RU2704196C2 - Трубчатый реактор и способ многофазной полимеризации - Google Patents

Трубчатый реактор и способ многофазной полимеризации Download PDF

Info

Publication number
RU2704196C2
RU2704196C2 RU2017131214A RU2017131214A RU2704196C2 RU 2704196 C2 RU2704196 C2 RU 2704196C2 RU 2017131214 A RU2017131214 A RU 2017131214A RU 2017131214 A RU2017131214 A RU 2017131214A RU 2704196 C2 RU2704196 C2 RU 2704196C2
Authority
RU
Russia
Prior art keywords
tubular reactor
mixer
heat exchanger
product
paragraphs
Prior art date
Application number
RU2017131214A
Other languages
English (en)
Other versions
RU2017131214A (ru
RU2017131214A3 (ru
Inventor
Йоахим РИТТЕР
Original Assignee
Арланксео Дойчланд Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арланксео Дойчланд Гмбх filed Critical Арланксео Дойчланд Гмбх
Publication of RU2017131214A publication Critical patent/RU2017131214A/ru
Publication of RU2017131214A3 publication Critical patent/RU2017131214A3/ru
Application granted granted Critical
Publication of RU2704196C2 publication Critical patent/RU2704196C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1837Loop-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00114Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00247Fouling of the reactor or the process equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к трубчатому реактору и способу многофазной полимеризации, в частности для производства бутилкаучука посредством полимеризации мономеров при помощи катализатора в жидком растворителе. Трубчатый реактор включает отрезок трубы для радиального ограничения объема реактора между входом и выходом, мешалку для создания потока в осевом направлении отрезка трубы, причем мешалка имеет такие размеры и может эксплуатироваться таким образом, что потоку может придаваться центробежная сила, которая создает распределение концентрации в радиальном направлении внутри отрезка трубы, и выпускную линию для отвода радиально внутренней части потока, выполненную с возможностью перемещения в осевом направлении по отношению к отрезку трубы. Способ включает смешивание первого исходного продукта со вторым исходным продуктом и/или катализатором для проведения полимеризации с образованием продукта в растворителе при помощи мешалки, придание центробежной силы продукту и растворителю при помощи мешалки и отбор концентрированной радиально внутренней части потока, причем продукт имеет меньшую плотность, чем растворитель. Изобретение обеспечивает предотвращение прилипания полимерных частиц к отрезку трубы и снижение риска закупорки. 4 н. и 17 з.п. ф-лы, 3 ил.

