RU2731878C1 - Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции - Google Patents
Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции Download PDFInfo
- Publication number
- RU2731878C1 RU2731878C1 RU2020107653A RU2020107653A RU2731878C1 RU 2731878 C1 RU2731878 C1 RU 2731878C1 RU 2020107653 A RU2020107653 A RU 2020107653A RU 2020107653 A RU2020107653 A RU 2020107653A RU 2731878 C1 RU2731878 C1 RU 2731878C1
- Authority
- RU
- Russia
- Prior art keywords
- aircraft
- doppler
- turbojet engine
- frequency
- pulse
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/522—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
- G01S13/524—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
- G01S13/53—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Изобретение относится к области радиолокации. Достигаемый технический результат - повышение достоверности распознавания типа самолета с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при его полете на различных высотах. Способ заключается в том, что радиолокационный сигнал, отраженный от самолета с ТРД, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр (АЧС) отражений сигнала от планера самолета с ТРД и вращающихся лопаток рабочего колеса компрессора низкого давления (КНД) его силовой установки. Путем пороговой обработки АЧС сигнала формируют только те отсчеты доплеровских частот Fi с соответствующими амплитудами спектральных составляющих, которые превысили установленный порог. Одновременно за время Т каждого обзора пространства измеряют два значения дальности Д1 и Д2 до самолета с ТРД и вычисляют частотную позицию доплеровской частоты Fп, зависящую от скорости сближения носителя импульсно-доплеровской РЛС с планером самолета с ТРД. Определяют в АЧС сигнала позицию доплеровской частоты с максимальной по амплитуде спектральной составляющей, превысившей установленный порог, которая соответствует значению доплеровской частоты Fк, обусловленной скоростью сближения носителя импульсно-доплеровской РЛС с вращающимися лопатками первой ступени КНД силовой установки самолета с ТРД, и вычисляют разность доплеровских частот ΔFпк=(Fп-Fк). Дополнительно за время Т каждого обзора пространства измеряют значения бортовых пеленгов ϕг азимута и ϕв угла места, среднюю дальность, вычисляют высоту полета самолета с ТРД. Для каждой высоты Н полета самолета с ТРД диапазон разностей ΔFпк разбивают на Q неперекрывающихся поддиапазонов. При попадании разности доплеровских частот ΔFпк в q-й поддиапазон принимают решение о q-м типе самолета с ТРД, летящем на высоте Н. 4 ил.
Description
Изобретение относится к области радиолокации и может быть использовано для распознавания в импульсно-доплеровской радиолокационной станции (РЛС) типа самолета с турбореактивным двигателем (ТРД).
Известен способ функционирования импульсно-доплеровской РЛС, заключающийся в формировании высокочастотной последовательности зондирующих импульсов, их усилении по мощности, излучении в пространство, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующем их спектральным анализом [1].
Недостатком данного способа функционирования импульсно-доплеровской РЛС являются его ограниченные функциональные возможности, не позволяющие распознать тип самолета с ТРД.
Известен способ распознавания типа самолета с ТРД в импульсно-доплеровской РЛС, заключающийся в том, что радиолокационный (РЛ) сигнал, отраженный от самолета с ТРД, с выхода приемника РЛС на промежуточной частоте подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр (АЧС), спектральные составляющие которого обусловлены отражениями сигнала от планера самолета с ТРД и вращающихся лопаток рабочего колеса компрессора низкого давления (КНД) его силовой установки, путем пороговой обработки АЧС сигнала формируют только те отсчеты доплеровских частот Fi с соответствующими амплитудами спектральных составляющих, которые превысили установленный порог (где - общее количество отсчетов доплеровских частот, на частотных позициях которых амплитуды спектральных составляющих превысили установленный порог), за время Т каждого обзора пространства, измеряют два значения дальности Д1 и Д2 до самолета с ТРД, по измеренным значениям дальности Д1 и Д2 предварительно вычисляют частотную позицию доплеровской частоты обусловленной скоростью сближения носителя импульсно-доплеровской радиолокационной станции с планером самолета с ТРД, как
