RU2707525C1 - Рекомбинантная плазмида, экспрессирующая клонированный ген шаперона HFQ Vibrio cholerae, и штамм Escherichia coli - суперпродуцент шаперона HFQ Vibrio cholerae - Google Patents

Рекомбинантная плазмида, экспрессирующая клонированный ген шаперона HFQ Vibrio cholerae, и штамм Escherichia coli - суперпродуцент шаперона HFQ Vibrio cholerae Download PDF

Info

Publication number
RU2707525C1
RU2707525C1 RU2018140289A RU2018140289A RU2707525C1 RU 2707525 C1 RU2707525 C1 RU 2707525C1 RU 2018140289 A RU2018140289 A RU 2018140289A RU 2018140289 A RU2018140289 A RU 2018140289A RU 2707525 C1 RU2707525 C1 RU 2707525C1
Authority
RU
Russia
Prior art keywords
hfq
chaperone
vibrio cholerae
strain
gene
Prior art date
Application number
RU2018140289A
Other languages
English (en)
Inventor
Руслан Вячеславович Писанов
Сергей Анатольевич Иванов
Диана Игоревна Симакова
Алексей Сергеевич Водопьянов
Original Assignee
Федеральное казенное учреждение здравоохранения "Ростовский-на-Дону ордена Трудового Красного Знамени научно-исследовательский противочумный институт" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное казенное учреждение здравоохранения "Ростовский-на-Дону ордена Трудового Красного Знамени научно-исследовательский противочумный институт" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека filed Critical Федеральное казенное учреждение здравоохранения "Ростовский-на-Дону ордена Трудового Красного Знамени научно-исследовательский противочумный институт" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Priority to RU2018140289A priority Critical patent/RU2707525C1/ru
Application granted granted Critical
Publication of RU2707525C1 publication Critical patent/RU2707525C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к биотехнологии, генной инженерии, медицинской микробиологии. Предложена рекомбинантная плазмида pHFQ2.21, экспрессирующая клонированный ген hfq (шаперона) Vibrio cholerae 01 биовара El Tor, встроенный по сайтам Bam HI-PstI в полилинкер векторной плазмиды pQE30, под контролем Т5-промотора. Указанной плазмидой трансформируют штамм Е. coli Jm109 с получением штамма Escherichia coli KM 2030, являющегося суперпродуцентом шаперона (Hfq) Vibrio cholerae 01 El Tor. Предложенный штамм депонирован в Государственной коллекции патогенных бактерий «Микроб». Содержание шаперона (Hfq) Vibrio cholerae 01 El Tor, находящегося внутри клеток в растворимой форме, составляет до 10% суммарных клеточных белков. Изобретение может быть использовано для получения препаратов шаперона (Hfq) Vibrio cholerae в целях создания специфических сорбентов для связывания малых РНК, а также для изучения свойств, биохимической и биологической активности шаперона (Hfq) Vibrio cholerae. 2 н.п. ф-лы, 1 ил., 2 пр.