Description

Данное изобретение относится к трубчатому реактору, при помощи которого может осуществляться многофазная полимеризация, а также к способу многофазной полимеризации. В частности, данное изобретение относится к трубчатому реактору, а также способу для производства бутилкаучука посредством полимеризации мономеров при помощи катализатора в жидком растворителе.
Из EP 1 591 459 A1 известно при помощи трубчатого реактора с контуром циркуляции ("петлевого реактора") осуществлять полимеризацию для производства полиолефинов. Для этого из циркуляционного реактора непрерывно отводится суспензия, которая содержит в растворителе твердые полимерные частицы. Отведенный поток подводится к гидроциклону, для того чтобы полимерные частицы концентрировать и затем в разделительном устройстве отделять и вычищать. Отделенный в разделительном устройстве растворитель, а также насыщенная растворителем фракция из гидроциклона, которая не была подведена к разделительному устройству, снова подается в циркуляционный реактор.
Недостатком у подобного реактора и подобного способа является то, что отдельные трубопроводы и, в частности, реактор могут легко закупориваться (засоряться). В частности, при производстве бутилкаучука, как правило, необходимо осуществлять полимеризацию при температурах от -70 до -100°C. Эта температура достаточно близка к температуре стеклования бутилкаучука, которая находится примерно в диапазоне от -75 до -67°C. Поэтому, в частности, при производстве бутилкаучука существует та опасность, что благодаря возникающему при полимеризации теплу реакции частицы бутилкаучука больше не являются стекловидными и в этом состоянии очень легко прилипают к поверхностям. Это приводит к закупорке трубопроводов и в частности трубчатого реактора, так что зачастую необходимо останавливать производство бутилкаучука и производить трудоемкую очистку трубопроводов, а также трубчатого реактора.
Задача изобретения предоставить трубчатый реактор, а также способ для многофазной полимеризации, в частности производства бутилкаучука, при которых опасность закупорки снижена.
Согласно изобретению задача решается с помощью трубчатого реактора, включающего в себя, по меньшей мере, отрезок трубы для радиального ограничения объема реактора между входом и выходом, мешалку для создания потока в осевом направлении отрезка трубы, причем мешалка предпочтительно имеет такие размеры и может эксплуатироваться таким образом, что потоку может придаваться центробежная сила, которая создает распределение концентрации в радиальном направлении внутри отрезка трубы, и выпускную линию для отвода радиально-внутренней части потока.
Кроме того, изобретение охватывает способ многофазной полимеризации, в частности производства бутилкаучука, включающий в себя, по меньшей мере, следующие шаги:
смешивание первого исходного продукта со вторым исходным продуктом и/или катализатором для проведения полимеризации с образованием продукта в растворителе при помощи мешалки, придание центробежной силы, по меньшей мере, продукту и растворителю при помощи той же мешалки и отбор концентрированной радиально внутренней части потока.
Соответствующий изобретению трубчатый реактор для многофазной полимеризации, который может использоваться, в частности, для производства бутилкаучука, имеет отрезок трубы для радиального ограничения объема реактора между входом и выходом. Трубчатый реактор имеет мешалку для создания потока в осевом направлении отрезка трубы, причем мешалка согласно изобретению имеет такие размеры и может эксплуатироваться таким образом, что потоку может придаваться центробежная сила, которая создает распределение концентрации в радиальном направлении внутри отрезка трубы. Кроме того, предусмотрена выпускная линия для отвода концентрированной радиально внутренней части потока.
Таким образом, посредством мешалки трубчатого реактора не только достигается осевое течение и смешивание первого исходного продукта со вторым исходным продуктом и/или дальнейшими исходными продуктами и/или катализатором, но и дополнительно придается центробежная сила. В частности, доля центробежных сил превышает при этом долю инерционных сил и сил тяжести в осевом направлении, а также долю сил трения. Благодаря приданной центробежной силе происходит внутри трубчатого реактора распределение концентрации, так что уже внутри трубчатого реактора имеет место, по меньшей мере, частичное отделение продукта от не вступивших в реакцию исходных продуктов и/или катализатора. Кроме того, продукт может концентрироваться, так что содержание продукта в отношении смеси продукт/растворитель увеличивается. Наиболее предпочтительно продукт имеет меньшую плотность, чем растворитель, так что продукт концентрируется во внутренней части трубчатого реактора. Вследствие этого предотвращается то, что продукт, например, бутилкаучук, входит в соприкосновение с отрезком трубы трубчатого реактора, так что частицы продукта не могут прилипать к внутренней стороне трубчатого реактора.
