет от 0,1 до 20 м/с, предпочтительно, от 0,2 до 15 м/с, более предпочтительно, от 0,3 до 10 м/с.
Ориентация первого изгиба в плоскости (yz) определяется углом α. Величина угла α составляет от 45° до 315°, предпочтительно, от 60° до 300°, более предпочтительно, от 80° до 200°.
Ориентация второго изгиба в плоскости (xy) определяется углом β. Величина угла β составляет от 0° до 135°, предпочтительно, от 10° до 110°, более предпочтительно, от 30° до 100°.
Высота Н1 между межфазной поверхностью (24) газ/жидкость и вторым изгибом в плоскости (ху) составляет от D до 10D, предпочтительно, от 2D до 5D, где D означает диаметр канала (70).
Расстояние D, разделяющее два последовательных изгиба, составляет от D/2 до 4D, предпочтительно, от D/2 до 2D, где D означает диаметр канала (70).
ПРИМЕРЫ, СООТВЕТСТВУЮЩИЕ ИЗОБРЕТЕНИЮ
В данном примере представлены параметры устройства разделения газа/жидкости, соответствующего изобретению. Рабочие условия процесса, а также геометрические параметры устройства, приведены в таблице 1.
Таблица 1. Рабочие условия в зоне рециркуляции и геометрические параметры разделителя
Расход газовой и жидкой фаз, поступающих в зону рециркуляции
Жидкость
Расход кг/с 257,5
Плотность кг/м3 730,3
Газ
Расход кг/с 12,9
Плотность кг/м3 32,6
Количество устройств разделения, соответствующих изобретению 35
Диаметр каждого канала (70)
Угол α первого изгиба 90°
Угол β второго изгиба 90°
Эффективность разделения газа/жидкости определяли по уравнению 1, приведенному ниже. Номера потоков соответствуют фиг. 3.
Эффективность отделения газа (% мас.)=Расход газа (67)/Расход газа (41) Ур. 1
В таблице 2 приведены значения достигнутой эффективности отделения газа и жидкости.
Таблица 2. Эффективность разделения
Эффективность отделения газа 100%
Трехмерное CFD-моделирование (computational fluid dynamics, (англ.) - вычислительная гидродинамика) изобретения осуществили при помощи программного обеспечения Fluent™.
Для каждой фазы (жидкой и газовой) использовали метод Эйлера и решали уравнения сохранения массы и количества энергии.
На фиг. 4 различными оттенками серого показана объемная доля жидкости в устройстве разделения, соответствующем изобретению, а также в зоне рециркуляции в целом. Чем больше интенсивность серого, тем выше концентрация жидкой фазы. Отмечается, что соответствующее изобретению устройство обеспечивает почти идеальное разделение газа и жидкости, которая образует нисходящий поток вдоль стенки (50). Газовая фаза выходит по трубе (53).

Claims (7)

