RU2699960C2 - Проверка герметичности с помощью газа-носителя в пленочной камере - Google Patents

Проверка герметичности с помощью газа-носителя в пленочной камере Download PDF

Info

Publication number
RU2699960C2
RU2699960C2 RU2017122386A RU2017122386A RU2699960C2 RU 2699960 C2 RU2699960 C2 RU 2699960C2 RU 2017122386 A RU2017122386 A RU 2017122386A RU 2017122386 A RU2017122386 A RU 2017122386A RU 2699960 C2 RU2699960 C2 RU 2699960C2
Authority
RU
Russia
Prior art keywords
gas
film chamber
test
test object
carrier gas
Prior art date
Application number
RU2017122386A
Other languages
English (en)
Other versions
RU2017122386A3 (ru
RU2017122386A (ru
Inventor
Даниэль ВЕТЦИГ
Сильвио ДЕККЕР
Original Assignee
Инфикон Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Инфикон Гмбх filed Critical Инфикон Гмбх
Publication of RU2017122386A publication Critical patent/RU2017122386A/ru
Publication of RU2017122386A3 publication Critical patent/RU2017122386A3/ru
Application granted granted Critical
Publication of RU2699960C2 publication Critical patent/RU2699960C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3281Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators removably mounted in a test cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3218Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators for flexible or elastic containers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Изобретение относится к способам исследования устройств на герметичность. Сущность: помещают испытуемый объект (16) в пленочную камеру (10), имеющую по меньшей мере одну гибкую стенную область (12, 14). Вакуумируют пленочную камеру (10) до давления, которое меньше, чем давление проверочного газа внутри испытуемого объекта (16) и чем атмосферное давление. Вводят газ-носитель в пленочную камеру (10) в область (18) вне испытуемого объекта (16). Измеряют концентрацию проверочного газа устанавливающейся газовой смеси в пленочной камере в области (18) вне испытуемого объекта. Причем в качестве проверочного газа используют газ или газовый компонент, содержащийся в испытуемом объекте (16) уже при его введении в пленочную камеру (10). Технический результат: повышение чувствительности проверки. 10 з.п. ф-лы, 3 ил.