Риск закупорки трубчатого реактора вследствие этого сокращается. Кроме того, не требуется подводить содержимое трубчатого реактора дополнительно к гидроциклону, так как действие гидроциклона может достигаться уже внутри трубчатого реактора. Это может достигаться при помощи той же мешалки, которая и без того предусмотрена для достижения осевой подачи и смешивания. При этом используется познание, что также при числах оборотов мешалки, которые необходимы, для того чтобы достигать достаточно большого концентрирования продукта, образуется в непосредственном окружении мешалки достаточно турбулентное течение, которое приводит к хорошему смешиванию использованных исходных продуктов/катализатора. В частности, при производстве бутилкаучука скорость реакции настолько высока, что времени пребывания в турбулентной и смешанной области хватает, для того чтобы достигать высокой степени превращения и хорошего выхода пространство/время. Отслоение и концентрирование продукта происходят, в частности, при производстве бутилкаучука лишь в том случае, если смесь уже находится недалеко от химического равновесия. Геометрия отрезка трубы, а также мешалки может выбираться таким образом, что могут достигаться, по меньшей мере, 60 процентов по весу, в частности, по меньшей мере, 80 процентов по весу теоретически возможной весовой доли продукта, которая была рассчитана на основе химического равновесия.
Предпочтительно мешалкой в согласованной с выходом области разделения внутри отрезка трубы может создаваться двухфазный слоистый вращающийся поток, по меньшей мере, с двумя слоями различной концентрации. Мешалка может иметь такие размеры и эксплуатироваться таким образом, что внутри отрезка трубы может возникать слоистый вращающийся поток. Например, внутри отрезка трубы может возникать вихрь Рэнкина. Слои вращающегося потока отделены друг от друга, в частности, границей раздела фаз и могут в каждом случае иметь различные угловые скорости. Вследствие этого возникают визуально отделимые друг от друга частичные объемы различных концентраций. Геометрия выпускной линии адаптирована, в частности, к ожидаемой геометрии внутреннего слоя вращающегося потока. Выпускная линия может иметь, например, внутренний диаметр, который соответствует внешнему диаметру внутреннего слоя, или меньший диаметр. Вследствие этого обеспечивается то, что через выпускную линию может отводиться массовый поток с наиболее высокой концентрацией продукта.
Предпочтительно мешалка расположена рядом с входом. Кроме того, может быть предусмотрена первая подающая линия для введения первого исходного продукта и вторая подающая линия для введения второго исходного продукта и/или катализатора, причем первая подающая линия и вторая подающая линия входят в отрезок трубы, в частности, рядом с мешалкой. Могут быть также предусмотрены дальнейшие подающие линии для того же исходного продукта и/или дальнейшие подающие линии для дополнительных исходных продуктов. Вследствие этого уже на входе отрезка трубы может производиться мешалкой смешивание исходных продуктов/катализатора друг с другом, так что вся длина трубчатого реактора может эффективно использоваться. Преждевременная полимеризация в подающих линиях предотвращается, так что могут предотвращаться слишком большие размеры частиц продукта. Вместо этого посредством выбора размеров отрезка трубы и мешалки можно устанавливать время пребывания смешанных исходных продуктов/катализатора, для того чтобы можно было достигать наиболее узкого распределения молекулярных весов. Это облегчает в частности последующие операции разделения.
Наиболее предпочтительно выпускная линия погружена внутри отрезка трубы в концентрированную радиально внутреннюю часть потока. Выпускная линия выполнена, например, в виде погружной трубы, входное отверстие которой расположено в пределах концентрированной радиально внутренней части потока. Вследствие этого может предотвращаться то, что за входом отрезка трубы трубчатого реактора имеет место, например, ввиду изменения поперечного сечения, поперечное смешивание концентрированного продукта с остальными составными частями потока.
Мешалка предпочтительно является осуществляющей подачу в осевом направлении мешалкой, которая может придавать потоку центробежную силу. Для этого мешалка выполнена, например, таким образом, что она может приводить поданный поток во вращение. Мешалка имеет, например пропеллер, в частности, ровно один пропеллер, который по аналогии с гребным винтом корабля может создавать осевой поток и одновременно вращающийся поток. Через вращающуюся составляющую потока мешалка накладывает достаточно большую тангенциальную силу на поток, так что потоку придается центробежная сила, которая в последующей области трубчатого реактора может приводить к расслоению составных частей потока.
В частности, мешалка соединена с валом, в частности, с перфорированным полым валом, причем предпочтительно вал может вводиться в трубчатый реактор через ввод вала, и ввод вала может промываться, в частности, растворителем. Через полый вал в трубчатый реактор может подаваться исходный продукт и/или катализатор. Кроме того, через полый вал может проводиться обратно отведенная часть потока, например, концентрированный растворитель. Благодаря перфорации в полом валу поданный через полый вал поток может уже перед достижением мешалки взаимодействовать и смешиваться с потоком за переделами полого вала. Вследствие этого в трубчатый реактор исходный продукт и/или катализатор и/или растворитель может подаваться и в радиальном направлении изнутри, и в радиальном направлении снаружи. Вследствие того, что предпочтительно растворитель подается через ввод вала, отложения предотвращаются и/или вымываются.
