RU2690019C1 - Инкапсулированная электрическая вращающаяся машина - Google Patents

Инкапсулированная электрическая вращающаяся машина Download PDF

Info

Publication number
RU2690019C1
RU2690019C1 RU2017145567A RU2017145567A RU2690019C1 RU 2690019 C1 RU2690019 C1 RU 2690019C1 RU 2017145567 A RU2017145567 A RU 2017145567A RU 2017145567 A RU2017145567 A RU 2017145567A RU 2690019 C1 RU2690019 C1 RU 2690019C1
Authority
RU
Russia
Prior art keywords
stator
rotor
rotating machine
electric rotating
yoke
Prior art date
Application number
RU2017145567A
Other languages
English (en)
Inventor
Эрик КРОМПАСКИ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Application granted granted Critical
Publication of RU2690019C1 publication Critical patent/RU2690019C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/44Protection against moisture or chemical attack; Windings specially adapted for operation in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors

Abstract

Изобретение относится к электротехнике. Технический результат состоит в повышении эффективности и компактности. Электрическая вращающаяся машина (10) содержит ротор (7), окружающий его статор (1) и воздушный зазор (6) между ротором (7) и статором (1). Статор (1) непосредственно прилегает к воздушному зазору (6), а его обмотки (13) инкапсулированы. 3 н. и 20 з.п. ф-лы, 7 ил.