Description

Изобретение относится к способу проверки герметичности испытуемого объекта внутри пленочной камеры.
Известно, что испытуемые объекты (контролируемые изделия), например упаковки пищевых продуктов, наполняют проверочным газом и вводят в пленочную камеру, которую вакуумируют, чтобы затем детектировать выходящий из испытуемого объекта в пленочную камеру проверочный газ. Во многих случаях в качестве проверочного газа может использоваться и уже содержащийся в испытуемом объекте (упаковочном пакете) газ. При этом речь может идти о защитном газе или о газовых компонентах воздуха, например азоте, кислороде или двуокиси углерода. В качестве проверочного газа могут также использоваться и содержащиеся в упаковке ароматические вещества, например кофе. В качестве дополнительной возможности в качестве проверочного газа могут использоваться газы, которые производятся упакованным в упаковке пищевым продуктом, например двуокись углерода, которая через несколько часов возникает в упаковке кофе.
В результате того, что давление внутри пленочной камеры в области вне испытуемого объекта меньше, чем внутри испытуемого объекта, проверочный газ выходит через возможную негерметичность в испытуемом объекте. В известных способах контролируют процесс роста давления в пленочной камере, чтобы сделать заключение о возможной негерметичности. Если рост давления превышает заданную меру, это можно рассматривать как указание на негерметичность в испытуемом объекте.
Кроме того, например, из WO 2005/054806 А1 известно, что через содержащую испытуемый объект испытательную камеру проводят поток газа-носителя. При этом испытательная камера промывается газом-носителем. Выступающий через испытуемый объект проверочный газ транспортируется потоком газа-носителя из испытательной камеры и подводится на датчик проверочного газа. Однако до сих пор проверка герметичности с помощью газа-носителя с вакуумированными пленочными камерами не проводилось. Напротив, поток газа-носителя подводился в жесткую испытательную камеру с постоянным объемом испытательной камеры. При этом поток газа-носителя должен быть достаточно большим, чтобы вымывать проверочный газ из заданного объема испытательной камеры и транспортировать к датчику. Из этого следует тот недостаток, что концентрация проверочного газа, которая устанавливается в измеряемом потоке газа при заданной норме утечки из испытуемого объекта, тем меньше, чем больший поток газа-носителя выбирают. То есть, предел обнаружения для проверочного газа зависит от величины потока газа-носителя. То есть, чувствительность обнаружения газа утечки не может быть как угодно повышена путем уменьшения потока газа-носителя.
В основе изобретения лежит задача разработать более чувствительный и экономичный способ проверки герметичности.
Согласно изобретению эта задача решается в способе проверки герметичности испытуемого объекта в пленочной камере, которая имеет по меньшей мере одну гибкую стенную область, включающем в себя следующие шаги: введение испытуемого объекта в пленочную камеру; применение газа или газового компонента, содержащегося в испытуемом объекте уже при его введении в пленочную камеру, в качестве проверочного газа для проверки герметичности; вакуумирование пленочной камеры до давления, которое меньше, чем давление проверочного газа внутри испытуемого объекта и чем атмосферное давление; введение газа-носителя в пленочную камеру в область вне испытуемого объекта; и измерение концентрации проверочного газа устанавливающейся газовой смеси в пленочной камере в области вне испытуемого объекта. При этом во время измерения концентрации проверочного газа в пленочную камеру подают непрерывный поток газа-носителя, создаваемый газовыми компонентами, которые по причине вакуума в пленочной камере выделяются из стенки пленочной камеры.
Как указано выше, пленочная камера имеет по меньшей мере одну гибкую стенную область, которая при вакуумировании присасывается к контролируемому изделию и уменьшает объем пленочной камеры. При этом особо благоприятными являются пленочные камеры, стенки которых полностью состоят из гибкой пленки. При вакуумировании испытуемого объекта пленка прилегает к контролируемому изделию. Объем внутри пленочной камеры в области вне испытуемого объекта уменьшен. То есть, в пленочную камеру может быть подан меньший поток газа-носителя, чем в обычном случае жесткой испытательной камеры с неизменяемым объемом. За счет меньшего потока газа-носителя предел обнаружения по сравнению с проверкой герметичности с помощью испытательной камеры с жесткими стенками повышен.
