RU2725612C1 - Способ очистки регенерированной азотной кислоты от радиорутения - Google Patents

Способ очистки регенерированной азотной кислоты от радиорутения Download PDF

Info

Publication number
RU2725612C1
RU2725612C1 RU2019133091A RU2019133091A RU2725612C1 RU 2725612 C1 RU2725612 C1 RU 2725612C1 RU 2019133091 A RU2019133091 A RU 2019133091A RU 2019133091 A RU2019133091 A RU 2019133091A RU 2725612 C1 RU2725612 C1 RU 2725612C1
Authority
RU
Russia
Prior art keywords
nitric acid
ruthenium
solution
regenerated
purification
Prior art date
Application number
RU2019133091A
Other languages
English (en)
Inventor
Андрей Викторович Обедин
Владимир Николаевич Алексеенко
Елена Олеговна Григорьева
Антон Сергеевич Дьяченко
Артем Игоревич Коробейников
Павел Викторович Аксютин
Original Assignee
Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") filed Critical Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Priority to RU2019133091A priority Critical patent/RU2725612C1/ru
Application granted granted Critical
Publication of RU2725612C1 publication Critical patent/RU2725612C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/38Nitric acid
    • C01B21/46Purification; Separation ; Stabilisation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/46Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/08Processing by evaporation; by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к области переработки облученного ядерного топлива (ОЯТ), в частности к процессам переработки азотнокислых растворов. Способ очистки регенерированной азотной кислоты от радиорутения включает выпаривание из рутенийсодержащего раствора азотной кислоты в испарителе, конденсацию паров и получение раствора регенерированной азотной кислоты. Выпаривание проводят в присутствии карбогидразида, обладающего совместно высокими каталитическими и восстановительными свойствами, радикально препятствующего переходу рутения в парогазовую фазу. Изобретение позволяет получение раствора азотной кислоты, очищенного от рутения до предельно допустимого уровня (не более 100 мкг/л), что позволяет повторно использовать регенерированную азотную кислоту в радиохимическом производстве без проведения дополнительных стадий очистки. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области переработки облученного ядерного топлива (ОЯТ), в частности, к процессам переработки азотнокислых растворов. Изобретение может быть использовано в технологических схемах регенерации азотной кислоты.
Известные способы переработки ОЯТ предполагают растворение топливной композиции в азотной кислоте и дальнейшую переработку полученных растворов экстракционными методами. Уменьшение объема жидких радиоактивных отходов в известных способах проводят упариванием азотнокислых растворов с регенерацией азотной кислоты и вторичным использованием ее в технологической схеме [Б.В. Громов, Б.Н. Судариков, Э.Г. Раков и др. «Химическая технология облученного ядерного горючего», М., Атомиздат, 1971, стр. 406-421].
Присутствующий в азотнокислых растворах радиорутений (далее по тексту - рутений) в процессе упаривания окисляется с образованием летучего соединения: тетраокисида рутения (RuO4), которое переходит в газовую фазу вместе с парами азотной кислоты, тем самым загрязняет ее и создает дополнительные трудности для возврата в технологическую схему. Необходимость эффективной очистки регенерированной азотной кислоты от рутения является целью настоящего изобретения.
В литературе широко описаны методы позволяющие увеличить эффективность очистки азотной кислоты от рутения, в которых нитрит натрия, газообразные оксиды азота (NOx), сахарозу или формалин добавляют в выпарную установку [Патент GB 2025686 A, G21F 9/08, опубл. 23.01.1980, Патент GB 2217098, G21F 9/16 опубл. 23.01.1980]. Среди недостатков указанных методов следует отметить следующие: добавление нитрита натрия увеличивает солесодержание в жидких радиоактивных отходах, оксиды азота требуют применения специального оборудования для регулирования подачи в установку, сахароза и формалин разлагаются азотной кислотой и, соответственно, в системе газоочистки должен быть предусмотрен аппарат для улавливания и нейтрализации продуктов разложения, в том числе нитрозных газов.
Очевидно, что нитрит натрия и газообразные оксиды азота (NOx) приводят к образованию нитрозонитратных комплексов, сахароза и формалин - восстановители, препятствующие окислению рутения.
Известен способ увеличения эффективности очистки регенерированной азотной кислоты от рутения [Патент US 4526658, G21F 9/14, опубл. 02.07.1985], включающий выпаривание раствора азотной кислоты, содержащего рутений, в присутствии 20-5000 мг/л гидразина. Согласно изобретению гидразин может быть добавлен в раствор азотной кислоты до или после подачи его (раствора) в испаритель.
По технической сущности и достигаемому положительному эффекту этот способ является наиболее близким к заявляемому способу и выбран в качестве прототипа.