Description

Изобретение относится к электрической вращающейся машине, включающей в себя ротор, окружающий ротор статор и находящийся между ротором и статором воздушный зазор.
Далее изобретение относится к приводу компрессора, кораблю или подводной лодке, имеющему, по меньшей мере, одну подобную инкапсулированную электрическую вращающуюся машину.
Кроме того, изобретение относится к способу изготовления инкапсулированного статора.
Подобная инкапсулированная электрическая вращающаяся машина применяется, например, в предпочтительно интегрированном приводе компрессора, причем сам привод находится в газовой атмосфере. Подаваемая газообразная среда, например природный газ, может иметь коррозионно-активные субстанции, которые могут оказывать коррозионное воздействие на статор, в частности обмотки статора, или ротор, в частности обмотки ротора.
Далее подобная инкапсулированная электрическая вращающаяся машина применяется в корабельных силовых установках, причем статор омывается, например для охлаждения, морской водой. Содержащейся в морской воде солью может также оказываться коррозионное воздействие на статор и/или ротор.
Из выложенной патентной заявки WO 2004/107532 A1 известна электрическая машина с герметично инкапсулированным статором для интегрированного привода компрессора, причем лобовые части обмотки статора соединены путем заливки в неподвижное крепление, на которое опирается кожух.
Из выложенной патентной заявки WO 2008/046817 A1 известна инкапсулированная электрическая машина, причем статор имеет для эффективного охлаждения устройство жидкостного охлаждения с соответствующим контуром охлаждения статора, причем кожух образует часть наружной стенки контура охлаждения.
Из патентного описания US 4,831,297 A известен погружной электрический приводной двигатель, который имеет герметичный цилиндрический кожух статора.
Из патентного описания US 6,069,421 A известна электрическая машина с полностью инкапсулированным статором, причем между статором и воздушным зазором находится комбинированный слой.
Из выложенной патентной заявки DE 10 2008 043386 A1 известен способ изготовления статора, причем пакет листов ярма и пакет листов звезды статора соединяются друг с другом с силовым замыканием, например посредством термической усадки, или с геометрическим замыканием, например посредством выемки в пакете листов ярма для концов зубцов статора.
В основе изобретения лежит задача предоставить электрическую вращающуюся машину с инкапсулированными обмотками статора, имеющую по сравнению с уровнем техники высокую эффективность и компактную конструкцию.
Эта задача решается с помощью электрической вращающейся машины, включающей в себя ротор, окружающий ротор статор и находящийся между ротором и статором воздушный зазор, причем статор имеет обмотки статора, которые инкапсулированы, причем статор имеет ярмо статора и окружающий ярмо статора пакет сердечника статора, причем обмотки статора проходят через ярмо статора, и ярмо статора непосредственно прилегает к воздушному зазору.
Воздушный зазор приспособлен для того, чтобы через него протекал воздух, другие газы, а также жидкости, так как сам статор на обращенной к ротору внутренней боковой поверхности свободен в области воздушного зазора от инкапсуляции и не имеет кожуха.
Одновременно посредством инкапсуляции обмотки статора защищены от любых типов газов и жидкостей, которые омывают машину и используются, например, для охлаждения и/или эксплуатации. Так как статор прилегает непосредственно к воздушному зазору, воздушный зазор оптимально мал. Идеально малый воздушный зазор приводит к оптимальным эксплуатационным параметрам, например к идеальной энергетической эффективности, инкапсулированной электрической вращающейся машины. Кроме того, благодаря высокой эффективности возможно использовать меньшую инкапсулированную электрическую вращающуюся машину для необходимой мощности, что экономит монтажное пространство.
Так как ярмо статора прилегает напрямую к воздушному зазору, воздушный зазор идеально мал, что приводит к оптимальным эксплуатационным параметрам, например к идеальной энергетической эффективности, погружной электрической вращающейся машины. Кроме того, благодаря высокой эффективности возможно использовать меньшую инкапсулированную электрическую вращающуюся машину для необходимой мощности, что экономит монтажное пространство.
Далее задача решается с помощью корабля или подводной лодки, который/которая имеет, по меньшей мере, одну подобную электрическую вращающуюся машину.
Благодаря энергоэффективной и компактной инкапсулированной электрической вращающейся машине повышается дальность хода подобного корабля или подводной лодки, и требуется меньше места для силовой установки корабля или подводной ложки.
Кроме того, задача решается с помощью способа изготовления подобной электрической вращающейся машины.
Изложенные ниже в отношении ротора преимущества и предпочтительные варианты осуществления можно по смыслу переносить на способ изготовления.
В предпочтительном варианте осуществления обмотки статора проходят через статор и на осевых концах статора имеют лобовые части обмотки статора, причем лобовые части обмотки статора инкапсулированы посредством кожуха лобовой части обмотки статора. Посредством инкапсуляции лобовая часть обмотки статора защищена от любых типов газов и жидкостей, которые омывают машину и используются, например, для охлаждения и/или эксплуатации.
Предпочтительно кожух лобовой части обмотки статора соединен со статором по бокам на осевых концах статора. Это является предпочтительным, так как посредством подобного соединения кожуха лобовой части обмотки статора со статором не оказывается влияния в частности на величину воздушного зазора, и достигаются оптимальные эксплуатационные параметры во время работы электрической вращающейся машины.
В предпочтительном варианте осуществления только лобовые части обмотки статора окружены кожухом лобовой части обмотки статора. Обмотки статора в области статора защищены, например самим статором от газов и жидкостей.
В наиболее предпочтительном варианте осуществления ярмо статора неподвижно соединено с пакетом сердечника статора, причем обмотки статора запечатаны в области статора ярмом статора и неподвижно соединенным с ярмом статора пакетом сердечника статора. Благодаря неподвижному соединению ярма статора с пакетом сердечника статора обмотки статора запечатаны непроницаемо для текучих сред, то есть герметично против проникновения газов и жидкостей. Благодаря подобному запечатыванию не требуется в области статора дополнительный материал инкапсуляции.