где λ - рабочая длина волны импульсно-доплеровской РЛС,
в АЧС сигнала определяют ближайшее к предварительно вычисленной частотной позиции доплеровской частоты значение доплеровской частоты с соответствующей амплитудой спектральной составляющей, превысившей установленный порог, которое окончательно определяет доплеровскую частоту сигнала Fп в его АЧС, обусловленную скоростью сближения носителя импульсно-доплеровской РЛС с планером самолета с ТРД, определяют в АЧС сигнала позицию доплеровской частоты где j=1, …, (i-1), (i+1), …, N, на которой находится спектральная составляющая, превысившая установленный порог и имеющая максимальную амплитуду Aj, j=1, …, (i-1), (i+1), …, N, которая соответствует значению доплеровской частоты Fк, обусловленной скоростью сближения носителя импульсно-доплеровской РЛС с вращающимися лопатками первой ступени КНД силовой установки самолета с ТРД, вычисляют разность доплеровских частот ΔFпк=(Fп-Fк), априорно разбивают диапазон разностей ΔFпк на Q неперекрывающихся поддиапазонов, нижняя и верхняя границы каждого q-го поддиапазона, соответствующего q-му типу цели, определяются выражениями
где
FP - максимальная частота вращения ротора КНД силовой установки q-го типа самолета с ТРД;
n1 и n2 - соответственно минимальное и максимальное значения величины относительных оборотов вращения ротора силовой установки, одинаковые для всех типов самолетов с ТРД;
Z - количество лопаток рабочего колеса первой ступени КНД силовой установки самолета с ТРД, при попадании разности доплеровских частот ΔFпк в q-й поддиапазон принимают решение о q-м типе самолета с турбореактивным двигателем [2].
Недостатком данного способа является низкая достоверность распознавания типа самолета с ТРД в импульсно-доплеровской РЛС. Это обусловлено тем, что при распознавании типа самолета с ТРД в соответствии с данным способом диапазон разностей ΔFпк разбивают на Q неперекрывающихся поддиапазонов только для одной фиксированной высоты полета самолета с ТРД.
На самом деле, на основе анализа результатов экспериментальных исследований по регистрации с линейного выхода приемника импульсно-доплеровской РЛС воздушного базирования РЛ сигналов в сантиметровом диапазоне волн, отраженных от различных типов самолетов с ТРД, и их обработке с целью получения АЧС зарегистрированных реальных РЛ сигналов путем применения узкополосной доплеровской фильтрации на основе процедуры БПФ, установлено, что значения разности доплеровских частот ΔFпк=(Fп-Fк), полученные в результате обработки зарегистрированных РЛ сигналов, отраженных от одного и того же типа самолета с ТРД, выполняющего полет на разных высотах, при прочих равных условиях, различны. Так, установлено, что значения разности доплеровских частот ΔFпк увеличиваются с ростом высоты полета, то есть из выражений (2) и (3) следует, что с ростом высоты полета самолета с ТРД увеличиваются величины относительных оборотов вращения ротора КНД силовой установки самолета с ТРД, что может привести к недостоверной оценке вероятности правильного распознавания типа самолета с ТРД. В [3, 4] приведены типичные зависимости относительных оборотов вращения ротора КНД силовой установки двигателя от высоты полета.
Цель изобретения - повышение достоверности распознавания типа самолета с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при его полете на различных высотах.