Предпочтительно, объемный поток подводимого газа-носителя составляет максимально однократную величину содержания газа камеры в секунду. Давление внутри пленочной камеры в области вне испытуемого объекта во время измерения концентрации проверочного газа должно составлять максимально 700 мбар. На испытуемый объект проверочный газ подают до и/или во время измерения доли проверочного газа в устанавливающейся газовой смеси из газа-носителя и проверочного газа. Давление проверочного газа в испытуемом объекте должно быть в каждом случае больше, чем давление в пленочной камере во время измерения. Предпочтительно, давление проверочного газа внутри испытуемого объекта должно составлять по меньшей мере 1000 мбар.
Перед введением в пленочную камеру испытуемый объект может быть активно наполнено отдельным проверочным газом. В качестве альтернативы, в качестве проверочного газа могут быть применены газ или газовые компоненты, которые уже содержатся в испытуемом объекте. При этом речь может идти о компонентах воздуха, например азоте, кислороде или двуокиси углерода. В качестве проверочного газа также могут использоваться газы, которые содержат ароматические вещества содержащегося в испытуемом объекте продукта, или состоят из них. Содержащийся в испытуемом объекте продукт может быть пищевым продуктом, например кофе. При этом ароматические вещества кофе могут использоваться в качестве проверочного газа. Еще одна возможность состоит в том, что в качестве проверочного газа используют газы или газовые компоненты, которые в испытуемом объекте производятся содержащимся в испытуемом объекте продуктом (например, пищевым продуктом). Например, кофе в упаковке кофе через несколько часов создает СО2, который может быть применен в качестве проверочного газа.
В качестве проверочного газа возможным является SF6, формовочный газ или Не. Особо благоприятным проверочным газом является СО2. В качестве газа-носителя может быть применен воздух. Особо благоприятным в качестве газа-носителя является азот.
В принципе, поток газа-носителя может непрерывно подводиться в пленочную камеру во время измерения с помощью устройства для подачи газа-носителя (подающего насоса). В соответствии с изобретением в качестве газа-носителя использован тот эффект, что из поверхностей расположенных внутри сторон стенок пленочной камеры за счет естественной проникающей способности и по причине вакуума выделяются газовые компоненты. Выделение этих газовых компонентов происходит в зависимости от давления в пленочной камере постоянно. При этом количество выделяющихся компонентов задает подводимый в пленочную камеру объемный поток газа-носителя. При измерении концентрации проверочного газа определяют количество проверочного газа и приводят в отношение к количеству газа-носителя, то есть, вышедших компонентов, в измеренном потоке газа. Преимущество применения в качестве газа-носителя газовых компонентов, выделяющихся из пленки в результате естественной проникающей способности, состоит в том, что в пленочную камеру не нужно активно подавать отдельный газ-носитель.
Если концентрация проверочного газа превышает заданную величину, например 5 частей на миллион, это служит в качестве указания на негерметичность в испытуемом объекте.
В качестве альтернативы является возможным, что в пленочную камеру лишь однократно подают заданный объем газа-носителя, пред тем, как измеряют концентрацию проверочного газа. Объем газа-носителя может быть подан в пленочную камеру до или после истечения времени накопления. В качестве времени накопления рассматривают время, которое проходит после вакуумирования пленочной камеры и перед измерением концентрации проверочного газа, чтобы через возможную негерметичность из испытуемого объекта могло выйти достаточно измеряемого проверочного газа.
Альтернатива предлагает то преимущество, что чувствительность измерения может быть повышена за счет увеличения времени накопления, без уменьшения количества газа-носителя.
Способ согласно изобретению предлагает то принципиальное преимущество, что предел обнаружения для проверки герметичности может быть уменьшен путем уменьшения объема испытательной камеры (объема пленочной камеры в области вне испытуемого объекта). Малый объем пленочной камеры требует для промывки газом-носителем, к тому же, и меньшего количества газа и продолжительности, чем в случае жесткой испытательной камеры с заданным объемом.
В дальнейшем, на фигурах более детально поясняются примеры осуществления изобретения. Показано на:
Фиг. 1: пример осуществления с непрерывной подачей газа-носителя с помощью подающего устройства,
Фиг. 2: пример осуществления, в котором в качестве непрерывного потока газа-носителя используются выделяющиеся из пленки газовые компоненты,