Предпочтительно пакет сердечника статора неподвижно соединен с ярмом статора при помощи соединения с силовым замыканием, в частности горячего прессованного (усадочного) соединения. При способе горячего прессования предпочтительно пакет сердечника статора нагревается, например, на несколько сотен градусов Цельсия, вследствие чего внутренний диаметр пакета сердечника статора увеличивается благодаря тепловому расширению, которое называется также температурным расширением. Увеличенный благодаря температурному расширению пакет сердечника статора надевается в нагретом состоянии на ярмо статора. При охлаждении пакета сердечника статора имеет место температурная усадка, которая называется также термическим сжатием, вследствие чего пакет сердечника статора получает обратно прошлую величину и как механически неподвижно, так и электропроводно соединен с ярмом статора. Это является наиболее предпочтительным, так как таким образом механически неподвижное и электропроводное соединение устанавливается без дополнительных технологических операций. Кроме того, это соединение компактно, очень прочно и практически не зависит от внешних воздействий.
Наиболее предпочтительно кожух лобовой части обмотки статора имеет устойчивый к абразивному износу материал. Так как газ или жидкость может иметь также частицы, которые могут приводить к абразивному износу кожуха лобовой части обмотки статора, предпочтительно, если кожух лобовой части обмотки статора имеет устойчивый к абразивному износу материал.
В предпочтительном варианте осуществления кожух лобовой части обмотки статора имеет коррозионностойкий материал. Это является наиболее предпочтительным, так как благодаря коррозионностойкому материалу кожух лобовой части обмотки статора и таким образом также лобовая часть обмотки статора защищены от разъедания, например коррозионно-активными газами или жидкостями.
Наиболее предпочтительно инкапсулированные обмотки статора окружены охлаждающей жидкостью, в частности маслом. Это создает условия для очень хорошего охлаждения обмоток статора, так как таким образом тепло может быстро и эффективно, например омывающей машину охлаждающей водой, отводиться.
В дальнейшем предпочтительном варианте осуществления кожух лобовой части обмотки статора соединен с ярмом статора и/или пакетом сердечника статора при помощи сварного шва статора. Это сварное соединение является наиболее предпочтительным, так как оно и электропроводно, и механически прочно. Кроме того, оно очень хорошо герметизирует пространство вокруг лобовой части обмотки статора.
В предпочтительном варианте осуществления ротор имеет обмотки ротора, которые проходят через ротор и инкапсулированы, причем ротор непосредственно прилегает к воздушному зазору. В частности при очень больших мощностях, более одного мегаватта, очень часто находят применение синхронные машины с независимым возбуждением, которые предпочтительно имеют ротор с обмотками ротора. Посредством инкапсуляции обмотки ротора защищены, так же как и обмотки статора, от любых типов газов и жидкостей, которые омывают машину и используются, например, для охлаждения и/или эксплуатации. Так как ротор прилегает непосредственно к воздушному зазору, воздушный зазор оптимально мал, что приводит к оптимальным эксплуатационным параметрам, например к идеальной энергетической эффективности. Кроме того, благодаря вызванной малым воздушным зазором высокой эффективности может экономиться монтажное пространство.
В предпочтительном варианте осуществления обмотки ротора имеют лобовую часть обмотки ротора, причем только лобовые части обмотки ротора окружены кожухом лобовой части обмотки ротора. Посредством кожуха лобовая часть обмотки ротора защищена от любых типов газов и жидкостей, которые омывают машину, в частности лобовую часть обмотки ротора.
Предпочтительно кожух лобовой части обмотки ротора соединен с ротором только по бокам на его осевых концах. Обмотки ротора в области ротора защищены, например самим ротором от газов и жидкостей.
Наиболее предпочтительно кожух лобовой части обмотки ротора имеет устойчивый к абразивному износу и/или коррозионностойкий материал. Это является наиболее предпочтительным, так как благодаря коррозионностойкому материалу кожух лобовой части обмотки ротора и таким образом также лобовая часть обмотки ротора защищены от разъедания, например коррозионно-активными газами и жидкостями. Так как газ или жидкость может иметь также частицы, которые могут приводить к абразивному износу кожуха лобовой части обмотки ротора, предпочтительно, если кожух лобовой части обмотки ротора имеет устойчивый к абразивному износу материал.
Наиболее предпочтительно кожух лобовой части обмотки ротора соединен с ротором при помощи сварного шва ротора. Это сварное соединение является наиболее предпочтительным, так как оно и электропроводно, и механически прочно. Кроме того, оно очень хорошо герметизирует пространство вокруг лобовой части обмотки ротора.
В предпочтительном варианте осуществления инкапсулированные обмотки ротора окружены охлаждающей жидкостью, в частности маслом. Это создает условия для очень хорошего охлаждения обмоток ротора, так как таким образом тепло может быстро и эффективно отводиться.
Наиболее предпочтительно первая внутренняя боковая поверхность пакета сердечника статора неподвижно соединяется со второй наружной боковой поверхностью ярма статора при помощи способа горячего прессования (усадки). Это является наиболее предпочтительным, так как вследствие этого вставленные в ярмо статора обмотки полностью окружены внутри статора и таким образом защищены от разъедания, например коррозионно-активными газами и жидкостями.
Предпочтительно ярмо статора предусмотрено для того, чтобы второй внутренней боковой поверхностью непосредственно прилегать к воздушному зазору. Так как ярмо статора непосредственно прилегает к воздушному зазору, воздушный зазор оптимально мал. Идеально малый воздушный зазор приводит к оптимальным эксплуатационным параметрам.
Далее изобретение более подробно описывается и разъясняется при помощи изображенных на чертеже примеров осуществления.
На чертеже показаны:
фиг. 1 - продольный разрез инкапсулированной электрической вращающейся машины согласно уровню техники;
фиг. 2 - продольный разрез первого варианта осуществления инкапсулированной электрической вращающейся машины;