Description

Предлагаемое изобретение относится к биотехнологии, генной инженерии, медицинской микробиологии и может быть использовано для получения препаратов шаперона (Hfq) Vibrio cholerae в целях создания специфических сорбентов для связывания малых РНК, а также для изучения свойств, биохимической и биологической активности шаперона (Hfq) Vibrio cholerae.
Растворимый шаперон (Hfq) является регуляторным белком связывающий малые РНК холерных вибрионов (1, 2, 3). Выделение и очистка с последующим фракционированием малых РНК у холерного вибриона сопряжены с различными трудностями как-то отделение их от сопутствующей хромосомной и плазмидной ДНК, транспортной и матричной РНК (4). На практике эти задачи решаются применением многоступенчатых сложных этапов очистки включающих разделение молекул на хроматографических колонках и в полиакриамидных гелях с использованием специфических гидролитических ферментативных комлексов для ДНК, транспортной и матричной РНК(5).
В настоящее время существует проблема в разработке нового подхода в основе которого лежит прямое связывание малых РНК афинным белком шапероном Hfq V.cholerae иммобилизованным на латексных микрочастицах и прямое извлечение их смеси биомолекул. В свою очередь, для создания таких микрочастиц требуются препаративные количества искомого белка Hfq. Наиболее эффективным способом получения белка остается использование лабораторных штаммов Е.coli, содержащих и экспрессирующих клонированный ген hfq Vibrio cholera 01.
Известна рекомбинантная плазмида рЕТ28 [VcHfq], экспрессирующая клонированный в составе векторной плазмиды pET28b (Novagen) ген hfq Vibrio cholerae 017 в штамме E.coli BL21 (DE3) (6), однако продуктивность этого штамма как продуцента авторами не описана.
Однако о продуцирующей способности плазмиды рЕТ28 [VcHfq] данные отсутствуют, а недоступность для исследования в России не позволяет провести их.
Технической задачей предполагаемого изобретения является
- клонирование гена hfq в составе плазмидного вектора pQE30, обеспечивающего экспрессию чужеродных генов под контролем мощного Т5-промотора, и создание штамма E.coli - суперпродуцента рекомбинантного белка 6his-Hfq V.cholerae 01.
Задача решается путем создания:
- новой рекомбинантной плазмиды pHFQ2.21, экспрессирующей клонированный ген hfq холерного вибриона в штаммах кишечной палочки.
- штамма Escherichia coli Jm109 pHFQ2.21 - суперпродуцента Hfq холерных вибрионов посредством трансформации штамма Е. coli Jm109 рекомбинантной плазмидой pHfq.
На фиг. 1 представлена схема конструирования рекомбинантной плазмиды pHFQ2.21.
Векторная плазмида pQE30 несет ген устойчивости к ампициллину (bla) и содержит промоторно-операторную область, включающую Т5-промотор и два расположенных тандемом lac-оператора, обеспечивающих максимальную репрессию синтеза Hfq в присутствии глюкозы, а также синтетический сайт связывания рибосомальной РНК, старт-кодон последовательность триплетов, кодирующих синтез гексагистидина (6-His), полилинкер (MCS) и два терминатора транскрипции (t0 фага лямбда и Т1 из rrnB-оперона Е. coli). Экспрессия клонированных генов происходит при индукции изопропил-β-D-тиогалактозидом (ИПТГ) и начинается с плазмидного старт-кодона, при этом образуется гибридный белок, перед первой аминокислотой которого располагается гексагистидиновый блок.
Плазмида pHFQ2.21 представляет собой генно-инженерный вариант, полученный путем встраивания в вектор pQE30 гена hfq V.cholerae O1 биовара El Tor (см. фиг. 1).
Будучи трансформирована в штамм кишечной палочки Jm103 либо Jm109, рекомбинантная плазмида экспрессирует клонированный ген под контролем Т5-промотора. Экспрессия гена подавляется в присутствии глюкозы и индуцируется ИПТГ.
Штамм E.coli Jm109pHFQ2.21 представляет собой генно-инженерный вариант, полученный путем трансформации рекомбинантной плазмиды pHFQ2.21 в штамм E.coli Jm109, и является продуцентом шаперона Hfq V.cholerae. Первичный продукт трансляции не подвергается протеолитическому процессингу и остается в виде про-шаперона (6his-Hfq) с молекулярной массой субъединицы около 11,2 кДа, который, тем не менее, обладает способностью к агрегации в гексамер и связывать малые РНК. Штамм депонирован в Государственной коллекции патогенных бактерий «Микроб» под номером КМ 2030.
Полученный штамм-продуцент характеризуется следующими признаками:
Культуралыю-морфологические свойства
В жидких питательных средах (бульоне Хоттингера, мясо-пептонном бульоне) образует равномерную муть, на плотных - круглые, выпуклые, гладкие, белые полупрозрачные колонии с ровным краем, тестообразной консистенции.
Физиолого-биохимические свойства
Штамм разлагает с образованием кислоты и газа глюкозу, арабинозу и ман-нит, не разлагает сахарозу, на среде Эндо образует лактозонегативные колонии. Ауксотроф.
Устойчивость к антибиотикам
Штамм устойчив к 50-100 мкг/мл ампициллина за счет экспрессии гена bla, находящегося в составе векторной плазмиды pQE30.
Способ получения и использования рекомбинантной плазмиды и штамма-продуцента иллюстрируется следующими примерами.
Пример 1. Клонирование гена hfq и получение рекомбинантной плазмиды
Для ПЦР-синтеза гена hfq используют праймеры, сконструированные заявителями на основе анализа нуклеотидной последовательности гена hfq в хромосоме (NC_002505.1):
прямой - 5'- GAAAGGATCCATGGCTAAGGGGCAATCTCTAC -3' и
обратный - 5'- GTCACTGCAGCGATCAACTCCTTAAATAATTGTGCT -3'.
Поскольку амплификаты необходимо встроить в плазмидный вектор pQE30 в ориентации, обеспечивающей направление транскрипции под контролем Т5-промотора, на 5'-конце каждого праймера внесен сайт рестрикции для эндонук-леазы, образующей липкие концы: BamHI для прямого праймера и PstI - для обратного (в приведенных последовательностях выделены жирным шрифтом и подчеркнуты) в соответствии с порядком расположения сайтов рестрикции в полилинкере векторной плазмиды.
