RU2697100C1 - Способ обработки магнетитовой руды и композиция коллектора - Google Patents

Способ обработки магнетитовой руды и композиция коллектора Download PDF

Info

Publication number
RU2697100C1
RU2697100C1 RU2019102712A RU2019102712A RU2697100C1 RU 2697100 C1 RU2697100 C1 RU 2697100C1 RU 2019102712 A RU2019102712 A RU 2019102712A RU 2019102712 A RU2019102712 A RU 2019102712A RU 2697100 C1 RU2697100 C1 RU 2697100C1
Authority
RU
Russia
Prior art keywords
ether
collector
etherpropylamine
composition
monoaminoalkyl
Prior art date
Application number
RU2019102712A
Other languages
English (en)
Inventor
Микаэль Ивар ВИДЕЛЛЬ
Йохн Андре ЯНИАК
Ян Олоф Густафссон
Хенрик Нордберг
Original Assignee
Акцо Нобель Кемикалз Интернэшнл Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акцо Нобель Кемикалз Интернэшнл Б.В. filed Critical Акцо Нобель Кемикалз Интернэшнл Б.В.
Application granted granted Critical
Publication of RU2697100C1 publication Critical patent/RU2697100C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/0043Organic compounds modified so as to contain a polyether group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/01Organic compounds containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Paper (AREA)
  • Compounds Of Iron (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Paints Or Removers (AREA)

Abstract

Изобретение относится к композиции коллектора, включающей простой моноаминоалкиловый эфир, и к способу обработки руд, таких как магнетитовые руды, такой композицией коллектора. Композиция коллектора содержит 80-100 мас.% по меньшей мере одного моноаминоалкилового эфира, менее 20 мас.% диаминоалкилового эфира, от полного веса всех аминовых компонентов, причем моноаминоалкиловый эфир содержит 60-93 мас.% изотридецил(C13)эфирпропиламина, 5-30 мас.% изододецил(C12) эфирпропиламина, 0-10 мас.% изоундецил(C11)эфирпропиламина, 0-10 мас.% изодецил(C10)эфирпропиламина, 2-10 мас.% тетрадецил(C14) эфирпропиламина, каждый раз в расчете на полный вес моноаминоалкилового эфира. Композиция используется в способе для обработки железных руд, включающем стадию пенной флотации. Технический результат – повышение эффективности разделения. 3 н. и 8 з.п. ф-лы, 2 ил., 4 табл., 2 пр.

