RU2713635C1 - Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех - Google Patents

Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех Download PDF

Info

Publication number
RU2713635C1
RU2713635C1 RU2019116186A RU2019116186A RU2713635C1 RU 2713635 C1 RU2713635 C1 RU 2713635C1 RU 2019116186 A RU2019116186 A RU 2019116186A RU 2019116186 A RU2019116186 A RU 2019116186A RU 2713635 C1 RU2713635 C1 RU 2713635C1
Authority
RU
Russia
Prior art keywords
interference
effect
functionally related
coordinates
leading
Prior art date
Application number
RU2019116186A
Other languages
English (en)
Inventor
Сергей Михайлович Мужичек
Андрей Александрович Филонов
Андрей Александрович Скрынников
Александр Юрьевич Федотов
Ольга Олеговна Ткачева
Юлия Михайловна Викулова
Андрей Александрович Корнилов
Сергей Леонидович Макашин
Original Assignee
Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") filed Critical Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС")
Priority to RU2019116186A priority Critical patent/RU2713635C1/ru
Application granted granted Critical
Publication of RU2713635C1 publication Critical patent/RU2713635C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/53Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования при сопровождении воздушной цели (ВЦ) из класса «самолет с турбореактивным двигателем» достоверной идентификации совместного или раздельного воздействия уводящих по дальности и скорости помех или отсутствия их воздействия. Достигаемый технический результат - повышение достоверности идентификации совместного или раздельного воздействия уводящих по дальности и скорости помех и оценки дальности до ВЦ и скорости сближения носителя РЛС с ВЦ. Способ заключается в идентификации совместного или раздельного воздействия уводящих по дальности и скорости помех или его отсутствия с одновременным формированием достоверных безусловных оценок дальности до ВЦ и скорости сближения носителя РЛС с ВЦ при комплексировании информации РЛС и индикатора варианта воздействия уводящих помех, учете априорных данных о смене этих вариантов и адаптации системы наблюдения к ним на основе узкополосной доплеровской фильтрации сигнала, отраженного от цели, с использованием процедуры быстрого преобразования Фурье, формирования отсчетов доплеровских частот, обусловленных отражениями сигнала от планера и лопаток рабочего колеса первой ступени компрессора низкого давления силовой установки ВЦ, обработки сформированных отсчетов доплеровских частот и выходных показаний индикатора варианта воздействия уводящих помех в многоканальном фильтре совместного сопровождения ВЦ и первой компрессорной составляющей спектра сигнала, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, работающего на основе априорных данных в виде математической модели системы «ВЦ - РЛС - индикатор» со случайной скачкообразной структурой, включающей модели линейной динамики радиальных функционально-связанных координат взаимного перемещения носителя РЛС и ВЦ, их измерений в радиолокационной станции, смены варианта воздействия уводящих помех, индикатора варианта воздействия уводящих помех, неуправляемых случайных возмущений и помех при начальных условиях. На выходе многоканального фильтра формируются оценки варианта воздействия уводящих помех, безусловного математического ожидания функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС при совместном или раздельном воздействии уводящих по дальности и скорости помех или при отсутствии такого воздействия, и безусловной ковариационной матрицы ошибок их оценивания. 1 ил.