фиг. 3 - продольный разрез второго варианта осуществления инкапсулированной электрической вращающейся машины;
фиг. 4 - продольный разрез третьего варианта осуществления инкапсулированной электрической вращающейся машины;
фиг. 5 - схематичное протекание способа изготовления инкапсулированного статора;
фиг. 6 - продольный разрез корабля с четырьмя инкапсулированными электрическими вращающимися машинами; и
фиг. 7 - вид сбоку подводной лодки с инкапсулированной электрической вращающейся машиной.
Фиг. 1 показывает продольный разрез инкапсулированной электрической вращающейся машины 10 согласно уровню техники, причем статор 1 инкапсулирован. Электрическая вращающаяся машина 10 имеет наряду со статором 1 ротор 7, который без возможности поворота соединен с валом 8. Вал вращается вокруг оси 12 вращения, которая определяет осевое направление, радиальное направление и окружное направление. Между статором 1 и ротором 7 находится воздушный зазор 6. Статор 1 имеет ярмо 4 статора, в котором проходят обмотки 13 статора. Говоря о ярме 4 статора, речь идет о конструкции из отдельных фасонных стальных листов, которые укладываются слоями, прессуются и затем свариваются. Кроме того, ярмо 4 статора, которое изготавливается из ферромагнитного материала, например железа или стали, является магнитопроводящим. Обмотки 13 статора вводятся предпочтительно в открытые сверху пазы ярма 4 статора. Пакет 3 сердечника статора, который изготавливается также из ферромагнитного материала, например железа или стали, окружает ярмо 4 статора и электропроводно и механически неподвижно соединен с ним. Обмотки 13 статора, которые предпочтительно изготавливаются из меди, имеют на осевых концах ярма 4 статора лобовые части 2 обмотки статора.
Кожух 5 статора окружает весь статор 1 и герметично запечатывает статор. Кожух 5 статора проходит также через воздушный зазор 6 между статором 1 и ротором 7. Для высокой энергетической эффективности инкапсулированной электрической вращающейся машины 10 воздушный зазор 6 следует удерживать минимально возможным. В соответствии с этим дополнительный материал между статором и ротором ухудшает эффективность инкапсулированной электрической вращающейся машины 10.
Фиг. 2 показывает продольный разрез первого варианта осуществления инкапсулированной электрической вращающейся машины 10, причем структура электрической вращающейся машины 10 соответствует машине с фиг. 1. Однако от кожуха 5 статора, который герметично запечатывает весь статор 1, отказались. Вместо этого лобовые части 2 обмотки статора окружены кожухами 11 лобовой части обмотки статора, которые при помощи сварных швов 9 статора приварены к ярму 4 статора и пакету 3 сердечника статора. Ярмом 4 статора, пакетом 3 сердечника статора и приваренными к ярму 4 статора и пакету 3 сердечника статора кожухами 11 лобовой части обмотки статора обмотки 13 статора со своими лобовыми частями 2 обмотки статора герметично инкапсулированы, вследствие чего они защищены от любых типов газов и жидкостей, которые омывают инкапсулированную электрическую вращающуюся машину 10. В интегрированных приводах компрессора, при которых сам привод находится в газовой атмосфере, подаваемый природный газ может иметь, например коррозионно-активные субстанции, которые могут оказывать коррозионное воздействие на статор 1, в частности на обмотки 13 статора. Также в корабельных силовых установках, в которых статор 1, например для лучшего охлаждения, омывается морской водой, содержащаяся в морской воде соль может оказывать коррозионное воздействие на обмотки 13 статора. Далее воздушный зазор 6 оптимально мал, так как статор 1 непосредственно прилегает к воздушному зазору 6. Идеально малый воздушный зазор 6 приводит к оптимальным эксплуатационным параметрам инкапсулированной электрической вращающейся машины 10. Кроме того, благодаря высокой эффективности возможно использовать меньшую инкапсулированную электрическую вращающуюся машину 10 для необходимой мощности, что экономит монтажное пространство. Для лучшего отвода тепла инкапсулированные обмотки 13 статора со своими лобовыми частями 2 обмотки статора окружены охлаждающей жидкостью, в частности маслом.
Кожух 11 лобовой части обмотки статора имеет коррозионностойкий материал, который химически устойчив к газам и жидкостям, которые омывают инкапсулированную электрическую вращающуюся машину 10, и образует химический барьер между протекающими субстанциями и обмотками 13 статора с их лобовыми частями 2 обмотки статора. Кроме того, кожух 11 лобовой части обмотки статора имеет предпочтительно на поверхности устойчивый к абразивному износу материал, который предотвращает то, что встречающиеся в жидкостях и газах, омывающих инкапсулированную электрическую вращающуюся машину 10, частицы повреждают кожух 11 лобовой части обмотки статора посредством царапанья или истирания. В качестве устойчивых к абразивному износу материалов рассматриваются в частности никель или плотные пластики, например полиэфирэфиркетон, кратко PEEK.
Далее кожух 11 лобовой части обмотки статора должен иметь хорошую теплопроводность, чтобы потерянное тепло лобовых частей 2 обмотки статора могло эффективно отдаваться охлаждающей среде, омывающей инкапсулированную электрическую вращающуюся машину 10.
Фиг. 3 показывает продольный разрез второго варианта осуществления инкапсулированной электрической вращающейся машины 10, причем структура электрической вращающейся машины 10 соответствует машинам с фиг. 1 и фиг. 2. Однако от кожуха 5 статора, который герметично запечатывает весь статор 1, также отказались. Вместо этого лобовые части 2 обмотки статора окружены кожухом 11 лобовой части обмотки статора, который при помощи сварных швов 9 статора приварен к ярму 4 статора на осевых концах ярма 4 статора. Далее кожух 11 лобовой части обмотки статора, в отличие от первого варианта осуществления с фиг. 2, окружает пакет 3 сердечника статора 1 на внешней стороне статора 1 полностью и таким образом также герметично запечатывает пакет 3 сердечника статора.
Фиг. 4 показывает продольный разрез третьего варианта осуществления инкапсулированной электрической вращающейся машины 10. Структура электрической вращающейся машины 10 соответствует машинам с фиг. 1 по фиг. 3. Инкапсуляция статора происходит аналогично инкапсуляции с фиг. 2. Так как, говоря об инкапсулированной электрической вращающейся машине 10 на фиг. 4, речь идет о синхронной машине с независимым возбуждением, также ротор 7 имеет обмотки 14 ротора, которые проходят через ротор 7. Обмотки 14 ротора имеют на осевых концах ротора 7 лобовые части 15 обмотки ротора.
