RU2709289C2 - Трубчатая пружина для транспортных средств и способ изготовления трубчатой пружины - Google Patents

Трубчатая пружина для транспортных средств и способ изготовления трубчатой пружины Download PDF

Info

Publication number
RU2709289C2
RU2709289C2 RU2018112635A RU2018112635A RU2709289C2 RU 2709289 C2 RU2709289 C2 RU 2709289C2 RU 2018112635 A RU2018112635 A RU 2018112635A RU 2018112635 A RU2018112635 A RU 2018112635A RU 2709289 C2 RU2709289 C2 RU 2709289C2
Authority
RU
Russia
Prior art keywords
metal
pipe
tubular element
spring
tubular
Prior art date
Application number
RU2018112635A
Other languages
English (en)
Other versions
RU2018112635A3 (ru
RU2018112635A (ru
Inventor
Дитер ЛЕХНЕР
Тимо ШТРАКА
Франк Шнайдер
Original Assignee
Тиссенкрупп Федерн Унд Штабилизаторен Гмбх
Тиссенкрупп Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тиссенкрупп Федерн Унд Штабилизаторен Гмбх, Тиссенкрупп Аг filed Critical Тиссенкрупп Федерн Унд Штабилизаторен Гмбх
Publication of RU2018112635A3 publication Critical patent/RU2018112635A3/ru
Publication of RU2018112635A publication Critical patent/RU2018112635A/ru
Application granted granted Critical
Publication of RU2709289C2 publication Critical patent/RU2709289C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/14Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/18Resilient suspensions characterised by arrangement, location or kind of springs having torsion-bar springs only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/72Steel
    • B60G2206/724Wires, bars or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8106Shaping by thermal treatment, e.g. curing hardening, vulcanisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0225Cellular, e.g. microcellular foam