Из токсигенного штамма V.cholerae Эль Тор 5879 (Музей живых культур Ростовского-на-Дону противочумного института) фенольным методом выделяют хромосомную ДНК, которая служит матрицей для синтеза искомого гена.
300 мкл реакционной смеси для полимеразной цепной реакции содержат 0,5 нг ДНК-матрицы и следующие компоненты в указанных концентрациях: по 2,5 мкл каждого праймера, по 2,5 мМ всех четырех дезоксинуклеотидтрифосфатов, 3 ед. Taq-полимеразы и 0,1 объема прилагаемого к ней 10-кратного буфера. Смесь разливают по 30 мкл в 0,5-мл пластиковые пробирки и осуществляют реакцию по следующей схеме: 94°С - денатурация (20 сек), 58°С - отжиг (10 сек), 72°С - синтез (10 сек). Всего проводят 30 циклов амплификации, в последнем цикле время синтеза увеличивают до 3 минут. По окончании реакции содержимое пробирок объединяют, очищают смесью фенол: хлороформ : изоамиловый спирт в соотношении 25:24:1 и осаждают этиловым спиртом.
Полученный таким образом ПЦР-амплификат длиной 315 п. н. и ДНК векторной плазмиды pQE30 гидролизуют эндонуклеазами рестрикции BamHI и PstI согласно рекомендациям фирмы - изготовителя ферментов, очищают смесью фенол : хлороформ : изоамиловый спирт (25:24:1) и осаждают этиловым спиртом. Осадок растворяют в минимальном объеме деионизованной воды и лигируют с использованием ДНК-лигазы фага Т4 и прилагаемого к ней буфера согласно рекомендациям изготовителя.
Лигазными смесями трансформируют электорокомпетентные клетки E.coli Jm109, приготовленные накануне. После процедуры электропорации (2,6 кВольт, +4°С, 25 мкФ, 200 Ом, кювета 2 мм) клетки разводят в 5 раз средой SOC с 0,5% глюкозы, подращивают в течение 1 ч и высевают на агар LB, содержащий 50 мкг/мл ампициллина и 0,5% глюкозы. Посевы инкубируют при 37°С. На следующие сутки выросшие ампициллинрезистентые колонии тестируют с помощью вышеприведенных праймеров и отбирают позитивные клоны, из которых выделяют плазмидную ДНК и подтверждают наличие вставок длиной -315 п. н. гидролизом этих плазмид эндонуклеазами рестрикции BamHI и PstI с последующим электрофорезом в 1% агарозном геле.
Пример 2. Изучение экспрессии клонированного гена Hfq в E.coli
В клетках E.coli, в отличие от V.cholerae, шаперон не подвергается протеолитическому процессингу и синтезируется в виде 6his-шаперона (6his-Hfq). Для выявления способности рекомбинантов к синтезу proHfq рекомбинантный штамм E.coli Jm109pHFQ2.21 (KM 2030), а также контрольный штамм, содержащий векторную плазмиду pQE30 без вставки, выращивают в жидкой среде LB, содержащей 50 мкг/мл ампициллина, в течение 3-4 ч при 37°С с шуттелированием при 120 об/мин и затем индуцируют 1 мМ ИПТГ в течение 1-2 ч, клетки осаждают центрифугированием, лизируют в буфере, содержащем 65 мМ трис-HCl рН 6.8, 1% SDS и 10 мМ 2-меркаптоэтанола, при температуре 99°С в течение 10 мин. Лизат подвергают электрофорезу в 8-20% градиентном полиакриламидном геле (ПААГ) с 0,1% SDS и окрашивают гель Coomassi Blue R250. В клеточном лизате выявляется мажорная белковая полоса в области ~12 кДа, что соответствует молекулярной массе искомого рекомбинантного белка, содержащего на N-конце гексагистидиновый блок. Процентное содержание бШэ-белка определяют с помощью программы Quantity One, оно составляет -10% суммарных клеточных белков штамма E.coli Jm109pHFQ2.21. В лизатах штамма E.coli Jm109 pHFQ2.21, выращенного без индукции ИПТГ, и контрольного штамма E.coli Jm109 pQE30 независимо от индукции данная мажорная полоса отсутствует.
Для определения локализации рекомбинантного proHfq клетки продуцента, выращенного с индукцией, разрушают ультразвуком на дезинтергаторе QSonica Q700 в течение 10 мин (40 импульсов по 5 сек, 357 Дж с перерывами в 10 сек; амплитуда 50) и подвергают электрофорезу растворимую фракцию клеток. Искомый белок выявляется в растворимой фракции штамма E.coli Jm109pHFQ2.21, где его содержание составляет ~10% суммарных клеточных белков.
Преимуществами полученного продуцента по сравнению с холерными вибрионами является высокий выход искомого белка, возможность культивирования без соблюдения режима работы с возбудителями особо опасных инфекций, отсутствие способности к синтезу каких-либо дополнительных биологически активных субстанций, которые могли бы затруднить его выделение и очистку, а по сравнению с известными рекомбинантными штаммами-продуцентами - непродолжительный период наращивания биомассы (4-6 часов включая индукцию), беспечивая возможность ускоренного получения препарата.
Источники информации
1. Aiba Н. Mechanism of RNA silencing by Hfq-binding small RNAs //Current opinion in microbiology. - 2007. - T. 10. - №. 2. - C. 134-139.
2. Sun X., Zhulin I., Wartell R.M. Predicted structure and phyletic distribution of the RNA-binding protein Hfq //Nucleic acids research. - 2002. - T. 30. - №. 17. - C. 3662-3671.
3. Васильева Ю.M., Гарбер M.Б. Регуляторная роль белка Hfq в жизнедеятельности бактериальных клеток (Обзор) (2002). Молекулярная биология (Москва), т. 36, 970-977.
4. Bohn С, Rigoulay С, Bouloc P. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus //BMC microbiology. - 2007. - T. 7. - №. 1. - C. 10.
5. Мурина B.H., Никулин А.Д. РНК-связывающие Sm-подобные белки бактерий и архей: сходство и различие структур и функций (Обзор) (2011). Успехи биологической химии, т. 51, 3-164.
6. Vincent Н. A. et al. Characterization of Vibrio cholerae Hfq provides novel insights into the role of the Hfq C-terminal region //Journal of molecular biology. - 2012. - T. 420. - №. 1-2. - C. 56-69.

