RU2718532C1 - Пленочный конденсатор - Google Patents

Пленочный конденсатор Download PDF

Info

Publication number
RU2718532C1
RU2718532C1 RU2019138147A RU2019138147A RU2718532C1 RU 2718532 C1 RU2718532 C1 RU 2718532C1 RU 2019138147 A RU2019138147 A RU 2019138147A RU 2019138147 A RU2019138147 A RU 2019138147A RU 2718532 C1 RU2718532 C1 RU 2718532C1
Authority
RU
Russia
Prior art keywords
carbon
electrolyte
cell
capacitor
fibrous material
Prior art date
Application number
RU2019138147A
Other languages
English (en)
Inventor
Виталий Константинович Перешивайлов
Наталия Николаевна Щербакова
Владимир Владимирович Слепцов
Диана Витальевна Бирюкова
Надежда Михайловна Сучилина
Original Assignee
Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК") filed Critical Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК")
Priority to RU2019138147A priority Critical patent/RU2718532C1/ru
Application granted granted Critical
Publication of RU2718532C1 publication Critical patent/RU2718532C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Изобретение относится к области электротехники, а более конкретно к слоистым пленочным конденсаторам, и может быть использовано при производстве электрохимических суперконденсаторов с емкостью выше 5 В. Конденсатор содержит два электрода на основе углеродного материала и комбинации металлов, разделенных ионопроводящим сепаратором, которые образуют ячейку конденсатора, размещенную в корпусе. К электродам ячейки подсоединены токоотводы, выполненные из металла, инертного к электролиту. Сепаратор выполнен из нетканого волокнистого материала, на волокна которого нанесена безвоздушным распылением под давлением суспензия углеродной массы, образованная из углеродных нанотрубок, диспергированных в твердом полимерном электролите в количестве 2-4 мг/см2, с образованием на нетканом волокнистом материале покрытия, имеющего развернутую площадь поверхности 1900-2100 м2/г. Суспензия углеродной массы нанесена на нетканый материал безвоздушным распылением под давлением не менее 3 атм, при температуре 60-80°С, при этом нетканый волокнистый материал имеет толщину 23-31 мкм и диаметр волокон составляет 150-200 нм. Вакуумную пропитку ячейки электролитом проводят в среде аргона. Повышение надежности работы конденсатора при температурах до 350°С является техническим результатом изобретения. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным конденсаторам и может быть использовано при производстве электрохимических суперконденсаторов.
Суперконденсаторы (ионисторы, ультраконденсаторы) представляют собой элементы питания, которые занимают промежуточное положение между химическими источниками тока (аккумуляторами и батарейками) и обыкновенными конденсаторами.
Известен конденсатор (Патент RU №2041517, опубл 09.08.1995), который содержит два электрода, разделенные ионопроводящим сепаратором, пропитанные органическим электролитом, и обкладки, охватывающие электроды, выполненные из металла, инертного к электролиту, и разделенные по периметру диэлектрической прокладкой. Электроды изготовлены из углеродных волокон, пропитанных полимерными связующим, спеченных под давлением. На внешней поверхности электродов последовательно расположены слой металла толщиной 0,25-5 мкм, нанесенный методом вакуумного напыления, и слой металла толщиной 5-250 мкм, нанесенный плазменным напылением. Последний неразрывно соединен с обкладками конденсатора.
Известен также конденсатор (Патент RU №2095873, опубл 10.11.1996), который содержит пористый ионопроводящий сепаратор с нанесенными на его поверхность углеродными электродами и проводящими графитовыми слоями толщиной 1,0-10 мкм, пропитанные электролитом. Непроницаемые для электролита и инертные к нему токосъемники охватывают электроды и разделены по периметру конденсатора диэлектрическим герметизирующим слоем. Конденсатор изготавливают путем последовательного напыления на поверхность сепаратора смеси углерода с электролитом и смеси мелкодисперсного графита с размером частиц 0,01-1,0 мкм и электролита в количестве 1-10 мг/см2 в пересчете на графит, изготовления токосъемников, сборки конденсатора и его герметизацию.
Однако данные конструкции имеют следующие недостатки: стабильность электрических параметров конденсатора с двойным электрическим слоем с электродами из углеродных волокон определяется как величиной удельной поверхности, пропитанной электролитом, так и соотношением пор в структуре высокопористого материала. Их совокупность приводит к непредсказуемости изменения электрических параметров в процессе эксплуатации конденсатора. Усилие сжатия конденсатора с двойным электрическим слоем в процессе эксплуатации ослабевает, так как углеродные волокна обладают упругостью, что приводит к ухудшению контактов и росту сопротивления. Отдельные углеродные волокна, расположенные под углом к поверхности электрода, могут прокалывать сепаратор, замыкая электроды, что снижает надежность конденсатора с двойным электрическим слоем.