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Группа изобретений относится к области машиностроения. Трубчатая пружина выполнена в виде винтовой пружины, торсионной пружины и/или стабилизатора для безрельсовых транспортных средств. Трубчатая пружина включает металлический трубчатый элемент с внутренним поперечным сечением трубы, внутренним диаметром (DI) трубы, наружным диаметром (DA) трубы, внутренней стенкой (7) трубы и толщиной (W) стенки трубы. Во внутреннем поперечном сечении трубы металлического трубчатого элемента трубчатой пружины расположен вспененный материал (8) с металлической составляющей. Металлический трубчатый элемент содержит мартенситную структуру. Металлический трубчатый элемент подвергнут пластическому формообразованию с образованием выполненной не полностью прямолинейно трубчатой пружины. Способ раскрывает этапы выполнения трубчатой пружины. Применяют трубчатую пружину в ходовых частях транспортных средств. Достигается повышение эксплуатационных характеристик. 3 н. и 7 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение относится к трубчатой пружине для безрельсовых транспортных средств и способу изготовления трубчатой пружины.
Уровень техники
Пружины и торсионы из подвергнутой пластическому формообразованию стальной трубы или стальной проволоки известны в уровне техники во множестве форм осуществления. Торсионами, например, называются также торсионные пружины, стабилизирующие торсионные пружины или работающие на кручение торсионные пружины. Стальные пружины и торсионные пружины применяются, в частности, в безрельсовых транспортных средствах, причем стальные пружины применяются, например, в системе пружин для демпфирования для поглощения толчков от неровностей дорожного покрытия и торсионные пружины применяются для стабилизации против поперечных колебаний вокруг продольной оси при движении по кривой транспортного средства, езде транспортного средства по меняющемуся дорожному покрытию и при неровностях дорожного покрытия. Такие стабилизаторы расположены обычно в области передней и задней оси и простираются по меньшей мере по всей ширине транспортного средства. Формование стальной трубы или стальной проволоки с образованием пружин и торсионов согласно уровню техники может осуществляться известными способами пластического формообразования. Перед или после этого формования стальная труба или стальная проволока может подвергаться различным этапам подготовки, которые оказывают влияние на упругие и прочностные свойства и улучшают другие определенные потребительские качества материала. Так пружины и/или торсионы с высокой прочностью могут изготавливаться со сравнительно небольшим расходом материала и таким образом небольшого веса и небольшими затратами на материалы. При этом трубчатые пружины имеют в сравнении со сплошными торсионами меньший вес при одинаковых упругих свойствах, жесткость и способность к изгибанию трубчатых стабилизаторов зависит от диаметра и толщины стенки. Увеличение соотношения диаметр/толщина стенки идет на пользу большей экономии веса, однако, по причине уменьшенной способности к изгибанию вследствие более высоких вызванных в процессе формования и при работе детали конструкции внутренних напряжений возможно только в ограниченной области. Таким образом свойства трубчатых пружин ограничены узкой областью геометрических размеров и вытекающими из этого упругими свойствами, соответственно пригодность к пластическому формообразованию стальной трубы или стальной проволоки ограничена некоторыми известными в уровне технике способами пластического формообразования, В частности, такие параметры как прочность и вязкость связаны со способностью к пластическому формообразованию и сроком службы пружины. Дальше сплошные торсионы в отличие от трубчатых пружин с одинаковыми геометрическими наружными размерами имеют с одной стороны больший вес, с другой стороны трубчатые пружины нуждаются в защите от коррозии внутренней поверхности трубы, которая плохо доступна и требует других этапов способа, как, например, дробеструйная обработка.
Из DE 103 15 418 В3, например, известен способ изготовления с помощью горячего пластического формообразования винтовых пружин.
В DE 198 39 383 C2 описан способ термомеханической обработки стали для нагруженных на кручение элементов пружины.
Отсюда в основе настоящего изобретения лежит задача предоставления улучшенной трубчатой пружины, в частности, улучшенной винтовой пружины, торсионной пружины и/или стабилизатора для безрельсовых транспортных средств и способа изготовления трубчатой пружины, при котором предотвращаются указанные выше недостатки. В частности, с этой улучшенной трубчатой пружиной и улучшенным способом изготовления трубчатой пружиной должно стать возможным объединение преимущества изготовленной из стальной трубы пружины с преимуществами изготовленной по меньшей мере частично из стальной проволоки пружины. К тому же с предложенной в соответствии с изобретением трубчатой пружиной и улучшенным способом изготовлении трубчатой пружины должно стать возможным предоставление в сравнении с традиционными трубчатыми пружинами и способами улучшенной способности к изгибанию и предотвращение вызываемых способом пластического формообразования разрывов. Дальше должна присутствовать возможность отказа от необходимости защиты от коррозии внутренней поверхности трубы. К тому же с улучшенным способом изготовления трубчатой пружины предоставляется стабильный производственный процесс, который просто и надежно может реализовываться уже в существующих способах. Также должна существовать возможность направленной установки заданного для различных частичных областей и/или диаметра трубчатой пружины момента инерции площадей и также возможность с варьированием регулировать в различных частичных областях и/или диаметров момента инерции площадей.
Раскрытие сущности изобретения
Задача решается с трубчатой пружиной по пункту 1 формулы изобретения и способом изготовления, заполненной вспененным материалом по меньшей мере в частичной области трубчатой пружины по п. 6 формулы изобретения.