1. Устройство разделения газа/жидкости, размещаемое в зоне рециркуляции реакторов с трехфазным псевдоожиженным слоем, используемых в процессах гидрокрекинга тяжелых углеводородных остатков в присутствии водорода под высоким давлением, где зона (39) рециркуляции образована верхней полусферой реактора, в нижней части ограничена конической поверхностью (30), позволяющей возвращать в каталитическую зону отделенную жидкость, при этом устройство состоит из множества элементов разделения (27) и (28), функционирующих параллельно и установленных вертикально, начиная от конической поверхности (30) зоны (39) рециркуляции, при этом каждый из элементов разделения (27) и (28) имеет впускной канал (70) для газожидкостной смеси, открытый на конической поверхности (30), поднимающийся до высоты Н во внутреннем пространстве зоны (39) разделения и оканчивающийся последовательностью из двух изгибов, первый изгиб лежит в плоскости (zy), определяемой осью z, по существу, вертикальной, и осью y, принадлежащей плоскости (ху), перпендикулярной оси z, и его ориентация определяется углом α, составляющим от 45 до 315°, предпочтительно от 60 до 300°, более предпочтительно от 80 до 200°, второй изгиб лежит в плоскости (ху), при этом ось х перпендикулярна оси у, и его ориентация определяется углом β, составляющим от 0 до 135°, предпочтительно от 10 до 110°, более предпочтительно от 30 до 100°, при этом два последовательных изгиба разделены расстоянием D1, составляющим от D/2 до 4D, предпочтительно от D/2 до 2D, где D означает диаметр канала (70).
2. Устройство по п. 1, в котором высота Н1 между концом выхода из второго изгиба, лежащего в плоскости (ху), и межфазной поверхностью (24) составляет от D до 10D, предпочтительно от 2D до 5D, где D означает диаметр канала (70).
3. Устройство по п. 1, в котором плотность размещения элементов разделения (27) и (28) составляет от 5 до 70 единиц на м2 пустого корпуса реактора.
4. Способ гидрокрекинга тяжелых углеводородных остатков в трехфазном псевдоожиженном слое с использованием устройства разделения газа/жидкости по любому из пп. 1-3, который осуществляют при следующих рабочих условиях:
- абсолютное давление от 2 до 35 МПа, предпочтительно от 5 до 25 МПа, более предпочтительно от 6 до 20 МПа, и
- температура от 300 до 550°С, предпочтительно от 350 до 500°С, более предпочтительно от 370 до 430°С, наиболее предпочтительный диапазон температуры составляет от 380 до 430°С.
5. Способ гидрокрекинга тяжелых углеводородных остатков в трехфазном псевдоожиженном слое с использованием устройства разделения газа/жидкости по любому из пп. 1-3, в котором поверхностная скорость восходящего потока внутри каждого из впускных каналов (70) составляет от 0,1 до 20 м/с, предпочтительно от 0,2 до 15 м/с, более предпочтительно от 0,3 до 10 м/с.
RU2019117611A 2016-11-09 2017-10-31 Новое устройство разделения газа/жидкости, предназначенное для реакторов с трехфазным псевдоожиженным слоем, подобных используемым в процессе h-oil RU2742274C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1660834A FR3058420B1 (fr) 2016-11-09 2016-11-09 Nouveau dispositif de separation gaz liquide pour equiper les reacteurs en lit fluidise triphasique tels que ceux utilises dans le procede h-oil
FR1660834 2016-11-09
PCT/EP2017/077847 WO2018086957A1 (fr) 2016-11-09 2017-10-31 Nouveau dispositif de separation gaz liquide pour equiper les reacteurs en lit fluidise triphasique tels que ceux utilises dans le procede h-oil

Publications (3)

Publication Number Publication Date
RU2019117611A RU2019117611A (ru) 2020-12-10
RU2019117611A3 RU2019117611A3 (ru) 2020-12-16
RU2742274C2 true RU2742274C2 (ru) 2021-02-04

Family

ID=58009966

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117611A RU2742274C2 (ru) 2016-11-09 2017-10-31 Новое устройство разделения газа/жидкости, предназначенное для реакторов с трехфазным псевдоожиженным слоем, подобных используемым в процессе h-oil

Country Status (10)

Country Link
US (1) US11286430B2 (ru)
EP (1) EP3538627B1 (ru)
CN (1) CN110023460B (ru)
ES (1) ES2827425T3 (ru)
FR (1) FR3058420B1 (ru)
PL (1) PL3538627T3 (ru)
PT (1) PT3538627T (ru)
RU (1) RU2742274C2 (ru)
SA (1) SA519401742B1 (ru)
WO (1) WO2018086957A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094984A1 (fr) 2019-04-12 2020-10-16 IFP Energies Nouvelles Reacteur triphasique avec coupelle de recycle de section decroissante et d’angle d’inclinaison variable
FR3094983B1 (fr) 2019-04-12 2024-01-19 Ifp Energies Now Reacteur triphasique avec coupelle de recycle tronconique a fort angle d’inclinaison
CN110465248A (zh) * 2019-09-11 2019-11-19 上海电气电站环保工程有限公司 沸腾床加氢反应器及其用途
FR3130832A1 (fr) * 2021-12-20 2023-06-23 IFP Energies Nouvelles Dispositif de séparation gaz-liquide avec une zone d’accompagnement du liquide en sortie, notamment pour réacteur en lit fluidisé triphasique
FR3130645A1 (fr) * 2021-12-20 2023-06-23 IFP Energies Nouvelles Distributeur de fluide avec un dispositif de répartition du fluide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414386A (en) * 1965-07-15 1968-12-03 Cities Service Res & Dev Co Reaction vessel for improved temperature regulation in exothermic reactions
US4886644A (en) * 1987-12-02 1989-12-12 Texaco Inc. Liquid degaser in an ebullated bed process
US5624642A (en) * 1994-10-14 1997-04-29 Amoco Corporation Hydrocarbon processing apparatus
US5665130A (en) * 1996-01-18 1997-09-09 Natural Resources Canada Riser terminator for internally circulating fluid bed reactor
RU2469765C2 (ru) * 2008-02-27 2012-12-20 КЕЛЛОГГ БРАУН ЭНД РУТ ЭлЭлСи Контактор с разделенным потоком