Фиг. 3: пример осуществления для однократной подачи заданного количества газа-носителя.
В каждом из примеров осуществления пленочная камера 10 образована из двух слоев 12, 14 пленки. В случае с пленками 12, 14 речь может идти о гибких пленках, которые в своей внешней краевой области уплотняющим образом наложены одна на другую. В пленочной камере 10 содержится испытуемый объект 16. Объем 18 пленочной камеры в области вне испытуемого объекта газопроводящим образом соединен с вакуумным насосом 20 для вакуумирования пленочной камеры. Эвакуированное с помощью вакуумного насоса 20 количество газа подается на газовый датчик 22 для определения концентрации проверочного газа в эвакуированной газовой смеси. В случае с газовым датчиком 22 речь может идти, например, о массовом спектрометре.
В примере осуществления согласно фиг. 1 объем 18 пленочной камеры, к тому же, газопроводящим образом соединен с подающим насосом 24, а также с источником 26 газа-носителя. Подающий насос 24 и источник 26 газа-носителя образуют устройство 25 подачи газа-носителя, чтобы подавать в пленочную камеру непрерывный поток газа-носителя. Подающий насос 24 подает содержащийся в источнике 26 газа-носителя газ-носитель в пленочную камеру 10. Вместо подающего насоса 24, в качестве альтернативы, также может быть применен дроссель.
Пример осуществления согласно фиг. 2 отличается от первого примера осуществления тем, что устройство подачи газа-носителя не предусмотрено. После вакуумирования пленочной камеры 10 газовые компоненты, которые выделяются из внутренних сторон стенок 12, 14 пленочной камеры за счет проникающей способности, используются в качестве газа-носителя. При этом проникновение этих газовых компонентов следует непрерывно.
Третий пример осуществления согласно фиг. 3 отличается от первого примера осуществления тем, что объем 18 пленочной камеры соединен не с устройством подачи газа-носителя, а, напротив, с имеющим постоянный объем газа-носителя (например, атмосферное давление) источником 28 газа-носителя. После вакуумирования пленочной камеры 10 с помощью вакуумного насоса открывается вентиль 30 в газопроводящем соединении между источником 28 газа-носителя и пленочной камерой 10, в результате чего объем газа-носителя внезапно входит в пленочную камеру 10.
Прохождение способа в трех примерах осуществления является следующим.
В первом примере осуществления объем 18 пленочной камеры уменьшается в результате вакуумирования пленочной камеры 10 с помощью вакуумного насоса 20. Затем в пленочную камеру 10 с помощью устройства 25 для подачи газа-носителя непрерывно подается уменьшенный поток газа-носителя, в то время как выведенный из пленочной камеры 10 вакуумным насосом 20 газовый поток анализируется датчиком 22. Датчик 22 определяет концентрацию проверочного газа в измеряемом газовом потоке. В случае негерметичности измеряемый газовый поток содержит смесь из газа-носителя и проверочного газа. Концентрация «с» проверочного газа в потоке газа-носителя составляет:
Figure 00000001
При этом первый член означает концентрацию проверочного газа в результате негерметичности, а второй - замену первоначально имеющейся концентрации проверочного газа проверочным газом из негерметичности. Можно написать также:
Figure 00000002
причем: с - общая концентрация проверочного газа,
С0 - начальная концентрация проверочного газа в потоке газа-носителя,
QLeck - норма утечки проверочного газа из негерметичности
QFI - поток газа-носителя.
Во втором примере осуществления объем 18 пленочной камеры уменьшается в результате вакуумирования пленочной камеры 10 вакуумным насосом 20. В каждом из примеров осуществления испытуемый объект был предварительно наполнен проверочным газом. С помощью вакуумного насоса 20 на датчик 22 подается приблизительно непрерывный газовый поток. При этом в качестве газа-носителя используется выходящий из пленок 12, 14 внутрь за счет проникающей способности газ. Доля проверочного газа в этом газовом потоке определяется датчиком 22.
В третьем примере осуществления после вакуумирования пленочной камеры 10 открывается вентиль 30. Тогда содержащийся в источнике 28 газа-носителя объем газа-носителя втекает в пленочную камеру 10. По истечении заданного времени накопления, в которое проверочный газ через возможную негерметичность в испытуемом объекте 16 может попадать в объем 18 пленочной камеры, с помощью датчика 22 определяется концентрация проверочного газа. Объем газа-носителя из источника 28 газа-носителя может подаваться в объем 18 пленочной камеры до, в течение или по истечении времени накопления.

