RU2750429C1 - Способ получения магнетита - Google Patents

Способ получения магнетита Download PDF

Info

Publication number
RU2750429C1
RU2750429C1 RU2021100183A RU2021100183A RU2750429C1 RU 2750429 C1 RU2750429 C1 RU 2750429C1 RU 2021100183 A RU2021100183 A RU 2021100183A RU 2021100183 A RU2021100183 A RU 2021100183A RU 2750429 C1 RU2750429 C1 RU 2750429C1
Authority
RU
Russia
Prior art keywords
magnetite
red mud
temperature
reducing agent
sludge
Prior art date
Application number
RU2021100183A
Other languages
English (en)
Inventor
Светлана Александровна Бибанаева
Лилия Александровна Пасечник
Владимир Михайлович Скачков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2021100183A priority Critical patent/RU2750429C1/ru
Application granted granted Critical
Publication of RU2750429C1 publication Critical patent/RU2750429C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compounds Of Iron (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Осуществляют автоклавную обработку красного шлама при температуре 230-250°С и давлении 27-50 МПа в присутствии восстановителя и 30%-ного раствора гидроксида натрия при введении гидроксида кальция, содержание которого составляет 2,0-2,5 мас.% по СаО от массы исходного шлама. В качестве восстановителя используют гранулы алюминия в количестве 10-25 мас.% от массы исходного шлама. После этого охлаждают, разбавляют дистиллированной водой при температуре 80-90°С до получения отношения Ж:Т = (10-11):1 и фильтруют. Изобретение обеспечивает высокую конверсию гематита в магнетит. 2 пр.