Наиболее близким по технической сущности является пленочный электрохимический конденсатор (Патент RU №2644398, опубл. 20.11.2014), который включает первый электрод, второй электрод, расположенный между ними сепаратор, образующие ячейку конденсатора. Первый электрод содержит Mg, Na, Zn, Al, Sn, TiO2 или комбинацию этих материалов, а также Li и предварительно литерованный углерод, Второй электрод включает пористый материал с отношением площади поверхности к объему по меньшей мере 10 м2/см3. В качестве пористого материала может быть выбран пористый углерод или пассивированный, например, электропроводным материалом пористый кремний, а также может быть использован пористый германий, пористое олово и пористый диоксид титана. Другими материалами для изготовления электрода могут быть материалы на углеродной основе, например, активированный углерод, углеродные нанотрубки, углеродные нанонити, графеновые структуры и другие подобные материалы, сплавы, такие как сплав кремния с германием, и металлы, такие как медь, алюминий, никель. Второй электрод может иметь поверхность с нанесенным на нее материалом покрытия из псевдоемкостного материала. Материал покрытия может быть электропроводным материалом. Сепаратор может быть выполнен из пористой керамики, полимерной пленки или комбинации этих материалов. Могут быть взяты материалы на основе нетканого полипропилена и микропористых мембран (из пористого политетрафторэтилена или полиэтилена высокой плотности). Один или оба электрода могут быть соединены с коллектором тока - токоотводом. Ячейка конденсатора размещена в корпусе и пропитана электролитом. Электролит может представлять собой раствор электролита в органическом растворителе, такой как одномолярный раствор гексафторфосфата лития (LiPF6) в пропиленкарбонате или одномолярный раствор перхлората лития (LiClO4) в пропиленкарбонате. Могут быть также использованы другие соли лития и другие органические растворители.
Недостатком прототипа является недостаточно высокая надежность работы конденсатора за счет недостаточного обеспечения взрывобезопасности в процессе эксплуатации.
Техническая задача данного технического решения является создание пленочного конденсатора с более высокой надежностью работы за счет повышения температуры эксплуатации конденсатора, стойкости к пробою и прочности на прокол, а следовательно создание взрывобезопасного конденсатора при получении емкостных характеристик выше 5 В.
Поставленная задача достигается тем, что пленочный конденсатор содержит два электрода на основе углеродного материала и комбинации металлов, разделенных ионопроводящим сепаратором, образующие ячейку конденсатора, размещенную в корпусе. К электродам ячейки подсоединены токоотводы, выполненные из металла инертного к электролиту. Новым является то, что сепаратор выполнен из нетканого волокнистого материала, на волокна которого нанесена безвоздушным распылением под давлением суспензия углеродной массы, образованная из углеродных нанотрубок, диспергированных в твердом полимерном электролите в количестве 2-4 мг/см2, с образованием на нетканом волокнистом материале покрытия, имеющего развернутую площадь поверхности 1900-2100 м2/г. Нетканый волокнистый материал имеет поры с диаметром превышающим минимальный размер углеродных нанотрубок. Кроме этого суспензия углеродной массы нанесена на нетканый материал безвоздушным распылением под давлением не менее 3 атм. при температуре 60-80°С. Нетканый волокнистый материал имеет толщину 23-31 мкм и диаметр волокон 150-200 нм. Ячейка конденсатора смотана в рулон, на торцы которого нанесено гальваническое покрытие цинк-висмут, соединенное с токоотводами.
Техническое решение поясняется чертежами, где на фиг. 1, представлена пленочная структура электрода конденсатора, на фиг. 2 представлена ячейка конденсатора в разрезе.
Пленочный конденсатор (фиг. 1, 2) содержит два электрода 3, разделенные ионопроводящим сепаратором 1, которые образуют ячейку конденсатора. Сепаратор выполнен из нетканого волокнистого материала, который расположен на подложке, например, полимерном или бумажном основании, обеспечивающим технологичность нетканого волокнистого материала. Нетканый волокнистый материал может быть изготовлен из волокна, например, полианилиннового, полиэтиленового или фторопластового с диаметром волокон 150-200 нм. Нетканый волокнистый материал имеет толщину 23-31 мкм, поверхностную плотность 9-32 г/м2. На волокнистую поверхность нетканого материала нанесена суспензия углеродной массы, образованной из углеродных нанотрубок, разведенных в твердом полимерном электролите в количестве 2-4 мг/см2. Такая концентрации нанотрубок в электролите обеспечивает создание низковязкой углеродной массы с заданной электронной проводимостью полученной суспензии. Для разведения порошка углеродных нанотрубок в твердом полимерном электролите используют вакуумный миксер-гомогенизатор. При этом порошок содержит углеродные