RU2688158C1 - Способ получения 1,3-бутадиена - Google Patents

Способ получения 1,3-бутадиена Download PDF

Info

Publication number
RU2688158C1
RU2688158C1 RU2019105611A RU2019105611A RU2688158C1 RU 2688158 C1 RU2688158 C1 RU 2688158C1 RU 2019105611 A RU2019105611 A RU 2019105611A RU 2019105611 A RU2019105611 A RU 2019105611A RU 2688158 C1 RU2688158 C1 RU 2688158C1
Authority
RU
Russia
Prior art keywords
formaldehyde
catalyst
butadiene
carried out
propylene
Prior art date
Application number
RU2019105611A
Other languages
English (en)
Inventor
Павел Александрович Коц
Николай Алексеевич Артюшевский
Ирина Игоревна Иванова
Original Assignee
Общество с ограниченной ответственностью "УНИСИТ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "УНИСИТ" filed Critical Общество с ограниченной ответственностью "УНИСИТ"
Priority to RU2019105611A priority Critical patent/RU2688158C1/ru
Application granted granted Critical
Publication of RU2688158C1 publication Critical patent/RU2688158C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Предложен способ получения бутадиена-1,3, включающий взаимодействие формальдегидсодержащего сырья с пропиленом в присутствии твердофазного катализатора в условиях газофазной конденсации при атмосферном давлении. В качестве катализатора используют гетерополикислоту, выбранную из ряда: 12-фосфорвольфрамовая, 12-вольфрамокремниевая, 12-фосформолибденовая, содержащуюся в количестве от 5 до 99 мас. % на пористом носителе. Технический результат – упрощение процесса за счет его проведения в одну стадию, а также повышение выхода целевого продукта и селективности образования бутадиена при высокой стабильности работы катализатора во времени. 4 з.п. ф-лы, 1 табл., 20 пр.

