RU2687470C1 - Способ извлечения оксида алюминия из отходов глиноземного производства - Google Patents

Способ извлечения оксида алюминия из отходов глиноземного производства Download PDF

Info

Publication number
RU2687470C1
RU2687470C1 RU2018132613A RU2018132613A RU2687470C1 RU 2687470 C1 RU2687470 C1 RU 2687470C1 RU 2018132613 A RU2018132613 A RU 2018132613A RU 2018132613 A RU2018132613 A RU 2018132613A RU 2687470 C1 RU2687470 C1 RU 2687470C1
Authority
RU
Russia
Prior art keywords
leaching
lime
aluminum oxide
alumina production
pressure
Prior art date
Application number
RU2018132613A
Other languages
English (en)
Inventor
Светлана Александровна Бибанаева
Владимир Николаевич Корюков
Владимир Михайлович Скачков
Наиль Аделевич Сабирзянов
Владислав Михайлович Уфимцев
Эльвира Михайловна Лебедева
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2018132613A priority Critical patent/RU2687470C1/ru
Application granted granted Critical
Publication of RU2687470C1 publication Critical patent/RU2687470C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0693Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process from waste-like raw materials, e.g. fly ash or Bayer calcination dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и давлении в присутствии извести в щелочном растворе с последующим охлаждением пульпы после выщелачивания, добавлением воды, перемешиванием и фильтрованием. При этом используют известь, отожженную при температуре 1200-1400°C, взятую в количестве, необходимом для получения соотношения CaO/SiO2, равного 1,5-2,0. Выщелачивание осуществляют при соотношении жидкое:твердое, равном (4,5-4,8) : 1, при давлении 37-40 МПа. После охлаждения пульпы добавляют дистиллированную воду при температуре 90-100°С до получения соотношения жидкое:твердое, равного (9,8-10,0):1. Изобретение позволяет повысить степень извлечения оксида алюминия в раствор из отходов глиноземного производства до 85-90%. 2 пр.