Предложенная в соответствии с изобретением трубчатая пружина для безрельсовых транспортных средств имеет по сравнению с традиционными трубчатыми пружинами преимущества, что свойства торсиона объединяются по меньшей мере частично со свойствами трубчатой пружины. В частности, с предложенной в соответствии с изобретением трубчатой пружиной возможно пластическое формообразование, которое намного превышает ограничения, определяемые способностью к изгибанию традиционных трубчатых пружин. К тому же свойства у предложенной в соответствии с изобретением трубчатой пружины, в частности, жесткость и способность к изгибанию в каждом участке и/или области пружины могут устанавливаться в соответствии с потребностями. Дальше у предложенной в соответствии с изобретением трубчатой пружины свойства жесткости и упругие характеристики могут устанавливаться при помощи соотношения диаметр/толщина стенки с учетом применения легких конструкций. К тому же предложенная в соответствии с изобретением трубчатая пружина не требует никакой защиты от коррозии внутренней поверхности трубы. Дальше при заданном наружном диаметре трубы и/или заданной толщине стенки возможно изготовление множества различных партий пружин.
Предложенный в соответствии с изобретением способ изготовления заполненной вспененным материалом по меньшей мере в частичной области трубчатой пружины имеет по сравнению с традиционными способами преимущество, что можно отказаться от этапа способа защиты от коррозии внутренней поверхности трубы. К тому же с предложенным в соответствии с изобретением способом изготовления заполненной вспененным материалом по меньшей мере в частичной области трубчатой пружины предоставляется улучшенная способность к изгибанию трубчатой пружины, благодаря чему в значительной степени предотвращаются вызываемые способом пластического формообразования разрывы. Другим преимуществом предложенного в соответствии с изобретением способа является, что он просто и надежно может интегрироваться в уже существующие способы. Дальше жесткость трубчатой пружины вдоль длины трубчатой пружины может вариативно устанавливаться при помощи введенного в соответствующую частичную область трубчатой пружины вспененного материала с металлической составляющей. В результате этого получается приспособленное к рабочей нагрузке распределение напряжений.
Отсюда предметом изобретения является трубчатая пружина, в частности, в виде винтовой пружины , торсионной пружины и/или стабилизатора для безрельсовых транспортных средств, включающая по меньшей мере металлический трубчатый элемент с внутренним поперечным сечением трубы, внутренним диаметром трубы, наружным диаметром трубы, внутренней стенкой трубы и толщиной стенки трубы, причем в во внутреннем поперечном сечении трубы по меньшей мере одного металлического трубчатого элемента трубчатой пружины , расположен по меньшей мере в частичной области по меньшей мере вспененный материал с металлической составляющей и по меньшей мере один металлический трубчатый элемент имеет по меньшей мере частично мартенситную структуру.
Другим предметом изобретения является способ изготовления заполненной вспененным материалом по меньшей мере в частичной области трубчатой пружины, в частности в виде винтовой пружины, торсионной пружины и/или стабилизатора для безрельсовых транспортных средств, включающий этапы:
а) подготовка по меньшей мере состава исходного материала, включающего по меньшей мере металлическую составляющую с температурой плавления и компонент вспенивающего средства;
b) подготовка трубчатой пружины, включающей по меньшей мере металлический трубчатый элемент с внутренним поперечным сечением трубы, внутренним диаметром трубы, наружным диаметром трубы, внутренней стенкой трубы и толщиной стенки трубы;
с) введение подготовленного на этапе а) по меньшей мере состава исходного материала в по меньшей мере один металлический трубчатый элемент подготовленной на этапе (b) трубчатой пружины, причем по меньшей мере один металлический трубчатый элемент заполняется полностью или в частичной областях;
d) вспенивание введенного на этапе с) по меньшей мере состава исходного материала, причем вспенивание осуществляется с помощью нагревания по меньшей мере частично по меньшей мере одной металлической составляющей введенного на этапе с) состава исходного материала по меньшей мере до температуры вспенивания, которая больше температуры плавления по меньшей мере одной металлической составляющей, причем нагревание производится по меньшей мере частично при образовании вспененного материала с металлической составляющей и изготовлении заполненного вспененным материалом по меньшей мере в частичных областях по меньшей мере металлического трубчатого элемента, причем изготавливается заполненная вспененным материалом по меньшей мере в частичной области трубчатая пружина,
причем по меньшей мере, в частичных областях между внутренней стенкой трубы заполненного вспененным материалом, по меньшей мере в частичной области по меньшей мере одного металлического трубчатого элемента и вспененным материалом с металлической составляющей заполненного вспененным материалом по меньшей мере в частичной области по меньшей мере одного металлического трубчатого элемента образуется по меньшей мере частично связанное материалом соединение.
Другим предметом изобретения является применение заполненной вспененным материалом по меньшей мере в частичной области трубчатой пружины для ходовых частей транспортных средств, в частности, безрельсовых транспортных средств.
Осуществление изобретения
В рамках настоящего изобретения под трубчатой пружиной понимается деталь конструкции, включающая по меньшей мере металлический трубчатый элемент, который пружинит под нагрузкой и после снятия нагрузки возвращается в первоначальную форму, в частности, трубчатая пружина может быть деталью конструкции из трубы, имеющей винтовую или спиральную навивку, или вытянутую в форме стержня, или имеющей перегиб. Например, для трубчатых пружин из группы винтовых пружин выбраны, в частности, винтовые пружины сжатия, винтовые пружины растяжения, конические пружины, пружины для сидений, изгибные пружины, в частности, спиральные пружины, витые торсионные пружины и их комбинации.
В рамках настоящего изобретения под торсионной пружиной понимается деталь конструкции, включающая по меньшей мере металлический трубчатый элемент, в которой при неподвижном закреплении обоих концов закрепленные концы по отношению друг к другу совершают поворотное движение вокруг оси торсионной пружины. В частности, имеет место механическое нагружение, вызванное воздействующим тангенциально к оси торсионной пружины крутящим моментом. Под торсионными пружинами также понимаются прямой сплошной торсион, согнутый под углом сплошной торсион, торсионная пружина, стабилизирующий торсион, стабилизатор, составной стабилизатор и их комбинации.