С этой целью, в способе распознавания типа самолета с ТРД в импульсно-доплеровской РЛС, заключающимся в том, что РЛ сигнал, отраженный от самолета с ТРД, подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в АЧС, спектральные составляющие которого обусловлены отражениями сигнала от планера самолета с ТРД и вращающихся лопаток рабочего колеса КНД его силовой установки, путем пороговой обработки АЧС сигнала формируют только те отсчеты доплеровских частот Fi с соответствующими амплитудами спектральных составляющих, которые превысили установленный порог (где - общее количество отсчетов доплеровских частот, на частотных позициях которых амплитуды спектральных составляющих превысили установленный порог), за время Т каждого обзора пространства измеряют два значения дальности Д1 и Д2 до самолета с ТРД, по измеренным значениям дальности Д1 и Д2 в соответствии с формулой (1) предварительно вычисляют частотную позицию доплеровской частоты обусловленную скоростью сближения носителя импульсно-доплеровской РЛС с планером самолета с ТРД, в АЧС сигнала определяют ближайшее к предварительно вычисленной частотной позиции доплеровской частоты значение доплеровской частоты с соответствующей амплитудой спектральной составляющей, превысившей установленный порог, которое окончательно определяет доплеровскую частоту сигнала Fп в его АЧС, обусловленную скоростью сближения носителя импульсно-доплеровской РЛС с планером самолета с ТРД, определяют в АЧС сигнала позицию доплеровской частоты (где j=1, …, (i-1), (i+1), …, N), на которой находится спектральная составляющая, превысившая установленный порог и имеющая максимальную амплитуду Aj , j=1, …, (i-1), (i+1), …, N, которая соответствует значению доплеровской частоты Fк, обусловленной скоростью сближения носителя импульсно-доплеровской РЛС с вращающимися лопатками первой ступени КНД силовой установки самолета с ТРД, вычисляют разность доплеровских частот ΔFпк=(Fп-Fк), дополнительно за время Т каждого обзора пространства измеряют значения бортовых пеленгов ϕг азимута и ϕв угла места, по измеренным значениям бортовых пеленгов ϕг и ϕв и средней дальности Д, определяемой, как Д=(Д1+Д2)/2, вычисляют высоту полета самолета с ТРД в соответствии с выражением
где
НРЛС - высота полета самолета-носителя радиолокационной станции;
RЭ - эквивалентный радиус Земли;
для каждой высоты Н полета самолета с ТРД (где Hmin и Hmax - соответственно минимальная и максимальная высоты полета самолета с ТРД), диапазон разностей ΔFпк априорно разбивают на Q неперекрывающихся поддиапазонов, нижняя и верхняя границы каждого q-го поддиапазона, соответствующего q-му типу цели и высоте Н полета самолета с ТРД определяются выражениями (2) и (3), при попадании разности доплеровских частот ΔFпк в q-ый поддиапазон принимают решение о q-м типе самолета с ТРД, летящем на высоте Н.
Новыми признаками, обладающими существенными отличиями, являются.
1. Вычисление высоты полета самолета с ТРД за время каждого обзора пространства в соответствии с выражением (4).
2. Разбиение для каждой априорно фиксированной высоте Н полета самолета с ТРД диапазона разностей ΔFпк на Q неперекрывающихся поддиапазонов, при этом, нижняя и верхняя границы каждого q-го поддиапазона и высоте полета Н определяются выражениями (2) и (3).
3. Принятие решения о q-м типе самолета с ТРД, летящем на высоте Н, при попадании разности доплеровских частот ΔFпк в q-ый поддиапазон.
Данные признаки обладают существенными отличиями, так как в известных способах не обнаружены.
Применение новых признаков в совокупности с известными позволит повысить достоверность распознавания типа самолета с ТРД в импульсно-доплеровской РЛС при его полете на различных высотах.
На рисунке 1 приведена блок-схема, поясняющая предлагаемый способ распознавания типа самолета с ТРД в импульсно-доплеровской РЛС, на рисунке 2 (а, б, в), 3 и 4 - эпюры, поясняющие предлагаемый способ распознавания q-го типа самолета с ТРД, летящем на различных высотах.
Предлагаемый способ распознавания типа самолета с ТРД в импульсно-доплеровской РЛС осуществляется следующим образом.
Радиолокационный сигнал S(t), отраженный от самолета с ТРД, с выхода приемника РЛС на промежуточной частоте поступает (рисунок 1) на вход блока 1 БПФ, где подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в АЧС S(f) (рисунок 2а - отсчеты доплеровских частот F1, F2, F3, F4, F5, F6, F7 с соответствующими амплитудами А1, А2, А3, А4, А5, А6, А7), спектральные составляющие которого обусловлены лены отражениями сигнала от планера самолета с ТРД и вращающихся лопаток рабочего колеса КНД его силовой установки. Данные спектральные составляющие (рисунок 1) с соответствующими частотами и амплитудами поступают на формирователь 2 отсчетов, в котором путем пороговой обработки формируются (рисунок 2б) только те отсчеты доплеровских частот (F1, F3, F4, F5, F7) с соответствующими амплитудами (А1, А3, А4, А5, А7) спектральных составляющих, которые превысили установленный порог (амплитуды А2 и А6 спектральных составляющих на частотных позициях соответственно F2 и F6 не превысили установленный порог).