Недостатком прототипа является низкая химическая (гидролитическая) устойчивость растворов гидразина при высокой температуре и наличии в системе ионов металлов переменной валентности (железа и, особенно, технеция), возможность поступления азотистоводородной кислоты в раствор регенерированной азотной кислоты, что требует использования растворов с более высокой концентрацией гидразина [J. Garraway, P. D. Wilson. Journal of Less-Common Metals, 1984. Vol.97, pp 191-203].
Задачей изобретения является увеличение степени очистки регенерированной азотной кислоты с получением раствора кислоты, пригодного для дальнейшего использования в радиохимическом производстве.
Поставленная задача решается тем, что в способе очистки регенерированной азотной кислоты от радиорутения, включающем выпаривание из рутений-содержащего раствора азотной кислоты в испарителе, конденсацию паров и получение регенерированной азотной кислоты, выпаривание проводят в присутствии карбогидразида, обладающего совместно высокими каталитическими и восстановительными свойствами, радикально препятствующего переходу рутения в парогазовую фазу.
Техническим результатом изобретения является получение раствора азотной кислоты, очищенного от рутения до предельно допустимого уровня (не более 100 мкг/л), что позволяет повторно использовать регенерированную азотную кислоту в радиохимическом производстве без проведения дополнительных стадий очистки.
Сущность изобретения заключается в нейтрализации окислительного действия азотистой кислоты за счет введения в раствор более химически стойкого, по сравнению с прототипом, реагента - карбогидразида, скорость окисления которого в азотнокислых средах в зависимости от условий от 2 до 12 раз ниже, чем у гидразина. Введение в азотнокислый раствор карбогидразида предотвращает образование тетраоксида рутения и азотистоводородной кислоты, что в совокупности позволяет регенерировать азотную кислоту, пригодную для повторного использования в радиохимическом производстве.
Предполагаемый химизм взаимодействия карбогидразида и азотистой кислоты представлен уравнением (1):
Figure 00000001
Предлагаемый способ реализуют в соответствии с блок-схемой, изображенной на фиг. 1, в следующей последовательности. В емкость (1) с азотнокислым раствором, содержащим рутений, предварительно при постоянном перемешивании добавляют карбогидразид до достижения его концентрации 4-9 г/л в растворе. Перемешивание раствора осуществляют посредством барботажа сжатым воздухом. После добавления карбогидразида полученный раствор дозируют с помощью насоса (2) в нагревательную камеру испарителя (3), где проводят непрерывное выпаривание азотной кислоты при температуре 90-110°С в течение 4-8 часов, при этом в газовую фазу происходит отделение паров азотной кислоты, которые конденсируют в дефлегматоре (4) при температуре 5-10°С. В результате получают 180-360 г/л раствор азотной кислоты, содержащий следовые количества рутения (не более 100 мкг/л), при этом основная часть рутения сосредоточена в кубовом остатке. Регенерированную азотную кислоту собирают в емкость (5) и повторно используют на операции растворения отработавшего топлива, упаренный раствор направляют на дальнейшую переработку.
Коэффициент очистки азотной кислоты от рутения рассчитывают из отношения количества рутения в исходном азотнокислом растворе к количеству рутения в растворе регенерированной азотной кислоты.
Пример 1.
В качестве испарителя азотной кислоты использовали вертикальный выпарной аппарат с внутренней нагревательной камерой. Перед подачей азотнокислого раствора (160 г/л), содержащего 190 мг/л рутения, в нагревательную камеру испарителя провели корректировку раствора путем введения предварительно подготовленного водного раствора карбогидразида (90 г/л) до достижения концентрации 4 г/л в конечном растворе. Полученный азотнокислый раствор дозировали во внутреннее пространство нагревательной камеры с помощью насоса. Количество раствора в рабочем объеме испарителя составило 1-1,2 л. Нагрев раствора осуществляли подачей греющего пара в межтрубное пространство внутренней нагревательной камеры испарителя. Процесс выпаривания проводили при температуре 95-100°С в течение 6 часов.
Пары азотной кислоты, отделенные из раствора в процессе выпаривания, конденсировали в дефлегматоре при температуре 10°С. В результате получили 240 г/л раствор азотной кислоты. Коэффициент очистки от рутения составил 2000. Концентрированные жидкие радиоактивные отходы, образованные в результате выпаривания, представляли собой раствор азотной кислоты (около 480 г/л), содержащий рутений и другие нелетучие радиоактивные вещества, направляли на дальнейшую переработку.
Пример 2.
Использовали азотнокислый раствор состава как в примере 1, только введение карбогидразида осуществляли в виде сухого реагента до достижения концентрации 9 г/л в конечном растворе. Последовательность выполнения операций и технологические параметры процесса очистки регенерированной азотной кислоты от рутения аналогичны примеру 1. Коэффициент очистки от рутения составил 2200.
Предлагаемый способ, в отличие от способа-прототипа, позволяет повысить эффективность процесса очистки регенерированной азотной кислоты от рутения.