Description

Настоящее изобретение относится к каталитическому способу получения 1,3-бутадиена (бутадиена).
В настоящее время бутадиен используется в качестве мономера при синтезе бутадиеновых каучуков, а также их модификаций: бутадиен-нитрильных и бутадиен-стирольных каучуков и т д.
В промышленности бутадиен получают двумя способами: 1) каталитическое дегидрирование нормальных бутана и бутиленов, содержащихся в ПНГ и газе крекинга; 2) пиролиз нафты/прямогонного бензина, в котором бутадиен является побочным продуктом получения этилена.
Известны также альтернативные технологии получения бутадиена, не связанные с нефтепереработкой.
Например, известен способ синтеза бутадиена из этанола и биоэтанола, который включает превращение этанола или смеси этанола с ацетальдегидом в присутствии катализатора, содержащего металл, выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония, тантала или ниобия. Способ позволяет обеспечить высокий выход бутадиена, селективность процесса и высокую степень конверсии сырья (RU 2440962, 2012).
Известен способ другой способ получения бутадиена, основанный на взаимодействии пропилена и формальдегида по реакции Принса. Согласно сведениям, изложенным в статье Е. Arundale et al. / The Olefin-Aldehyde Condensation. The Prins Reaction. // Chem. Rev., 1952, том 51 (3), стр. 505-555, возможно получение 1,3-бутандиола и 4-метил-м-диоксана, которые затем могут быть конвертированы в бутадиен при нагреве в закрытой системе в жидкой фазе. Выход по формальдегиду при этом составляет 75% при конверсии формальдегида 100% и конверсии пропилена 68% в следующих условиях: мольное отношение пропилен/формальдегид/H2SO4 1/0,74/0,16; конц. H2SO4 35 масс. %, температура 60°С, время реакции 8 часов, давление 24 атм.
Однако известный способ является сложным, так как взаимодействие проводят в присутствии гомогенного катализатора (разбавленной серной кислоты) в течение длительного времени при повышенном давлении. Кроме того, данный способ требует отделения катализатора, разделения жидких продуктов и этапа термической конверсии с получением бутадиена.
Известен одностадийный способ получения бутадиена путем взаимодействия формальдегидсодержащего сырья с пропиленом в присутствии растворителя при температуре 120-140°С. В качестве гетерогенного катализатора используют ионообменную смолу (катионит) типа Amberlyst 15 (RU 2561734, 2014).
Недостатки данного способа можно отнести следующие. Используемое в способе сырье (параформ или триоксан) является дорогим, а используемый катализатор недостаточно активным. Способ осуществляют в полупроточном режиме подачи реагентов, т.е. после достижения определенной конверсии формальдегида необходимо разгружать реактор, отделять полупродукты, реагенты, растворитель и катализатор, проводить конверсию полупродуктов в бутадиен, что усложняет процесс.
Известен способ, в котором предложено проводить конденсацию пропилена и формальдегида в жидкой фазе в присутствии гетерогенного катализатора - цеолита морденита (MOR) при температуре 300°С в течение 2 часов. На первой стадии получают 1,3-бутандиол с выходом 12% в пересчете на формальдегид. На второй стадии 1,3-бутандиол конвертируют при нагревании в целевой продукт - бутадиен (US 3414588, 1968).
Недостатком известного способа является невысокая степень конверсии, недостаточная селективность по бутадиену и необходимость осуществления двух стадий, что усложняет процесс.
Способ по US 3414588 выбран нами за прототип предложенного технического решения.
Задачей настоящего изобретения является разработка способа, обеспечивающего высокий выход и селективность синтеза бутадиена в условиях проточного реактора в газовой фазе в одну стадию.
Поставленная задача решается описываемым способом получения бутадиена-1,3, который включает взаимодействие формальдегидсодержащего сырья с пропиленом в присутствии твердофазного катализатора при атмосферном давлении, при этом в качестве катализатора используют гетерополикислоту, выбранную из ряда: 12-фосфорвольфрамовая, 12-вольфрамокремниевая, 12-фосформолибденовая, содержащуюся в количестве от 5 до 99 масс. % на пористом носителе.
Предпочтительно в качестве носителя катализатор содержит диоксид кремния или оксид церия или оксид алюминия или мезопористый алюмосиликат.
В качестве формальдегидсодержащего сырья используют формалин или триоксан.
Предпочтительно, процесс осуществляют при 194-358°С, при скорости подачи сырья, равной 0,46-10,0 г/гкат в час, при мольном соотношении пропилена к формальдегиду, равном (0,18-10,2):1.
Способ проводят в условиях непрерывного потока в реакторе с неподвижным слоем катализатора в присутствии газа носителя или в отсутствии газа-носителя.
Техническим результатом изобретения является упрощение процесса за счет его проведения в одну стадию, а также повышение выхода целевого продукта и селективности образования бутадиена при высокой стабильности работы катализатора во времени.
В общем виде способ осуществляют следующим образом. Предварительную подготовку катализатора производят путем его нагревания в токе инертного газа (азот, гелий) до 300°С в течение 1 часа и прокаливания при этой температуре в течении 30 мин, затем температуру в реакторе доводят до температуры взаимодействия исходных компонентов.
Формальдегидсодержащее сырье и пропилен подают в реактор проточного типа с неподвижным слоем катализатора при выбранных условиях, включенных в зависимые пункты формулы. На выходе из реактора полученные продукты разделяют на жидкие и газообразные. Состав каждой фазы определяют хроматографическим методом. Количество формальдегида определяют путем титрования соляной кислотой водного раствора, обработанного сульфитом натрия (ГОСТ 1625-2016).
Ниже представлены примеры реализации изобретения в объеме заявленной совокупности признаков. Параметры проведения процесса и его результаты сведены в таблицу 1.
Пример 1 (приготовление катализатора, его активация и получение бутадиена).
Пористый диоксид кремния пропитывают водным 20 мас. % раствором 12-кремнийвольфрамовой кислоты по влагоемкости. Пропитанный образец высушивают при комнатной температуре в течение суток, а затем при 100°С в течение 12 часов. Затем в потоке воздуха катализатор прокаливают в печи при 300°С в течение 10 часов.