За время Т каждого обзора пространства измеренные значения дальности Д1 и Д2 между носителем РЛС и самолетом с ТРД поступают (рисунок 1) на вход вычислителя 3, в котором предварительно вычисляется частотная позиция доплеровской частоты обусловленная скоростью сближения носителя импульсно-доплеровской РЛС с планером самолета с ТРД в соответствии с выражением (1). Это значение доплеровской частоты поступает в формирователь 4 отсчета доплеровской частоты планерной составляющей спектра сигнала (рисунок 2б), на другой вход которого с выхода (рисунок 1) формирователя 2 отсчетов поступают значения доплеровских отсчетов частот F1, F3, F4, F5, F7. В формирователе 4 определяется (рисунок 2в) ближайшее к предварительно вычисленной в вычислителе 3 частотной позиции доплеровской частоты значение доплеровской частоты (рисунок 2в, частотная позиция F4) с соответствующей амплитудой (рисунок 2в - амплитуда А4) спектральной составляющей, превысившей установленный порог, которое окончательно и определяет доплеровскую частоту сигнала Fп в его АЧС, обусловленную скоростью сближения носителя импульсно-доплеровской РЛС с планером самолета с ТРД.
В формирователе 5 (рисунок 1), на входы которого также поступают значения частот F1, F3, F4, F5, F7 с соответствующими амплитудами А1, А3, А4, А5, А7 с выхода формирователя 2 отсчетов и значение частотной позиции i=4, соответствующей доплеровской частоте, обусловленной скоростью сближения носителя РЛС с самолетом с ТРД, определяется (без учета 4-й позиции) позиция доплеровской частоты (j=1, 3, 5, 7), на которой находится спектральная составляющая, превысившая установленный порог и имеющая максимальную амплитуду Aj (рисунок 2б - амплитуда А1 на частотной позиции F1), которая соответствует значению доплеровской частоты Fк (рисунок 2в), обусловленной скоростью сближения носителя импульсно-доплеровской РЛС с вращающимися лопатками первой ступени КНД силовой установки самолета с ТРД.
В блоке 6 вычитания (рисунок 1) вычисляется разность доплеровских частот ΔFпк=(Fп-Fк) (рисунок 2в), которая поступает (рисунок 1) на вход решающего блока 7.
За время Т каждого обзора пространства измеренные значения дальностей Д1 и Д2, азимута ϕг, угла места ϕв, высоты полета НРЛС самолета-носителя РЛС, константа, определяющая значение эквивалентного радиуса Земли RЭ, поступают (рисунок 1) на соответствующие входы вычислителя 8, в котором в соответствии с формулой (4) вычисляется высота полета Н самолета с ТРД. Это значение высоты Н поступает в формирователь 9, где хранятся априорно разбитые на Q неперекрывающихся поддиапазонов разности ΔFпк для различных высот полета самолета с ТРД (рисунок 3). При этом, нижняя и верхняя границы каждого q-го поддиапазона соответствующего q-му типу цели и высоте полета Н, определяются выражениями (2) и (3). В формирователе 9 из всей совокупности априорно разбитых на Q неперекрывающихся поддиапазонов разности ΔFпк для различных высот полета самолета с ТРД выбирается только один, соответствующий вычисленному в вычислителе 8 значению высоты Н полета самолета с ТРД. Значения границ выбранных поддиапазонов и поступают на вход решающего блока 7 (рисунок 1).
В решающем блоке 7 на основе анализа (рисунок 4) попадания вычисленной разности доплеровских частот ΔFпк в q-ый поддиапазон принимается решение о q-м типе самолета с ТРД.
Для оценки работоспособности предлагаемого способа было проведено его имитационное моделирование. На вход блока 1 БПФ подавался на промежуточной частоте зарегистрированный в сантиметровом диапазоне волн с линейного выхода приемника импульсно-доплеровской РЛС воздушного базирования РЛ сигнал, отраженный от отечественного самолета с ТРД, выполняющего полет на различных высотах. Процедура БПФ осуществлялась при эквивалентной полосе пропускания одного бина алгоритма БПФ, равного порядка 10 Гц. Всего было проанализировано более 1000 АЧС.
В результате имитационного моделирования предлагаемого способа установлено, что с доверительной вероятностью 0,95 оценка математического ожидания вероятности правильного (ложного) распознавания данного типа самолета находится в пределах 0,88-0,92 (10-3-10-4) при различных высотах его полета.
Кроме того, установлено, что увеличение ошибки определения высоты полета самолета с ТРД приводит к уменьшению оценки математического ожидания вероятности правильного распознавания до нуля и росту оценки математического ожидания вероятности ложного распознавания.