Обмотки 14 ротора герметично инкапсулированы самим ротором 7, который окружает обмотки 14 ротора, и кожухами 16 лобовой части обмотки ротора. При этом кожухи 16 лобовой части обмотки ротора приварены к ротору 7 на его осевых концах при помощи сварных швов 17 ротора и вследствие этого герметично запечатаны. Благодаря герметичному запечатыванию обмотки 14 ротора защищены от любых типов газов и жидкостей, которые омывают инкапсулированную электрическую вращающуюся машину 10. В интегрированных приводах компрессора, при которых сам привод находится в газовой атмосфере, подаваемый природный газ может иметь, например коррозионно-активные субстанции, которые могут оказывать коррозионное воздействие на ротор 7, в частности на обмотки 14 ротора. Также в корабельных силовых установках, в которых ротор омывается морской водой, содержащаяся в морской воде соль может оказывать коррозионное воздействие на обмотки 14 ротора. Далее воздушный зазор 6 оптимально мал, так как ротор 7 непосредственно прилегает к воздушному зазору 6. Идеально малый воздушный зазор 6 приводит к оптимальным эксплуатационным параметрам инкапсулированной электрической вращающейся машины 10.
Фиг. 5 показывает схематичное протекание способа изготовления инкапсулированного статора 1. Пакет 3 сердечника статора на первом шаге изготовления собирается в стопу из нескольких отдельных металлических листов, которые имеют ферромагнитный материал, например железо или сталь, прессуется и затем сваривается. Пакет 3 сердечника статора имеет первую внутреннюю боковую поверхность 3a. Ярмо 4 статора на следующем шаге изготовления изготавливается также из нескольких отдельных фасонных стальных листов из ферромагнитного материала, например железа или стали, которые укладываются слоями, прессуются и затем свариваются, и является магнитопроводящим. Ярмо 4 статора имеет вторую внутреннюю боковую поверхность 4a и вторую наружную боковую поверхность 4b. На следующем шаге обмотки 13 статора, которые предпочтительно изготавливаются из меди, вставляются в открытые сверху пазы ярма 4 статора. Вставленные обмотки 13 статора имеют лобовые части 2 обмотки статора на осевых концах ярма 4 статора. На следующем шаге изготовления готовый пакет 3 сердечника статора неподвижно соединяется с ярмом 4 статора при помощи способа горячего прессования. При этом способе горячего прессования пакет 3 сердечника статора нагревается на несколько сотен градусов Цельсия, вследствие чего внутренний диаметр пакета 3 сердечника статора увеличивается благодаря тепловому расширению, которое называется также температурным расширением. Увеличенный благодаря температурному расширению пакет 3 сердечника статора надевается в нагретом состоянии таким образом на ярмо 4 статора, что первая внутренняя боковая поверхность 3a пакета 3 сердечника статора соединяется со второй наружной боковой поверхностью 4b ярма 4 статора. При охлаждении пакета 3 сердечника статора имеет место температурная усадка, которая называется также термическим сжатием, вследствие чего пакет 3 сердечника статора получает обратно прошлую величину и как механически неподвижно, так и электропроводно соединен с ярмом 4 статора. Это является наиболее предпочтительным, так как таким образом механически неподвижное и электропроводное соединение устанавливается без дополнительных технологических операций. На следующем шаге изготовления кожух 11 лобовой части обмотки статора располагается над лобовой частью 2 обмотки статора и приваривается к ярму 4 статора и пакету 3 сердечника статора при помощи сварных швов 9 статора. Альтернативно кожух 11 лобовой части обмотки статора может припаиваться или соединяться иным образом, для того чтобы достигать герметичного запечатывания обмоток 13 статора пакетом 3 сердечника статора, ярмом 4 статора и кожухом 11 лобовой части обмотки статора. Это является предпочтительным, так как вследствие этого вставленные в ярмо 4 статора обмотки 13 статора 1 полностью окружены и таким образом защищены от разъедания, например коррозионно-активными газами и жидкостями. Кожух 11 лобовой части обмотки статора имеет коррозионностойкий материал, который химически устойчив к газам и жидкостям, которые омывают инкапсулированную электрическую вращающуюся машину 10, и образует химический барьер между протекающими субстанциями и обмотками 13 статора с их лобовыми частями 2 обмотки статора. Кроме того, кожух 11 лобовой части обмотки статора имеет предпочтительно на поверхности устойчивый к абразивному износу материал, который предотвращает то, что встречающиеся в жидкостях и газах, омывающих инкапсулированную электрическую вращающуюся машину 10, частицы повреждают кожух 11 лобовой части обмотки статора посредством царапанья или истирания. В качестве устойчивых к абразивному износу материалов рассматриваются в частности никель или плотные пластики, например полиэфирэфиркетон, кратко PEEK.
Фиг. 6 показывает продольный разрез корабля 18 с инкапсулированной электрической вращающейся машиной 10. Инкапсулированная электрическая вращающаяся машина 10 выполнена, как показано на одной из фиг. с 1 по 4, погружной и полностью находится вод водой 19. Она омывается, например содержащей соль морской водой, которая предпочтительно используется для охлаждения. При этом использованная в качестве двигателя, инкапсулированная электрическая вращающаяся машина 10 может напрямую или через передаточный механизм применяться в качестве корабельной силовой установки.
Фиг. 7 показывает вид сбоку подводной лодки 20 с, например, четырьмя инкапсулированными электрическими вращающимися машинами 10. Инкапсулированные электрические вращающиеся машины 10 выполнены, как показано на одной из фиг. с 1 по 4, также погружными и расположены в задней части подводной лодки 20 со смещением на 90° в окружном направлении. Другие расположения, по меньшей мере, с одной электрической вращающейся машиной 10 на подводной лодке 20 также возможны. Четыре инкапсулированные электрические вращающиеся машины 10 находятся полностью под водой 19 и омываются, например содержащей соль морской водой, которая предпочтительно используется для охлаждения. При этом использованные в качестве двигателя, инкапсулированные электрические вращающиеся машины 10 могут напрямую или через передаточный механизм применяться в качестве корабельной силовой установки.