Под вспененным материалом с металлической составляющей в рамках настоящего изобретения понимается вспененный материал, который включает по меньшей мере металлическую составляющую и вспенивается с по меньшей мере с компонентом вспенивающего средства. В частности по меньшей мере одна металлическая составляющая выбрана из группы алюминиевых сплавов, в частности, эвтектических сплавов алюминия и кремния, AlCu, AlMn, AlSi, AlMg, AlMgSi, AlZn, сплавов титана и их комбинаций. Например, металлические составляющие могут подготавливаться в составе исходного материала, который запрессовывается, в частности, с помощью стержневых прессов в геометрическую форму. Примеры для геометрических форм могут быть выбраны из группы, прутов, прутков, труб, крестовых элементов и их комбинаций. В частности, подготовленный состав исходного материала может вводиться в трубчатую пружину в виде сыпучего материала. Примерами компонентов вспенивающего средства являются составы, включающие по меньшей мере гидрид металла, который выбирается, в частности, из группы стехиометрических гидридов металла, например, щелочных и щелочно-земельных металлов, высокополимерных гидридов металла, сложных гидридов металла, не стехиометрических гидридов металла и их комбинаций. В частности, в качестве компонентов вспенивающего средства отобраны гидрид титана и дигидрид титана.
В одной предпочтительной форме осуществления изобретения расположенный по меньшей мере в частичной области во внутреннем поперечном сечении трубы по меньшей мере одного металлического трубчатого элемента трубчатой пружины по меньшей мере вспененный материал с металлической составляющей по меньшей мере частично связанно с материалом соединен с внутренней стенкой трубы по меньшей мере одного металлического трубчатого элемента.
В другой форме осуществления изобретения наружный диаметр трубы по отношению к толщине стенки трубы по меньшей мере одного металлического трубчатого элемента имеет отношение больше 8, преимущественно больше 12, предпочтительнее больше 20, наиболее предпочтительно больше 30.
Согласно другой возможной форме осуществления изобретения по меньшей мере расположенный во внутреннем поперечном сечении по меньшей мере одного металлического трубчатого элемента вспененный материал с металлической составляющей имеет плотность меньше 1 г/см3, преимущественно меньше 0,6 г/см3, предпочтительнее в диапазоне от 1 до 0,5 г/см3.
В предпочтительной форме осуществления изобретения по меньшей мере один металлический трубчатый элемент по меньшей мере частично подвергнут пластическому формообразованию с получением выполненной не полностью прямолинейно трубчатой пружины.
Состав исходного материала подвергается, в частности, процессу формования, например, на прессе для изготовления стержней, уплотняется и имеет пригодную для транспортировки основную структуру, чтобы могло осуществляться введение, в частности, заполнение трубчатой пружины способом подачи.
Образованное по меньшей мере частично связанное материалом соединение между вспененным материалом с металлической составляющей заполненного вспененным материалом по меньшей мере в частичной области металлического трубчатого элемента и заполненным по меньшей мере в частичной области вспененным материалом по меньшей мере одним трубчатым элементом в рамках изобретения понимается как неразъемное соединение, как, например, сварное соединение, в частности, соединение с помощью диффузионной сварки. Например, необходимое для соединения с помощью диффузионной сварки наряду с подводом тепла силовое воздействие, в частности, давление на внутреннюю боковую поверхность по меньшей мере одного заполненного вспененным материалом металлического трубчатого элемента осуществляется за счет давления при расширении заполняющего вспененного материала с металлической составляющей.
Под температурой плавлении понимается температура, при которой плавится по меньшей мере одна металлическая составляющая, в частности, переходит из твердого в жидкое агрегатное состояние.
В рамках настоящего изобретения под температурой вспенивания понимается температура, при которой происходит увеличение объема, в частности, возрастание объема состава исходного материала. Например, температура вспенивания больше 6200С.
Например, введение на этапе с) подготовленного на этапе а) по меньшей мере состава исходного материала в по меньшей мере один металлический трубчатый элемент подготовленной на этапе b) трубчатой пружины может осуществляться с помощью загрузки, проталкивания, засыпки и их комбинаций. В качестве приспособления для ведения может применяться, например, трубка для ввода.
В другой форме осуществления изобретения подготовленный на этапе b) по меньшей мере один металлический трубчатый элемент имеет по меньшей мере частично ферритно-перлитовую структуру.
В предпочтительной форме осуществления изобретения изготовление трубчатой пружины производится из стальной трубы, имеющей содержание углерода в диапазоне от 0,02 до 0,8 % по весу. В частности, в рамках изобретения под сталями, имеющими содержание углерода в диапазоне от 0,02 до 0,8 % по весу, понимаются доэвтектоидные стали.
Согласно другой возможной форме осуществления изобретения нагревание на этапе d) введенного состава исходного материала производится с передачей тепла, выбранной с учетом коэффициента теплопроводности, в частности кондуктивным нагревом, тепловым излучением, в частности, индуктивным нагревом, конвекцией и их комбинациями.
Под нагреванием, как это осуществляется, например, на этапе d), и/или другой передаче тепла в рамках изобретения, понимается такое, которое выбрано с учетом коэффициента теплопроводности, в частности, кондуктивный нагрев, тепловое излучение, в частности, инфракрасное излучение, индуктивный нагрев, конвекция, в частности, тепловое дутье и их комбинации. В частности, при нагревании достигается температура больше температуры плавления металлической составляющей как, например, больше 6200 С.
Согласно другой возможной форме осуществления изобретения на дальнейшем этапе е) производится пластическое формообразование подготовленного на этапе b) по меньшей мере одного металлического трубчатого элемента и/или заполненного вспененным материалом по меньшей мере в частичной области на этапе d) по меньшей мере одного металлического трубчатого элемента с образованием не полностью прямолинейно выполненной заполненной вспененным материалом по меньшей мере в частичной области трубчатой пружины.
В предпочтительной форме осуществления изобретения пластическое формообразование на этапе е) является холодным пластическим формообразованием и производится в качестве этапа в очередности после вспенивания на этапе d) при температуре холодного пластического формообразования, причем температура холодного пластического формообразования это температура ниже минимальной температуры рекристаллизации металлического трубчатого элемента, преимущественно меньше температуры начала образования аустенита в металлическом трубчатом элементе.