Description

Предлагаемое изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования при сопровождении воздушной цели (ВЦ) из класса «самолет с турбореактивным двигателем (ТРД)» достоверной идентификации совместного или раздельного воздействия уводящих по дальности и скорости помех или отсутствия их воздействия и оценки радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС при различных вариантах воздействия таких помех.
Известен способ сопровождения в радиолокационной станции ВЦ из класса «самолет с ТРД» при воздействии уводящей по скорости помехи [1], заключающийся в том, что сигнал, отраженный от цели, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой ВЦ и вращающихся лопаток рабочего колеса компрессора низкого давления (КНД) ее силовой установки, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера ВЦ и поступает на вход оптимального фильтра сопровождения ВЦ, функционирующего в соответствии с процедурой оптимальной многомерной линейной дискретной калмановской фильтрации в соответствии с уравнениями [2]
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
где
k=0,1, …, К, …, - номер такта работы фильтра;
P-(k+1) и Р(k+1) - ковариационные матрицы ошибок экстраполяции и фильтрации соответственно;
Ф(k) - переходная матрица состояния;
Q(k+1) и R(k+1) - ковариационные матрицы шумов возбуждения и наблюдения соответственно;
S(k+1) - матрица весовых коэффициентов;
I - единичная матрица;
Figure 00000007
и
Figure 00000008
- вектор текущих и экстраполированных оценок радиальных функционально-связанных координат взаимного перемещения носителя РЛС и воздушной цели;
Н(k+1) - матрица наблюдения;
Y(k) - вектор наблюдения;
Z(k+1) - матрица невязок измерения;
Ψ(k+1) - матрица априорных ошибок фильтрации;
"-1" - операция вычисления обратной матрицы;
"т" - операция транспонирования матрицы,
определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящейся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера ВЦ, который поступает на вход оптимального фильтра сопровождения первой компрессорной составляющей спектра сигнала, обусловленной его отражениями от лопаток рабочего колеса первой ступени КНД и функционирующего в соответствии с процедурой (1)-(6), определяется оценка разности
Figure 00000009
между оцененными значениями доплеровских частот, обусловленных отражениями от планера
Figure 00000010
и лопаток рабочего колеса первой ступени
Figure 00000011
КНД силовой установки ВЦ, которая при отсутствии воздействия уводящей по скорости помехи является величиной постоянной, вычисляется модуль производной оценки разности
Figure 00000012
между оцененными значениями доплеровских частот, обусловленных отражениями от планера
Figure 00000013
и лопаток рабочего колеса первой ступени
Figure 00000014
КНД силовой установки ВЦ, которая сравнивается с пороговым значением ε, близким к нулю, выполнение условия
Figure 00000015
свидетельствует об отсутствии воздействия уводящей по скорости помехи и оценка
Figure 00000016
формируется в соответствии с процедурой (1)-(6) на основе наблюдения и динамической модели радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС, невыполнение условия (7) свидетельствует о воздействии уводящей по скорости помехи и оценка
Figure 00000017
вычисляется без наблюдения и только на основе динамической модели радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС [1].
Недостатком данного способа сопровождения ВЦ является низкая достоверность оценок радиальных функционально-связанных дальности до воздушной цели и скорости сближения носителя РЛС с нею при воздействии совместно или раздельно уводящих по скорости и дальности помех, так как данный способ не позволяет идентифицировать воздействие таких помех и скорректировать получаемые оценки.
Известен способ сопровождения ВЦ из класса «самолет с турбореактивным двигателем» при воздействии уводящих по дальности и скорости помех [3], заключающийся в том, что сигнал, отраженный от цели, подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой ВЦ и вращающихся лопаток рабочего колеса КНД ее силовой установки, определяются отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера ВЦ, и отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящийся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера ВЦ, которые поступают на вход фильтра совместного сопровождения ВЦ и первой компрессорной составляющей спектра сигнала, функционирующего в соответствии с процедурой (1)-(6) оптимальной многомерной линейной дискретной калмановской фильтрации, определяется оценка разности
Figure 00000018
между оцененными значениями доплеровских частот, обусловленных отражениями от планера
Figure 00000019
и лопаток рабочего колеса первой ступени
Figure 00000020
КНД силовой установки ВЦ, вычисляется модуль производной оценки разности
Figure 00000021
между оцененными значениями доплеровских частот, который сравнивается с пороговым значением ε, близким к нулю, выполнение или невыполнение условия
Figure 00000022
свидетельствует соответственно об отсутствии или воздействии уводящей по скорости помехи, измеряется дальность до ВЦ, в соответствии с процедурой (1)-(6) осуществляется формирование оценки дальности
Figure 00000023
, вычисляется производная оценки дальности