Таким образом, применение предлагаемого изобретения позволит повысить достоверность распознавания типа самолета с ТРД в импульсно-доплеровской РЛС при его полете на различных высотах.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Авиационные радиолокационные комплексы и системы: учебник для слушателей и курсантов ВУЗов ВВС / П.И. Дудник, Г.С. Кондратенков, Б.Г. Татарский, А.Р. Ильчук, А.А. Герасимов. Под ред. П.И. Дудника. - М.: изд. ВВИА им. проф. Н.Е. Жуковского, 2006, страницы 639-641, рисунок 12.39 (аналог).
2. Пат. 2705070 Российская Федерация, МПК G01S 13/52 (2006.01). Способ распознавания типа самолета с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции. Заявитель и патентообладатель Федеральное государственное казенное военное образовательное учреждение высшего образования «Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова» Министерства обороны Российской Федерации (RU). - №2019111580; заявл. 16.04.2019; опубл. 05.11.2019, Бюл. №31. - 15 с.: ил. (прототип).
3. Автоматика управления авиационными двигателями: учебно-методическое пособие в 3 частях. Часть 2. Автоматические ограничители параметров двигателей, автоматизация процессов запуска и приемистости двигателя / сост.: А.И. Сидунов, Н.И. Пучко. - Минск: МГВАК, 2012. - 83 с, страницы 16, 36.
4. Двигатель Д-30КП-2. Инструкция по технической эксплуатации. - М.: ОАО «НПО «Сатурн», 2001, Приложение 1, страница 7, Дополнение (к приложению 1), страница 27.
Claims (11)
- Способ распознавания типа самолета с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции, заключающийся в том, что радиолокационный сигнал, отраженный от самолета с турбореактивным двигателем, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр, спектральные составляющие которого обусловлены отражениями сигнала от планера самолета с турбореактивным двигателем и вращающихся лопаток рабочего колеса компрессора низкого давления его силовой установки, путем пороговой обработки амплитудно-частотного спектра сигнала формируют только те отсчеты доплеровских частот Fi с соответствующими амплитудами спектральных составляющих, которые превысили установленный порог, где - общее количество отсчетов доплеровских частот, на частотных позициях которых амплитуды спектральных составляющих превысили установленный порог, за время Т каждого обзора пространства измеряют два значения дальности Д1 и Д2 до самолета с турбореактивным двигателем, по измеренным значениям дальности Д1 и Д2 предварительно вычисляют частотную позицию доплеровской частоты обусловленную скоростью сближения носителя импульсно-доплеровской радиолокационной станции с планером самолета с турбореактивным двигателем, как где λ - рабочая длина волны импульсно-доплеровской радиолокационной станции, в амплитудно-частотном спектре сигнала определяют ближайшее к предварительно вычисленной частотной позиции доплеровской частоты значение доплеровской частоты с соответствующей амплитудой спектральной составляющей, превысившей установленный порог, которое окончательно определяет доплеровскую частоту сигнала Fп в его амплитудно-частотном спектре, обусловленную скоростью сближения носителя импульсно-доплеровской радиолокационной станции с планером самолета с турбореактивным двигателем, определяют в амплитудно-частотном спектре сигнала позицию доплеровской частоты где j=1, …, (i-1), (i+1), …, N, на которой находится спектральная составляющая, превысившая установленный порог и имеющая максимальную амплитуду Aj, j=1, …, (i-1), (i+1), …, N, которая соответствует значению доплеровской частоты Fк, обусловленной скоростью сближения носителя импульсно-доплеровской радиолокационной станции с вращающимися лопатками первой ступени компрессора низкого давления силовой установки самолета с турбореактивным двигателем, вычисляют разность доплеровских частот ΔFпк=(Fп-Fк),
- отличающийся тем, что за время Т каждого обзора пространства измеряют значения бортовых пеленгов ϕг азимута и ϕв угла места, по измеренным значениям бортовых пеленгов ϕг и ϕв и средней дальности Д, определяемой как Д=(Д1+Д2)/2, вычисляют высоту полета самолета с турбореактивным двигателем в соответствии с выражением
- где НРЛС - высота полета самолета-носителя радиолокационной станции;
- RЭ - эквивалентный радиус Земли;