Description

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства.
Известен способ получения магнетита из красных шламов пирометаллургическим способом при температуре 700-1100  С с использованием газообразного восстановителя. В качестве восстановителя предлагается использовать смесь газов СО/СО2 в соотношении 1/1 или 2/1 (Appl. US 2015203362; C01G 49/08, C22B 21/02, C22B34/12; 2015).
К недостаткам способа относится: необходимость предвари-тельной кислотной нейтрализации красных шламов, что приведет к образованию большого количества промывных растворов, которые тоже требуют утилизации; способ предполагает предварительную сушку красных шламов до 3-6 % влажности, что потребует установки дополнительного габаритного оборудования – сушильных колонн; для получения восстанавливающего газа СО предполагается сжигание кокса, что повлечет утяжеление производственного процесса за счет установки печей сжигания.
Известен метод получения магнетита из красных шламов гидрометаллургическим способом, где в качестве восстановителя используют порошок металлического железа и полиэтиленгликоль в соотношении вода : красный шлам : порошок железа: полиэтиленгликоль = (30-45): (25-35):(5-10) : (1-3), при температуре 140-230°С, давлении 1-3 МПа, в течение 30-50 мин (Appl. CN110282885; МПК C01B 25/18, C01G 49/08, C04B 7/14; 2019).
К недостаткам известного способа относятся: высокая доля порошка железа по отношению к количеству красного шлама, что приводит к увеличению расхода восстановителя – порошка железа при относительно невысоких объемах переработки КШ; использование органического соединения – полиэтиленгликоля, который выводится с раствором после фильтрации и неизбежно загрязняет раствор, являясь сильным аллергеном и негативно влияя на экологию среды; одним из побочных продуктов плавления железа является фосфорная кислота, которая требует специального бакового оборудования для хранения и утилизации.
Известен способ получения магнетита, включающий перевод практически всей массы шлама в раствор щавелевой кислоты, то есть растворение Fe(III), Al, Ti, РЗЭ и др. компонентов кроме кальция и кремния, которые отделяют в виде нерастворимого остатка. Затем в раствор вводят порошок железа для восстановления Fe(III) и избирательного осаждения оксалата железа(II) FeC2O4, который отделяют вместе с избытком железного порошка фильтрованием, а последний отделяют от оксалата магнитной сепарацией для повторного использования. Полученный оксалат железа(II) прокаливают в атмосфере N2 в трубчатой печи при 500-1300ºС. (Патент CA 3085182; МПК C07C 51/41, C07C 55/07, C07F 15/07; 2019).
Недостатками известного способа являются: необходимость использования значительных объемов раствора щавелевой кислоты для растворения железа (III) из шлама, что ведет к накоплению большого количества растворов, содержащих другие компоненты шлама без их извлечения и полезного использования; предполагается использование избыточного количества реагента – порошка металлического железа, что обусловливает наличие дополнительной стадии – магнитной сепарации.
Наиболее близким по технической сущности к предлагаемому способу является способ получения магнетита, включающий обработку красного шлама в присутствии гидроксида кальция, в котором проводят автоклавную обработку красного шлама при температуре 235-250°С и давлении 21-26 МПа с введением в исходный шлам 30%-ного раствора NaOH при соотношении Ж:Т равном (4-5):1 и соли железа (II) в количестве 5-25 масс.% от массы шлама, при этом содержание гидроксида кальция составляет 3-4 масс.% по СаО от массы шлама. При этом в качестве соли железа (II) использованы сульфат железа (II), оксалат железа (II). Содержание в магнетитовом концентрате магнетита составляет 31–51 % от массы всего железа при остаточном содержании гематита – 8,7–18,8 % (Патент RU 2683149; МПК C22B1/00, C01G49/08; 2019 год) (прототип).
К недостаткам способа следует отнести относительно невысокую степень конверсии гематита в магнетит.
Таким образом, перед авторами стояла задача разработать способ получения магнетита утилизацией красных шламов, обеспечивающий высокую конверсию гематита в магнетит.
Поставленная задача решена в предлагаемом способе получения магнетита, включающем автоклавную обработку красного шлама при температуре 230-250°С в присутствии восстановителя и 30%-ного раствора гидроксида натрия, в котором в качестве восстановителя используют гранулы металлического алюминия в количестве 10-25 масс.% от массы исходного шлама и осуществляют автоклавную обработку при давлении 27-50 МПа, при этом содержание гидроксида кальция составляет 2,5 масс.% по СаО от массы исходного шлама, после чего пульпу охлаждают, разбавляют дистиллированной водой при температуре 80-90 °С до получения отношения Ж:Т = (10-11):1 и фильтруют.
В настоящее время из патентной и научно-технической литературы не известен способ получения магнетита с использованием в качестве исходного сырья красного шлама путем автоклавной обработки с использованием в качестве восстановителя металлического алюминия в заявленных пределах технологических параметров.