Claims (2)

1. Рекомбинантная плазмида pHFQ2.21, экспрессирующая клонированный ген hfq (шаперона) Vibrio cholerae 01 биовара El Tor, встроенный по сайтам Bam HI-PstI в полилинкер векторной плазмиды pQE30, под контролем Т5-промотора.
2. Штамм Escherichia coli KM 2030 Государственной коллекции патогенных бактерий «Микроб» представляет собой продукт, полученный путем трансформации рекомбинантной плазмиды pHFQ2.21 по п. 1 в штамм Е. coli Jm109, и является суперпродуцентом шаперона (Hfq) Vibrio cholerae 01 El Tor.
RU2018140289A 2018-11-14 2018-11-14 Рекомбинантная плазмида, экспрессирующая клонированный ген шаперона HFQ Vibrio cholerae, и штамм Escherichia coli - суперпродуцент шаперона HFQ Vibrio cholerae RU2707525C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018140289A RU2707525C1 (ru) 2018-11-14 2018-11-14 Рекомбинантная плазмида, экспрессирующая клонированный ген шаперона HFQ Vibrio cholerae, и штамм Escherichia coli - суперпродуцент шаперона HFQ Vibrio cholerae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018140289A RU2707525C1 (ru) 2018-11-14 2018-11-14 Рекомбинантная плазмида, экспрессирующая клонированный ген шаперона HFQ Vibrio cholerae, и штамм Escherichia coli - суперпродуцент шаперона HFQ Vibrio cholerae

Publications (1)

Publication Number Publication Date
RU2707525C1 true RU2707525C1 (ru) 2019-11-27

Family

ID=68653048

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018140289A RU2707525C1 (ru) 2018-11-14 2018-11-14 Рекомбинантная плазмида, экспрессирующая клонированный ген шаперона HFQ Vibrio cholerae, и штамм Escherichia coli - суперпродуцент шаперона HFQ Vibrio cholerae

Country Status (1)