Навеску полученного катализатора массой 0,5 г помещают в проточный реактор, продувают азотом (поток 8 мл/мин) при температуре 300°С в течение 1 часа. Затем в реактор подают формалин со скоростью 0,95 г/гкат⋅час (содержание формальдегида 37% по ГОСТ 1625-201) и пропилен (ГОСТ 25043-2013) со скоростью 0,9 г/гкат⋅час при мольном соотношении пропилен/формальдегид=1,8, при атмосферном давлении в потоке азота. Реакцию проводят в течение 3-х часов. На выходе из реактора получают бутадиен с селективностью на превращенный формальдегид 55% при конверсии формальдегида 14%. Непрореагировавший формальдегид и пропилен направляют на рецикл.
Результаты осуществления способа по примеру 1, а также по нижеприведенным примерам сведены в таблицу 1, и сравнительные данные также приведены в таблице (примеры 2 и 16).
Пример 2 (сравнительный по прототипу).
Пример осуществлен в условиях примера 1, но в качестве катализатора использован цеолит типа морденит (MOR).
Далее представлены примеры получения 1,3-бутадиена, осуществленные при заявленных условиях проведения процесса, при этом в примерах 1-16 и 18-20 в качестве сырья использован формалин, в примере 17 в качестве сырья использован триоксан.
Пример 3.
Получение целевого продукта осуществляют как в примере 1, но в качестве катализатора используют образец с массовым содержанием 12-кремнийвольфрамовой кислоты 5%.
Пример 4.
Получение целевого продукта осуществляют как в примере 1, но в качестве катализатора используют образец с массовым содержанием 12-кремнийвольфрамовой кислоты, равным 99%.
В примерах 3 и 4 показана возможность использования катализатора с содержанием при верхнем и нижнем значениях заявленного содержания гетерополикислоты (5 и 99% соответственно).
Пример 5.
Получение целевого продукта осуществляют как в примере 1, за исключением того, что температура реакции составляет 194°С.
Пример 6.
Получение целевого продукта осуществляют как в примере 1, за исключением того, что температура реакции составляет 358°С.
Примеры 5 и 6 показывают достижение технического результата при нижнем и верхнем значениях заявленного интервала температуры взаимодействия 194-358°С.
Пример 7.
Получение целевого продукта осуществляют как в примере 1, за исключением того, что температура реакции составляет 275°С и массовая скорость подачи сырья составляет 0,46 ч-1.
Пример 8.
Получение целевого продукта осуществляют как в примере 7, за исключением того, что массовая скорость подачи сырья составляет 10,0 ч-1.
Примеры 7-8 показывают достижение технического результата в диапазоне массовых скоростей подачи 0,46-10,0 ч-1.
Пример 9.
Получение целевого продукта осуществляют как в примере 7, за исключением того, что поток газа носителя составляет 0 мл/мин, т.е. газ носитель не подают. Разбавление реагентов равно 0 (мольное отношение N2/(пропилен+формальдегид)=0).
Пример 10.
Получение целевого продукта осуществляют как в примере 7, за исключением того, что поток газа носителя составляет 200 мл/мин, т.е. разбавление реагентов составляет 17 (мольное отношение N2/(пропилен+формальдегид)=17).
Примеры 9-10 показывают достижение технического результата при разном потоке газа носителя и разном разбавлении сырья от 0 до 17.
Пример 11.
Получение целевого продукта осуществляют как в примере 7, за исключением того, что время реакции составляет 9 часов.
Пример 11 показывает высокую стабильность работы катализатора во времени.
Пример 12.
Получение целевого продукта осуществляют как в примере 10, за исключением того, что мольное соотношение пропилена к формальдегиду составляет 0,18.
Пример 13.
Получение целевого продукта осуществляют как в примере 10, за исключением того, что мольное соотношение пропилена к формальдегиду составляет 10,2.
Примеры 12-13 показывают достижение технического результата при разных мольных соотношениях пропилена к формальдегиду от 0,18 до 10,2.
Пример 14.
Получение целевого продукта осуществляют как в примере 1, за исключением того, что в качестве катализатора используют 12-фосфорвольфрамовую кислоту, нанесенную на силикагель.
Пример 15.
Получение целевого продукта осуществляют как в примере 1, за исключением того, что в качестве катализатора используют 12-фосформолибденовая кислоту, нанесенную на силикагель.
Пример 16. (сравнительный)
Получение целевого продукта осуществляют как в примере 1, за исключением того, что в качестве катализатора используют 12-молибденокремниевую кислоту, нанесенную на силикагель.
Как видно из примера 16, результаты процесса при использовании в качестве катализатора - 12-молибденокремниевой кислоты оказались хуже (практически на уровне прототипа). Поэтому использование 12-молибденокремниевой кислоты в качестве катализатора данного процесса является нецелесообразным.
Представленные выше примеры 14-16 показывают осуществление процесса и сведения о полученном результате при использовании различных гетерополикислот.
Пример 17.
Получение целевого продукта осуществляют как в примере 1, за исключением того, что в качестве сырья используют не формалин (водный раствор формальдегида), а водный раствор 1,3,5-триоксана C3H6O3 - тримера формальдегида.
Пример 17 показывает достижение технического результата при использовании формальдегидсодержащего сырья - 1,3,5-триоксана.
Пример 18.
Получение целевого продукта осуществляют как в примере 17, за исключением того, что в качестве катализатора используют 12-кремнийвольфрамовую кислоту, нанесенную на оксид алюминия.
Пример 19.
Получение целевого продукта осуществляют как в примере 17, за исключением того, что в качестве катализатора используют 12-кремнийвольфрамовую кислоту, нанесенную на оксид церия.
Пример 20.
Получение целевого продукта осуществляют как в примере 17, за исключением того, что в качестве катализатора используют 12-кремнийвольфрамовую кислоту, нанесенную на мезопористый алюмоалюмосиликат состава 160SiO2⋅Al2O3.
Примеры 18-20 показывают достижение технического результата при использовании различных пористых носителей.
При сравнении результатов синтеза целевого продукта с использованием катализаторов, характеризующийся признаками, включенными в независимый пункт формулы (примеры 1 и 3-14), очевидны преимущества заявленного способа по сравнению с прототипом (пример 2).
Как видно из приведенных выше примеров, предложенный способ получения бутадиена обеспечивает возможность реализации изобретения с достижением заявленного технического результата, так как разработан одностадийный способ получения целевого продукта в условиях проточного реактора в одну стадию, при этом достигаются высокие показатели селективности и степени конверсии. Кроме того, обеспечивается высокая стабильность работы катализатора во времени, как следует из таблицы, процесс является стабильным в течение 3-9 часов, в отличии от прототипа, где стабильная работа наблюдалась в течение 2,5-3 часов.
Figure 00000001