- - высота полета самолета с турбореактивным двигателем относительно высоты полета самолета-носителя радиолокационной станции, для каждой высоты Н полета самолета с турбореактивным двигателем, где Hmin и Hmax - минимальная и максимальная высоты полета самолета с турбореактивным двигателем, диапазон разностей ΔFпк априорно разбивают на Q неперекрывающихся поддиапазонов, нижняя и верхняя границы каждого q-го поддиапазона, соответствующего q-му типу цели и высоте Н полета самолета с турбореактивным двигателем, определяются выражениями
- где
- FP - максимальная частота вращения ротора компрессора низкого давления силовой установки q-го типа самолета с турбореактивным двигателем; n1 и n2 - соответственно минимальное и максимальное значение величины относительных оборотов вращения ротора силовой установки, соответствующие высоте Н полета самолета с турбореактивным двигателем, одинаковые для всех их типов; Z - количество лопаток рабочего колеса первой ступени компрессора низкого давления силовой установки самолета с турбореактивным двигателем q-го типа, при попадании разности доплеровских частот ΔFпк в q-й поддиапазон принимают решение о q-м типе самолета с турбореактивным двигателем, летящем на высоте Н.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020107653A RU2731878C1 (ru) | 2020-02-18 | 2020-02-18 | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020107653A RU2731878C1 (ru) | 2020-02-18 | 2020-02-18 | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2731878C1 true RU2731878C1 (ru) | 2020-09-08 |
Family
ID=72421941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020107653A RU2731878C1 (ru) | 2020-02-18 | 2020-02-18 | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2731878C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2758682C1 (ru) * | 2021-03-16 | 2021-11-01 | Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ формирования параметров рассогласования в радиоэлектронной системе управления ракетой класса "воздух-воздух" при её самонаведении на заданный тип самолёта с турбореактивным двигателем из состава их разнотипной пары |
RU2790143C1 (ru) * | 2022-05-18 | 2023-02-14 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | Способ распознавания типа воздушного объекта по турбинному эффекту |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4348674A (en) * | 1979-07-18 | 1982-09-07 | Siemens Aktiengesellschaft | Apparatus and method for classifying moving targets |
EP0102640A2 (de) * | 1982-09-08 | 1984-03-14 | Siemens Aktiengesellschaft | Schaltungsanordnung zur Entdeckung und Erkennung von Hubschraubern |
DE19705730A1 (de) * | 1997-02-14 | 1998-08-20 | Daimler Benz Aerospace Ag | Verfahren zur Zielklassifizierung |
US6573861B1 (en) * | 1987-10-28 | 2003-06-03 | Telefunken Systemtechnik Gmbh | Target classification method |
RU2419815C1 (ru) * | 2009-11-03 | 2011-05-27 | ОАО "ГСКБ "АЛМАЗ-АНТЕЙ" им. АКАДЕМИКА А.А. РАСПЛЕТИНА | Способ сопровождения воздушной цели из класса "самолет с турбореактивным двигателем" |
RU2456633C1 (ru) * | 2011-05-03 | 2012-07-20 | Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") | Способ сопровождения групповой воздушной цели из класса "самолеты с турбореактивными двигателями" |
RU2468385C2 (ru) * | 2010-12-13 | 2012-11-27 | Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") | Способ сопровождения воздушной цели класса "вертолет" |
RU2579353C1 (ru) * | 2015-04-06 | 2016-04-10 | Федеральное государственное казённое военное образовательное учреждение высшего профессионального образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящей по скорости помехи |
RU2665031C1 (ru) * | 2018-01-31 | 2018-08-27 | Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех |
RU2705070C1 (ru) * | 2019-04-16 | 2019-11-05 | Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции |
-
2020
- 2020-02-18 RU RU2020107653A patent/RU2731878C1/ru active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4348674A (en) * | 1979-07-18 | 1982-09-07 | Siemens Aktiengesellschaft | Apparatus and method for classifying moving targets |
EP0102640A2 (de) * | 1982-09-08 | 1984-03-14 | Siemens Aktiengesellschaft | Schaltungsanordnung zur Entdeckung und Erkennung von Hubschraubern |
US6573861B1 (en) * | 1987-10-28 | 2003-06-03 | Telefunken Systemtechnik Gmbh | Target classification method |