Наиболее предпочтительно внутренний диаметр D отрезка трубы адаптирован к внешнему диаметру d мешалки. Вследствие этого зазор между отрезком трубы и мешалкой может сохраняться минимально возможным без риска заклинивания мешалки в отрезке труды. Для этого для соотношения внутреннего диаметра D отрезка трубы к внешнему диаметру d мешалки справедливо следующее 1,0001≤D/d≤1,300, в частности 1,0005≤D/d≤1,100 и предпочтительно 1,001≤D/d≤1,010. Например, соотношение D/d составляет 1,005±0,001.
Наиболее предпочтительно выпускная линия может перемещаться в осевом направлении по отношению к отрезку трубы. Вследствие этого выпускную линию возможно адаптировать к различным характеристиками течения внутри отрезка трубы, например, если мешалка должна эксплуатироваться с различными числами оборотов и/или различным потреблением мощности, и концентрирование продукта смещается в осевом направлении отрезка трубы. Одновременно вследствие этого упрощается монтаж трубчатого реактора, а также монтаж трубчатого реактора в другом аппарате, так как выпускная линия не может сталкиваться с отрезком трубы при монтаже. Кроме того, вследствие этого могут подаваться различные типы продукта.
Далее изобретение относится к теплообменнику, который имеет трубчатый реактор, который может быть выполнен и усовершенствован, как описано выше. Трубчатый реактор расположен по существу концентрически внутри теплообменника, причем теплообменник в радиальном направлении за пределами трубчатого реактора имеет, по меньшей мере, один теплообменный элемент для теплосъема. Мешалкой трубчатого реактора может создаваться петлеобразный поток внутри теплообменника. Вследствие этого при помощи лишь одной мешалки возможно смешивать исходные продукты/катализатор, концентрировать продукт и обеспечивать внутри теплообменника петлеобразный поток. Благодаря петлеобразному потоку, например, не выведенный через выпускную линию растворитель может подаваться на теплообменные элементы, для того чтобы охлаждать растворитель. Так как уже большая часть концентрированного продукта была удалена через выпускную линию, поданный к теплообменным элементам поток практически не содержит полимерные частицы, которые могли бы прилипать к теплообменным элементам. Вследствие этого предотвращается ухудшение теплообмена на теплообменных элементах. Замена теплообменных элементов и/или очистка теплообменных элементов может вследствие этого исключаться или, по меньшей мере, осуществляться в значительно больших промежутках времени. Вследствие этого дополнительно повышается производительность. Кроме того, предотвращается закупорка переходов между различными теплообменными элементами. Благодаря предпочтительному отделению более крупных частиц предотвращается закупорка самих теплообменных элементов.
В предпочтительном варианте осуществления выпускная линия имеет устройство охлаждения для охлаждения выпускной линии.
В частности, устройство охлаждения имеет предпочтительно двустенную оболочковую трубу для проведения охлаждающей среды. Например, охлаждающая среда может протекать в противотоке вдоль выпускной линии, поворачиваться наружу на входном отверстии впускной линии и протекать в прямотоке обратно. Благодаря охлажденной выпускной линии может предотвращаться то, что продукт нагревается. В частности, при производстве бутилкаучука предотвращается вследствие этого то, что концентрированный благодаря выпускной линии бутилкаучук не остается больше стекловидным и приклеивается к выпускной линии. Вследствие этого предотвращается закупорка выпускной линии.
Далее изобретение относится к установке для многофазной полимеризации, которая может использоваться, в частности, для производства бутилкаучука. Установка имеет теплообменник для охлаждения текучей среды. Кроме того, установка имеет разделительное устройство для отделения продукта. С выходом разделительного устройства и с теплообменником соединена линия рециклирования. Теплообменник и/или линия рециклирования имеет трубчатый реактор, который может быть выполнен и усовершенствован, как описано выше. Выпускная линия трубчатого реактора соединена с входом разделительного устройства. Теплообменник может быть выполнен и усовершенствован, в частности, как описано выше. Благодаря трубчатому реактору предотвращается то, что полимерные частицы прилипают к линии рециклирования и/или к элементам теплообменника и закупоривают их. Риск закупорки вследствие этого сокращен, так что установка может эксплуатироваться более продуктивно. В частности, возможно непрерывно эксплуатировать установку в течение более длительного промежутка времени, без того чтобы была необходимость выполнять очистные работы. Далее возможно предусматривать более чем один теплообменник, причем теплообменники подключены последовательно и/или параллельно, для того чтобы, например, разделять охлаждаемый массовый поток на несколько имеющих меньшие размеры теплообменников и/или выполнять многоступенчатое охлаждение, для того чтобы достигать наиболее большого перепада температуры при охлаждении. Кроме того, возможно предусматривать несколько подключенных последовательно и/или параллельно разделительных устройств, для того чтобы разделять массовый поток продукта на несколько имеющих меньшие размеры разделительных устройств и/или выполнять многоступенчатое отделение с наиболее высокой степенью очистки. Разделительное устройство может иметь, в частности, блок сверхбыстрого выпаривания, колонну отгонки легких фракций и/или дистилляционную колонну. Далее может быть предусмотрена линия продувки, которая соединена в частности с теплообменником, для того чтобы предотвращать концентрирование вредных примесей в растворителе.