Claims (17)

1. Способ проверки герметичности испытуемого объекта (16) в пленочной камере (10), которая имеет по меньшей мере одну гибкую стенную область (12, 14), включающий в себя следующие шаги:
- введение испытуемого объекта в пленочную камеру,
- применение газа или газового компонента, содержащегося в испытуемом объекте уже при его введении в пленочную камеру, в качестве проверочного газа для проверки герметичности,
- вакуумирование пленочной камеры до давления, которое меньше, чем давление проверочного газа внутри испытуемого объекта и чем атмосферное давление,
- введение газа-носителя в пленочную камеру в область вне испытуемого объекта, и
- измерение концентрации проверочного газа устанавливающейся газовой смеси в пленочной камере в области вне испытуемого объекта,
причем во время измерения концентрации проверочного газа в пленочную камеру подают непрерывный поток газа-носителя, создаваемый газовыми компонентами, которые по причине вакуума в пленочной камере выделяются из стенки (12, 14) пленочной камеры.
2. Способ по п.1, отличающийся тем, что в пленочную камеру перед измерением концентрации проверочного газа однократно подают заданное количество газа-носителя.
3. Способ по п.2, отличающийся тем, что концентрацию проверочного газа определяют по истечении заданного времени накопления после впуска газа-носителя.
4. Способ по п.2 или 3, отличающийся тем, что заданное количество газа-носителя вводят в пленочную камеру по истечении заданного времени накопления проверочного газа и перед измерением доли проверочного газа.
5. Способ по одному из предшествующих пунктов, отличающийся тем, что газ-носитель впускают в пленочную камеру в объемном потоке максимально однократной величины количества газа в объеме пленочной камеры в секунду.
6. Способ по одному из предшествующих пунктов, отличающийся тем, что введенное в пленочную камеру количество газа-носителя повышает давление внутри пленочной камеры максимально на величину около 100 мбар.
7. Способ по одному из предшествующих пунктов, отличающийся тем, что пленочную камеру перед измерением концентрации проверочного газа вакуумируют до давления максимально величиной около 700 мбар.
8. Способ по одному из пп.1-7, отличающийся тем, что в качестве проверочного газа используют компоненты воздуха, например азот, кислород или двуокись углерода.
9. Способ по одному из пп.1-7, отличающийся тем, что в качестве проверочного газа используют ароматические вещества упакованного в испытуемом объекте продукта.
10. Способ по одному из пп.1-7, отличающийся тем, что в качестве проверочного газа используют газ, который создается упакованным в испытуемом объекте продуктом.
11. Способ по одному из пп.1-7, отличающийся тем, что испытуемый объект перед введением в пленочную камеру наполняют проверочным газом.
RU2017122386A 2014-12-03 2015-11-25 Проверка герметичности с помощью газа-носителя в пленочной камере RU2699960C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014224799.3 2014-12-03
DE102014224799.3A DE102014224799A1 (de) 2014-12-03 2014-12-03 Dichtheitsprüfung mit Trägergas in Folienkammer
PCT/EP2015/077636 WO2016087280A1 (de) 2014-12-03 2015-11-25 Dichtheitsprüfung mit trägergas in folienkammer

Publications (3)

Publication Number Publication Date
RU2017122386A RU2017122386A (ru) 2019-01-09
RU2017122386A3 RU2017122386A3 (ru) 2019-03-12
RU2699960C2 true RU2699960C2 (ru) 2019-09-11

Family

ID=54697598

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017122386A RU2699960C2 (ru) 2014-12-03 2015-11-25 Проверка герметичности с помощью газа-носителя в пленочной камере

Country Status (9)

Country Link
US (1) US11199468B2 (ru)
EP (1) EP3227655B1 (ru)
JP (1) JP6653703B2 (ru)
CN (1) CN107003204B (ru)
AU (1) AU2015357410B2 (ru)
BR (1) BR112017010967B1 (ru)
DE (1) DE102014224799A1 (ru)
RU (1) RU2699960C2 (ru)
WO (1) WO2016087280A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205032A1 (de) * 2014-03-18 2015-09-24 Inficon Gmbh Dichteanstiegsmessung in Folienkammer
DE102014224799A1 (de) 2014-12-03 2016-06-09 Inficon Gmbh Dichtheitsprüfung mit Trägergas in Folienkammer
US9915581B2 (en) * 2016-03-31 2018-03-13 Glttek Co., Ltd Seal detecting device and means thereof
DE102017201004A1 (de) * 2017-01-23 2018-07-26 Inficon Gmbh Folienkammer mit Doppelfolie
AT16562U1 (de) 2017-02-24 2020-01-15 Mits Gmbh Verfahren zum Überprüfen einer Dichtheit eines flexiblen Behälters
GB201813448D0 (en) * 2018-08-17 2018-10-03 Cascade Tech Holdings Limited Leak detection system and method
DE102019121462B4 (de) 2019-08-08 2021-12-09 Inficon Gmbh Verfahren zur Dichtheitsprüfung eines flüssigkeitsgefüllten Prüflings
GB2599667B (en) * 2020-10-08 2022-11-02 Mccarthy Martin Puncture detection
DE102021100147A1 (de) 2021-01-07 2022-07-07 Inficon Gmbh Folienkammer mit Trägergaszufuhr und Verfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642099A1 (de) * 1996-10-12 1998-04-16 Leybold Vakuum Gmbh Prüfung der Dichtheit von Verpackungen
WO2002014824A1 (de) * 2000-08-16 2002-02-21 Inficon Gmbh Verfahren und vorrichtung zur dichtheitsprüfung eines gasgenerators
WO2005054806A1 (en) * 2003-12-05 2005-06-16 Sensistor Technologies Ab System and method for determining the leakproofness of an object
DE102007057944A1 (de) * 2007-12-01 2009-06-04 Inficon Gmbh Verfahren und Vorrichtung zur Dichtheitsprüfung