Claims (42)

1. Электрическая вращающаяся машина (10), в частности инкапсулированная электрическая вращающаяся машина (10), включающая в себя ротор (7), окружающий ротор (7) статор (1) и находящийся между ротором (7) и статором (1) воздушный зазор (6),
причем статор (1) имеет обмотки (13) статора, которые инкапсулированы, и
причем статор (1) имеет ярмо (4) статора и окружающий ярмо (4) статора пакет (3) сердечника статора,
причем ярмо (4) статора изготовлено из ферромагнитного материала,
причем обмотки (13) статора проходят через ярмо (4) статора, а ярмо (4) статора непосредственно прилегает к воздушному зазору (6).
2. Электрическая вращающаяся машина (10) по п.1,
причем обмотки (13) статора проходят через статор (1) и на осевых концах статора (1) имеют лобовые части (2) обмотки статора,
причем лобовые части (2) обмотки статора инкапсулированы посредством кожуха (11) лобовой части обмотки статора.
3. Электрическая вращающаяся машина (10) по п.2,
причем кожух (11) лобовой части обмотки статора соединен со статором (1) по бокам на осевых концах статора (1).
4. Электрическая вращающаяся машина (10) по п.2 или 3,
причем только лобовые части (2) обмотки статора окружены кожухом (11) лобовой части обмотки статора.
5. Электрическая вращающаяся машина (10) по любому из пп.1-4,
причем ярмо (4) статора неподвижно соединено с пакетом (3) сердечника статора,
причем обмотки (13) статора запечатаны в области статора (1) ярмом (4) статора и неподвижно соединенным с ярмом (4) статора пакетом (3) сердечника статора.
6. Электрическая вращающаяся машина (10) по любому из пп.2-5,
причем пакет (3) сердечника статора неподвижно соединен с ярмом (4) статора при помощи соединения с силовым замыканием, в частности горячего прессового соединения.
7. Электрическая вращающаяся машина (10) по любому из пп.2-6,
причем кожух (11) лобовой части обмотки статора неподвижно соединен, по меньшей мере, с ярмом (4) статора.
8. Электрическая вращающаяся машина (10) по п.7,
причем кожух (11) лобовой части обмотки статора соединен, по меньшей мере, с ярмом (4) статора при помощи сварного шва (9) статора.
9. Электрическая вращающаяся машина (10) по любому из пп.2-8, причем кожух (11) лобовой части обмотки статора имеет устойчивый к абразивному износу материал.
10. Электрическая вращающаяся машина (10) по любому из пп.2-9, причем кожух (11) лобовой части обмотки статора имеет коррозионностойкий материал.
11. Электрическая вращающаяся машина (10) по любому из пп.1-10, причем инкапсулированные обмотки (13) статора окружены охлаждающей жидкостью, в частности маслом.
12. Электрическая вращающаяся машина (10) по любому из пп.1-11,
причем ротор (7) имеет обмотки (14) ротора, которые проходят через ротор (7) и инкапсулированы,
причем ротор (7) непосредственно прилегает к воздушному зазору (6).
13. Электрическая вращающаяся машина (10) по п.12,
причем обмотки (14) ротора имеют лобовую часть (15) обмотки ротора,
причем только лобовые части (15) обмотки ротора окружены кожухом (16) лобовой части обмотки ротора.
14. Электрическая вращающаяся машина (10) по п.13, причем кожух (16) лобовой части обмотки ротора соединен с ротором (7) только по бокам на его осевых концах.
15. Электрическая вращающаяся машина (10) по п.13 или 14, причем кожух (16) лобовой части обмотки ротора соединен с ротором (7) при помощи сварного шва (17) ротора.
16. Электрическая вращающаяся машина (10) по любому из пп.13-15, причем кожух (16) лобовой части обмотки ротора имеет устойчивый к абразивному износу материал.
17. Электрическая вращающаяся машина (10) по любому из пп.13-16, причем кожух (16) лобовой части обмотки ротора имеет коррозионностойкий материал.
18. Электрическая вращающаяся машина (10) по любому из пп.13-17, причем инкапсулированные обмотки (14) ротора окружены охлаждающей жидкостью, в частности маслом.
19. Привод компрессора, корабль (18) или подводная лодка (20), имеющий, по меньшей мере, одну электрическую вращающуюся машину (10) по любому из пп.1-18.
20. Способ изготовления электрической вращающейся машины (10) по п.1,
при котором статор образуют из ферромагнитного ярма (4) статора и окружающего ярмо (4) статора пакета (3) сердечника статора, причем обмотки (13) статора располагают в ярме (4) статора и герметично запечатывают, и
при котором окружающий ротор воздушный зазор (6) образуют посредством ярма (4) статора.
21. Способ по п.20, причем кожух (11) лобовой части обмотки статора располагают над лобовой частью (2) обмоток (13) статора и соединяют, по меньшей мере, с ярмом (4) статора.
22. Способ по п.20 или 21, причем обмотки (13) статора вставляются в ярмо (4) статора, и затем пакет (3) сердечника статора неподвижно соединяется с ярмом (4) статора при помощи способа горячего прессования.
23. Способ по любому из пп.20-22, причем первая внутренняя боковая поверхность (3a) пакета (3) сердечника статора неподвижно соединяется со второй наружной боковой поверхностью (4b) ярма (4) статора при помощи способа горячего прессования.
RU2017145567A 2015-07-02 2016-05-31 Инкапсулированная электрическая вращающаяся машина RU2690019C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15174959.5 2015-07-02
EP15174959.5A EP3113334A1 (de) 2015-07-02 2015-07-02 Gekapselte elektrische rotierende maschine
PCT/EP2016/062224 WO2017001131A1 (de) 2015-07-02 2016-05-31 Gekapselte elektrische rotierende maschine