Далее изобретение относится к способу многофазной полимеризации, в частности, для производства бутилкаучука, включающему в себя шаги: смешивание первого исходного продукта со вторым исходным продуктом и/или катализатором для проведения полимеризации с образованием продукта в растворителе при помощи мешалки, придание центробежной силы, по меньшей мере, продукту и растворителю при помощи той же мешалки и отбор концентрированной радиально внутренней части потока. Вследствие того, что мешалка используется не только для смешивания, но и для придания центробежной силы, образуется концентрированная радиально внутренняя часть потока, из которой может извлекаться концентрированный продукт. Так как продукт имеет в частности меньшую плотность, чем растворитель, возникающие во время полимеризации полимерные частицы могут концентрироваться во внутренней части потока, так что они не могут прилипать к конструктивным элементам, которые ограничивают поток в радиальном направлении. Вследствие этого сокращается риск закупорки, в частности, трубообразных конструктивных элементов. Тем самым способ может непрерывно исполняться в течение более длительного промежутка времени, без того чтобы были необходимы работы по очистке и техническому обслуживанию. Это приводит к более высокой производительности способа.
Предпочтительно при наложении центробежной силы создается вращающийся поток, причем вращающийся поток является, в частности, двухфазным слоистым вращающимся потоком, по меньшей мере, с двумя слоями различной концентрации. Благодаря вращающемуся потоку может облегчаться концентрирование продукта, вследствие чего, в частности, возможно создавать два отделенных друг от друга границей раздела фаз слоя внутри потока. Это облегчает отбор концентрированного продукта.
В частности, по меньшей мере, растворитель охлаждается. Растворитель охлаждается предпочтительно после наложения центробежной силы и наиболее предпочтительно после отбора концентрированной радиально внутренней части потока. Вследствие этого возможно охлаждать как можно меньше образовавшихся во время полимеризации полимерных частиц. Так как переход тепла в растворитель лучше, чем переход тепла в полимерные частицы, вследствие этого может достигаться более эффективное охлаждение. Кроме того, отведенный охлажденный растворитель может полностью омывать возникающие при полимеризации полимерные частицы, так что отведение возникающего при полимеризации тепла реакции от образовавшихся полимерных частиц является наиболее простым и эффективным. Наиболее предпочтительно растворитель подается в петлеобразном потоке, по меньшей мере, к одному теплообменному элементу для теплосъема, причем петлеобразный поток создается предпочтительно при помощи той же самой мешалки. Вследствие этого требуется лишь одна мешалка, для того чтобы обеспечивать необходимый для охлаждения растворителя петлеобразный поток. Дополнительное средство подачи не требуется.
Наиболее предпочтительно мешалка эксплуатируется таким образом, что для соотношения c=wtan 2/((d/2)⋅g), где wtan - это тангенциальная скорость на внешнем краю мешалки, d - это внешний диаметр мешалки, и g - это ускорение свободного падения, справедливо следующее c≥10, в частности c≥100 и предпочтительно c≥1000. Предпочтительно c≤10000. При таком режиме эксплуатации мешалки может обеспечиваться то, что посредством мешалки достигается не только смешивание, но и концентрирование в радиально внутренней части созданного мешалкой потока.
Наиболее предпочтительно в способе используется трубчатый реактор, который может быть выполнен и усовершенствован, как описано выше. Альтернативно или дополнительно в способе может использоваться теплообменник, который может быть выполнен и усовершенствован, как описано выше. Альтернативно или дополнительно в способе может использоваться установка, которая может быть выполнена и усовершенствована, как описано выше. Посредством использованного при этом трубчатого реактора, который расположен, в частности, внутри теплообменника, при помощи приведенной в действие соответствующим образом мешалки может принудительно вызываться подходящее течение внутри отрезка трубы трубчатого реактора, которое после полимеризации автоматически приводит к концентрированию образовавшегося продукта.
Далее изобретение разъясняется в качестве примера со ссылкой на приложенный чертеж при помощи предпочтительных примеров осуществления.
На чертежах показаны:
фиг.1 - схематичный вид сбоку теплообменника с соответствующим изобретению трубчатым реактором;
фиг.2 - схематичный вид сбоку соответствующего изобретению трубчатого реактора в дальнейшем варианте осуществления; и
фиг.3 - схематичный вид сбоку установки для многофазной полимеризации с теплообменником согласно фиг.1.