Description

Изобретение относится к цветной металлургии и может быть применено в технологии переработки отвальных красных шламов глиноземного производства.
Известен способ извлечения оксида алюминия из отвального красного шлама, в котором в красный шлам, полученный по способу Байера, добавляют известь и оборотный щелочной раствор для проведения мокрой переработки красного шлама, в частности автоклавным способом. В результате мокрой переработки получают суспензию, которую разделяют для получения раствора после переработки красного шлама и отработанного красного шлама, отработанный красный шлам далее промывают для получения раствора после промывки отработанного красного шлама и исчерпывающе отработанного красного шлама (патент RU 2478574, МПК C01F 7/06, 2013 год).
К недостаткам способа относятся несколько дополнительных операций по промывке и разделению растворов и осадков, как следствие значительное увеличение материальных потоков, увеличение объема промывных вод, относительно невысокие показатели выщелачивания, т.к. остаточное содержание оксида алюминия в отработанном шламе составляет не менее 12%. Кроме того, необходимость проведения предварительно перед автоклавной обработкой пульпы операции нагрева-удержания пульпы увеличивает время термообработки и усложняет процесс.
Известен способ гидрохимической переработки алюмосиликатного сырья, включающий приготовление суспензии сырья в высокомодульном алюминатном растворе и автоклавное выщелачивание красного шлама ветви Байера в присутствии известьсодержащей добавки (патент RU 2193525, МПК C01F 7/06, 2002 год)
К недостаткам способа относятся значительные потери целевого продукта с отработанным красным шламом, поскольку расчетное содержание оксида алюминия в переработанном шламе составляет 7,7 масс%. Кроме того, для проведения процесса необходимы дополнительные технологические операции и оборудование для приготовления известьсодержащей добавки(известково-клинкерной суспензии) путем смешения товарной извести, взятой в количестве 43% от массы шлама, железистого клинкера, содержащего феррит натрия Na2Fe2O4 и оборотного раствора. Железистый клинкер получают отдельно путем высокотемпературной каустификацией карбоната натрия в присутствии Fe2O3-содержащего материала (железной окалины) и высокомодульного раствора во вращающейся печи при температуре 1000°С. Еще одним недостатком является большой расход товарной извести, которую получают отдельно в печах при температуре 900°С.
Наиболее близким по технической сущности к предлагаемому является способ гидрохимической переработки красного шлама, включающий автоклавное выщелачивание красного шлама при повышенной температуре и давлении выше атмосферного в присутствии гидроксида кальция в щелочном растворе, отличающийся тем, что в исходный красный шлам вводят гидроксид кальция в количестве 2,5-5,0% от массы исходного шлама и 40%-ный раствор NaOH до получения соотношения фаз жидкое : твердое = 1,5÷2,8:1; при этом автоклавное выщелачивание проводят при температуре 230-260°C и давлении 21-26 МПа (патент RU 2561417, МПК C01F 7/06, 2015 год) (прототип).
К недостаткам способа относятся потери целевого продукта с исчерпывающе отработанным красным шламом, поскольку остаточное содержание оксида алюминия в нем составляет до 5%, при этом степень выщелачивания не превышает 70%.
Таким образом, перед авторами была поставлена задача разработать способ извлечения оксида алюминия из отходов глиноземного производства, в частности из красного шлама, который бы обеспечивал более высокую степень извлечения оксида алюминия, и тем самым, увеличивал степень использование сырья.
Поставленная задача решена в предлагаемом способе извлечения оксида алюминия из отходов глиноземного производства, включающем автоклавное выщелачивание исходного продукта при повышенных температуре и давлении в присутствии извести в щелочном растворе с последующим охлаждением пульпы после выщелачивания, добавлением воды, перемешиванием и фильтрованием, в котором используют известь, отожженную при температуре 1200-1400°C, взятую в количестве, необходимом для получения соотношения CaO/SiO2=1,5÷2,0; при этом выщелачивание осуществляют при соотношении жидкое : твердое = 4,5 ÷ 4,8 : 1 при давлении 37÷40 МПа, а после охлаждения пульпы добавляют дистиллированную воду при температуре 90-100оС до получения соотношения жидкое ; твердое = 9,8 ÷ 10,0:1.
В настоящее время из патентной и научно-технической литературы не известен способ извлечения оксида алюминия из отходов глиноземного производства, в частности красного шлама путем автоклавного выщелачивания в заявленных пределах технологических параметров с использованием в процессе извести, полученной в указанном температурном интервале. В предлагаемом техническом решении используют известь, которая получена при температурах 1200-1400°C, тогда как в известных в настоящее время способах получения технологической извести для глиноземного производства используют температуры 900-1000°C.