Description

Настоящее изобретение относится к композиции коллектора, включающей простой моноаминоалкиловый эфир, и к способу обработки руд, таких как магнетитовые руды, такой композицией коллектора.
В заявке US 2012/0325725 описан флотационный реагент для железной руды, который имеет состав, включающий диамин алкоксилированный сложный диаминоэфир (A) и амин (B). Амин B может представлять собой простой аминоэфир (II) или простой диаминоэфир (III), упоминается много примеров как амино-, так и диаминоэфиров. Использование только или главным образом моноаминоэфира не рекомендуется, так как показано, что использование моноаминоэфира C10 менее эффективно, чем использование этого же соединения в комбинации с алкоксилированным сложным диаминоэфиром.
В документе US2014/0021104 описывается разветвленный простой моноаминоэфир C10 для применения в процессе повышения извлечения железосодержащих минералов из железной руды, содержащей силикат. Моноаминоэфир C10 можно использовать в смеси с моноаминоэфиром C13-C15. Этот второй компонент имеет степень разветвления от 0,3 до 0,7. Эти соединения используются при флотации гематитовых руд.
В заявке US2014/0144290 описаны смешанные композиции коллектора, содержащие амидоамин и простой аминоэфир или диаминоэфир. Одним примером аминоэфира является изотридецилоксипропиламин. Указывается, что эти смеси могут быть полезными для многих процессов разделения, например, для магнетита. В примерах показано, что использование только аминоэфира дает менее благоприятные результаты, чем при его смешении с амидоамином в железной руде неустановленного типа, если использовать в качестве аминоэфира моноаминоалкиловый эфир, обогащенный разветвленным C10-алкилом.
Заявка WO 2008/077849 описывает аминовые композиции для обратной пенной флотации силикатов из железных руд, являющиеся смесью диаминоэфира со вторым соединением, которое может быть моноаминоэфиром. Моноаминоэфир в одном подробно описанном варианте осуществления представляет собой изотридекоксипропиламин, смешанный в отношении 50/50 с соответствующим диамином. Хотя, вообще говоря, указывается, что руда является гематитовой или магнетитовой рудой, руда, использованная в примере, как представляется, не идентифицирована.
Патент US 3363758 описывает применение простых аминоэфиров в пенной флотации, например, для отделения кремнистых материалов от железной руды, такой как магнетит. В качестве аминоэфира предпочтительно можно использовать аминоэфир C7-C13, описанные примеры включают неразветвленный н-тридекоксипропиламин.
Документ WO 93/06935 описывает флотацию железной руды с использованием коллектора, содержащего простой аминоэфир и другой анионный или неионный коллектор. Аминоэфир представляет собой моно-, ди-, три- или тетрааминоэфир C6-C22. Вообще говоря, руда может быть гематитом или магнетитом. Одним коллектором является пропиламиноэфир C8-C12 для применения в обработке гематитовой руды. Результаты позволяют предполагать, что моноаминоэфир уступает диаминоэфиру при обработке магнетита, так как для магнетита явно описаны только диамины.
Заявка US2014/0048455 описывает использование моноамино- и диаминоэфиров при флотации для повышения извлечения минералов железа из силикат-содержащей железной руды. Предпочтительным аминоэфиром является разветвленный пропиламиноалкиловыйэфир C13, причем алкильная группа, поскольку она базируется на тридеканоле N от BASF, примерно на 99% является C13-алкилом. Результаты, представленные в этом документе, заставляют предполагать, что моноаминоэфир уступает соответствующему диаминоэфиру по эффективности в гематите. В документе предполагается, что описанные в нем композиции будут также работать для других железных руд, особенно железных руд с высоким содержанием кремнезема, хотя никаких доказательств в пользу этого не представлено.
Неизменно сохраняется потребность в композициях коллектора, которые обеспечат высокую эффективность, в частности, с точки зрения лучшей селективности разделения желаемых компонентов и примесей и, следовательно, обеспечить улучшенное и более высокое извлечение из магнитных железных руд.
Настоящее изобретение предлагает композицию коллектора, подходящую для обработки железных руд, которая содержит 80-100 мас.% моноаминоалкилового эфира, менее 20 мас.% диаминоалкилового эфира, причем все весовые проценты рассчитаны на полный вес всех аминовых компонентов, и причем моноаминоалкиловый эфира содержит 60-93 мас.% изотридецил(C13)эфирпропиламина, 5-30 мас.% изододецил(C12)-эфирпропиламина, 0-10 мас.% изоундецил(C11)эфирпропиламина, 0-10 мас.% изодецил(C10)эфирпропиламина, 2-10 мас.% тетрадецил(C14)-эфирпропиламина, в расчете на полный вес моноаминоалкилового эфира; предлагается также способ обработки магнетитовой руды с использованием вышеуказанной композиции коллектора, причем способ включает стадию (пенной) флотации руды в присутствии композиции коллектора.