Изображенный на фиг.1 теплообменник 10 имеет расположенный концентрично средней оси 12 трубчатый реактор 14. Трубчатый реактор 14 имеет отрезок 16 трубы, который проходит от входа 18 до выхода 20. Трубчатый реактор 14 имеет мешалку 22, говоря о которой, речь идет в изображенном примере осуществления о пропеллере. Мешалка 22 приводится в движение валом 24, который выступает из дна 26 теплообменника 10 вниз. Вал 24 вводится в теплообменник 10 через ввод 25 вала, причем через ввод 25 вала подается в частности растворитель, для того чтобы предотвращать и вымывать отложения. При помощи вала 24 мешалка 22 нагружается числом оборотов, которого достаточно создавать не только осевой поток 27, но и вращающийся поток 28. При помощи вращающегося потока 28 осевому потоку 27 придается центробежная сила, благодаря которой возникает распределение концентрации в радиальном направлении внутри отрезка 16 трубы. Это распределение концентрации приводит в верхней области трубчатого реактора 14, то есть рядом с выходом 20, к слоистому вращающемуся потоку 28, который имеет внутреннюю часть 30, в которой сконцентрировался продукт, в частности, бутилкаучук. Через выпускную линию 32, которая погружена во внутреннюю часть 30, концентрированный продукт может извлекаться.
Часть осевого потока 27, которая не извлекается через выпускную линию 32, протекает мимо выпускной линии 32 и отклоняется вдоль петлеобразного потока 34. Отклоненный петлеобразный поток 34, который насыщен в частности растворителем и катализатором, протекает мимо теплообменных элементов 36, которые охлаждают петлеобразный поток 34.
Далее на дне 26 через первую подающую линию 38 подается первый исходный продукт, например, мономер. Через вторую подающую линию 40 подается второй исходный продукт и/или катализатор. Исходные продукты и/или катализатор растворяются, в частности, в жидком растворителе. Посредством мешалки 22 поданные через первую подающую линию 38 и вторую подающую линию 40 исходные продукты/катализатор смешиваются в зоне 42 смешивания, так что они могут вступать друг с другом в реакцию в зоне 42 смешивания. После этого смесь из продукта (реакции), исходных продуктов и/или катализатора поступает в промежуточную зону 44, в которой смесь может дополнительно вступать в реакцию, но здесь уже начинается расслаивание с распределением концентрации в радиальном направлении. В зоне 46 завихрения устанавливается вращающийся поток, который имеет, в частности, внутренний слой с внутренней концентрированной частью 30 и насыщенной растворителем частью 48.
К потоку 27 через дальнейшую не изображенную подающую линию может подводиться рециркуляционный поток, который был отделен при очистке извлеченного через выпускную линию 32 концентрированного продукта. Кроме того, рециркуляционный поток может подводиться через первую подающую линию 38 и/или вторую подающую линию 40. Далее возможно выполнять вал 24 в виде полого вала и подводить рециркуляционный поток и/или исходный продукт и/или катализатор через выполненный в виде полого вала вал 24. Предпочтительно растворитель подводится через ввод 25 вала 24, для того чтобы предотвращать и/или вымывать отложения.
Далее теплообменник 10 имеет головную часть 50, с которой соединена очистная линия 52. Через очистную линию 52 может отводиться насыщенный растворителем поток, для того чтобы предотвращать концентрирование содержимого теплообменника 10, а также трубчатого реактора 14 с вредными примесями или побочными продуктами.
В изображенном на фиг.2 варианте осуществления трубчатый реактор 14 расположен по сравнению с изображенным на фиг.1 вариантом осуществления за пределами теплообменника 10. При этом проведенный мимо выпускной линии 32 поток подводится через подающую линию 54 к теплообменнику 10, где поток охлаждается теплообменными элементами 36. В этом случае поток может проходить через теплообменник 10 в частности линейно и подводиться через обратную линию 56 снова к трубчатому реактору 14, для того чтобы воспринимать возникающее тело реакции. Равным образом растворитель, который отделен в разделительном устройстве 58 (фиг. 3) из отобранного через выпускную линию 32 потока продукта, может снова подводиться через линию 60 рециклирования к трубчатому реактору 14. В изображенном на фиг.2 примере осуществления трубчатый реактор 14 расположен в линии 60 рециклирования, причем часть линии 60 рециклирования образует отрезок 16 трубы трубчатого реактора 14.
У изображенной на фиг.3 установки 62 изображенный на фиг.1 теплообменник 10, который имеет трубчатый реактор 14, соединен с разделительным устройством 58. Альтернативно теплообменник 10 может заменяться изображенной на фиг.2 системой. Выпускная линия 32 трубчатого реактора 14 соединена через отделительную линию 64 с разделительным устройством 58. В разделительном устройстве 58 поданный через отделительную линию 64 продукт очищается, например, при помощи дистилляции и разделяется, по меньшей мере, на два частичных потока. Очищенный продукт покидает разделительное устройство 58 через линию 66 готового продукта, для того чтобы складировать продукт и/или далее облагораживать и/или упаковывать. Отделенные компоненты, которые насыщены в частности растворителем и имеют катализатор и/или не вступившие в реакцию исходные продукты, через линию 60 рециклирования и теплообменник 10 подводятся к трубчатому реактору 14.