Под минимальной температурой рекристаллизации понимается самая низкая температура, при которой еще происходит рекристаллизация, в частности, рекристаллизация структуры стальной проволоки.
Температура рекристаллизации это та самая температура обжига, которая в структуре, полученной при холодном пластическом формообразовании с заданным коэффициентом уковки в ограниченном промежутке времени, ведет к полной рекристаллизации. Температура рекристаллизации не имеет никакого конкретного значения, а зависит от степени предшествовавшего холодного пластического формообразования и температуры плавления материала, в частности, температур плавления сталей. Например, у сталей температура рекристаллизации также зависит от содержания углерода и легирования соответствующей стали.
Под температурой начала образования аустенита в рамках изобретения понимается температура, при которой происходит переход в по меньшей мере частичную аустенитную структуру, в частности, при температуре аустенитизации происходит переход в по меньшей мере частичнуо аустенитную структуру.
Под холодным пластическим формообразованием в рамках настоящего изобретения понимается, когда стальная труба подвергается пластическому формообразованию при температуре ниже температуры рекристаллизации, в частности, при холодном пластическом формообразовании возможность изменения формы ограничена, так как вследствие наклепа вязкость и деформируемость материала, как, например, стали с возрастающим коэффициентом уковки снижаются, Примерами холодного пластического формообразования являются холодное навивание, холодное свивание, холодное изгибание и их комбинации.
Согласно другой возможной форме осуществления пластическое формообразование на этапе е) является горячим пластическим формообразованием и производится в качестве этапа в очередности перед вспениванием на этапе d) при температуре горячего пластического формообразования, причем температура горячего пластического формообразования это температура выше минимальной температуры рекристаллизации металлического трубчатого элемента, преимущественно равна или больше температуры начала образования аустенита в металлическом трубчатом элементе. В частности температура горячего пластического формообразования меньше температуры образования мартенсита в металлическом трубчатом элементе и меньше температуры плавления состава исходного материала.
Под горячим пластическим формообразованием в рамках настоящего изобретения понимается, когда стальная труба подвергается горячему пластическому формообразованию при температуре выше температуры рекристаллизации. В частности, материал рекристаллизируется, как, например, сталь во время или сразу после горячего пластического формообразования, благодаря чему материалу снова возвращаются первоначальные свойства. Например, при горячем пластическом формообразовании речь ведется о параллельной пластическому формообразовании рекристаллизации структуры материала. Примерами горячего пластического формообразования являются горячее навивание, горячее изгибание и их комбинации.
В предпочтительной форме осуществления изобретения нагревание на этапе d) по меньшей мере, одной металлической составляющей введенного на этапе с) состава исходного материала производится со скоростью нагревания по меньшей мере 2 к/с, преимущественно больше 20 к/с, предпочтительнее больше 50 к/с, наиболее предпочтительно больше 200 к/с.
В предпочтительной форме осуществления изобретения при вспенивании состава исходного материала на этапе d) плотность вспененного материала с металлической составляющей, заполнившего по меньшей мере один металлический трубчатый элемент, устанавливается меньше 1 г/см3, преимущественно меньше 0,6 г/м3, предпочтительнее в диапазоне от 0,1 до 0,5 г/см3.
Краткое описание чертежей
Предложенная в соответствии с изобретением трубчатая пружина поясняется с помощью чертежей.
Фиг. 1 схематически показывает различно выполненные с помощью пластического формообразования трубчатые пружины согласно уровню техники,
фиг. 2 схематически показывает в аксонометрическом виде металлический трубчатый элемент трубчатой пружины согласно уровню техники,
фиг. 3 схематически показывает поперечное сечение заполненного вспененным материалом металлического трубчатого элемента трубчатой пружины согласно формам осуществления изобретения.
На фиг. 1 с обозначениями а) – с) представлены различно выполненные с помощью пластического формообразования трубчатые пружины 1 согласно уровню техники. Под а) представлена торсионная пружина 2. Обозначение b) представляет винтовую пружину и с) стабилизатор 4.
На фиг. 2 представлен вид в аксонометрии металлического трубчатого элемента 5 трубчатой пружины 1 согласно уровню техники. Металлический трубчатый элемент 5 имеет внутреннее поперечное сечение 6 трубы с внутренним диаметром DI трубы, наружным диаметром DA трубы, внутренней стенкой 7 трубы и толщиной W стенки трубы. Внутреннее поперечное сечение 6 не заполнено вспененным материалом.
На фиг. 3 схематически представлено поперечное сечение заполненного вспененным материалом металлического трубчатого элемента 5 трубчатой пружины 1 согласно форме осуществления изобретения. Внутри внутреннего поперечного сечения 6 расположен по меньшей мере в частичной области по меньшей мере вспененный материал 8 с металлической составляющей. Предложенный в соответствии с изобретением металлический трубчатый элемент 5 имеет внутреннее поперечное сечение 6 с внутренним диаметром DI трубы, наружным диаметром DA трубы, внутреннюю стенку 7 трубы и толщину W стенку трубы. Вспененный материал 8 с металлической составляющей представлен в виде вариабельной пористой структуры.
Возможность применения в промышленности
Трубчатые пружины, в частности, в виде винтовой пружины, торсионной пружины и/или стабилизатора описанного выше вида применяются в производстве транспортных средств, в частности ходовых частей безрельсовых транспортных средств.
Перечень ссылочных обозначений
1. Трубчатая пружина
2. Торсионная пружина
3. Винтовая пружина
4. Стабилизатор
5. Металлический трубчатый элемент
6. Внутреннее поперечное сечение трубы
7. Внутренняя стенка трубы
8. Вспененный материал с металлической составляющей
DA Наружный диаметр трубы металлического трубчатого элемента
DI Внутренний диаметр трубы металлического трубчатого элемента
W Толщина стенки трубы