нанотрубки разных размеров, например, в диапазоне 10-50 нм. В качестве твердого полимерного электролита может быть взят электролит на основе перхлората лития LiClO4 с добавлением термоокисленного полиметилметакрилата, N-метилпирорролидона, тетрагидрофурана, полиакрилонитрил. Полученную суспензию низковязкой углеродной массы в горячем состоянии при температуре 60-80°С наносят тонким слоем на поверхность нетканого волокнистого материала. Для этого используют безвоздушное распыление суспензии при давлении аргона не менее 3 атм. При этом суспензия покрывает волокна нетканого материала тонким слоем и проникает в поры волокнистого материала, заполняя его объемное пространство. При давлении >3 атм волокнистый материал сепаратора пропитывается суспензией полностью до подложки. Экспериментальные исследования показали, что при давлении аргона <3 атм нетканый материал пропитывается не полностью. Полная или частичная пропитка нетканого материала при проведении распыления видна визуально, т.к нетканый материал изготовлен белого цвета, а углеродный наполнитель имеет черный цвет. Нетканый волокнистый материал имеет поры с диаметром превышающим минимальный размер углеродных нанотрубок. За счет этого при распылении под давлением частицы углеродных нанотрубок меньшего размера, для которых нетканый материал является фильтром, проникают в поры волокнистого материала, а частицы большего размера до 50 нм образуют тонкий слой на поверхности нетканого материала, увеличивая поверхность сепаратора, что позволяет увеличить емкость конденсатора. При этом получают комбинированный сепаратор 1 с теплоизолирующим углеродным покрытием в виде тонкого слоя углеродных нанотрубок, который образует проводящий электрод 2 (фиг. 1, 2) с поверхностным сопротивлением 4 ом/см2. Суспензию наносят в горячем состоянии для обеспечения лучшего ее распыления. Экспериментально установлено, что оптимальная температура распыления составляет 60°-80°С. Затем волокнистый материал охлаждают до комнатной температуры и получают комбинированный полимеризированный сепаратор, который затвердевает и образует монолитный слой. При полной пропитке волокнистого материала частицами углеродных нанотрубок получают электрод-сепаратор с развернутой площадью поверхности 1900-2100 м2/г. Данные о поверхности и пористости получены по адсорбции азота при 77К с помощью прибора Autosorb-iQ (Quantachrome Instruments). Такой сепаратор приобретает свойства керамической основы и позволяет выдерживать высокие температуры до 350° при работе конденсатора. Таким образом предложенная конструкция электрода-сепаратора обеспечивает высокую температуру эксплуатации конденсатора. У полимеризированного сепаратора увеличивается также прочность на прокол, стойкость к пробою, что обеспечивает взрывобезопасность конденсатора. Затем на углеродное покрытие 2 сепаратора в установке вакуумного магнетронного напыления наносят проводящий слой - электрод конденсатора 3, полученный, например, из композита литий-олово. Получают пленочную структуру (фиг. 1), из которой собирают ячейку конденсатора (фиг. 2) - разрезают структуру на прямоугольник, снимают подложку нетканого волокнистого материала, и складывают поверхностями со стороны сепараторов 1. Ячейку конденсатора сматывают в рулон, на торцы которого наносят гальваническое покрытие цинк-висмут толщиной 5 мкм, с которым соединяют внешние токоотводы 4. Токоотводы выполнены из металла инертного к электролиту и примыкают к электродам. Затем ячейку помещают в корпус, пропитывают электролитом и герметизируют в вакуумном перчаточном боксе. В качестве электролита использован 1 Моль раствора перхлората лития (LiClO4) в пропиленкарбонате.
Изготовление и сборку ячейки конденсатора осуществляют следующим образом. На волокнистую поверхность нетканого материала на установке безвоздушного распыления наносят суспензию углеродной массы. Затем ионно-плазменным распылением на полученный комбинированный сепаратор наносят слой проводящего материала электрода. Полученные пленочные структуры (фиг. 1) нарезают на прямоугольники размером 4200×98 мм. Собирают ячейку конденсатора из двух слоев сепаратора с нанесенным электродом. Ячейку сматывают в рулон и производят оцинкование торцов ячейки гальваническим способом. Затем ячейку сушат в вакуумном термошкафу и помещают в алюминиевый корпус с изолирующей вставкой, который закрывают крышкой. Внешние токоотводы припаивают соответственно с оцинкованными торцами. Завальцовывают крышку корпуса. Ячейку в корпусе помещают в вакуумный бокс для вакуумной пропитки электролитом через отверстие в крышке. Пропитку ячейки электролитом проводят в вакуумном боксе в среде аргона.
Предложен пленочный конденсатор, который обеспечивает надежную работу при высоких температурах до 350°С. Конденсатор имеет более высокую стойкость к пробою и прочность на прокол, а соответственно разработан взрывобезопасный пленочный конденсатор. При этом конденсатор имеет емкость выше 5 В.