Figure 00000024
, вычисляется дальность Д*(k+1) на основе динамической модели радиальных функционально-связанных координат взаимного перемещения носителя радиолокационной станции и ВЦ, вычисляется модуль разности между оценкой производной дальности
Figure 00000025
и оценкой скорости
Figure 00000026
, величина которого сравнивается с порогом ε1,
Figure 00000027
где
Figure 00000028
- оценка скорости, сформированная на основе измерения скорости Y(k+1)=[V(k+1)]T и динамической модели радиальных функционально-связанных координат, вычисляется модуль разности между оценкой дальностью
Figure 00000029
и вычисленной дальностью Д*(k+1) на основе динамической модели радиальных функционально-связанных координат, величина которого сравнивается с порогом ε2,
Figure 00000030
одновременное выполнение условий (8) и (10) свидетельствует об отсутствии уводящих по скорости и дальности помех, в этом случае оценки дальности
Figure 00000031
и скорости
Figure 00000032
формируются в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1)=[Д(k+1), V(k+1)]T и динамической модели радиальных функционально-связанных координат, одновременное выполнение условия (8) и невыполнение условия (10) свидетельствует о воздействии только уводящей по дальности помехи, в этом случае оценка скорости
Figure 00000033
формируется в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1)=[V(k+1)] и динамической модели радиальных функционально-связанных координат, а оценка дальности
Figure 00000034
вычисляется без учета измерения дальности путем интегрирования оценки скорости
Figure 00000035
, одновременное невыполнение условия (8) и выполнение условия (10) свидетельствует о воздействии уводящих по дальности и скорости помех с функционально-связанным законом увода, в этом случае оценки дальности
Figure 00000036
и скорости
Figure 00000037
вычисляются в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1)=0 и только на основе динамической модели радиальных функционально-связанных координат, одновременное невыполнение условий (9) и (10) свидетельствует о воздействии уводящих по дальности и скорости помех без функционально-связанного закона увода, в этом случае оценки дальности
Figure 00000038
и скорости
Figure 00000039
также вычисляются в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1)=0 и только на основе динамической модели радиальных функционально-связанных координат, одновременное невыполнение условия (8) и выполнение условия (10) свидетельствует о воздействии только уводящей по скорости помехи, в этом случае оценки дальности
Figure 00000040
и скорости
Figure 00000041
формируются в соответствии с процедурой (1)-(6) на основе измерения только дальности Y(k+1)=[Д(k+1)] и динамической модели радиальных функционально-связанных координат.
Недостатком данного способа сопровождения ВЦ является низкая достоверность идентификации совместного или раздельного воздействия уводящих по дальности и скорости помех или отсутствия такого воздействия и оценки радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС при различных вариантах воздействия таких помех вследствие:
1. Не оптимальности, определяемых на его основе оценок функционально-связанных координат, так как они находятся при условии справедливости гипотезы о фактическом варианте воздействия уводящих помех, которая носит вероятностный характер, а значит, оценки являются условно-оптимальными.
2. Отсутствия возможности комплексирования информации РЛС, измеряющей функционально-связанные координаты, и индикатора (обнаружителя) варианта воздействия уводящих помех.
3. Отсутствия возможности учитывать априорные данные о смене варианта воздействия уводящих помех.
4. Отсутствия адаптации системы наблюдения к различным вариантам воздействия уводящих помех.
Цель изобретения - повышение достоверности идентификации совместного или раздельного воздействия уводящих по дальности и скорости помех или отсутствия их воздействия и оценки радиальных функционально-связанных дальности до воздушной цели и скорости сближения носителя РЛС с нею путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации РЛС и индикатора варианта воздействия уводящих помех, учета априорных данных о смене этих вариантов и адаптации системы наблюдения к ним.
Для достижения цели в способе сопровождения ВЦ из класса «самолет с ТРД» при воздействии уводящих по дальности и скорости помех, заключающемся в том, что сигнал, отраженный от цели, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой ВЦ и вращающихся лопаток рабочего колеса КНД ее силовой установки, определяются отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера ВЦ, и отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящийся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера ВЦ, выделенные отсчеты доплеровских частот дополнительно поступают на вход многоканального фильтра совместного сопровождения воздушной цели и первой компрессорной составляющей спектра сигнала, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
основанной на априорных данных в виде математической модели системы «воздушная цель - радиолокационная станция - индикатор» со случайной скачкообразной структурой, включающей модели линейной динамики радиальных функционально-связанных координат взаимного перемещения носителя радиолокационной станции и воздушной цели