Заявители обнаружили, что композиции коллектора, содержащие особые смеси моноаминов, намного более эффективны, чем диаминовые композиции или композиции, содержащие другие моноамины, в обработке железных руд, таких, как магнетитовая руда, в процессе (обратной) флотации. Было установлено, что использование композиции коллектора, содержащей в качестве аминов преимущественно простые моноаминоалкиловые эфиры заявленного состава, обеспечивают неожиданно хорошие результаты в процессе флотации в отношении удаления кремнезема из магнетитовой руды, причем указанные результаты на 30% лучше, чем для соответствующих диаминоалкиловых эфиров, а также значительно, чем в случае композиций, которые содержат в основном или исключительно моноамины на основе изотридеканола(C13). Кроме того, диамины менее желательны по соображениям здоровья, надежности и экологической безопасности, так как они отличаются более высокой токсичностью по сравнению с моноаминами.
Магнетитовые руды представляют собой магнитную железную руду, которая содержит магнетит, т.е., Fe3O4. Такие руды типично называют магнетитовыми, но магнетит могут содержать и другие руды, которые в некоторых случаях называются магнитными рудами, например, магнитные таконитовые руды. Магнетитовые руды следует отличать от гематитовых руд, которые содержат гематит, т.е., Fe2O3.
Используемый здесь термин "степень разветвления" (DB) означает полное число концевых алкильных групп, таких как метил, присутствующих на алкильной цепи, минус одна группа. Следует отметить, что степень разветвления является средним значением числа алкильных групп в моноаминоалкиловом эфире и, таким образом, не обязательно является целым числом.
Моноаминоалкиловый эфир содержит 60-93% изотридецил(C13)-эфирпропиламина, 5-30 мас.% изододецил(C12)эфирпропиламина, 0-10 мас.% изоундецил(C11)эфирпропиламина, 0-10 мас.% изодецил(C10)-эфирпропиламина, 2-10 мас.% тетрадецил(C14)эфирпропиламина, каждый раз в расчете на полный вес моноаминоалкилового эфира.
Предпочтительно, моноаминоалкиловый эфир содержит 60-80 мас.% изотридецил(C13)эфирпропиламина, 10-30 мас.% изододецил(C12)эфирпропиламина, 0-10 мас.% изоундецил(C11)-эфирпропиламина, 0-5 мас.% изодецил(C10)эфирпропиламина, 2-10 мас.% тетрадецил(C14)-эфирпропиламина, каждый раз в расчете на полный вес моноаминоалкилового эфира.
Наиболее предпочтительно, моноаминоалкиловый эфир содержит 65-75 мас.% изотридецил(C13)эфирпропиламина, 15-25 мас.% изододецил(C12)эфирпропиламина, 0,5-5 мас.% изоундецил(C11)-эфирпропиламина, 0,1-3 мас.% изодецил(C10)эфирпропиламина, 4-9 мас.% тетрадецил(C14)эфирпропиламина, каждый раз в расчете на полный вес моноаминоалкилового эфира.
В одном предпочтительном варианте осуществления степень разветвления моноаминоалкилового эфира и возможно присутствующего диаминоалкилового эфира в композиции составляет от 1,5 до 3,5, более предпочтительно она составляет от 2,0 до 3,0.
В другом предпочтительном варианте осуществления композиция коллектора содержит менее 10 мас.%, еще более предпочтительно менее 5 мас.% диаминоалкилового эфира от всех аминовых компонентов.
В одном варианте осуществления изобретение относится также к способу обработки железной руды для улучшения извлечения железа из кремнезема, причем железные руды предпочтительно являются магнетитовыми рудами.
Пропиламиноалкиловый эфир можно получить по реакции алкилового спирта (жирный спирт) с акрилонитрилом, после чего полученный интермедиат, содержащий нитрильную группу, гидрируют, получая первичный амин, и полученный продукт частично нейтрализуют (факультативно).
В одном варианте осуществления композиция коллектора может содержать дополнительные компоненты, которые известны специалисту как полезные для процесса обработки железной руды, например, но без ограничений, такие как депрессоры (железа), пенообразователи, модификаторы/регуляторы/гасители пены, вспомогательные коллекторы, нейтрализаторы, регуляторы pH, катионные ПАВы.
Было обнаружено, что эффективность процесса флотации можно улучшить, если амин по меньшей мере частично нейтрализовать кислотой. Амин можно нейтрализовать полностью или частично. Предпочтительно, амин можно нейтрализовать кислотой в количестве от 30 до 70 моль%, предпочтительно от 40 до 60 моль%. Нейтрализатор может быть неорганической кислотой, такой, как соляная кислота, или, предпочтительно, карбоновой кислотой, более предпочтительно C1-C5 карбоновой кислотой, такой как муравьиная кислота, уксусная кислота и пропионовая кислота. В одном наиболее предпочтительном варианте осуществления амин нейтрализуют уксусной кислотой.
В одном варианте осуществления композиция коллектора может дополнительно содержать вспомогательный коллектор для улучшения эффективности. Этот вспомогательный коллектор предпочтительно выбирают из группы неионных, как неразветвленных, так и разветвленных жирных спиртов, алкоксилированных жирных спиртов, жирных аминов, алкиламидоаминов, предпочтительно из жирных спиртов или алкоксилированных жирных спиртов. Примерами вспомогательных коллектора в более предпочтительном варианте осуществления являются разветвленные жирные спирты C11-C17, такие, как жирные спирты изо-C13, и их этоксилаты и пропоксилаты.
Весовое соотношением между основным коллектором и вспомогательным коллектором предпочтительно составляет 15:85, более предпочтительно 20:80, наиболее предпочтительно от 25:75 до 99:1, предпочтительно 98:2, наиболее предпочтительно 97:3. При этом все весовые отношения, если не указано иное, указаны как отношения активных материалов.