Claims (17)

1. Трубчатая пружина (1), в частности, в виде винтовой пружины (3), торсионной пружины (2) и/или стабилизатора (4) для транспортных средств, включающая по меньшей мере металлический трубчатый элемент (5) с внутренним поперечным сечением (6) трубы, внутренним диаметром (DI) трубы, наружным диаметром (DA) трубы, внутренней стенкой (7) трубы и толщиной (W) стенки трубы, отличающаяся тем, что во внутреннем поперечном сечении (6) трубы по меньшей мере одного металлического трубчатого элемента (5) трубчатой пружины (1), по меньшей в частичной области расположен по меньшей мере вспененный металл (8) и по меньшей мере один металлический трубчатый элемент (5) имеет по меньшей мере частично мартенситную структуру,
при этом по меньшей мере один металлический трубчатый элемент (5) и/или по меньшей мере один металлический трубчатый элемент (5) со вспененным металлом по меньшей мере частично подвергнут пластическому формообразованию с образованием выполненной не полностью прямолинейно трубчатой пружины (1).
2. Трубчатая пружина (1) по п. 1, отличающаяся тем, что расположенный по меньшей мере во внутреннем поперечном сечении (6) трубы по меньшей мере одного металлического трубчатого элемента (5) трубчатой пружины (1) по меньшей мере в частичной области вспененный металл (8) по меньшей мере частично соединен с внутренней стенкой (7) трубы по меньшей мере одного металлического трубчатого элемента (5).
3. Трубчатая пружина (1) по п. 1 или 2, отличающаяся тем, что наружный диаметр (DA) трубы по отношению к толщине (W) стенки трубы по меньшей мере одного металлического трубчатого элемента (5) имеет соотношение больше 8, преимущественно больше 12, предпочтительнее больше 20, наиболее предпочтительно больше 30.
4. Трубчатая пружина (1) по одному из пп. 1-3, отличающаяся тем, что расположенный по меньшей мере во внутреннем поперечном сечении (6) трубы по меньшей мере одного металлического трубчатого элемента (5) вспененный металл (8) с металлической составляющей имеет плотность меньше 1 г/см3, преимущественно меньше 0,6 г/см3, предпочтительнее в диапазоне от 0,1 до 0,5 г/см3.
5. Способ изготовления трубчатой пружины (1), вспененной по меньшей мере в одной частичной области, в виде винтовой пружины (3), торсионной пружины (2) и/или стабилизатора (4) для транспортных средств, включающий этапы:
а) подготовка по меньшей мере состава исходного материала, включающего по меньшей мере металлическую составляющую с температурой плавления и компонент вспенивающего средства;
b) подготовка трубчатой пружины (1), включающей по меньшей мере металлический трубчатый элемент (5) с внутренним поперечным сечением (6) трубы, внутренним диаметром (DI) трубы, наружным диаметром (DA) трубы, внутренней стенкой (7) трубы и толщиной (W) стенки трубы;
с) введение подготовленного на этапе а) по меньшей мере состава исходного материала в по меньшей мере один металлический трубчатый элемент (5) подготовленной на этапе (b) трубчатой пружины (1), причем по меньшей мере один металлический трубчатый элемент (5) заполняется полностью или в частичной областях;
d) вспенивание введенного на этапе с) по меньшей мере состава исходного материала, причем вспенивание осуществляется с помощью нагрева, по меньшей мере, частично по меньшей мере одной металлической составляющей введенного на этапе с) состава исходного материала, по меньшей мере, до температуры вспенивания, которая больше температуры плавления по меньшей мере одной металлической составляющей, причем нагрев производится по меньшей мере частично при образовании вспененного металла (8) и изготовлении заполненного вспененным металлом по меньшей мере в частичных областях, по меньшей мере, металлического трубчатого элемента (5), причем изготавливается заполненная вспененным металлом, по меньшей мере, в частичной области трубчатая пружина (1), отличающийся тем, что,
по меньшей мере, в частичных областях между внутренней стенкой (7) трубы, запененной по меньшей мере в частичной области одного металлического трубчатого элемента (5), и вспененным металлом (8), по меньшей мере, в частичной области по меньшей мере одного металлического трубчатого элемента (5) образуется по меньшей мере частично связанное соединение,
при этом на дальнейшем этапе е) осуществляется пластическое формоизменение подготовленного на этапе b) по меньшей мере одного металлического трубчатого элемента (5) и/или заполненного на этапе d) вспененным металлом по меньшей мере в частичной области по меньшей мере одного металлического трубчатого элемента (5) с образованием не полностью прямолинейно выполненной заполненной вспененным металлом по меньшей мере в частичной области трубчатой пружины (1).
6. Способ по п. 5, отличающийся тем, что подготовленный на этапе b) по меньшей мере один металлический трубчатый элемент (5) имеет по меньшей мере частично ферритно-перлитную структуру.
7. Способ по п. 5 или 6, отличающийся тем, что пластическое формоизменение на этапе е) представляет собой холодное пластическое формообразование и осуществляется в качестве этапа по очередности после вспенивания на этапе d) при температуре холодного пластического формообразования, причем температура холодного пластического формообразования - это температура ниже минимальной температуры рекристаллизации металлического трубчатого элемента (5), преимущественно меньше начальной температуры образования аустенита в металлическом трубчатом элементе (5).
8. Способ по любому из пп. 5-7, отличающийся тем, что пластическое формоизменение на этапе е) представляет собой горячее пластическое формообразование и осуществляется в качестве этапа по очередности перед вспениванием на этапе d) при температуре горячего пластического формообразования, причем температура горячего пластического формообразования - это температура выше минимальной температуры рекристаллизации металлического трубчатого элемента (5), преимущественно равна или больше начальной температуры образования аустенита в металлическом трубчатом элементе (5).
9. Способ по любому из пп. 5-8, отличающийся тем, что при вспенивании состава исходного материала на этапе d) плотность заполненного в по меньшей мере одном металлическом трубчатом элементе (5) вспененного металла (8) устанавливается меньше 1 г/см3, преимущественно меньше 0,6 г/см3, предпочтительнее в диапазоне от 0,1 до 0,5 г/см3.
10. Применение трубчатой пружины (1), вспененной по меньшей мере в одной частичной области по одному из пп. 1-4 в ходовых частях транспортных средств, в частности транспортных средств.
RU2018112635A 2015-09-11 2016-09-06 Трубчатая пружина для транспортных средств и способ изготовления трубчатой пружины RU2709289C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015217399.2A DE102015217399A1 (de) 2015-09-11 2015-09-11 Rohrfeder für Kraftfahrzeuge und ein Verfahren zum Herstellen einer Rohrfeder
DE102015217399.2 2015-09-11
PCT/EP2016/070926 WO2017042147A1 (de) 2015-09-11 2016-09-06 Rohrfeder für kraftfahrzeuge und ein verfahren zum herstellen einer rohrfeder