Claims (37)

1. Трубчатый реактор для многофазной полимеризации, включающий в себя, по меньшей мере,
- отрезок (16) трубы для радиального ограничения объема реактора между входом (18) и выходом (20),
- мешалку (22) для создания потока (27) в осевом направлении отрезка (16) трубы, причем мешалка (22) имеет такие размеры и может эксплуатироваться таким образом, что потоку (27) может придаваться центробежная сила, которая создает распределение концентрации в радиальном направлении внутри отрезка (16) трубы, и
- выпускную линию (32) для отвода радиально внутренней части (30) потока (27, 28),
причем выпускная линия (32) выполнена с возможностью перемещения в осевом направлении по отношению к отрезку (16) трубы.
2. Трубчатый реактор по п. 1, отличающийся тем, что мешалкой (22) в согласованной с выходом (20) области (46) разделения внутри отрезка (16) трубы может создаваться двухфазный слоистый вращающийся поток (28), по меньшей мере, с двумя частями (30, 48) различной концентрации.
3. Трубчатый реактор по п. 1 или 2, отличающийся тем, что мешалка (22) расположена рядом с входом (18), и предусмотрена первая подающая линия (38) для введения первого исходного продукта и вторая подающая линия (40) для введения второго исходного продукта и/или катализатора, причем первая подающая линия (38) и вторая подающая линия (40) оканчивается в отрезке (16) трубы.
4. Трубчатый реактор по любому из пп. 1-3, отличающийся тем, что выпускная линия (32) погружена внутри отрезка (16) трубы в концентрированную радиально внутреннюю часть (30) потока (27, 28).
5. Трубчатый реактор по любому из пп. 1-4, отличающийся тем, что мешалка (22) соединена с валом (24), причем вал (24) выполнен с возможностью ввода в трубчатый реактор (14) через ввод (25) вала, и ввод (25) вала выполнен с возможностью промывания растворителем.
6. Трубчатый реактор по любому из пп. 1-5, отличающийся тем, что для соотношения внутреннего диаметра D отрезка (16) трубы к внешнему диаметру d мешалки (22) справедливо следующее 1,0001≤D/d≤1,300.
7. Трубчатый реактор по любому из пп. 1-6, отличающийся тем, что выпускная линия (32) имеет устройство охлаждения для охлаждения выпускной линии (32), причем устройство охлаждения имеет двустенную оболочковую трубу для проведения охлаждающей среды.
8. Теплообменник с трубчатым реактором (14) для многофазной полимеризации, причем трубчатый реактор (14) включает в себя, по меньшей мере,
- отрезок (16) трубы для радиального ограничения объема реактора между входом (18) и выходом (20),
- мешалку (22) для создания потока (27) в осевом направлении отрезка (16) трубы, причем мешалка (22) имеет такие размеры и может эксплуатироваться таким образом, что потоку (27) может придаваться центробежная сила, которая создает распределение концентрации в радиальном направлении внутри отрезка (16) трубы, и
- выпускную линию (32) для отвода радиально внутренней части (30) потока (27, 28),
причем трубчатый реактор (14) расположен концентрически внутри теплообменника (10), и теплообменник (10) в радиальном направлении за пределами трубчатого реактора (14) имеет, по меньшей мере, один теплообменный элемент (36) для теплосъема, причем мешалкой (22) трубчатого реактора (14) может создаваться петлеобразный поток (34) внутри теплообменника (10).
9. Теплообменник по п. 8, отличающийся тем, что мешалкой (22) в согласованной с выходом (20) области (46) разделения внутри отрезка (16) трубы может создаваться двухфазный слоистый вращающийся поток (28), по меньшей мере, с двумя частями (30, 48) различной концентрации.
10. Теплообменник по п. 8 или 9, отличающийся тем, что мешалка (22) расположена рядом с входом (18), и предусмотрена первая подающая линия (38) для введения первого исходного продукта и вторая подающая линия (40) для введения второго исходного продукта и/или катализатора, причем первая подающая линия (38) и вторая подающая линия (40) оканчивается в отрезке (16) трубы.
11. Теплообменник по любому из пп. 8-10, отличающийся тем, что выпускная линия (32) погружена внутри отрезка (16) трубы в концентрированную радиально внутреннюю часть (30) потока (27, 28).
12. Теплообменник по любому из пп. 8-11, отличающийся тем, что мешалка (22) соединена с валом (24), причем вал (24) выполнен с возможностью ввода в трубчатый реактор (14) через ввод (25) вала, и ввод (25) вала выполнен с возможностью промывания растворителем.
13. Теплообменник по любому из пп. 8-12, отличающийся тем, что для соотношения внутреннего диаметра D отрезка (16) трубы к внешнему диаметру d мешалки (22) справедливо следующее 1,0001≤D/d≤1,300.
14. Теплообменник по любому из пп. 8-13, отличающийся тем, что выпускная линия (32) имеет устройство охлаждения для охлаждения выпускной линии (32), причем устройство охлаждения имеет двустенную оболочковую трубу для проведения охлаждающей среды.
15. Теплообменник по любому из пп. 8-14, отличающийся тем, что выпускная линия (32) выполнена с возможностью перемещения в осевом направлении по отношению к отрезку (16) трубы.
16. Установка для многофазной полимеризации, включающая в себя, по меньшей мере,
- теплообменник (10) для охлаждения текучей среды, содержащей растворитель,
- разделительное устройство (58) для отделения продукта и
- соединенную с выходом разделительного устройства (58) и с теплообменником (10) линию (60) рециклирования,
причем теплообменник (10) выполнен по любому из пп. 8-15 или содержит трубчатый реактор по любому из пп. 1-7 и/или линия (60) рециклирования имеет трубчатый реактор (14) по любому из пп. 1-7, и выпускная линия (32) трубчатого реактора (14) соединена с входом разделительного устройства (58).
17. Способ многофазной полимеризации, включающий в себя шаги:
- смешивание первого исходного продукта со вторым исходным продуктом и/или катализатором для проведения полимеризации с образованием продукта в растворителе при помощи мешалки (22),
- придание центробежной силы, по меньшей мере, упомянутому продукту и растворителю при помощи той же мешалки (22) и
- отбор концентрированной радиально внутренней части (30) потока (27, 28),
причем упомянутый продукт имеет меньшую плотность, чем растворитель.
18. Способ по п. 17, отличающийся тем, что при наложении центробежной силы создается вращающийся поток (28), причем вращающийся поток (28) является двухфазным слоистым вращающимся потоком (28), по меньшей мере, с двумя частями (30, 48) различной концентрации.
19. Способ по п. 17 или 18, отличающийся тем, что, по меньшей мере, растворитель охлаждается, причем, по меньшей мере, растворитель после наложения центробежной силы и после отбора концентрированной радиально внутренней части (30) потока (27, 28) подается в петлеобразном потоке (34), по меньшей мере, к одному теплообменному элементу (36) для теплосъема, причем петлеобразный поток (34) создается при помощи той же самой мешалки (22).
20. Способ по любому из пп. 17-19, отличающийся тем, что мешалка (22) эксплуатируется таким образом, что для соотношения c=wtan 2/((d/2)⋅g), где wtan - это тангенциальная скорость на внешнем краю мешалки (22), d - это внешний диаметр мешалки (22) и g - это ускорение свободного падения, справедливо c≥10.
21. Способ по любому из пп. 17-20, отличающийся тем, что используется трубчатый реактор (14) по любому из пп. 1-7 и/или теплообменник (10) по любому из пп. 8-15 и/или установка (62) по п. 16.
RU2017131214A 2015-02-06 2016-01-21 Трубчатый реактор и способ многофазной полимеризации RU2704196C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15154112.5 2015-02-06
EP15154112.5A EP3053647A1 (de) 2015-02-06 2015-02-06 Rohrreaktor und Verfahren zur mehrphasigen Polymerisation
PCT/EP2016/051222 WO2016124411A1 (de) 2015-02-06 2016-01-21 Rohrreaktor und verfahren zur mehrphasigen polymerisation