Исследования, проведенные авторами, позволили установить, что в случае проведения автоклавного выщелачивания вводимая известь интенсифицирует процессы разложения труднорастворимых алюминийсодержащих фаз (алюмогетита, алюмосиликата, алюмоферросиликата), входящих в состав исходного сырья. Известь, полученная при температурах 1200-1400°C, является более химически активной в процессе автоклавного выщелачивания, оказывает более глубокое влияние на процесс и позволяет извлечь в раствор почти весь алюминий из исходного сырья. В результате фазовый состав отработанного шлама представляет собой смесь гематита, гидросиликата кальция и небольшого количества гидроалюмосиликата кальция. Остаточное содержание оксида алюминия в отработанном шламе присутствует в составе кальциевых алюмосиликатов. Переизбыток оксида кальция связывается в нерастворимый гидросиликат кальция, тем самым выводя в твердую фазу оксид кремния, не позволяя образовываться гидроалюмосиликатам кальция, что и обусловливает малое содержание алюминия в отработанном продукте. Количество извести, используемой в процессе выщелачивания, а также используемое давление имеют существенное значение. Так, при введении извести при соотношении менее CaO\SiO2=1,5 и уменьшении давления менее 37 МПа извлечение оксида алюминия уменьшается. При добавлении извести, увеличивающем соотношение CaO\SiO2 более чем 2,0, и увеличении давления более 40 МПа нецелесообразно, поскольку степень извлечения не увеличивается.
Предлагаемый способ может быть осуществлен следующим образом. Осуществляют автоклавное выщелачивание глиноземсодержащего сырья, в частности отвального красного шлама, в автоклавной установке с одновременным добавлением извести, полученной при температуре 1200-1400°С, для получения соотношения CaO/SiO2=1,5÷2,0 и 40%-ного раствора NaOH для получения соотношения жидкое: твердое = 4,5 ÷ 4,8 : 1 при температуре 240-250°С и давлении 37-40 МПа в течение 2,5 часов. Затем отключают нагрев, охлаждают автоклав до температуры 70-100С и открывают. После чего добавляют в автоклав дистиллированной воды при температуре 90-100°С до получения соотношения жидкое ; твердое = 9,8 ÷ 10,0:1, перемешивают и фильтруют. Алюминатный раствор помещают в отдельную емкость, а шлам тщательно промывают горячей водой и сушат. Проводят химический анализ алюминатного раствора и шлама с целью определения содержания алюминия и железа. Определяют извлечение по формуле: Вхим= 1- (Ашл*Feб/ Аб *Feшл)*100, где Аб и Fб - содержание Al2O3 и Fe2O3 в боксите, % и Ашл и Fшл - содержание Al2O3 и Fe2O3 в шламе, %.
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1. Берут 10 г отвального красного шлама состава, масс.%: Al2O3 – 14,4; SiO2 – 5,3; Fe2O3 – 48,96; TiO2 – 0,67; CaO – 12,88, Na2O – 0,94. Добавляют 0,78 г. извести, полученной при Т= 1200°C состава, масс.%: 90,54 − СаО; 0,36 − SiO2; 1,9 − Al2O3; 0,7 − Fe2O3; 1,5 – MgO, п.п.п −5,0, которое обеспечивает соотношение CaO\SiO2=1,5. Полученную смесь помещают в автоклав и добавляют 50 мл 40% щелочного раствора до получения соотношения Ж:Т=4,5:1 после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, включают нагрев до 250оС и выдерживают 2,5 часа пи давлении 37 МПа. После чего выключают термостат, охлаждают, открывают и добавляют 50 мл дистиллированной воды при температуре 90оС до получения соотношения Ж:Т=9,8:1. После чего перемешивают и автоклав охлаждают до комнатной температуры, полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость, а верхний продукт (отработанный шлам) тщательно промывают горячей водой и сушат. По данным химического анализа получают промытый отработанный красный шлам, который содержит (масс%): 2,8 Al2O3 и степень извлечения по шламу составила 85%.
Пример 2. Берут 10 г отвального шлама состава, масс.%: Al2O3 – 14,4; SiO2 – 5,3; Fe2O3 – 48,96; TiO2 – 0,67; CaO – 12,88, Na2O – 0,94. Добавляют 1,0 г. извести, полученной при Т=1400°C состава, масс%: 90,54 − СаО; 0,36 − SiO2; 1,9 − Al2O3; 0,7 − Fe2O3; 1,5 – MgO, п.п.п −5,0, которое обеспечивает соотношение CaO\SiO2=2,0. Полученную смесь помещают в автоклав и добавляют 50 мл 40% щелочного раствора до получения соотношения Ж:Т=4,8:1, после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, включают нагрев до 240°С и выдерживают 2,5 часа при давлении 40 МПА. После чего выключают термостат, охлаждают, открывают и добавляют 50 мл дистиллированной воды при температуре 100оС до получения соотношения Ж:Т=9,8:1(10). После чего автоклав охлаждают до комнатной температуры и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость, а верхний продукт (отработанный шлам) тщательно промывают горячей водой и сушат. По данным химического анализа получают промытый отработанный красный шлам, который содержит (масс%): 2,0 Al2O3 и степень извлечения по шламу составила 90%.
Таким образом, авторами предлагается способ, обеспечивающий извлечение оксида алюминия в раствор из отходов глиноземного производства, в частности из красного шлама в процессе Байера, равное 85-90%.