Claims (4)

1. Пленочный конденсатор, содержащий два электрода на основе углеродного материала и комбинации металлов, разделенных ионопроводящим сепаратором, образующие ячейку конденсатора, размещенную в корпусе, к электродам ячейки подсоединены токоотводы, выполненные из металла, инертного к электролиту, отличающийся тем, что сепаратор выполнен из нетканого волокнистого материала, на волокна которого нанесена безвоздушным распылением под давлением суспензия углеродной массы, образованная из углеродных нанотрубок, диспергированных в твердом полимерном электролите в количестве 2-4 мг/см2, с образованием на нетканом волокнистом материале покрытия, имеющего развернутую площадь поверхности 1900-2100 м2/г, при этом нетканый волокнистый материал имеет поры с диаметром, превышающим минимальный размер углеродных нанотрубок.
2. Пленочный конденсатор по п. 1, отличающийся тем, что суспензия углеродной массы нанесена на нетканый материал безвоздушным распылением под давлением не менее 3 атм при температуре 60-80°С.
3. Пленочный конденсатор по п. 1, отличающийся тем, что нетканый волокнистый материал имеет толщину 23-31 мкм и диаметр волокон 150-200 нм.
4. Пленочный конденсатор по п. 1, отличающийся тем, что ячейка конденсатора смотана в рулон, на торцы которого нанесено гальваническое покрытие цинк-висмут, соединенное с токоотводами.
RU2019138147A 2019-11-25 2019-11-25 Пленочный конденсатор RU2718532C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019138147A RU2718532C1 (ru) 2019-11-25 2019-11-25 Пленочный конденсатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019138147A RU2718532C1 (ru) 2019-11-25 2019-11-25 Пленочный конденсатор