Figure 00000055
их измерений в радиолокационной станции
Figure 00000056
смены варианта воздействия уводящих помех
Figure 00000057
индикатора варианта воздействия уводящих помех
Figure 00000058
неуправляемых случайных возмущений и помех
Figure 00000059
при начальных условиях
Figure 00000060
где
k - дискретный момент времени;
xk - вектор радиальных функционально-связанных координат взаимного перемещения носителя радиолокационной станции и ВЦ;
Figure 00000061
- вариант воздействия уводящих помех (1 - отсутствие помех; 2 - воздействие только уводящей по скорости помехи; 3 - воздействие только уводящей по дальности помехи; 4 - воздействие уводящих как по скорости, так и по дальности помех);
zk - вектор измерений РЛС;
Figure 00000062
- выходные показания индикатора варианта воздействия уводящих помех;
qk(sk+1|sk) - условные вероятности смены варианта воздействия уводящих помех;
πk+1(rk+1|rk,sk+1) - условные вероятности смены показаний индикатора варианта воздействия уводящих помех;
Figure 00000063
- прогнозируемые на один шаг дискретности вперед и апостериорные соответственно вероятности воздействия уводящих помех по sk+1 варианту, условные математические ожидания функционально-связанных координат при фиксированном варианте воздействия уводящих помех, условные ковариационные матрицы ошибок оценивания функционально-связанных координат при фиксированном варианте воздействия уводящих помех;
Figure 00000064
- квазиоптимальная по критерию максимума апостериорной вероятности оценка варианта воздействия уводящих помех;
Figure 00000065
- апостериорное безусловное математическое ожидание функционально-связанных координат;
Figure 00000066
- апостериорная безусловная ковариационная матрица ошибок оценивания функционально-связанных координат;
Gk, Qk - ковариационные матрицы соответственно векторов шумов возбуждения Fkξk и помех Еk(skk;
ξk, ζk - стандартные дискретные векторные белые шумы;
Θk(sk) - условная ковариационная матрица измерения при фиксированном варианте воздействия уводящих помех;
Ak, Fk - известные матрицы коэффициентов;
Ck(sk), Ek(sk) - известные матрицы детерминированных функций от варианта воздействия уводящих помех sk;
Figure 00000067
- обратная матрица по отношению к матрице Θk(sk);
Т - операция транспонирования матрицы;
detΘk(sk) - определитель матрицы Θk(sk);
ехр[⋅] - экспоненциальная функция,
определяется оценка
Figure 00000068
варианта воздействия уводящих помех, определяется оценка
Figure 00000069
безусловного математического ожидания функционально-связанных координат, определяется оценка
Figure 00000070
безусловной ковариационной матрицы ошибок оценивания функционально-связанных координат, на основе математической модели (24) динамики радиальных функционально-связанных координат, включающих дальность до цели, планерные и компрессорные составляющие радиальных скоростей и ускорений взаимного перемещения носителя радиолокационной станции и ВЦ, в непрерывном времени
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
где индексы «п» и «к» относятся соответственно к планерной и первой компрессорной составляющим спектра, отраженного от ВЦ сигнала;
D(t), Vсбл(t), a п(t) - радиальные функционально-связанные координаты соответственно дальность, скорость и ускорение сближения носителя РЛС с воздушной целью;
Vп(t), Vк(t) - детерминированные составляющие радиальных скоростей сближения носителя РЛС с воздушной целью;
ΔVп(t), ΔVк(t) - флюктуационные составляющие радиальных скоростей сближения носителя РЛС с воздушной целью;
a п(t), a к(t) - флюктуационные составляющие радиальных ускорений;
αп, αк, - величины, обратные времени корреляции скоростных флюктуаций взаимного перемещения носителя РЛС и воздушной цели;
βп, βк - квадраты собственных частот скоростных флюктуаций взаимного перемещения носителя РЛС и воздушной цели;
σп, σк - среднеквадратические отклонения флюктуаций ускорения взаимного перемещения носителя РЛС и воздушной цели;
nп(t), nк(t) - формирующие нормированные белые гауссовские шумы;
D0, Vп0, Vк0, ΔVп0, ΔVк0, a п0, а к0 - начальные значения соответственно дальности до ВЦ, детерминированных и флюктуационных составляющих радиальных скоростей, флюктуационных составляющих радиальных ускорений, представляемой в процедуре (11)-(23) матрицами Ak и, Fk, размерностями 7×7, ненулевыми элементами которых являются соответственно
а 11=а 22=а 33=а 55=a 66=1; a 12=a 13=-Δt; а 34=а 67=Δt; a 44=1-αпΔt; a 77=1-αкΔt; a 43=-βпΔt; a 76=-βкΔt;
Figure 00000078
где Δt - период дискретизации, и на основе математической модели (25) измерений в радиолокационной станции функционально-связанных координат, представляемой в процедуре (11)-(23) матрицами Ck(sk) и Ek(sk), размерностями 7×7, ненулевыми элементами которых являются соответственно c11(sk); c22(sk); c33(sk); с55; с66; e11(sk); e22(sk); e33(sk); e55; e66, при отсутствии помех спрогнозированные на основе априорных данных (30)-(36) функционально-связанные координаты корректируются по результатам измерений D(t), Vп(t), ΔVп(t), Vк(t), ΔVк(t) и с11(1)=с11, c22(1)=c22, с33(1)=с33; e11(1)=e11, e22(1)=e22, e33(1)=e33, при воздействии только уводящей по скорости помехи корректируются по результатам измерений D(t),