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888111A (en) * 1973-11-21 1975-06-10 Gen Motors Corp Sealed beam headlamp unit leak detection system
DE2533830A1 (de) * 1975-07-29 1977-02-10 Leybold Heraeus Gmbh & Co Kg Einrichtung zur lecksuche an prueflingen mit leicht verformbaren wandungen
JPS62112027A (ja) * 1985-11-11 1987-05-23 Shinkosumosu Denki Kk 容器の漏洩検知方法
JPH01227037A (ja) * 1988-03-08 1989-09-11 Yamaha Corp 漏れ試験機用容器
JP3688083B2 (ja) 1996-12-26 2005-08-24 東洋自動機株式会社 密封体の漏れ検査方法および装置
US6082184A (en) * 1997-05-27 2000-07-04 Martin Lehmann Method for leak testing and leak testing apparatus
DE19935293A1 (de) * 1999-07-27 2001-02-01 Leybold Vakuum Gmbh Folienlecksuchkammer
US6584828B2 (en) * 1999-12-17 2003-07-01 Atc, Inc. Method and apparatus of nondestructive testing a sealed product for leaks
DE50015394D1 (de) * 1999-12-22 2008-11-20 Inficon Gmbh Verfahren zum betrieb eines folien-lecksuchers sowie für die durchführung dieses verfahrens geeigneter folien-lecksucher
EP1309841B1 (de) 2000-08-11 2005-09-14 Robert Bosch Gmbh Klopferkennung bei brennkraftmaschinen mit modifizierung bei änderung einer filtercharakteristik oder zylinderindividueller änderung
US6513366B1 (en) * 2001-10-11 2003-02-04 Packaging Technologies & Inspection Llc Method and apparatus for package leak testing
JP2003240668A (ja) * 2002-02-20 2003-08-27 Honda Motor Co Ltd 漏洩試験装置
US20040159144A1 (en) * 2003-02-14 2004-08-19 Thomas Abelen Method and device for performing a leak test on a gas generator
JP4374241B2 (ja) * 2003-12-05 2009-12-02 アディクセン スカンディナビア エービー 対象物の密封性を測定するためのシステム及び方法
JP5370107B2 (ja) 2009-12-01 2013-12-18 凸版印刷株式会社 梱包包装体内の製品良否判定装置および製品良否判定方法
JP2011179975A (ja) * 2010-03-01 2011-09-15 Ts:Kk 漏れ検査装置及び漏れ検査方法
US20120037795A1 (en) * 2010-08-10 2012-02-16 Martin Lehmann Method and apparatuses for quality evaluation and leak testing
JP2012047651A (ja) * 2010-08-30 2012-03-08 Anest Iwata Corp リーク検出装置
US8806919B2 (en) * 2011-07-29 2014-08-19 Vacuum Technology Inc. Leak detection apparatus and method
US10845266B2 (en) * 2011-11-16 2020-11-24 Inficon Gmbh Quick leak detection on dimensionally stable/slack packaging without the addition of test gas
DE102011086486B4 (de) * 2011-11-16 2023-01-19 Inficon Gmbh Vorrichtung und Verfahren zur schnellen Lecksuche an formsteifen/schlaffen Verpackungen ohne Zusatz von Prüfgas
DE102012200063A1 (de) * 2012-01-03 2013-07-04 Inficon Gmbh Verfahren zur Lecksuche an einem nicht formstarren Prüfling
DE102012220483A1 (de) * 2012-11-09 2014-05-15 Inficon Gmbh Lecktestgerät
DE102013217288A1 (de) * 2013-08-29 2015-03-05 Inficon Gmbh Dichtheitsprüfung während der Evakuierung einer Folienkammer
DE102013219464A1 (de) * 2013-09-26 2015-03-26 Inficon Gmbh Evakuierung einer Folienkammer
CN103822761B (zh) * 2014-01-03 2017-01-04 中国空间技术研究院 密封性检测装置及方法
DE102014205032A1 (de) * 2014-03-18 2015-09-24 Inficon Gmbh Dichteanstiegsmessung in Folienkammer
DE102014211228A1 (de) * 2014-06-12 2015-12-17 Inficon Gmbh Differenzdruckmessung mit Folienkammer
DE102014224799A1 (de) 2014-12-03 2016-06-09 Inficon Gmbh Dichtheitsprüfung mit Trägergas in Folienkammer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642099A1 (de) * 1996-10-12 1998-04-16 Leybold Vakuum Gmbh Prüfung der Dichtheit von Verpackungen
WO2002014824A1 (de) * 2000-08-16 2002-02-21 Inficon Gmbh Verfahren und vorrichtung zur dichtheitsprüfung eines gasgenerators
WO2005054806A1 (en) * 2003-12-05 2005-06-16 Sensistor Technologies Ab System and method for determining the leakproofness of an object
DE102007057944A1 (de) * 2007-12-01 2009-06-04 Inficon Gmbh Verfahren und Vorrichtung zur Dichtheitsprüfung