Claims (3)

1. Способ очистки регенерированной азотной кислоты от радиорутения, включающий выпаривание из рутенийсодержащего раствора азотной кислоты в испарителе, конденсацию паров и получение раствора регенерированной азотной кислоты, отличающийся тем, что выпаривание проводят в присутствии карбогидразида, обладающего совместно высокими каталитическими и восстановительными свойствами, радикально препятствующего переходу рутения в парогазовую фазу.
2. Способ по п. 1, отличающийся тем, что карбогидразид вводят в раствор до достижения концентрации 4-9 г/л.
3. Способ по п. 1, отличающийся тем, что введение карбогидразида осуществляют либо в виде водного раствора, либо в виде сухого реагента.
RU2019133091A 2019-10-16 2019-10-16 Способ очистки регенерированной азотной кислоты от радиорутения RU2725612C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019133091A RU2725612C1 (ru) 2019-10-16 2019-10-16 Способ очистки регенерированной азотной кислоты от радиорутения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019133091A RU2725612C1 (ru) 2019-10-16 2019-10-16 Способ очистки регенерированной азотной кислоты от радиорутения

Publications (1)

Publication Number Publication Date
RU2725612C1 true RU2725612C1 (ru) 2020-07-03

Family

ID=71510413

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019133091A RU2725612C1 (ru) 2019-10-16 2019-10-16 Способ очистки регенерированной азотной кислоты от радиорутения

Country Status (1)

Country Link
RU (1) RU2725612C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526658A (en) * 1982-11-15 1985-07-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Method for improving ruthenium decontamination efficiency in nitric acid evaporation treatment
JPH0776799B2 (ja) * 1988-07-01 1995-08-16 株式会社日立製作所 ルテニウム含有硝酸溶液の蒸発処理方法及びその装置
RU2576530C1 (ru) * 2014-09-25 2016-03-10 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ очистки технологических урановых продуктов переработки отработавшего ядерного топлива от рутения
JP7076799B2 (ja) * 2019-04-01 2022-05-30 株式会社北電子 遊技機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526658A (en) * 1982-11-15 1985-07-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Method for improving ruthenium decontamination efficiency in nitric acid evaporation treatment
JPH0776799B2 (ja) * 1988-07-01 1995-08-16 株式会社日立製作所 ルテニウム含有硝酸溶液の蒸発処理方法及びその装置
RU2576530C1 (ru) * 2014-09-25 2016-03-10 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ очистки технологических урановых продуктов переработки отработавшего ядерного топлива от рутения
JP7076799B2 (ja) * 2019-04-01 2022-05-30 株式会社北電子 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Волк В.И. и др. "Восстановление Pu(IV) и Np(VI) карбогидразидом в азотнокислом растворе", Радиохимия т.54, #2, с.133-138, 2012. *

Similar Documents

Publication Publication Date Title
Hoigne et al. Ozonation of water: selectivity and rate of oxidation of solutes
CN1017165B (zh) 从一种含金属的酸溶液中生产或回收该种酸的方法
KR101899296B1 (ko) 폐 n-메틸-2-피롤리돈 혼합액의 정제 방법
JPWO2010004925A1 (ja) けい素、チタンおよびふっ素の回収方法
FR2810679A1 (fr) Procede d'extraction d'americium, de curium et de lanthanides de solutions acides
RU2725612C1 (ru) Способ очистки регенерированной азотной кислоты от радиорутения
US6913699B2 (en) Process for selectively removing functionalized organic compounds from a liquid medium
FR2515855A1 (fr) Procede pour la decontamination de la surface radio-activement contaminee de matieres metalliques
Nikonov et al. Plutonium volatility in ozonization of alkaline solutions of Pu (VI) hydroxo complexes
KR100919771B1 (ko) 킬레이트 약품과 방사성 물질을 함유한 원전 증기발생기 화학세정폐액 처리방법 및 처리장치
RU2295788C1 (ru) Экстракционная смесь для сверхкритической экстракции окислов актинидов
JP7247343B2 (ja) イオン交換樹脂のコンディショニング方法およびそれを実行するための装置
EP0527685B1 (fr) Procédé pour séparer les actinides des lanthanides par extraction sélective des actinides dans un solvant organique comprenant un propanediamide
JP2640498B2 (ja) 酸を回収する方法
JPH0776799B2 (ja) ルテニウム含有硝酸溶液の蒸発処理方法及びその装置
US20040050716A1 (en) Electrochemical oxidation of matter
Lenher THE PREPARATION OF SELENIUM OXYCHLORIDE.
DE558553C (de) Wiedergewinnung von Chlorwasserstoffgas aus waesseriger Salzsaeure durch Erhitzen mit Calciumchlorid
Koscheeva et al. Quantification of small amounts of ionic liquids in solutions using CHN analysis
JP2017213504A (ja) 廃液の処理方法及び廃液の処理装置
RU2169403C1 (ru) Способ переработки аммиаксодержащих жидких радиоактивных отходов
Bernhardt et al. Chemistry of processing metallic uranium fuel elements with chlorine trifluoride
Cha et al. Catalytic oxygen transfer between CO and CO2 on TiO2
Skripchenko et al. Electroreduction of uranium (VI) to uranium (IV) in strip product solutions
US3254953A (en) Organometallic compounds