Способ флотации согласно изобретению предпочтительно является способом обратной флотации. Обратная флотация означает, что желаемая руда концентрируется не в пене, а в камерном продукте процесса флотации. Предлагаемый изобретением способ предпочтительно является способом обратной флотации для магнетитовых руд, более предпочтительно для руды, которая содержит более 80 мас.% Fe3O4 от полного содержания оксида железа, еще более предпочтительно более 90 мас.%, наиболее предпочтительно от 95 до 100 мас.%. В другом предпочтительном варианте осуществления руды содержат менее 15 мас.% кремнезема, еще более предпочтительно менее 12 мас.%, наиболее предпочтительно менее 10 мас.%, от полного содержания твердых веществ в руде. В способе обратной флотации для обогащения магнетитовых железных руд подходящие значения pH во время флотации в предпочтительном варианте осуществления лежат в диапазоне 5-10, предпочтительно 7-9.
Способ обратной пенной флотации согласно изобретению в одном варианте осуществления включает стадии:
- смешение измельченной железной, предпочтительно магнетитовой, руды с водной средой, предпочтительно водой,
- факультативно, концентрирование среды путем магнитной сепарации,
- факультативно, подготовительная обработка смеси депрессором,
- факультативно, корректировка pH,
- подготовительная обработка смеси композицией коллектора, какая определена выше,
- введение воздуха в подготовленную смесь вода-руда,
- счерпывание образованной пены.
Композицию коллектора по настоящему изобретению очень выгодно использовать в заявленном способе обратной пенной флотации, особенно в способе обратной пенной флотации магнетитовых руд для обогащения железа.
Композиция предпочтительно является жидкой при температуре окружающей среды, т.е., по меньшей мере в диапазоне температур 15-25°C.
В способе по изобретению могут использоваться другие добавки и вспомогательные материалы, какие обычно присутствуют в процессе пенной флотации, эти добавки и вспомогательные материалы можно добавлять во время процесса одновременно или, предпочтительно, по отдельности. Другими добавками, какие могут присутствовать в процессе флотации, являются депрессоры (железа), пенообразователи, регуляторы/модификаторы/гасители пены, катионные ПАВы (такие как алкиламины, кватернизованные амины, алкоксилаты) и регуляторы pH. Депрессоры включают полисахариды, например, декстрин, крахмал, такой как кукурузный крахмал, активированный обработкой щелочью, или синтетические полимеры, такие как полиариламиды. Другими примерами (гидрофильных) полисахаридов являются сложные эфиры целлюлозы, такие, как карбоксиметилцеллюлоза и сульфометилцеллюлоза; простые эфиры целлюлоы, такие как метилцеллюлоза, гидроксиэтилцеллюлоза и этилгидроксиэтилцеллюлоза; гидрофильные смолы, такие, как гуммиарабик, камедь карайи, трагакантовая камедь и камедь гхатти, альгинаты; а также производные крахмала, такие, как карбоксиметилкрахмал и фосфат крахмала. Обычно депрессор добавляют в количестве от примерно 10 до примерно 1000 г на тонну руды. После кондиционирования руды можно добавить простой моноаминовый эфир, предпочтительно частично нейрализованный, затем смесь дополнительно кондиционируют некоторое время до проведения пенной флотации. При желании перед пенной флотацией можно добавить регуляторы пены. Примерами подходящих регуляторов пены являются метилизобутилкарбинол и спирты, содержащие 6-12 атомов углерода, которые факультативно могут быть алкоксилированы этиленоксидом и/или пропиленоксидом, в частности, разветвленные и неразветвленные октанолы и гексанолы. По завершении флотации можно извлечь обогащенный силикатом флотат и нижнюю фракцию, богатую железом и бедную силикатом.
В другом аспекте настоящее изобретение относится к пульпе, содержащей дробленую и молотую железную руду, предпочтительно магнетитовую, композицию коллектора, какая определена в настоящем изобретении, и (факультативно) дополнительные флотационные добавки. Эти флотационные добавки могут быть такими же, как упомянутые выше другие добавки и вспомогательные материалы, которые типично могут присутствовать в процессе пенной флотации.
Количество коллектора, использующегося в процессе обратной флотации согласно настоящему изобретению, будет зависеть от количества примесей, присутствующих в руде, и от желаемого эффекта разделения, но в некоторых вариантах осуществления это количество будет лежать в диапазоне 1-500 г/т сухой руды, предпочтительно 10-200 г/т сухой руды, более предпочтительно 20-120 г/т сухой руды.
Примеры
Пример 1
Материалы и методы
Руда в экспериментах по флотации :
Магнетитовая руда: Fe3O4-87% (Fe - 63,0%), SiO2-9,7%, -44 мкм - 96%
Флотационные реагенты
Композиция коллектора 1 (сравнительная), содержащая около 10 мас.% уксусной кислоты и около 90 мас.% алкилового эфира пропиламинпропиламина (т.е., диаминоалкилового эфира), причем алкил имеет степень разветвления примерно 3,0, и около 70% алкильных групп являются алкилом C13, около 20% алкилом C12, остальное алкилы C11 или ниже или алкилы C14 или выше.
Композиция коллектора 2, содержащая около 10 мас.% уксусной кислоты и около 90 мас.% пропилмоноаминоалкилового эфира, причем алкил имеет степень разветвления примерно 3,0, и около 70% алкильных групп являются алкилом C13, около 20% алкилом C12, остальное алкилы C11 или ниже или алкилы C14 или выше.
Синтетическая технологическая вода