Claims (5)

1. Способ получения бутадиена-1,3, включающий взаимодействие формальдегидсодержащего сырья с пропиленом в присутствии твердофазного катализатора в условиях газофазной конденсации при атмосферном давлении, отличающийся тем, что в качестве катализатора используют гетерополикислоту, выбранную из ряда: 12-фосфорвольфрамовая, 12-вольфрамокремниевая, 12-фосформолибденовая, содержащуюся в количестве от 5 до 99 мас. % на пористом носителе.
2. Способ по п. 1, отличающийся тем, что в качестве носителя катализатор содержит диоксид кремния или оксид церия или оксид алюминия или мезопористый алюмосиликат.
3. Способ по п. 1, отличающийся тем, что в качестве формальдегидсодержащего сырья используют формалин или триоксан.
4. Способ по п. 1, отличающийся тем, что процесс осуществляют при 194-358°С, при скорости подачи сырья, равной 0,46-10,0 г/гкат в час, при мольном соотношении пропилена к формальдегиду в формальдегид-содержащем сырье, равном (0,18-10,2):1.
5. Способ по п. 1, отличающийся тем, что процесс проводят в условиях непрерывного потока в реакторе с неподвижным слоем катализатора в присутствии газа носителя или в отсутствии газа-носителя.
RU2019105611A 2019-02-27 2019-02-27 Способ получения 1,3-бутадиена RU2688158C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019105611A RU2688158C1 (ru) 2019-02-27 2019-02-27 Способ получения 1,3-бутадиена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019105611A RU2688158C1 (ru) 2019-02-27 2019-02-27 Способ получения 1,3-бутадиена

