RU2684329C1 - Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования - Google Patents

Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования Download PDF

Info

Publication number
RU2684329C1
RU2684329C1 RU2018133122A RU2018133122A RU2684329C1 RU 2684329 C1 RU2684329 C1 RU 2684329C1 RU 2018133122 A RU2018133122 A RU 2018133122A RU 2018133122 A RU2018133122 A RU 2018133122A RU 2684329 C1 RU2684329 C1 RU 2684329C1
Authority
RU
Russia
Prior art keywords
mol
mixture
difluorobenzophenone
phenolphthalein
copolyester
Prior art date
Application number
RU2018133122A
Other languages
English (en)
Inventor
Ауес Ахмедович Беев
Светлана Юрьевна Хаширова
Валерий Аюбович Гучинов
Азамат Ладинович Слонов
Original Assignee
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ filed Critical Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority to RU2018133122A priority Critical patent/RU2684329C1/ru
Application granted granted Critical
Publication of RU2684329C1 publication Critical patent/RU2684329C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyethers (AREA)

Abstract

Настоящее изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов. Описан способ капсулирования ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов, полученных в результате синтеза смеси компонентов в соотношении: 0,021-0,035 моль дифенилолпропана и 0,035 моль 4,4'-дифторбензофенона; или смеси 0,021-0,035 моль дифенилолпропана, 0,035 моль 4,4'-дифторбензофенона и 0,00875-0,0105 моль 4,4'-диоксидифенила; или смеси 0,014-0,035 моль фенолфталеина и 0,035 моль 4,4'-дифторбензофенона; или смеси 0,014-0,035 моль фенолфталеина, 0,00875-0,0105 моль 4,4'-диоксидифенила и 0,035 моль 4,4'-дифторбензофенона; или смеси 0,021-0,035 моль дифенилолпропана, 0,014-0,035 моль фенолфталеина и 0,035 моль 4,4'-дифторбензофенона, при этом в каждом случае в присутствии 0,0455 моль карбоната калия, 90 мл N,N-диметилацетамида и 0,00764 г (0,1 мас.% от массы 4,4'-дифторбензофенона) наноуглерода марки GNC, характеризующийся тем, что осуществляют капсулирование непрерывным процессом путём обработки растворов полиэфиров в хлорированном органическом растворителе водным раствором желатина, пектина яблочного или смеси желатина, пектина яблочного и в хлороформе, причем при ступенчатом подъеме температуры от 20 до 65°С проводится отгонка и регенерация хлорированного органического растворителя при температурах 55±5°С, проводят разбавление реакционной смеси водой при 40±5°С, причем полученный материал имеет сферическую форму с диаметрами частиц от 27 до 165 мкм. Технический результат – экономически выгодный способ получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов, являющихся неслипающимися, сыпучими, не дающими пыли, легко перерабатываемыми методом литья и экструзии, обладающими более высокой насыпной плотностью. 1 табл., 15 пр.