Publications (3)

Publication Number Publication Date
RU2018112635A3 RU2018112635A3 (ru) 2019-10-14
RU2018112635A RU2018112635A (ru) 2019-10-14
RU2709289C2 true RU2709289C2 (ru) 2019-12-17

Family

ID=56877044

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112635A RU2709289C2 (ru) 2015-09-11 2016-09-06 Трубчатая пружина для транспортных средств и способ изготовления трубчатой пружины

Country Status (10)

Country Link
US (1) US20180236835A1 (ru)
EP (1) EP3347614B1 (ru)
JP (1) JP2018535362A (ru)
KR (1) KR102096728B1 (ru)
CN (1) CN108291599A (ru)
BR (1) BR112018004690A2 (ru)
DE (1) DE102015217399A1 (ru)
MX (1) MX2018002928A (ru)
RU (1) RU2709289C2 (ru)
WO (1) WO2017042147A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217401B4 (de) * 2015-09-11 2018-04-05 Thyssenkrupp Ag Rohrfeder für Kraftfahrzeuge und ein Verfahren zum Herstellen einer Rohrfeder
WO2019003397A1 (ja) * 2017-06-28 2019-01-03 三菱製鋼株式会社 中空スタビライザーの製造方法
KR102614000B1 (ko) 2021-11-26 2023-12-14 재단법인대구경북과학기술원 중공형 탄성 구조체 및 이의 설계 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426627A1 (de) * 1993-07-29 1995-02-02 Fraunhofer Ges Forschung Metallischer Verbundwerkstoff und Verfahren zu seiner Herstellung
DE19839383A1 (de) * 1998-07-20 2000-01-27 Muhr & Bender Verfahren zur thermomechanischen Behandlung von Stahl für torsionsbeanspruchte Federelemente
JP2005282728A (ja) * 2004-03-30 2005-10-13 Hideo Nakajima 制振ばね
RU2534288C1 (ru) * 2013-03-26 2014-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Торсионная пружина