Also Published As

Publication number Publication date
RU2017122386A3 (ru) 2019-03-12
DE102014224799A1 (de) 2016-06-09
AU2015357410A1 (en) 2017-06-15
BR112017010967B1 (pt) 2022-06-07
JP2018501475A (ja) 2018-01-18
AU2015357410B2 (en) 2020-08-27
EP3227655B1 (de) 2020-01-08
CN107003204B (zh) 2020-03-03
RU2017122386A (ru) 2019-01-09
CN107003204A (zh) 2017-08-01
EP3227655A1 (de) 2017-10-11
WO2016087280A1 (de) 2016-06-09
JP6653703B2 (ja) 2020-02-26
US20170268957A1 (en) 2017-09-21
US11199468B2 (en) 2021-12-14
BR112017010967A2 (pt) 2018-02-14

Similar Documents

Publication Publication Date Title
RU2699960C2 (ru) Проверка герметичности с помощью газа-носителя в пленочной камере
RU2700830C2 (ru) Способ калибрования пленочной камеры для обнаружения утечек
KR101788729B1 (ko) 용기 누출 검사를 위한 방법 및 장치
EP3325934B1 (fr) Procédé de contrôle de l'étanchéité de produits scellés et installation de détection de fuites
KR102574722B1 (ko) 동적 진공 감쇠 누출 탐지 방법 및 장치
CN106595994B (zh) 泄漏检测
JP6602852B2 (ja) グロスリーク検知のための容積測定機能を備えるフィルムチャンバ
JP6492084B2 (ja) フィルムチャンバ排気時の密閉度試験法
US11378483B2 (en) System and method for determining the integrity of containers by optical measurement
JP2016529503A5 (ru)
AU2015233669A1 (en) Gas density increase in a film chamber
US11262268B2 (en) Method for inspecting a seal of a flexible container
US9733147B2 (en) Method for testing a leakage detection system
US20220181709A1 (en) Tightness test of a liquid filled test object
EP3969871A1 (en) Method and apparatus for recognizing the presence of leakages from sealed containers
CN110312920B (zh) 具有双层薄膜的薄膜腔室
JP2004279254A (ja) 試料の水蒸気透過速度測定方法
US20180252613A1 (en) Leak Detection Upon Evacuation of a Test Chamber or a Specimen
NL1038720C2 (nl) Meting van de uitgassing van producten.
JP2005037220A (ja) 容器の漏れ検査方法と装置