Description

Изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов, используемых в качестве термо- и теплостойких конструкционных полимерных материалов и 3D печати. Предлагаемые капсулированные ароматические полиэфирэфир- и сополиэфирэфиркетоны представляют собой соединения формул:
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона;
II - сополиэфирэфиркетон на основе дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;
III - полиэфирэфиркетон на основе фенолфталеина и 4,4'-дифторбензофенона;
IV - сополиэфирэфиркетон на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;
V - сополиэфирэфиркетон на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона.
Из-за специфических особенностей работы 3D-принтеров при выращивании полимерных изделий, требуются сферические порошки (гранулы) определенных размеров различных полимеров органической природы.
Наиболее часто применяются порошки полиэфиров с размерами частиц 10-100 мкм. Как правило, компании-производители 3D-принтеров рекомендуют работать с определенным набором полимеров, которые поставляются самой компанией.
В соответствии с патентами ФРГ №3700808, Японии №61-176627, РФ RU 2427591, ФРГ №3901072 и РФ RU 2470956 получены ароматические полиэфиркетоны на основе дифенилолпропана, фенолфтфлеина, других диолов и представлены способы их получения. Недостатками этих полиэфиров являются сложность, многостадийность процессов синтеза. Кроме этого, полиэфирэфиркетоны имеют форму хлопьев, волокон, или частиц неопределенной формы с большими размерами (от 200 мкм до 1-2 мм). Это делает их непригодными к использованию в 3D печати.
Наиболее близким по технической сущности и достигаемому эффекту к предлагаемой выступает патент на изобретение США US 7217780, описывающий "Полиэфиркетоны и способ их получения". Недостатками полиэфиркетонов по патенту США №7217780 являются сложность, многостадийность процессов синтеза. Кроме этого, по описанию патента, получают частицы полиэфиркетона размерами от 18 до 50 мкм, но не приводятся данные об их формах.
Задачей настоящего изобретения является синтез полиэфирэфиркетонов и сополиэфирэфиркетонов, а так же разработка упрощенного и экономически выгодного за счет меньшего числа используемых компонентов способа получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов сферической формы.
Поставленная задача достигается тем, что проводится синтез поли- и сополиэфиркетонов ниже приводимых строений:
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона;
II - сополиэфирэфиркетон на основе дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;
III - полиэфирэфиркетон на основе фенолфталеина и 4,4'-дифторбензофенона;
IV - сополиэфирэфиркетон на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;
V - сополиэфирэфиркетон на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона в присутствии наноуглерода марки GNC (глобулярный наноуглерод) и их последующее капсулирование непрерывным процессом, без стадий высаждения полимеров из раствора, сушки и механического измельчения, путем обработки растворов полиэфиров в хлорированных органических растворителях, предпочтительно в хлороформе водными растворами желатина, пектина, или смеси желатина и пектина, разбавлении реакционной смеси водой, причем количественное соотношение компонентов реакции синтеза соответствует:
дифенилолпропан 0,021-0,035 (моль);
4,4'-дифторбензофенон 0,035 (моль);
4,4'-диоксидифенил 0,00875-0,0105 (моль);
фенолфталеин 0,014-0,035 (моль);
карбонат калия 0,0455 (моль);
N,N-диметилацетамид 90 (мл);
наноуглерод марки GNC 0,1 масс. % от массы 4,4'-дифторбензофенона.
Изобретение иллюстрируется следующими примерами.
Пример 1. Получение капсулированного ароматического полиэфирэфиркетона I на основе дифенилолпропана и 4,4'-дифторбензофенона.
В трехгорловую колбу, снабженную мешалкой, приспособлением для ввода инертного газа и усовершенствованной ловушкой Дина-Старка (позволяет следить за температурой отгоняемых паров), загружают 8,0 г (0,035 моль) дифенилолпропана, 7,64 г (0,035 моль) 4,4'-дифторбензофенона, 6,3 г (0,0455 моль) карбоната калия, 0,00764 г (0,1 масс. % от массы 4,4'-дифторбензофенона) наноуглерода марки GNC, 90 мл N,N-диметилацетамида (ДМАА). Включают подачу газообразного азота. Температуру поднимают до 170°C, отгоняя воду в виде азеотропной смеси с ДМАА. После полной отгонки воды, температура отгоняющихся паров принимает постоянное значение, выдерживают 30 минут, и полностью отгоняют растворитель. Охлаждают содержимое колбы до 50°C и приливают 120 мл хлороформа. После растворения полимера, раствор охлаждают до комнатной температуры, отфильтровывают нерастворимые неорганические соли. Фильтрат отмывают от остатка солей дистиллированной водой 3 раза по 400 мл. Полученный раствор полиэфирэфиркетона помещают в колбу с подсоединенным прямым холодильником, приливают 500 мл 0,5%-го