Исследования, проведенные авторами, позволили выявить синергетическое действие одновременного введения металлического алюминия и гидроксида кальция, обеспечивающее совокупность химических процессов с высоким выходом целевого продукта: высокие температура процесса и давление способствуют разрушению натриевых алюмосиликатных комплексов и переводу алюминия и натрия в раствор, а также за счет более сильного сродства кальция к кремнию, способствуют образованию гидросиликатов кальция, которые образуют твердую фазу. При введении металлического алюминия в процесс происходит его растворение в щелочном растворе с образованием алюмината натрия и выделением газообразного водорода. Выделенный водород восстанавливает часть атомов железа Fe(3+) из гематита (Fe2O3), содержащегося в красном шламе, до Fe(2+) с образованием магнетита (Fe3O4, FeO·Fe2O3). В результате получают твердый осадок переработанного красного шлама, содержащий оксид железа преимущественно в виде магнетита. Еще одним преимуществом использования металлического алюминия является то, что алюминий полностью растворяется в щелочном растворе и не загрязняет магнетитовый концентрат в процессе выщелачивания КШ.
Исследования, проведенные авторами, позволили установить, что предлагаемые технологические параметры процесса получения магнетита являются существенными. Введение металлического алюминия менее 10 масс.% и уменьшение количества гидроксида кальция менее 2,0 масс. % от количества взятого шлама ведет к снижению степени разложения алюмосиликатов натрия шлама и низкому выходу магнетита. При этом увеличение количества гидроксида кальция более 2,5 масс.% от количества взятого шлама в присутствии гранул алюминия, взятых более 25 масс.%, приводят к увеличению количества твердого нерастворимого осадка за счет образования кальциевых алюминатов и алюмосиликатов, что приводит к загрязнению магнетитсодержащего продукта и снижению содержания магнетита, а также к существенному увеличению количества образующегося газа и как следствие, к резкому увеличению давления, что может привести к взрыву.
Предлагаемый способ может быть осуществлен следующим образом. Твердую фазу красного шлама состава, %: 43 Fe2O3; 13,23 Al2O3; 4.0 TiO2; 9,79 CaO; 9,63 SiO2 и пр., помещают в автоклав, туда же помещают гидроксид кальция (известь) в количестве 2,0-2,5 масс. % по СаО от массы исходного (сухого) красного шлама, гранулы металлического алюминия марки «ч.д.а» 10-25 масс.% от массы шлама и 30 %-ный раствор NaOH при соотношении Ж:Т равном (4-5):1. Автоклавную обработку полученной пульпы проводят в течение 1 часа при температуре 230-250 °С давлении 27-50 МПа. Затем пульпу охлаждают, разбавляют дистиллированной водой при температуре 80-90 °С до получения отношения Ж:Т = (10-11):1 и фильтруют.
По данным рентгенофазового и химического анализов конечный магнетитовый продукт содержит магнетита (Fe3O4) не менее 61 % при содержании менее 2 % Na2O.
Щелочной алюминатный раствор после отделения твердой фазы возвращают на разбавление автоклавной пульпы или в основное производство в процесс Байера.
Предлагаемый способ переработки красного шлама с получением магнетита иллюстрируется следующими примерами.
Пример 1. Берут 20,0 г сухого красного шлама процесса Байера химического состава, %: 43 Fe2O3; 13,23 Al2O3; 4.0 TiO2; 9,79 CaO; 9,63 SiO2, помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Туда же помещают 0,1 дм3 30 %-ного раствора щелочи NaOH при соотношении Ж:Т, равном 5:1; 0,5 г Са(ОН)2, что соответствует 2,5 % от массы взятого шлама, и 1,0 г Al гранул, что соответ-ствует 10 % от массы взятого шлама. Автоклавную обработку проводят при температуре 250 °С, давлении 27 МПа в течение 1 часа. После охлаждения разбавляют дистиллированной водой при температуре 80 °С до получения отношения Ж:Т = 10:1 и фильтруют. Получают магнетитовый концентрат. По данным рентгенофазового анализа магнетитовый концентрат содержит 62,9 % магнетита (Fe3O4) и 6 % гематита (Fe2O3); по данным химического анализа– 2 % Na2O
Пример 2. Берут 20,0 г сухого красного шлама процесса Байера химического состава, %: 43 Fe2O3; 13,23 Al2O3; 4.0 TiO2; 9,79 CaO; 9,63 SiO2, помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Туда же помещают 0,1 дм3 30%-ного раствора щелочи NaOH при соотношении Ж:Т равном 5:1; 0,5 г Са(ОН)2, что соответствует 2,5 % от массы взятого шлама, и 5,0 г Al гранул, что соответствует 25 % от массы взятого шлама. Автоклавную обработку проводят при температуре 250 °С, давлении 50 МПа в течение 1 часа. После охлаждения разбавляют дистиллированной водой при температуре 90 °С до получения отношения Ж:Т = 11:1 и фильтруют. Получают магнетитовый концентрат с содержанием 61 % магнетита (Fe3O4) и 5 % гематита (Fe2O3) при содержании 1,8 % Na2O.
Таким образом, авторами предлагается способ переработки красных шламов глиноземного производства на магнетит, обеспечивающий высокую конверсию гематита в магнетит.