DE19705730A1 (de) * | 1997-02-14 | 1998-08-20 | Daimler Benz Aerospace Ag | Verfahren zur Zielklassifizierung |
RU2419815C1 (ru) * | 2009-11-03 | 2011-05-27 | ОАО "ГСКБ "АЛМАЗ-АНТЕЙ" им. АКАДЕМИКА А.А. РАСПЛЕТИНА | Способ сопровождения воздушной цели из класса "самолет с турбореактивным двигателем" |
RU2468385C2 (ru) * | 2010-12-13 | 2012-11-27 | Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") | Способ сопровождения воздушной цели класса "вертолет" |
RU2456633C1 (ru) * | 2011-05-03 | 2012-07-20 | Федеральное государственное научное учреждение "Государственный научно-технологический центр "Наука" (ФГНУ "ГНТЦ "Наука") | Способ сопровождения групповой воздушной цели из класса "самолеты с турбореактивными двигателями" |
RU2579353C1 (ru) * | 2015-04-06 | 2016-04-10 | Федеральное государственное казённое военное образовательное учреждение высшего профессионального образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящей по скорости помехи |
RU2665031C1 (ru) * | 2018-01-31 | 2018-08-27 | Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех |
RU2705070C1 (ru) * | 2019-04-16 | 2019-11-05 | Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2758682C1 (ru) * | 2021-03-16 | 2021-11-01 | Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ формирования параметров рассогласования в радиоэлектронной системе управления ракетой класса "воздух-воздух" при её самонаведении на заданный тип самолёта с турбореактивным двигателем из состава их разнотипной пары |
RU2790143C1 (ru) * | 2022-05-18 | 2023-02-14 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | Способ распознавания типа воздушного объекта по турбинному эффекту |
RU2807510C1 (ru) * | 2023-02-03 | 2023-11-15 | Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации | Способ распознавания типа одиночной воздушной цели из класса "самолет с турбореактивным двигателем" |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111344591B (zh) | 调频连续波雷达系统、生成雷达图的方法以及无人飞行器系统 | |
RU2665031C1 (ru) | Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех | |
RU2456633C1 (ru) | Способ сопровождения групповой воздушной цели из класса "самолеты с турбореактивными двигателями" | |
RU2419815C1 (ru) | Способ сопровождения воздушной цели из класса "самолет с турбореактивным двигателем" | |
CN109407681B (zh) | 无人机飞行控制方法、飞行控制装置、无人机和存储介质 | |
CN111896926B (zh) | 一种基于强杂波抑制的低空目标检测方法及系统 | |
CN109212500A (zh) | 一种基于稀疏重构的ka-stap杂噪协方差矩阵高精度估计方法 | |
RU2705070C1 (ru) | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции | |
RU2579353C1 (ru) | Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящей по скорости помехи | |
RU2731878C1 (ru) | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции | |
CN107783128B (zh) | 基于毫米波雷达的固定翼无人机多目标防撞系统 | |
CN109870693A (zh) | 一种风力涡轮机杂波检测方法 | |
RU2617110C1 (ru) | Способ сопровождения в радиолокационной станции групповой воздушной цели из класса "самолёты с турбореактивными двигателями" при воздействии уводящих по скорости помех | |
RU2735314C1 (ru) | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при воздействии имитирующих помех | |
RU2807510C1 (ru) | Способ распознавания типа одиночной воздушной цели из класса "самолет с турбореактивным двигателем" | |
RU2732281C1 (ru) | Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при воздействии уводящей по скорости помехи | |
RU2735289C1 (ru) | Способ селекции имитаторов вторичного излучения воздушных объектов | |
RU2713212C1 (ru) | Способ распознавания варианта наведения подвижного объекта на один из летательных аппаратов группы | |
CN105548987B (zh) | 一种连续波雷达目标加速度盲估计方法 | |
RU2407031C1 (ru) | Радиолокационное устройство классификации вибрирующих летательных аппаратов с траекторными нестабильностями полета в приземных слоях атмосферы | |
RU2316788C1 (ru) | Способ обнаружения групповой цели импульсно-доплеровской радиолокационной станцией | |
RU2784544C1 (ru) | Способ сопровождения вертолета в импульсно-доплеровской радиолокационной станции | |
Mamgain et al. | Study and simulation of radar targets' micro-doppler signature | |
RU157396U1 (ru) | Устройство распознавания винтовых летательных аппаратов | |
DK201770854A1 (da) | Radar based system and method for detection of an object and generation of plots holding radial velocity data |