В экспериментах по флотации использовали синтетическую технологическую воду. Ее готовили, добавляя соответствующие количества промышленных солей в деионизированную воду, в соответствии с составом, определенным химическим анализом технологической воды с завода, таблица 1.
Таблица 1. Состав воды для процесса флотации, используемой в лабораторных экспериментах
pH Ca, мг/л Mg, мг/л SO4, мг/л Cl, мг/л HCO3, мг/л
ок. 8 70 65 900 1000 85
Процесс флотации
Исследование проводили как ступенчатую грубую флотацию на лабораторной флотационной машине Денвер. Машина была модифицирована и оборудована устройством автоматического счерпывания пены и камерой с двухкромочным уплотнением. Параметры машины приведены в таблице 2.
Образец руды вводили во флотационную камеру и камеру заполняли синтетической технологической водой (37% твердых веществ). В качестве стандарта использовали температуру воды 19-22°C. Скорость ротора во время экспериментов была постоянной и равной 900 об/мин.
1. Пульпу доводили до кондиции в течение 2 минут.
2. Добавляли раствор коллектора (1 мас.%) и выдерживали 2 минуты.
3. Подачу воздуха и автоматический счерпыватель пены включали одновременно.
4. Флотацию продолжали 3 минуты. Воду добавляли непрерывно через трубу ниже поверхности пульпы, чтобы поддерживать надлежащий уровень пульпы.
5. Флотацию повторяли дважды, начиная с этапа 2.
Затем материал с разных этапов флотации сушили, взвешивали и анализировали методом рентгеновской флуоресценции на содержание железа и кремнезема.
Таблица 2. Параметры флотационной машины
Флотационная машина Денвер
объем камеры (л) 1,3
твердые вещества в пульпе (%) 37
скорость ротора (об/мин) 900
воздушный поток (л/мин) 2,5
частота счерпывания (мин-1) 15
Приготовление реагентов
Композицию коллектора диспергировали в воде и добавляли в виде 1%-ного раствора.
Процедура вспенивания
- выдерживание коллектора и суспензии руды в технологической воде 2 минуты при 900 об/мин,
- аэрация при постоянной скорости 2,5 л/мин,
- образование пены продолжали 10 минут или до достижения максимальной высоты и стабилизировали,
- образование и гашение пены отслеживали путем измерения высоты пены каждые 20 секунд в каждом процессе.
Результаты
Результаты процесса флотации приведены ниже в таблице 3.
Таблица 3
Концентрация Fe
Реагент суммарная дозировка (г/т) извлечение Fe (%) рудное содержание SiO2 (%)
этап 1 этап 2 этап 3 этап 1 этап 2 этап 3 этап 1 этап 2 этап 3
Композиция коллектора 2 60 90 120 80,74 67,39 56,59 4,84 3,19 2,40
Сравнительная композиция 1 60 90 120 95,10 85,60 70,93 7,36 5,35 3,50
Флотация
Как можно видеть из таблицы 3 и фигуры 1, композиции коллектора 1 и 2 имеют одинаковую селективность: при одинаковом рудном содержании оба ПАВа обеспечивают одинаковое извлечение.
Однако эффективность этих двух ПАВов разная: чтобы получить извлечение Fe 74%, требуется около 110-115 г/т сравнительной композиции коллектора 1 и 75-80 г/т композиции коллектора 2 (фиг. 1).
Пенообразование
Чтобы показать пенообразующие свойства композиций коллектора, было проведено два эксперимента по вспениванию с рудой. Использовали дозировки ПАВов, необходимые для получения степени извлечения Fe 74% (фиг. 1).
Из приведенных результатов следует, что композиция коллектора 2 согласно настоящему изобретению создает больше пены, чем сравнительная композиция коллектора 1, но образованная пена быстро гасится (смотри фиг. 2).
Выводы
Было обнаружено, что эффективность композиции коллектора 2 по меньшей мере на 30% выше при одинаковом заданном отношении (рудное содержание)/извлечение, чем эффективность, обеспечиваемая сравнительной композицией коллектора 1. Моноаминоалкиловый эфир более эффективен при обработке магнетитовых руд с низким содержанием кремнезема по сравнению с диаминоалкиловым эфиром.
Пример 2
Материалы и способ
Пример 2 был осуществлен, если ниже не указано иное, с использованием руды и способа, описанных в примере 1 выше.
Композиция коллектора 2, содержащая примерно 10 мас.% уксусной кислоты и примерно 90 мас.% пропилмоноаминоалкилового эфира, в котором алкил имеет степень разветвления примерно 3,0, и примерно 70% алкильных групп является алкилом C13, примерно 20% алкилом C12, остальное алкилами C11 или ниже или алкилами C14 или выше, сравнивается со сравнительной композицией коллектора 3, в которой более 99% пропилмоноаминоалкилового эфира основано на C13-алкиле изотридеканол с DB 2,2.
Результаты
Результаты процесса флотации приведены ниже в таблице 4.
Таблица 4
Концентрация Fe
Реагент суммарная дозировка (г/т) извлечение Fe (%) рудное содержание SiO2 (%)
этап 1 этап 2 этап 3 этап 1 этап 2 этап 3 этап 1 этап 2 этап 3
Композиция коллектора 2 60 90 120 80,74 67,39 56,59 4,84 3,19 2,40
Сравнительная композиция 3 60 90 120 86,95 73,72 62,35 5,71 3,92 2,90
Выводы
Главным условием для успешности флотационного коллектора является высокое извлечение ценного минерала и значительное сокращение породной примеси при минимально возможной дозировке флотационных реагентов, в том числе коллектора. Если сравнить результаты на графике (рудное содержание)/извлечение, очевидно, что композиция коллектора 2 согласно изобретения является более эффективной, чем сравнительные композиции коллектора 1 и 3, без какой-либо потери селективности.