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106534A (ja) * 1983-11-14 1985-06-12 Mitsubishi Gas Chem Co Inc メタノ−ル合成用流動触媒
CN103657539B (zh) * 2012-09-10 2016-07-13 中国石油化工集团公司 一种沸腾床反应器
CN103769008B (zh) * 2014-02-12 2016-01-20 中国科学院上海高等研究院 浆态床内环流反应器
CN105582857B (zh) * 2014-10-21 2019-05-31 中国石油化工股份有限公司 一种气液固三相反应器及其应用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414386A (en) * 1965-07-15 1968-12-03 Cities Service Res & Dev Co Reaction vessel for improved temperature regulation in exothermic reactions
US4886644A (en) * 1987-12-02 1989-12-12 Texaco Inc. Liquid degaser in an ebullated bed process
US5624642A (en) * 1994-10-14 1997-04-29 Amoco Corporation Hydrocarbon processing apparatus
US5665130A (en) * 1996-01-18 1997-09-09 Natural Resources Canada Riser terminator for internally circulating fluid bed reactor
RU2469765C2 (ru) * 2008-02-27 2012-12-20 КЕЛЛОГГ БРАУН ЭНД РУТ ЭлЭлСи Контактор с разделенным потоком

Also Published As

Publication number Publication date
EP3538627A1 (fr) 2019-09-18
US20190270941A1 (en) 2019-09-05
ES2827425T3 (es) 2021-05-21
PL3538627T3 (pl) 2021-02-08
EP3538627B1 (fr) 2020-08-12
PT3538627T (pt) 2020-10-19
FR3058420A1 (fr) 2018-05-11
SA519401742B1 (ar) 2023-10-16
CN110023460A (zh) 2019-07-16
CN110023460B (zh) 2021-08-10
RU2019117611A (ru) 2020-12-10
RU2019117611A3 (ru) 2020-12-16
FR3058420B1 (fr) 2020-07-24
WO2018086957A1 (fr) 2018-05-17
US11286430B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
RU2742274C2 (ru) Новое устройство разделения газа/жидкости, предназначенное для реакторов с трехфазным псевдоожиженным слоем, подобных используемым в процессе h-oil
US20190321753A1 (en) New device for gas-liquid separation, intended for three-phase fluidised bed reactors such as those used in the h-oil process
EP0428796B1 (en) Liquid degaser in an ebullated bed process
MX2013009813A (es) Aparato y metodo de hidroconversion.
RU2699648C2 (ru) Способ и устройство, позволяющие ограничить унос твердых частиц на выходе трехфазного псевдоожиженного слоя
JP5389639B2 (ja) 三相蒸気分配器
CN110769927A (zh) 用于在含有流化介质的室内分配多相混合物的新型装置
WO2015188850A1 (en) Subsea separator
US4971678A (en) Liquid inventory control in an ebullated bed process
US2741546A (en) Floating control for fluidized solids system
RU2283679C2 (ru) Способ и устройство для разделения двухфазной смеси двух несмешивающихся текучих составляющих
JP4329313B2 (ja) 少なくとも1つのガス相および液相からなる混合物の内部分離装置
CN109722279A (zh) 一种内循环催化剂的沸腾床反应器及其加氢方法
US5098552A (en) Controlling foam circulation in an ebullated bed process
CA2003081C (en) Liquid degaser in an ebullated bed process
RU2488626C1 (ru) Реактор термической конверсии
AU2022418895A1 (en) Gas-liquid separation device with a zone for guiding the liquid at the outlet end, in particular for a three-phase fluidised bed reactor
RU2505352C1 (ru) Реактор каталитической перегруппировки
CA1314259C (en) Liquid degaser in an ebullated bed process
SU1754142A1 (ru) Экстрактор дл системы твердое тело - жидкость
Liaposhchenko et al. Hydrodynamics simulation and forecasting the efficiency of srparation oquipment oil stabilization unit of gnidyntsy gas processing plant
WO2014121722A1 (en) A slurry-bed reactor and method of use
RU87096U1 (ru) Устройство для разделения фаз
DE68904199T2 (de) Fluessigkeitsentgaser in einem fliessbettverfahren.
JPH03169336A (ja) 高圧反応容器に組合わせた再循環管