Figure 00000079
,
Figure 00000080
, Vк(t), ΔVк(t) и с11(2)=с11,
Figure 00000081
,
Figure 00000082
; е11(2)=е11,
Figure 00000083
,
Figure 00000084
, при воздействии только уводящей по дальности помехи корректируются по результатам измерений D*(t), Vп(t), ΔVп(t), Vк(t), ΔVк(t) и
Figure 00000085
, c22(3)=c22, с33(3)=с33;
Figure 00000086
, e22(3)=e22, e33(3)=e33, при воздействии уводящих как по скорости, так и по дальности помех корректируются по результатам измерений D*(t),
Figure 00000087
,
Figure 00000088
, Vк(t), ΔVк(t) и
Figure 00000089
,
Figure 00000090
,
Figure 00000091
;
Figure 00000092
,
Figure 00000093
,
Figure 00000094
.
Новыми признаками, обладающими существенными отличиями, являются:
1. Применение многоканального фильтра совместного сопровождения ВЦ и первой компрессорной составляющей спектра сигнала, функционирующего в соответствии с процедурой (11)-(23) квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, вместо фильтра сопровождения ВЦ, функционирующего в соответствии с процедурой (1)-(6) многомерной линейной дискретной калмановской фильтрации.
2. Учет априорных данных о смене варианта воздействия уводящих помех в виде условных вероятностей переходов (26).
3. Комплексирование информации РЛС, измеряющей функционально-связанные координаты, и индикатора (обнаружителя) варианта воздействия уводящих помех с моделью (27).
4. Коррекция оценок функционально-связанных координат, полученных на основе динамической модели (24), при совместном воздействии уводящих по дальности и скорости помех по результатам скорректированных на основе альтернативных моделей (25) измерений (адаптация системы наблюдения к различным вариантам воздействия уводящих помех).
5. Прогнозирование (11) вероятностей
Figure 00000095
воздействия уводящих помех по каждому варианту на один шаг дискретности вперед на основе априорных данных о смене вариантов воздействия уводящих помех, представленных соответственно начальными (29) и переходными (26) вероятностями цепи Маркова.
6. Прогнозирование (12) на один шаг дискретности вперед условных математических ожиданий
Figure 00000096
функционально-связанных координат
при фиксированном варианте воздействия уводящих помех с учетом найденных вероятностей на основе априорных данных о смене вариантов воздействия уводящих помех (26) и динамике функционально-связанных координат (24).
7. Прогнозирование (13) на один шаг дискретности вперед условных ковариационных матриц
Figure 00000097
ошибок оценивания функционально-связанных координат при фиксированном варианте воздействия уводящих помех с учетом найденных вероятностей (11) и математических ожиданий (12).
8. Оценка (14) апостериорных вероятностей
Figure 00000098
воздействия уводящих помех по каждому варианту, по степени согласованности (17)-(20) спрогнозированных вероятностей (11), математических ожиданий (12) функционально-связанных координат и ковариационных матриц (13) ошибок их оценивания с результатами измерений (25) и показаниями индикатора (27), представленной функцией правдоподобия.
9. Оценка (15) условных апостериорных математических ожиданий
Figure 00000099
функционально-связанных координат для каждой альтернативной модели измерения (25), соответствующей различным вариантам воздействия уводящих помех, на основе спрогнозированных математических ожиданий (12) и ковариационных матриц (13) ошибок прогноза с учетом результатов измерения (25).
10. Оценка (16) условных апостериорных ковариационных матриц
Figure 00000100
ошибок оценивания функционально-связанных координат для каждой альтернативной модели измерения (25), соответствующей различным вариантам воздействия уводящих помех, на основе спрогнозированных ковариационных матриц (13) ошибок прогноза с учетом результатов измерения (25).
11. Идентификация (21) такого
Figure 00000101
варианта воздействия уводящих помех, для которого найденная апостериорная вероятность окажется больше.
12. Нахождение безусловной оценки
Figure 00000102
функционально-связанных координат на основе апостериорных вероятностей (14) воздействия уводящих помех по каждому варианту и условных апостериорных оценок (15) функционально-связанных координат, как безусловного математического ожидания (22).
13. Нахождение (23) безусловной ковариационной матрицы
Figure 00000103
ошибок оценивания функционально-связанных координат с учетом найденных апостериорных вероятностей (14) воздействия уводящих помех по каждому варианту, условных математических ожиданий функционально-связанных координат (15), условных ковариационных матриц (16) ошибок их оценивания и безусловных оценок функционально-связанных координат (22).
Данные признаки являются существенными и в совокупности в известных технических решениях не обнаружены.
Применение всех новых существенных признаков позволит идентифицировать совместное или раздельное воздействие уводящих по дальности и скорости помех с одновременным формированием достоверных безусловных оценок дальности до воздушной цели и скорости сближения носителя РЛС с нею при комплексировании информации РЛС и индикатора (обнаружителя) варианта воздействия уводящих помех, учете априорных данных о смене этих вариантов и адаптации системы наблюдения к ним.