Claims (11)

1. Композиция коллектора, содержащая 80-100 мас.% по меньшей мере одного моноаминоалкилового эфира, менее 20 мас.% диаминоалкилового эфира, от полного веса всех аминовых компонентов, причем моноаминоалкиловый эфир содержит 60-93 мас.% изотридецил(C13)эфирпропиламина, 5-30 мас.% изододецил(C12) эфирпропиламина, 0-10 мас.% изоундецил(C11)эфирпропиламина, 0-10 мас.% изодецил(C10)эфирпропиламина, 2-10 мас.% тетрадецил(C14) эфирпропиламина, каждый раз в расчете на полный вес моноаминоалкилового эфира.
2. Композиция коллектора по п. 1, причем моноаминоалкиловый эфир содержит 60-80 мас.% изотридецил(C13)эфирпропиламина, 10-30 мас.% изододецил(C12)эфирпропиламина, 0-10 мас.% изоундецил(C11)-эфирпропиламина, 0-5 мас.% изодецил(C10)эфирпропиламина, 2-10 мас.% тетрадецил(C14)эфирпропиламина, каждый раз в расчете на полный вес моноаминоалкилового эфира.
3. Композиция коллектора по любому из пп. 1 или 2, причем степень разветвления моноаминоалкилового эфира составляет от 1,5 до 3,5.
4. Композиция коллектора по любому из пп. 1-3, причем композиция коллектора содержит менее 5 мас.% диаминоалкилового эфира от всех аминовых компонентов.
5. Композиция коллектора по любому из пп. 1-4, содержащая дополнительные добавки, выбранные из группы депрессоров, ПАВов, модификаторов пены или нейтрализаторов, таких как уксусная кислота, или содержащая вспомогательные коллекторы, такие как разветвленные жирные алкиловые спирты и алкоксилированные жирные алкиловые спирты.
6. Способ обработки железной руды, причем способ включает стадию (пенной) флотации в присутствии композиции коллектора по любому из пп. 1-5.
7. Способ по п. 6, причем железная руда является магнетитовой рудой.
8. Способ по п. 7, причем способ обработки магнетитовой руды является способом повышения извлечения железа из силикатов.
9. Способ по любому из пп. 6-8, причем способ является способом обратной флотации.
10. Способ по любому из пп. 6-9, причем руда содержит менее 15 мас.% кремнезема от общего содержания твердой фазы в руде.
11. Пульпа, содержащая дробленую и измельченную железную руду, композицию коллектора по любому из пп. 1-5 и необязательно дополнительные флотационные добавки.
RU2019102712A 2016-07-08 2017-07-05 Способ обработки магнетитовой руды и композиция коллектора RU2697100C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16178726 2016-07-08
EP16178726.2 2016-07-08
PCT/EP2017/066709 WO2018007419A1 (en) 2016-07-08 2017-07-05 Process to treat magnetite ore and collector composition