Publications (1)

Publication Number Publication Date
RU2690019C1 true RU2690019C1 (ru) 2019-05-30

Family

ID=53510723

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017145567A RU2690019C1 (ru) 2015-07-02 2016-05-31 Инкапсулированная электрическая вращающаяся машина

Country Status (5)

Country Link
US (1) US10680485B2 (ru)
EP (2) EP3113334A1 (ru)
CN (1) CN107810590B (ru)
RU (1) RU2690019C1 (ru)
WO (1) WO2017001131A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018113319B4 (de) * 2018-06-05 2021-08-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromotor mit flüssigkeitsgekühltem Stator und luftgekühltem Rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831297A (en) * 1988-02-16 1989-05-16 Westinghouse Electric Corp. Submersible electric propulsion motor with propeller integrated concentrically with motor rotor
EP0412858A1 (fr) * 1989-08-11 1991-02-13 POMPES SALMSON Société Anonyme à directoire dite: Groupe Motopompe électrique à tube d'entrefer
US6069421A (en) * 1999-08-30 2000-05-30 Electric Boat Corporation Electric motor having composite encapsulated stator and rotor
DE102008043386A1 (de) * 2008-11-03 2010-05-06 Zf Friedrichshafen Ag Verfahren zum Herstellen eines Stators für eine elektrodynamische Maschine und nach dem Verfahren hergestellter Stator
RU130158U1 (ru) * 2012-12-03 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Электромеханическое устройство для привода компрессоров бестурбинных авиационных двигателей и других механизмов вращения