Claims (1)

  1. Способ получения магнетита, включающий автоклавную обработку красного шлама при температуре 230-250°С в присутствии восстановителя и 30%-ного раствора гидроксида натрия, отличающийся тем, что в качестве восстановителя используют гранулы алюминия в количестве 10-25 мас.% от массы исходного шлама и осуществляют автоклавную обработку полученной пульпы при давлении 27-50 МПа при введении гидроксида кальция, содержание которого составляет 2,0-2,5 мас.% по СаО от массы исходного шлама, после чего пульпу охлаждают, разбавляют дистиллированной водой при температуре 80-90°С до получения отношения Ж:Т = (10-11):1 и фильтруют.
RU2021100183A 2021-01-12 2021-01-12 Способ получения магнетита RU2750429C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021100183A RU2750429C1 (ru) 2021-01-12 2021-01-12 Способ получения магнетита

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021100183A RU2750429C1 (ru) 2021-01-12 2021-01-12 Способ получения магнетита

Publications (1)

Publication Number Publication Date
RU2750429C1 true RU2750429C1 (ru) 2021-06-28

Family

ID=76755778

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021100183A RU2750429C1 (ru) 2021-01-12 2021-01-12 Способ получения магнетита

Country Status (1)

Country Link
RU (1) RU2750429C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2433956C2 (ru) * 2006-05-04 2011-11-20 Краузе-Рем-Зюстеме Аг Способ получения магнетита
RU2542177C1 (ru) * 2013-10-24 2015-02-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ переработки красного шлама
CN105331799A (zh) * 2015-10-20 2016-02-17 山东建筑大学 一种拜耳法赤泥脱碱磁化一体化焙烧方法
RU2683149C1 (ru) * 2018-05-22 2019-03-26 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения магнетита

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2433956C2 (ru) * 2006-05-04 2011-11-20 Краузе-Рем-Зюстеме Аг Способ получения магнетита
RU2542177C1 (ru) * 2013-10-24 2015-02-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ переработки красного шлама
CN105331799A (zh) * 2015-10-20 2016-02-17 山东建筑大学 一种拜耳法赤泥脱碱磁化一体化焙烧方法
RU2683149C1 (ru) * 2018-05-22 2019-03-26 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения магнетита

Similar Documents

Publication Publication Date Title
EP1097247B1 (en) A method for isolation and production of magnesium based products
Matjie et al. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal
RU2579843C2 (ru) Способы обработки красного шлама
RU2633579C2 (ru) Способы обработки летучей золы
RU2389682C2 (ru) Способ восстановления кремнезема и глинозема из летучей угольной золы
RU2554136C2 (ru) Способ получения глинозема
Pan et al. Pre-desilication and digestion of gibbsitic bauxite with lime in sodium aluminate liquor
Loginova et al. Investigation into the question of complex processing of bauxites of the srednetimanskoe deposit
WO2013143335A1 (zh) 碱法提取粉煤灰中氧化铝的方法
JP6707466B2 (ja) 硫黄回収を伴う選択的な希土類抽出を行う系および方法
CA1191698A (en) Treatment of aluminous materials
RU2683149C1 (ru) Способ получения магнетита
RU2535254C1 (ru) Способ комплексной переработки серпентин-хромитового рудного сырья
RU2750429C1 (ru) Способ получения магнетита
RU2643675C1 (ru) Способ переработки отработанной теплоизоляционной футеровки алюминиевого электролизера
CN113697834A (zh) 提钛渣制备弗里德尔盐的方法和弗里德尔盐
CN110606610B (zh) 一种氨法循环处理金属氯化盐废液的方法
JP2007137716A (ja) ゼオライトの製造方法
Murayama et al. Synthesis of hydrotalcite-like materials from various wastes in aluminum regeneration process
RU2202516C1 (ru) Способ получения оксида алюминия
RU2494965C1 (ru) Способ переработки бокситов на глинозем
RU2198842C2 (ru) Способ получения оксида магния
RU2803472C1 (ru) Способ переработки красных шламов глиноземного производства
RU2572119C1 (ru) Способ переработки алюминийсодержащего сырья
RU2232716C1 (ru) Способ переработки бокситов на глинозем