Publications (1)

Publication Number Publication Date
RU2697100C1 true RU2697100C1 (ru) 2019-08-12

Family

ID=56411434

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2019102712A RU2697100C1 (ru) 2016-07-08 2017-07-05 Способ обработки магнетитовой руды и композиция коллектора
RU2019102668A RU2747766C2 (ru) 2016-07-08 2017-07-05 Способ обработки магнетитовой руды и композиция коллектора

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2019102668A RU2747766C2 (ru) 2016-07-08 2017-07-05 Способ обработки магнетитовой руды и композиция коллектора

Country Status (10)

Country Link
US (2) US10722904B2 (ru)
EP (2) EP3481557A2 (ru)
CN (1) CN109311026B (ru)
AU (2) AU2017293089B2 (ru)
BR (2) BR112018077147B1 (ru)
CA (2) CA3027719C (ru)
CL (2) CL2019000009A1 (ru)
MX (2) MX2018015912A (ru)
RU (2) RU2697100C1 (ru)
WO (2) WO2018007419A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018077147B1 (pt) 2016-07-08 2023-05-09 Akzo Nobel Chemicals International B.V. Processo de tratamento de minério de magnetita, e composição coletora
EP3817862B1 (en) * 2018-07-03 2022-12-28 Nouryon Chemicals International B.V. Collector composition containing biodegradable compound and process for treating siliceous ores
CN115228616B (zh) * 2022-08-09 2024-04-19 东北大学 一种无需调节酸碱度的铁矿常温反浮选方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076682A (en) * 1997-11-27 2000-06-20 Akzo Nobel N.V. Process for froth flotation of silicate-containing iron ore
WO2008077849A1 (en) * 2006-12-22 2008-07-03 Akzo Nobel N.V. Amine formulations for reverse froth flotation of silicates from iron ore
RU2469794C2 (ru) * 2007-07-20 2012-12-20 Клариант (Бразил) С.А. Обратная флотация железной руды с помощью коллекторов в водной наноэмульсии
US20140048455A1 (en) * 2011-04-13 2014-02-20 Basf Se Amine and diamine compounds and their use for inverse froth flotation of silicate from iron ore
EA201391473A1 (ru) * 2011-04-13 2014-04-30 Басф Се Аминные и диаминные соединения и их применение для обратной пенной флотации силиката из железной руды
RU2599113C1 (ru) * 2015-08-28 2016-10-10 Совместное предприятие в форме закрытого акционерного общества "Изготовление, внедрение, сервис" Способ флотационного обогащения окисленных минералов железа

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363758A (en) 1966-12-08 1968-01-16 Ashland Oil Inc Use of primary aliphatic ether amine acid salts in froth flotation process
CA1100239A (en) 1976-10-18 1981-04-28 Robert E. Lawlor Emulsified ether amines and process for using same in froth flotation
FR2367820A1 (fr) 1976-10-18 1978-05-12 Ceca Sa Procede de flottation de minerais oxydes
BR8105741A (pt) * 1980-09-09 1982-05-25 Exxon Research Engineering Co Processo de flotacao com espuma a separacao de silica de minerios de ferro
US4319987A (en) * 1980-09-09 1982-03-16 Exxon Research & Engineering Co. Branched alkyl ether amines as iron ore flotation aids
FR2529475B1 (fr) 1982-07-01 1986-05-09 Gafsa Cie Phosphates Perfectionnements apportes aux procedes d'enrichissement, par flottation, de minerais de phosphate a gangue siliceuse et/ou carbonatee
DE4133063A1 (de) 1991-10-04 1993-04-08 Henkel Kgaa Verfahren zur herstellung von eisenerzkonzentraten durch flotation
DE102006010939A1 (de) * 2006-03-09 2007-09-13 Clariant International Limited Flotationsreagenz für Silikate
DE102006019561A1 (de) * 2006-04-27 2007-10-31 Clariant International Limited Flotationsreagenz für silikathaltige Mineralien
DE102010004893A1 (de) 2010-01-19 2011-07-21 Clariant International Limited Flotationsreagenz für magnetit- und/oder hämatithaltige Eisenerze
MX346196B (es) * 2010-12-28 2017-03-10 Akzo Nobel Chemicals Int Bv Formulaciones que contienen amina para flotacion de espuma inversa de silicatos de mineral de hierro.
FR2972590B1 (fr) * 2011-03-10 2013-04-12 Cassidian Sas Adaptation des puissances de sous-porteuses dans un reseau a large bande colocalise avec un reseau a bande etroite
US9457357B2 (en) 2012-11-28 2016-10-04 Georgia-Pacific Chemicals Llc Mixed collector compositions
BR112018077147B1 (pt) 2016-07-08 2023-05-09 Akzo Nobel Chemicals International B.V. Processo de tratamento de minério de magnetita, e composição coletora