На фиг. 1 приведена блок-схема, поясняющая реализацию предлагаемого способа сопровождения воздушной цели при воздействии уводящих по дальности и скорости помех.
Способ сопровождения ВЦ из класса «самолет с ТРД» при воздействии уводящих по дальности и скорости помех осуществляется следующим образом.
На вход известного блока 1 БПФ [3], на промежуточной частоте с выхода приемника РЛС поступает сигнал S(t), отраженный от ВЦ, который подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой ВЦ и вращающихся частей КНД ее силовой установки.
В известном формирователе 2 измерения [3], во-первых, определяется отсчет доплеровской частоты Fп(k+1), соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера ВЦ, во-вторых, данный отсчет доплеровской частоты преобразуется в значение скорости, как Vп(k+1)=λFп(k+1)/2 (где λ - рабочая длина волны РЛС), в-третьих, поступающее на вход измерение дальности в непрерывном времени D(t) преобразуется в дискретные отсчеты дальности D(k+1), в-четвертых, определяется отсчет доплеровской частоты Fк(k+1), соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящейся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера ВЦ, в-пятых, данный отсчет доплеровской частоты преобразуется в значение скорости, как Vк(k+1)=λFк(k+1)/2.
В результате на выходе блока 2 формируется измерение zk+1=(D(k+1), Vп(k+1), Vк(k+1))T, которое поступает на вход многоканального фильтра 9 совместного сопровождения ВЦ и первой компрессорной составляющей спектра сигнала, функционирующего в соответствии с известной процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы (11)-(23), структурная схема которой и описание приводятся в [4], работающего на основе априорных данных (24)-(29) в виде математической модели системы «воздушная цель - радиолокационная станция - индикатор» со случайной скачкообразной структурой, включающей (блок 10 памяти бортовой ЦВМ) модель линейной динамики радиальных функционально-связанных координат 3 взаимного перемещения носителя радиолокационной станции и воздушной цели, представленной матрицами (Ak, Fk), модель измерений функционально-связанных координат в радиолокационной станции 4, представленной матрицами (Ck(sk), Ek(sk)), модель смены варианта воздействия уводящих помех 5, представленной переходными вероятностями qk(⋅), индикатора варианта воздействия уводящих помех 6, представленной переходными вероятностями πk+1(⋅), модель неуправляемых случайных возмущений и помех 7 при начальных условиях 8, также поступающих на вход многоканального фильтра 9.
Сформированные на выходе многоканального фильтра 9 оценки
Figure 00000104
варианта воздействия уводящих помех, безусловного математического ожидания
Figure 00000105
функционально-связанных координат взаимного перемещения ВЦ
и носителя РЛС при совместном или раздельном воздействии уводящих по дальности и скорости помех или при отсутствии их воздействия, безусловной ковариационной матрицы
Figure 00000106
ошибок оценивания функционально-связанных координат поступают на выход канала сопровождения воздушной цели в РЛС.
Результаты сравнительного моделирования предлагаемого способа сопровождения воздушной цели из класса «самолет с турбореактивным двигателем» при воздействии уводящих по дальности и скорости помех на основе многоканального фильтра совместного сопровождения воздушной цели
и первой компрессорной составляющей спектра сигнала, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, и известного способа сопровождения ВЦ из класса «самолет с ТРД» при воздействии уводящих по дальности и скорости помех [3] на основе процедуры многомерной линейной дискретной калмановской фильтрации свидетельствуют с доверительной вероятностью 0,95 о снижении среднеквадратического отклонения ошибки фильтрации до 16% и о повышении вероятности правильной идентификации варианта воздействия уводящих помех до 10%.
Таким образом, применение предлагаемого способа позволит повысить достоверность идентификации совместного или раздельного воздействия уводящих по дальности и скорости помех или отсутствия их воздействия и оценки радиальных функционально-связанных дальности до воздушной цели и скорости сближения носителя РЛС с нею путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации РЛС и индикатора варианта воздействия уводящих помех, учета априорных данных о смене этих вариантов и адаптации системы наблюдения к ним.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Богданов А.В., Закомолдин Д.В., Новичёнок И.А. Способ сопровождения воздушной цели из класса «Самолет с турбореактивным двигателем» при воздействии уводящей по скорости помехи. Патент на изобретение №2575383, 2016 (аналог).
2. Казаринов Ю.М., Соколов А.И., Юрченко Ю.С. Проектирование устройств фильтрации радиосигналов. - Л.: изд. Ленинградского университета, 1985, страницы 150, 151 (аналог).
3. Богданов А.В., Васильев О.В., Докучаев Я.С. Способ сопровождения воздушной цели из класса «Самолет с турбореактивным двигателем» при воздействии уводящих по дальности и скорости помех. Патент на изобретение №2665031, 2018 (прототип).
4. Бухалев В.А. Оптимальное сглаживание в системах со случайной скачкообразной структурой / В.А. Бухалев. - М.: ФИЗМАТЛИТ, 2013, стр. 117-120.