Country Link
RU (1) RU2707525C1 (ru)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VINCENT H.A. ET AL. Characterization of Vibrio cholerae Hfq Provides Novel Insights into the Role of the Hfq C-Terminal Region. J.Mol.Biol., 2012 Jun 29; 420(1-2):56-69. *
VINCENT H.A. ET AL. Characterization of Vibrio cholerae Hfq Provides Novel Insights into the Role of the Hfq C-Terminal Region. J.Mol.Biol., 2012 Jun 29; 420(1-2):56-69. ПИСАНОВ Р.В. и др. Роль малых РНК в контроле экспрессии генов, вовлеченных в реализацию патогенности Vibrio cholerae. Пробл. особо опасных инф., 2017; 2:36-39. KAWAMOTO H. ET AL. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol. Microbiol., 2006, 61:1013-1022. ГОРЯЕВ А.А. и др. Измененные варианты возбудителя холеры, выделенные на территории Российской Федерации. Пробл. особо опасных инф., 2011, 107:49-52. *
ПИСАНОВ Р.В. и др. Роль малых РНК в контроле экспрессии генов, вовлеченных в реализацию патогенности Vibrio cholerae. Пробл. особо опасных инф., 2017; 2:36-39. KAWAMOTO H. ET AL. *

Similar Documents

Publication Publication Date Title
KR102647766B1 (ko) 클래스 ii, 타입 v crispr 시스템
CN116515797A (zh) 具有ruvc结构域的酶
WO2016135281A1 (en) Peptides for facilitating secretion and uses thereof
CN111172129A (zh) 一种提高热稳定、扩增均一性和扩增效率的Phi29 DNA聚合酶突变体及其应用
CN112094833B (zh) 一种抑菌蛋白及其编码基因、用途和菌株
KR20240055073A (ko) 클래스 ii, v형 crispr 시스템
Mehta et al. Cloning and expression of antibody fragment (Fab) I: Effect of expression construct and induction strategies on light and heavy chain gene expression
CN114015746A (zh) 噬菌体解聚酶orf38蛋白在多杀性巴氏杆菌荚膜分型鉴定中的应用
CN106834252B (zh) 一种高稳定型MazF突变体及其应用
RU2707525C1 (ru) Рекомбинантная плазмида, экспрессирующая клонированный ген шаперона HFQ Vibrio cholerae, и штамм Escherichia coli - суперпродуцент шаперона HFQ Vibrio cholerae
MacFerrin et al. [7] Overproduction of proteins using expression-cassette polymerase chain reaction
JP7113415B1 (ja) 変異型mad7タンパク質
CN115747075A (zh) 一种能胞外分泌抗菌肽的三角褐指藻构建方法
RU2671099C1 (ru) Рекомбинантная плазмида, экспрессирующая клонированный ген гемолизина Vibrio cholerae, и штамм Escherichia coli - суперпродуцент прогемолизина Vibrio cholerae
CN109852601B (zh) 一种可高效应用的n-糖基化褐藻胶裂解酶突变体及基因工程菌构建方法
RU2712519C1 (ru) Рекомбинантная плазмида, экспрессирующая клонированный ген нейраминидазы Vibrio cholerae, и штамм Escherichia coli - суперпродуцент нейраминидазы Vibrio cholerae
RU2653750C1 (ru) Способ получения гетеротетрамерного рекомбинантного стрептавидина из периплазмы E.coli
KR101938557B1 (ko) Lamp를 이용한 닭의 골격계 질환 유발 원인균 검출용 프라이머 및 그 용도
CN106085985B (zh) 一种酯酶WDEst9及其编码基因和应用
CN111217902A (zh) 一种鲤鱼胰岛素样生长因子igf3重组蛋白的制备与应用
RU2618850C2 (ru) Плазмидный вектор pET-mChBac75Na, штамм бактерии Eschrichia coli BL21(DE3/ pET-mChBac75Na для экспрессии антимикробного пептида минибактенецина ChBac7.5 Nα и способ получения указанного пептида
RU2617934C1 (ru) Способ получения рекомбинантной фосфатазы бактериальных липополисахаридов
RU2774120C1 (ru) Штамм escherichia coli bl21(de3)plyss/pet15b-hiscpf1 - продуцент рнк-направляемой эндонуклеазы crispr/cpf1
CN112513259A (zh) 肽大环化酶
RU2564120C2 (ru) ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ БЕЛКА ТЕПЛОВОГО ШОКА 70 И СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА БЕЛКА ТЕПЛОВОГО ШОКА ЧЕЛОВЕКА