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076682A (en) * 1997-11-27 2000-06-20 Akzo Nobel N.V. Process for froth flotation of silicate-containing iron ore
WO2008077849A1 (en) * 2006-12-22 2008-07-03 Akzo Nobel N.V. Amine formulations for reverse froth flotation of silicates from iron ore
RU2469794C2 (ru) * 2007-07-20 2012-12-20 Клариант (Бразил) С.А. Обратная флотация железной руды с помощью коллекторов в водной наноэмульсии
US20140048455A1 (en) * 2011-04-13 2014-02-20 Basf Se Amine and diamine compounds and their use for inverse froth flotation of silicate from iron ore
EA201391473A1 (ru) * 2011-04-13 2014-04-30 Басф Се Аминные и диаминные соединения и их применение для обратной пенной флотации силиката из железной руды
RU2599113C1 (ru) * 2015-08-28 2016-10-10 Совместное предприятие в форме закрытого акционерного общества "Изготовление, внедрение, сервис" Способ флотационного обогащения окисленных минералов железа

Also Published As

Publication number Publication date
MX2018015912A (es) 2019-10-02
CN109311026A (zh) 2019-02-05
US10722904B2 (en) 2020-07-28
BR112018077147B1 (pt) 2023-05-09
RU2019102668A (ru) 2020-08-10
RU2747766C2 (ru) 2021-05-13
BR112018077143B1 (pt) 2022-12-13
WO2018007418A2 (en) 2018-01-11
BR112018077143A2 (pt) 2019-04-02
CL2019000008A1 (es) 2019-02-22
US20190240677A1 (en) 2019-08-08
US20190314828A1 (en) 2019-10-17
EP3481558B1 (en) 2020-09-16
CN109311026B (zh) 2020-02-28
RU2019102668A3 (ru) 2020-11-25
CA3027719C (en) 2023-11-07
BR112018077147A2 (pt) 2019-04-30
CL2019000009A1 (es) 2019-02-22
WO2018007419A1 (en) 2018-01-11
EP3481558A1 (en) 2019-05-15
CA3028326A1 (en) 2018-01-11
AU2017293089B2 (en) 2019-04-18
AU2017291956A1 (en) 2019-01-17
AU2017293089A1 (en) 2019-01-03
EP3481557A2 (en) 2019-05-15
WO2018007418A3 (en) 2018-05-17
MX2018015911A (es) 2019-10-02
CA3027719A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
RU2469794C2 (ru) Обратная флотация железной руды с помощью коллекторов в водной наноэмульсии
RU2697100C1 (ru) Способ обработки магнетитовой руды и композиция коллектора
EP3277429B1 (en) Composition of fatty acids and n-acyl derivatives of sarcosine for the improved flotation of nonsulfide minerals
RU2426597C2 (ru) Флотационный реагент для силикатов
CA2249942C (en) Process for froth flotation of silicate-containing iron ore
RU2722484C1 (ru) Способ обработки фосфатных руд
US4168227A (en) Flotation method for oxidized ores
RU2002511C1 (ru) Способ извлечени ценных минералов из кремнийсодержащих руд
RU2562284C2 (ru) Флотационный реагент для железных руд, содержащих магнетит и/или гематит
RU2532486C2 (ru) Собиратель и способ флотации нерастворимых компонентов природных солей калия
EP3817862B1 (en) Collector composition containing biodegradable compound and process for treating siliceous ores
RU2812644C1 (ru) Применение фосфорных эфиров оксиэтилированных производных жидкости скорлупы орехов кешью в качестве реагента-собирателя для обогащения апатитсодержащих руд в процессе флотации
EP3956066A1 (en) Collector compositions containing a n-acylated amino acid and process to treat non-sulfidic ores
US5182039A (en) Synergistic fluorinated ore flotation aids
CN113692318B (zh) 包含n-酰化氨基酸的捕集剂组合物和处理非硫化矿的方法
SU1132981A1 (ru) Способ обогащени глинистых калийсодержащих руд
EA041062B1 (ru) Применение полиолов для усовершенствования способа обратной пенной флотации железной руды