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888450A (en) * 1974-05-31 1975-06-10 Briggs & Stratton Corp Vibration absorbing mounting element
JPS5653163Y2 (ru) * 1977-07-07 1981-12-11
JPS56129628U (ru) * 1980-03-01 1981-10-02
DE3415590A1 (de) * 1984-04-24 1985-10-31 Mannesmann AG, 4000 Düsseldorf Verwendung eines stahls in schwefelwasserstoffhaltigen medien
JP2844078B2 (ja) * 1989-03-31 1999-01-06 ニッタ株式会社 建造物用免震装置の外周被覆方法
JPH0712160A (ja) * 1993-06-23 1995-01-17 Fujitsubo Giken Kogyo Kk 自動車のサスペンション用コイルスプリング
DE29514164U1 (de) * 1995-09-04 1997-01-09 Ebbinghaus, Alfred, 73431 Aalen Ausgeschäumtes Formteil
DE19709672C2 (de) * 1997-03-11 1998-12-24 Koenig & Bauer Albert Ag Zylinder für Druckmaschinen
DE29809241U1 (de) * 1998-05-26 1998-08-27 Benteler Ag, 33104 Paderborn Verbundlenkerachse
JP2000015351A (ja) * 1998-06-29 2000-01-18 Showa Alum Corp 曲げ加工品の製造方法および曲げ加工品
EP0974676A3 (de) * 1998-07-20 2003-06-04 Firma Muhr und Bender Verfahren zur thermomechanischen Behandlung von Stahl für torsionsbeanspruchte Federelemente
JP2000142276A (ja) * 1998-09-04 2000-05-23 Tokai Rubber Ind Ltd 車両用緩衝装置
US6235131B1 (en) * 1999-07-09 2001-05-22 Mathew Warren Industries, Inc. System for heat treating coiled springs
FR2810588B1 (fr) * 2000-06-21 2002-09-27 Patrick Pascal Labbe Liaison inter-bras, notamment pour structure de suspension de vehicule automobile anisotrope du mode vertical et isotrope du mode longitudinal de trepidation
CN1275457A (zh) * 2000-06-22 2000-12-06 天津和平海湾电源集团有限公司 金属带敷泡沫镍材料及其制造方法
FR2849416B1 (fr) * 2002-12-30 2006-03-03 Valeo Thermique Moteur Sa Boitier absorbeur d'energie pour poutre pare-chocs de vehicule automobile
DE10315418B3 (de) 2003-04-04 2004-07-22 Thyssenkrupp Automotive Ag Verfahren zur thermomechanischen Behandlung von Stahl
DE102006029179A1 (de) * 2006-06-24 2007-12-27 Bayerische Motoren Werke Ag Federbein mit Luftdämpfung
AT503824B1 (de) * 2006-07-13 2009-07-15 Huette Klein Reichenbach Gmbh Metallformkörper und verfahren zu dessen herstellung
CN201100355Y (zh) * 2007-07-17 2008-08-13 东南大学 一种充填异型泡沫铝及铝合金的能量吸收器
US9161634B2 (en) * 2007-10-29 2015-10-20 Dreamwell, Ltd. Asymmetrical combined cylindrical and conical springs
JP2010117024A (ja) * 2008-11-14 2010-05-27 Toyota Industries Corp 複合制振金属板およびその製造方法
JP5476597B2 (ja) * 2010-03-04 2014-04-23 株式会社神戸製鋼所 高強度中空ばね用シームレス鋼管
CN105008572A (zh) * 2013-03-08 2015-10-28 日本发条株式会社 强度部件及其制造方法
JP5816391B2 (ja) * 2013-09-11 2015-11-18 Jfeスチール株式会社 ばね用鋼およびばねの製造方法
CN104772933A (zh) * 2015-02-27 2015-07-15 中国建筑股份有限公司 一种泡沫铝填充双钢管复合构件
CN105299120A (zh) * 2015-11-11 2016-02-03 哈尔滨工业大学 一种缓冲吸能填充管
KR101913318B1 (ko) * 2016-04-05 2018-10-30 자동차부품연구원 브레이크 디스크 및 브레이크 디스크 제조 방법
DE102017217754A1 (de) * 2017-10-06 2019-04-11 Continental Reifen Deutschland Gmbh Dämpfungselement für eine Fahrzeugradkomponente

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426627A1 (de) * 1993-07-29 1995-02-02 Fraunhofer Ges Forschung Metallischer Verbundwerkstoff und Verfahren zu seiner Herstellung
DE19839383A1 (de) * 1998-07-20 2000-01-27 Muhr & Bender Verfahren zur thermomechanischen Behandlung von Stahl für torsionsbeanspruchte Federelemente
JP2005282728A (ja) * 2004-03-30 2005-10-13 Hideo Nakajima 制振ばね
RU2534288C1 (ru) * 2013-03-26 2014-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Торсионная пружина

Also Published As

Publication number Publication date
EP3347614A1 (de) 2018-07-18
EP3347614B1 (de) 2020-03-18
RU2018112635A3 (ru) 2019-10-14
JP2018535362A (ja) 2018-11-29
RU2018112635A (ru) 2019-10-14
WO2017042147A1 (de) 2017-03-16
KR102096728B1 (ko) 2020-04-03
BR112018004690A2 (pt) 2018-09-25
KR20180049071A (ko) 2018-05-10
US20180236835A1 (en) 2018-08-23
CN108291599A (zh) 2018-07-17
MX2018002928A (es) 2018-06-07
DE102015217399A1 (de) 2017-03-16

Similar Documents

Publication Publication Date Title
RU2709289C2 (ru) Трубчатая пружина для транспортных средств и способ изготовления трубчатой пружины
KR970005778B1 (ko) 자동차 문을 보강하기 위한 파이프형 철재
US6510763B1 (en) Composite control arm shaft
EP1029720B1 (en) Manufacturing method for hollow stabilizer
US4908930A (en) Method of making a torsion bar
KR101719944B1 (ko) 충격 흡수 부품
US20180214924A1 (en) Ultra high strength body and chassis components
JPH0463242A (ja) 車体補強用鋼管
CZ287707B6 (en) Tube for producing stabilizer, stabilizer made of such tube and process of its manufacture
JP4236635B2 (ja) スタビライザ及びその製造方法
RU2709298C2 (ru) Трубчатая пружина для транспортных средств и способ изготовления трубчатой пружины
JP4345161B2 (ja) ハイドロフォーム用鋼管およびその熱延素材ならびにそれらの製造方法
JP5354928B2 (ja) 溶接構造用複合アルミニウム合金押出材
JP5765200B2 (ja) 差強度鋼管の製造方法
EP1379341B8 (en) Method of manufacturing a closed profile
US9309581B2 (en) Method for creating a hardened steel assembly
JP2004190086A (ja) 高周波焼入れ用電気抵抗溶接鋼管
FR2941911A1 (fr) Procede de fabrication d'une piece structurelle de vehicule automobile, et piece ainsi obtenue
MXPA96002573A (en) Tubes for the manufacture of stabilizers and the manufacture of stabilizers from such tu
MXPA96002572A (en) Tubes for the manufacture of stabilizers and manufacture of stabilizers of those tu

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200907