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893442A (ja) * 1981-11-26 1983-06-03 Hitachi Ltd キヤンドモ−トルの固定子とその製造法
JPH04295257A (ja) 1991-03-20 1992-10-20 Hitachi Ltd コイルエンド保護キャップ
JP2001037134A (ja) 1999-07-21 2001-02-09 Matsushita Electric Ind Co Ltd 誘導モーター
US6759774B1 (en) * 2001-03-08 2004-07-06 Lawrence Pumps, Inc Low speed canned motor
JP2002315253A (ja) 2001-04-16 2002-10-25 Shinko Electric Co Ltd 回転機
JP2003143810A (ja) 2001-11-02 2003-05-16 Toyota Motor Corp セグメントコイルモータ
DE10324680A1 (de) 2003-05-30 2004-12-23 Siemens Ag Elektrische Maschine mit druckfest gekapseltem Stator
US20050074548A1 (en) * 2003-10-03 2005-04-07 Puterbaugh David K. Method and apparatus for encapsulating electric motors used in washdown, food processing, and chemical applications
JP4283711B2 (ja) * 2004-03-11 2009-06-24 アスモ株式会社 モータヨークの製造方法
US7091638B2 (en) * 2004-10-14 2006-08-15 Pentair Pump Group, Inc. Modular end bell construction for a submersible motor unit
EP2568573A3 (en) * 2005-03-07 2014-06-04 Black & Decker Inc. Power Tools with Motor Having a Multi-Piece Stator
JP2007028850A (ja) 2005-07-20 2007-02-01 Yaskawa Electric Corp モータ
US7459817B2 (en) * 2006-08-15 2008-12-02 Bombardier Transportation Gmbh Semi-enclosed AC motor
DE102006049326A1 (de) 2006-10-19 2008-04-30 Siemens Ag Gekapselte elektrische Maschine mit flüssigkeitsgekühltem Stator
US20080218008A1 (en) * 2007-03-08 2008-09-11 General Electric Company Rotor and Stator Assemblies that Utilize Magnetic Bearings for Use in Corrosive Environments
DE102007016380A1 (de) * 2007-04-03 2008-10-09 Voith Patent Gmbh Tauchende Energieerzeugungsanlage
US8508083B2 (en) * 2010-07-27 2013-08-13 Nidec Motor Corporation Cooling tower motor having improved moisture protection
JP5134064B2 (ja) * 2010-11-18 2013-01-30 トヨタ自動車株式会社 回転電機
US9035503B2 (en) * 2011-01-12 2015-05-19 Kollmorgen Corporation Environmentally protected housingless generator/motor
EP2511532B1 (fr) * 2011-04-15 2015-08-05 Pompes Salmson Rotor à aimant et pompe de circulation de fluide
FR2975147B1 (fr) * 2011-05-13 2014-04-25 Mecanique Magnetique Sa Palier magnetique actif chemise resistant a la corrosion
JP6079253B2 (ja) * 2013-01-18 2017-02-15 コベルコ建機株式会社 電動機
JP6175708B2 (ja) 2013-02-18 2017-08-09 日本電産テクノモータ株式会社 モータ
EP2824801A1 (de) * 2013-07-12 2015-01-14 Siemens Aktiengesellschaft Verfahren zur Herstellung einer dynamoelektrischen rotatorischen Maschine und dynamoelektrische rotatorische Maschine
CN104348268B (zh) * 2013-08-09 2019-07-23 德昌电机(深圳)有限公司 单相无刷电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831297A (en) * 1988-02-16 1989-05-16 Westinghouse Electric Corp. Submersible electric propulsion motor with propeller integrated concentrically with motor rotor
EP0412858A1 (fr) * 1989-08-11 1991-02-13 POMPES SALMSON Société Anonyme à directoire dite: Groupe Motopompe électrique à tube d'entrefer
US6069421A (en) * 1999-08-30 2000-05-30 Electric Boat Corporation Electric motor having composite encapsulated stator and rotor
DE102008043386A1 (de) * 2008-11-03 2010-05-06 Zf Friedrichshafen Ag Verfahren zum Herstellen eines Stators für eine elektrodynamische Maschine und nach dem Verfahren hergestellter Stator
RU130158U1 (ru) * 2012-12-03 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Электромеханическое устройство для привода компрессоров бестурбинных авиационных двигателей и других механизмов вращения

Also Published As

Publication number Publication date
WO2017001131A1 (de) 2017-01-05
US10680485B2 (en) 2020-06-09
CN107810590A (zh) 2018-03-16
US20180183295A1 (en) 2018-06-28
EP3113334A1 (de) 2017-01-04
EP3281283A1 (de) 2018-02-14
CN107810590B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
US9893588B2 (en) Motor housing with cooling channel and resin injected winding ends for improved heat transfer
EP2632027B1 (en) Axial flux machine
RU2470190C2 (ru) Компрессорная система для морской подводной эксплуатации
RU2631677C2 (ru) Система и способ охлаждения электродвигателя
JP5237579B2 (ja) パイプラインを介して流体を輸送するために電気機械を使用する方法および装置
CN108075607B (zh) 旋转电机
US10361597B2 (en) Electric machine for a motor vehicle, coil carrier for an electric machine, and motor vehicle
TW201832452A (zh) 電機冷卻結構、動力電機及電驅動系統
JP6324622B2 (ja) 回転電機
CN106104975A (zh) 电涡轮机及发电厂
JP2004215358A (ja) 多相モータ装置
CN111600419B (zh) 旋转电机
RU2690019C1 (ru) Инкапсулированная электрическая вращающаяся машина
JP2008259326A (ja) モータ
EP1041699B1 (en) Electric motor or generator
JP6247555B2 (ja) 回転電機
JP2011055654A (ja) 電動機の冷却構造
JP2014025471A (ja) 電動ポンプ
JP2005253263A (ja) 電動機の冷却装置
JP2009213218A (ja) 回転電機の冷却構造およびその製造方法
JP2008154319A (ja) 回転電機
WO2007032740A1 (en) Stator cooling
JP2003143810A (ja) セグメントコイルモータ
EP2950424B1 (en) Chamber for conductors of electric machines
JP7326423B2 (ja) 超臨界二酸化炭素(sco2)冷却電気機械のためのシステム及び方法