Publications (3)

Publication Number Publication Date
RU2017131214A RU2017131214A (ru) 2019-03-06
RU2017131214A3 RU2017131214A3 (ru) 2019-04-02
RU2704196C2 true RU2704196C2 (ru) 2019-10-24

Family

ID=52469626

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017131214A RU2704196C2 (ru) 2015-02-06 2016-01-21 Трубчатый реактор и способ многофазной полимеризации

Country Status (10)

Country Link
US (1) US10384190B2 (ru)
EP (2) EP3053647A1 (ru)
JP (2) JP6755255B2 (ru)
CN (1) CN107249727B (ru)
CA (1) CA2975847A1 (ru)
PL (1) PL3253482T3 (ru)
RU (1) RU2704196C2 (ru)
SA (1) SA517382043B1 (ru)
SG (1) SG11201706325VA (ru)
WO (1) WO2016124411A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022251737A1 (en) * 2021-05-28 2022-12-01 Eaton Gerald B System and method for producing ultra-high molecular weight polyalphaolefins for use as pipeline drag reducing agents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1693786A (en) * 1924-09-17 1928-12-04 Krystal As Process for the crystallization of solid substances in a coarse granular form from solutions
US4395523A (en) * 1978-03-16 1983-07-26 Chemplex Company Method of making and recovering olefin polymer particles
WO2003039739A1 (en) * 2001-11-06 2003-05-15 Exxonmobil Chemical Patents Inc. Continuous removal of polymerization slurry
US20070078237A1 (en) * 2005-10-05 2007-04-05 Chevron Phillips Chemical Company, Lp Apparatus and method for removing polymer solids from slurry loop reactor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999084A (en) * 1959-03-25 1961-09-05 Exxon Research Engineering Co Polymerization method
BE787511A (fr) * 1971-08-16 1973-02-12 Uss Eng & Consult Procede et appareil pour redresser des pieces coulees en continu
CA2092290A1 (en) * 1990-11-08 1992-05-09 Corwin J. Bredeweg Reactor with foam shearing means for solution polymerization process
JP3774291B2 (ja) * 1996-03-28 2006-05-10 株式会社クラレ 溶液重合装置
US6599422B2 (en) * 2001-06-20 2003-07-29 Maritime Solutions Technology, Inc. Separator for liquids containing impurities
BE1015976A3 (fr) * 2004-04-14 2005-12-06 Broqueville Axel De Procede de polymerisation cataltytique dans un lit fluidifie vertical rotatif.
EP1591459B1 (en) 2004-04-29 2006-06-28 Borealis Technology Oy Process and apparatus for producing olefin polymers
EP2269727A1 (de) * 2009-07-01 2011-01-05 LANXESS International SA Rohrreaktor und Verfahren zur kontinuierlichen Polymerisation
EA023706B1 (ru) 2010-07-30 2016-07-29 Тотал Рисерч Энд Текнолоджи Фелюй Способ получения полиолефинов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1693786A (en) * 1924-09-17 1928-12-04 Krystal As Process for the crystallization of solid substances in a coarse granular form from solutions
US4395523A (en) * 1978-03-16 1983-07-26 Chemplex Company Method of making and recovering olefin polymer particles
WO2003039739A1 (en) * 2001-11-06 2003-05-15 Exxonmobil Chemical Patents Inc. Continuous removal of polymerization slurry
US20070078237A1 (en) * 2005-10-05 2007-04-05 Chevron Phillips Chemical Company, Lp Apparatus and method for removing polymer solids from slurry loop reactor

Also Published As

Publication number Publication date
SA517382043B1 (ar) 2021-07-12
PL3253482T3 (pl) 2020-06-15
JP2018507295A (ja) 2018-03-15
EP3253482B1 (de) 2019-11-20
JP6928037B2 (ja) 2021-09-01
US10384190B2 (en) 2019-08-20
JP2019196497A (ja) 2019-11-14
US20180236428A1 (en) 2018-08-23
WO2016124411A1 (de) 2016-08-11
CN107249727A (zh) 2017-10-13
EP3053647A1 (de) 2016-08-10
RU2017131214A (ru) 2019-03-06
SG11201706325VA (en) 2017-09-28
RU2017131214A3 (ru) 2019-04-02
CA2975847A1 (en) 2016-08-11
CN107249727B (zh) 2021-08-31
EP3253482A1 (de) 2017-12-13
JP6755255B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
JP5591111B2 (ja) 高粘度ポリエステル溶融物でできた低加水分解性ポリエステル顆粒の製造方法、および該ポリエステル顆粒の製造装置
CN108602900B (zh) 一种用于在溶液聚合过程中回收烃的方法
JP5068163B2 (ja) 固液接触装置および方法
RU2358795C2 (ru) Способ непрерывного получения эмульсий
TWI607794B (zh) 液相-液相萃取系統及使用彼之方法
US8147768B2 (en) System and process for production of polyvinyl chloride
MX2014009743A (es) Una columna de extraccion y proceso para usar la misma.
RU2704196C2 (ru) Трубчатый реактор и способ многофазной полимеризации
TW201100451A (en) Continuous washing of poly (vinyl butyral)
CN113731511B (zh) 一种光气法制备苯二甲酰氯的催化剂回用方法及装置系统
CN101423604A (zh) 一种过滤聚苯醚溶剂回收系统内的聚苯醚沉淀物的方法
RU2532814C1 (ru) Реактор для проведения процесса полимеризации
RU2694845C1 (ru) Способ и аппарат для очистки кремнийорганических соединений от летучих компонентов
EP4382272A1 (en) Method for recirculating non-hygroscopic polymers from rigid plastic food containers or industrial post-consumption and system for carrying out said method
RU2190449C1 (ru) Центробежный экстрактор
KR20240128860A (ko) 반응기 장치
JP2023548184A (ja) 二成分系多相ポリマー・モノマー材料の脱気装置および脱気押出機におけるその使用
SU1577813A2 (ru) Реактор дл в зких жидкостей
WO2022079698A1 (en) Apparatus for the treatment of plastics
Robertson et al. Template for Electronic Submission to acs journals
WO1994004266A1 (en) Separation of aqueous and organic components
CS246902B1 (cs) Zařízení k míšení a vzájemnému působení omezeně mísitelných tekutin
JPH0985008A (ja) 結晶溶融精製方法とその装置