Publications (1)

Publication Number Publication Date
RU2688158C1 true RU2688158C1 (ru) 2019-05-20

Family

ID=66579078

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019105611A RU2688158C1 (ru) 2019-02-27 2019-02-27 Способ получения 1,3-бутадиена

Country Status (1)

Country Link
RU (1) RU2688158C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032648C1 (ru) * 1990-04-06 1995-04-10 Дзе Дау Кемикал Компани Способ получения 1,3-бутадиена и катализатор для его получения
CN101665399A (zh) * 2008-09-05 2010-03-10 中国石油化工股份有限公司 丁二烯生产方法
WO2016092517A1 (en) * 2014-12-12 2016-06-16 Versalis S.P.A. Process for the production of 1, 3-butadiene from 1, 4 -butanediol via tetrahydrofuran
RU2015117655A (ru) * 2012-10-09 2016-12-10 Ламмус Текнолоджи Инк. Гибкий способ экстракции бутадиена

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032648C1 (ru) * 1990-04-06 1995-04-10 Дзе Дау Кемикал Компани Способ получения 1,3-бутадиена и катализатор для его получения
CN101665399A (zh) * 2008-09-05 2010-03-10 中国石油化工股份有限公司 丁二烯生产方法
RU2015117655A (ru) * 2012-10-09 2016-12-10 Ламмус Текнолоджи Инк. Гибкий способ экстракции бутадиена
WO2016092517A1 (en) * 2014-12-12 2016-06-16 Versalis S.P.A. Process for the production of 1, 3-butadiene from 1, 4 -butanediol via tetrahydrofuran

Similar Documents

Publication Publication Date Title
RU2440962C1 (ru) Одностадийный способ получения бутадиена
EP3207004B1 (en) Methods for conversion of ethanol to functionalized lower hydrocarbons
US10300459B2 (en) Metal oxide catalyst systems for conversion of ethanol to butadiene
CN102482177B (zh) 对二甲苯和对苯二甲酸的碳水化合物途径
EP2144860B1 (en) Dehydration of alcohols over tungstosilicic acid supported on silica
US9862664B2 (en) Process for the production of alkenols and use thereof for the production of 1,3-butadiene
Thangaraj et al. Catalytic properties of titanium silicalites: IV. Vapour phase beckmann rearrangement of cyclohexanone oxime
US11136276B2 (en) Single-stage method of butadiene production
US9434659B2 (en) Conversion of 2,3-butanediol to butadiene
CN102126916A (zh) 1,1-二芳基烷烃及其衍生物的制造方法
US2064254A (en) Production of higher ketones
JP2013518883A (ja) スチレン製造方法およびそこでの使用のための触媒
RU2688158C1 (ru) Способ получения 1,3-бутадиена
US6313323B1 (en) Trimerization of formaldehyde in the gas phase
WO2011087962A1 (en) Production of methyl-vinyl ketone from levulinic acid
TW201914688A (zh) 由乙醇原料製造乙烯的方法
RU2412148C1 (ru) Одностадийный способ получения изопрена
US2082105A (en) Production of aliphatic amines
WO2017099632A1 (ru) Способ получения высокооктановых компонентов из олефинов каталитического крекинга
JP7262189B2 (ja) 共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法
RU2421441C1 (ru) Одностадийный способ получения изопрена
RU2525117C1 (ru) Способ активации молибден-цеолитного катализатора ароматизации метана
JP2013166755A (ja) トルエンの不均化方法
CN114728864B (zh) 生产二烯的方法
CN116063225A (zh) 一种苯胺合成2-甲基吡啶的工艺