Claims (1)

  1. Способ извлечения оксида алюминия из отходов глиноземного производства, включающий автоклавное выщелачивание исходного продукта при повышенных температуре и давлении в присутствии извести в щелочном растворе с последующим охлаждением пульпы после выщелачивания, добавлением воды, перемешиванием и фильтрованием, отличающийся тем, что используют известь, отожженную при температуре 1200-1400°C, взятую в количестве, необходимом для получения соотношения CaO/SiO2, равного 1,5-2,0; при этом выщелачивание осуществляют при соотношении жидкое : твердое, равном (4,5-4,8):1, при давлении 37-40 МПа, а после охлаждения пульпы добавляют дистиллированную воду при температуре 90-100°С до получения соотношения жидкое : твердое, равного (9,8-10,0):1.
RU2018132613A 2018-09-13 2018-09-13 Способ извлечения оксида алюминия из отходов глиноземного производства RU2687470C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018132613A RU2687470C1 (ru) 2018-09-13 2018-09-13 Способ извлечения оксида алюминия из отходов глиноземного производства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018132613A RU2687470C1 (ru) 2018-09-13 2018-09-13 Способ извлечения оксида алюминия из отходов глиноземного производства

Publications (1)

Publication Number Publication Date
RU2687470C1 true RU2687470C1 (ru) 2019-05-13

Family

ID=66578694

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018132613A RU2687470C1 (ru) 2018-09-13 2018-09-13 Способ извлечения оксида алюминия из отходов глиноземного производства

Country Status (1)

Country Link
RU (1) RU2687470C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119698A (en) * 1976-11-26 1978-10-10 Kernforschungsanlage Julich, Gesellschaft Mit Beschrankter Haftung Reclamation treatment of red mud
SU1281521A1 (ru) * 1984-10-01 1987-01-07 Казахский политехнический институт им.В.И.Ленина Способ переработки боксита
RU2183193C2 (ru) * 1999-10-11 2002-06-10 Открытое акционерное общество "Алюминий Казахстана" Способ переработки на глинозем низкокачественного боксита
WO2013104059A1 (en) * 2012-01-10 2013-07-18 Orbite Aluminae Inc. Processes for treating red mud
RU2561417C2 (ru) * 2013-11-07 2015-08-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ извлечения оксида алюминия из красного шлама

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119698A (en) * 1976-11-26 1978-10-10 Kernforschungsanlage Julich, Gesellschaft Mit Beschrankter Haftung Reclamation treatment of red mud
SU1281521A1 (ru) * 1984-10-01 1987-01-07 Казахский политехнический институт им.В.И.Ленина Способ переработки боксита
RU2183193C2 (ru) * 1999-10-11 2002-06-10 Открытое акционерное общество "Алюминий Казахстана" Способ переработки на глинозем низкокачественного боксита
WO2013104059A1 (en) * 2012-01-10 2013-07-18 Orbite Aluminae Inc. Processes for treating red mud
RU2561417C2 (ru) * 2013-11-07 2015-08-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ извлечения оксида алюминия из красного шлама

Similar Documents

Publication Publication Date Title
CN102583409B (zh) 一种利用高铝粉煤灰生产莫来石和硅酸钙的方法
RU2554136C2 (ru) Способ получения глинозема
Pan et al. Pre-desilication and digestion of gibbsitic bauxite with lime in sodium aluminate liquor
CN106145164B (zh) 从锂云母中制备碳酸锂的方法
CN104649304B (zh) 一种碱法提铝及获得脱碱赤泥的方法以及获得的脱碱赤泥及其应用
CN109824072A (zh) 利用工业废渣制备氧化铝的方法
CN106044784B (zh) 一种利用粉煤灰生产高纯度二氧化硅的方法
US4915930A (en) Process for producing aluminum hydroxide of improved whiteness
RU2683149C1 (ru) Способ получения магнетита
RU2687470C1 (ru) Способ извлечения оксида алюминия из отходов глиноземного производства
US4033778A (en) Process for making magnesia
RU2561417C2 (ru) Способ извлечения оксида алюминия из красного шлама
CN103408050A (zh) 一种煤矸石中高效提取铝铁钛的方法
RU2494965C1 (ru) Способ переработки бокситов на глинозем
RU2643675C1 (ru) Способ переработки отработанной теплоизоляционной футеровки алюминиевого электролизера
US2604379A (en) Alumina extraction
CN105692666B (zh) 一种高铝粉煤灰提取氧化铝的方法
RU2198842C2 (ru) Способ получения оксида магния
RU2711198C1 (ru) Способ переработки бокситов на глинозем
RU2613983C1 (ru) Способ получения глинозема из хромсодержащих бокситов
WO2009063482A2 (en) Extraction of alumina
RU2609478C1 (ru) Способ переработки отработанной футеровки алюминиевого электролизёра
RU2750429C1 (ru) Способ получения магнетита
RU2707223C1 (ru) Способ переработки бокситов
RU2700071C1 (ru) Способ получения железосодержащих пигментов