Claims (1)

  1. Способ сопровождения в радиолокационной станции воздушной цели из класса «самолет с турбореактивным двигателем» при воздействии уводящих по дальности и скорости помех, заключающийся в том, что сигнал, отраженный от цели, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой воздушной цели и вращающихся лопаток рабочего колеса компрессора низкого давления ее силовой установки, определяются отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера воздушной цели, и отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящийся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера воздушной цели, отличающийся тем, что выделенные отсчеты доплеровских частот поступают на вход многоканального фильтра совместного сопровождения воздушной цели и первой компрессорной составляющей спектра сигнала, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, основанной на априорных данных в виде математической модели системы «воздушная цель - радиолокационная станция - индикатор» со случайной скачкообразной структурой, включающей модели линейной динамики радиальных функционально-связанных координат взаимного перемещения носителя радиолокационной станции и воздушной цели, их измерений в радиолокационной станции, смены варианта воздействия уводящих помех, индикатора варианта воздействия уводящих помех, неуправляемых случайных возмущений и помех, при начальных условиях, на основе априорных данных о смене вариантов воздействия уводящих помех, представленных соответственно начальными и переходными вероятностями цепи Маркова, прогнозируются вероятности воздействия уводящих помех по каждому варианту на один шаг дискретности вперед, с учетом найденных вероятностей на основе априорных данных о смене вариантов воздействия уводящих помех и динамике функционально-связанных координат взаимного перемещения носителя радиолокационной станции и воздушной цели прогнозируются на один шаг дискретности вперед условные математические ожидания функционально-связанных координат при фиксированном варианте воздействия уводящих помех, с учетом найденных вероятностей и математических ожиданий прогнозируются на один шаг дискретности вперед условные ковариационные матрицы ошибок оценивания функционально-связанных координат при фиксированном варианте воздействия уводящих помех, по степени согласованности спрогнозированных вероятностей, математических ожиданий функционально-связанных координат и ковариационных матриц ошибок их оценивания с результатами измерений и показаниями индикатора, представленной функцией правдоподобия, осуществляется оценка апостериорных вероятностей воздействия уводящих помех по каждому варианту, для каждой альтернативной модели измерения, соответствующей различным вариантам воздействия уводящих помех, на основе спрогнозированных математических ожиданий и ковариационных матриц ошибок прогноза с учетом результатов измерения находятся условные апостериорные математические ожидания функционально-связанных координат взаимного перемещения носителя радиолокационной станции и воздушной цели, для каждой альтернативной модели измерения, соответствующей различным вариантам воздействия уводящих помех, на основе спрогнозированных ковариационных матриц ошибок прогноза с учетом результатов измерения находятся условные апостериорные ковариационные матрицы ошибок оценивания функционально-связанных координат, из возможных вариантов воздействия уводящих помех выбирается тот, для которого найденная апостериорная вероятность окажется больше, безусловная оценка функционально-связанных координат вычисляется на основе апостериорных вероятностей воздействия уводящих помех по каждому варианту и условных апостериорных оценок функционально-связанных координат, как безусловное математическое ожидание, с учетом найденных апостериорных вероятностей воздействия уводящих помех по каждому варианту, условных математических ожиданий функционально-связанных координат, условных ковариационных матриц ошибок их оценивания и безусловных оценок функционально-связанных координат находится безусловная ковариационная матрица ошибок оценивания функционально-связанных координат.
RU2019116186A 2019-05-27 2019-05-27 Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех RU2713635C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019116186A RU2713635C1 (ru) 2019-05-27 2019-05-27 Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019116186A RU2713635C1 (ru) 2019-05-27 2019-05-27 Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Publications (1)