Publications (1)

Publication Number Publication Date
RU2718532C1 true RU2718532C1 (ru) 2020-04-08

Family

ID=70156537

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019138147A RU2718532C1 (ru) 2019-11-25 2019-11-25 Пленочный конденсатор

Country Status (1)

Country Link
RU (1) RU2718532C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061749B2 (en) * 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
CN101465208B (zh) * 2007-12-18 2012-09-26 通用电气公司 高容量薄膜电容器系统及其制造方法
RU2578129C1 (ru) * 2014-10-22 2016-03-20 Юрий Викторович Зинин Пленочный конденсатор
JP6150441B2 (ja) * 2011-11-10 2017-06-21 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate カーボン基板上に金属酸化物の擬似キャパシタ材料を堆積することによって形成される複合電極を有するスーパーキャパシタ装置
RU2644398C2 (ru) * 2013-12-20 2018-02-12 Интел Корпорейшн Гибридный электрохимический конденсатор
RU2686690C1 (ru) * 2018-08-28 2019-04-30 Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК") Пленочный конденсатор

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061749B2 (en) * 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
CN101465208B (zh) * 2007-12-18 2012-09-26 通用电气公司 高容量薄膜电容器系统及其制造方法
JP6150441B2 (ja) * 2011-11-10 2017-06-21 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate カーボン基板上に金属酸化物の擬似キャパシタ材料を堆積することによって形成される複合電極を有するスーパーキャパシタ装置
RU2644398C2 (ru) * 2013-12-20 2018-02-12 Интел Корпорейшн Гибридный электрохимический конденсатор
RU2578129C1 (ru) * 2014-10-22 2016-03-20 Юрий Викторович Зинин Пленочный конденсатор
RU2686690C1 (ru) * 2018-08-28 2019-04-30 Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК") Пленочный конденсатор

Similar Documents

Publication Publication Date Title
US8288032B2 (en) Energy storage device cell and control method thereof
US4562511A (en) Electric double layer capacitor
JP7461877B2 (ja) 多層電極膜のための組成物および方法
JP4878881B2 (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
US10644324B2 (en) Electrode material and energy storage apparatus
CA2408618A1 (en) Electrochemical double layer capacitor having carbon powder electrodes
JPWO2013073526A1 (ja) 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP2007280803A (ja) ハイブリッド型積層電極、それを用いたハイブリッド二次電源
WO2016209460A2 (en) High energy density hybrid pseudocapacitors and method of making and using the same
JP2006059912A (ja) 電気二重層キャパシタ
KR20120020895A (ko) 리튬 이온 커패시터
JP2018166140A (ja) 電気化学デバイス
KR101660297B1 (ko) 이온성 액체로부터 합성된 다공성 활성탄, 그 제조방법, 상기 활성탄을 이용한 슈퍼커패시터 및 그 제조방법
JP2002231585A (ja) 電気二重層コンデンサ
KR101166696B1 (ko) 슈퍼커패시터 및 그 제조방법
RU2686690C1 (ru) Пленочный конденсатор
RU2718532C1 (ru) Пленочный конденсатор
JP2002298849A (ja) 二次電源
JP2018166139A (ja) 電気化学デバイス
KR101591264B1 (ko) 울트라커패시터용 전극활물질, 그 제조방법 및 울트라커패시터 전극의 제조방법
KR102013173B1 (ko) 울트라커패시터 전극용 조성물, 이를 이용한 울트라커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 울트라커패시터
JPS6364890B2 (ru)
US20180082797A1 (en) Electrode material for electronic device and electronic device comprising the same
KR101571679B1 (ko) 탄소나노섬유-이온성액체 복합체, 그 제조방법, 상기 탄소나노섬유-이온성액체 복합체를 이용한 울트라커패시터 및 그 제조방법
KR20160117994A (ko) 고전압 전기 이중층 캐패시터