Publication Number Publication Date
RU2713635C1 true RU2713635C1 (ru) 2020-02-05

Family

ID=69625307

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019116186A RU2713635C1 (ru) 2019-05-27 2019-05-27 Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Country Status (1)

Country Link
RU (1) RU2713635C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735289C1 (ru) * 2020-03-20 2020-10-29 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства обороны Российской Федерации Способ селекции имитаторов вторичного излучения воздушных объектов
CN113239500A (zh) * 2021-07-12 2021-08-10 四川大学 基于协方差矩阵的参考点邻域特征匹配方法
CN113341383A (zh) * 2021-05-31 2021-09-03 西安电子科技大学 基于dqn算法的雷达抗干扰智能决策方法
RU2760951C1 (ru) * 2021-03-22 2021-12-01 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения крылатой ракеты при огибании рельефа местности в различных тактических ситуациях
RU2764781C1 (ru) * 2020-08-18 2022-01-21 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех
RU2765145C1 (ru) * 2021-04-12 2022-01-26 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ комплексирования информации радиолокационной станции и радиолокационных головок самонаведения ракет, пущенных носителем по воздушной цели при воздействии уводящих по дальности и скорости помех

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036289A1 (de) * 1997-02-14 1998-08-20 Daimler-Benz Aerospace Ag Verfahren zur zielklassifizierung
GB2322986A (en) * 1987-10-28 1998-09-09 Licentia Gmbh Target classification in radar systems
JP2002323559A (ja) * 2001-04-25 2002-11-08 Nec Corp レーダ用信号処理装置
EP2149857A1 (en) * 2008-07-30 2010-02-03 BAE Systems plc Estimating states of a plurality of targets tracked by a plurality of sensors
WO2011056107A1 (en) * 2009-11-06 2011-05-12 Saab Ab Radar system and method for detecting and tracking a target
RU2419815C1 (ru) * 2009-11-03 2011-05-27 ОАО "ГСКБ "АЛМАЗ-АНТЕЙ" им. АКАДЕМИКА А.А. РАСПЛЕТИНА Способ сопровождения воздушной цели из класса "самолет с турбореактивным двигателем"
RU2456633C1 (ru) * 2011-05-03 2012-07-20 Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") Способ сопровождения групповой воздушной цели из класса "самолеты с турбореактивными двигателями"
RU2468385C2 (ru) * 2010-12-13 2012-11-27 Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") Способ сопровождения воздушной цели класса "вертолет"
RU2579353C1 (ru) * 2015-04-06 2016-04-10 Федеральное государственное казённое военное образовательное учреждение высшего профессионального образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящей по скорости помехи
KR20160078066A (ko) * 2014-12-24 2016-07-04 (주)디지탈엣지 레이더 장치의 다중표적 추적방법
RU2617110C1 (ru) * 2016-03-09 2017-04-21 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения в радиолокационной станции групповой воздушной цели из класса "самолёты с турбореактивными двигателями" при воздействии уводящих по скорости помех
RU2665031C1 (ru) * 2018-01-31 2018-08-27 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322986A (en) * 1987-10-28 1998-09-09 Licentia Gmbh Target classification in radar systems
WO1998036289A1 (de) * 1997-02-14 1998-08-20 Daimler-Benz Aerospace Ag Verfahren zur zielklassifizierung
JP2002323559A (ja) * 2001-04-25 2002-11-08 Nec Corp レーダ用信号処理装置
EP2149857A1 (en) * 2008-07-30 2010-02-03 BAE Systems plc Estimating states of a plurality of targets tracked by a plurality of sensors
RU2419815C1 (ru) * 2009-11-03 2011-05-27 ОАО "ГСКБ "АЛМАЗ-АНТЕЙ" им. АКАДЕМИКА А.А. РАСПЛЕТИНА Способ сопровождения воздушной цели из класса "самолет с турбореактивным двигателем"
WO2011056107A1 (en) * 2009-11-06 2011-05-12 Saab Ab Radar system and method for detecting and tracking a target
RU2468385C2 (ru) * 2010-12-13 2012-11-27 Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") Способ сопровождения воздушной цели класса "вертолет"
RU2456633C1 (ru) * 2011-05-03 2012-07-20 Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") Способ сопровождения групповой воздушной цели из класса "самолеты с турбореактивными двигателями"
KR20160078066A (ko) * 2014-12-24 2016-07-04 (주)디지탈엣지 레이더 장치의 다중표적 추적방법
RU2579353C1 (ru) * 2015-04-06 2016-04-10 Федеральное государственное казённое военное образовательное учреждение высшего профессионального образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящей по скорости помехи
RU2617110C1 (ru) * 2016-03-09 2017-04-21 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения в радиолокационной станции групповой воздушной цели из класса "самолёты с турбореактивными двигателями" при воздействии уводящих по скорости помех
RU2665031C1 (ru) * 2018-01-31 2018-08-27 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БОГДАНОВ А.В., БОНДАРЕВ В.Н., ВАСИЛЬЕВ О.В., ГАРИН Е.Н., ЗАКОМОЛДИН Д.В., КОРОТКОВ С.С., ЛЮТИКОВ И.В., ЛЯПОРОВ В.Н. Синтез оптимальных алгоритмов распознавания групповых воздушных целей в радиолокационных системах воздушного базирования // Журнал Сибирского федерального университета. Техника и технологии. - 2017. - N2. - С.18-32. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735289C1 (ru) * 2020-03-20 2020-10-29 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства обороны Российской Федерации Способ селекции имитаторов вторичного излучения воздушных объектов
RU2764781C1 (ru) * 2020-08-18 2022-01-21 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех
RU2760951C1 (ru) * 2021-03-22 2021-12-01 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ сопровождения крылатой ракеты при огибании рельефа местности в различных тактических ситуациях
RU2765145C1 (ru) * 2021-04-12 2022-01-26 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ комплексирования информации радиолокационной станции и радиолокационных головок самонаведения ракет, пущенных носителем по воздушной цели при воздействии уводящих по дальности и скорости помех
CN113341383A (zh) * 2021-05-31 2021-09-03 西安电子科技大学 基于dqn算法的雷达抗干扰智能决策方法
CN113341383B (zh) * 2021-05-31 2023-06-30 西安电子科技大学 基于dqn算法的雷达抗干扰智能决策方法
CN113239500A (zh) * 2021-07-12 2021-08-10 四川大学 基于协方差矩阵的参考点邻域特征匹配方法
CN113239500B (zh) * 2021-07-12 2021-09-21 四川大学 基于协方差矩阵的参考点邻域特征匹配方法

Similar Documents

Publication Publication Date Title
RU2713635C1 (ru) Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех
RU2665031C1 (ru) Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех
RU2419815C1 (ru) Способ сопровождения воздушной цели из класса "самолет с турбореактивным двигателем"
US6100845A (en) Emitter location using RF carrier or PRF measurement ratios
US6573861B1 (en) Target classification method
US20120313809A1 (en) Signal processing unit and method
US20190086534A1 (en) Radar altimeter sea state estimation
US10222472B2 (en) System and method for detecting heading and velocity of a target object
RU2579353C1 (ru) Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящей по скорости помехи
RU2760951C1 (ru) Способ сопровождения крылатой ракеты при огибании рельефа местности в различных тактических ситуациях
US7535403B2 (en) Method of determining the velocity field of an air mass by high resolution doppler analysis
JP6324327B2 (ja) パッシブレーダ装置
JP5044358B2 (ja) レーダ装置
RU2764781C1 (ru) Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех
RU2713212C1 (ru) Способ распознавания варианта наведения подвижного объекта на один из летательных аппаратов группы
RU2669702C2 (ru) Радиолокационный способ обнаружения и определения параметров движения маловысотных малозаметных объектов в декаметровом диапазоне радиоволн
US9134410B2 (en) Method and device for detecting a target by masked high energy reflectors
RU2732281C1 (ru) Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при воздействии уводящей по скорости помехи
RU2710894C1 (ru) Способ классификации и бланкирования дискретных помех
RU2726869C1 (ru) Способ распознавания функционального назначения летательных аппаратов пары по принципу "ведущий-ведомый"
RU2765145C1 (ru) Способ комплексирования информации радиолокационной станции и радиолокационных головок самонаведения ракет, пущенных носителем по воздушной цели при воздействии уводящих по дальности и скорости помех
KR20200053222A (ko) 거리, 각도 속도를 정밀 측정하기 위한 레이더 장치 및 레이더 신호 처리 방법
RU144505U1 (ru) Устройство сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем"
RU2731878C1 (ru) Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции
RU157396U1 (ru) Устройство распознавания винтовых летательных аппаратов