раствора желатина, включают мешалку и выдерживают при 20°C в течение 0,5 часа. Поднимают температуру до 35°C и выдерживают 0,5 часа. Далее повышают температуру до 50°C и выдерживают 0,5 часа. Затем, нагревают до 65°C и выдерживают при этой температуре в течение 1,5 часов. Добавленный хлороформ отгоняют при температуре 55±5°C, и его можно использовать неоднократно для последующих процессов микрокапсулирования. Затем отключают нагревание, содержимое колбы охлаждают до 45±5°C, разбавляют 250 мл дистиллированной воды при температуре 40±5°C. Осадок с колбы отфильтровывают на воронке Бюхнера с колбой Бунзена, промывают на фильтре 1000 мл воды и сушат при 75°C 1 час, при 100°C - 2 часа, при 150°C - 3 часа. Фильтрат отправляют на регенерацию желатина. Получают 13,8 г (97%) порошкообразного капсулированного полиэфирэфиркетона I. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона I даны в таблице 1. Частицы порошка являются сыпучими, не слипаются, при переработке не образуют пыль. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы со средним диаметром 60-92 мкм.
Пример 2. Капсулирование и выделение продукта проводят по примеру 1, только вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 12,1 г (85%) порошка капсулированного полиэфирэфиркетона I. Некоторые характеристики капсулированнного ароматического полиэфирэфиркетона I даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 42-85 мкм.
Пример 3. Капсулирование и выделение продукта проводят по примеру 1, только вместо чистого желатина берут смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 12,4 г (87%) порошка капсулированного полиэфирэфиркетона I. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона I даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 31-94 мкм.
Пример 4. Получение капсулированного ароматического сополиэфирэфиркетона II из дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона.
Синтез, капсулирование и выделение продукта проводят по примеру 1, только на стадии синтеза сополиэфирэфиркетона II берут 5,6 г (0,0245 моль) дифенилолпропана и 1,96 г (0,0105 моль) 4,4'-диоксидифенила. Получают 12,7 г (91%) порошка капсулированного сополиэфирэфиркетона II. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона II даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 62-101 мкм.
Пример 5. Синтез, капсулирование и выделение продукта проводят по примеру 1, только на стадии синтеза сополиэфирэфиркетона II берут 5,6 г (0,0245 моль) дифенилолпропана и 1,96 г (0,0105 моль) 4,4'-диоксидифенила, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 11,7 г (84%) порошка капсулированного полиэфирэфиркетона II. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона II даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 29-125 мкм.
Пример 6. Синтез, капсулирование и выделение продукта проводят по примеру 1, только на стадии синтеза сополиэфирэфиркетона II берут 5,6 г (0,0245 моль) дифенилолпропана и 1,96 г (0,0105 моль) 4,4'-диоксидифенила, а вместо чистого желатина берут смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 11,9 г (86%) порошка капсулированного полиэфирэфиркетона II. Приведенная вязкость полимера, определенная для 0,5%-го раствора в хлороформе равна 0,92 дл/г. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 27-115 мкм.
Пример 7. Получение капсулированного ароматического полиэфирэфиркетона III на основе фенолфталеина и 4,4'-дифторбензофенона.
Капсулирование и выделение продукта проводят по примеру 1, только вместо дифенилопропана берут 11,1 г (0,035 моль) фенолфталеина. Получают 16,6 г (96%) порошка капсулированного полиэфирэфиркетона III. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона III даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 47-136 мкм.
Пример 8. Синтез, капсулирование и выделение продукта проводят по примеру 1, только вместо дифенилопропана берут 11,1 г (0,035 моль) фенолфталеина, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 16,1 г (93%) порошка капсулированного полиэфирэфиркетона III. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона III даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 43-128 мкм.
Пример 9. Синтез, капсулирование и выделение продукта проводят по примеру 1, только вместо дифенилопропана берут 11,1 г (0,035 моль) фенолфталеина, а вместо желатина используют смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 15,743 г (91%) порошка капсулированного полиэфирэфиркетона III. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона III даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 35-118 мкм.
Пример 10. Получение капсулированного ароматического сополиэфирэфиркетона IV на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона.
Синтез, капсулирование и выделение продукта проводят по примеру 7, только загрузки реагентов равны: фенолфталеин - 8,36 г (0,02625 моль) и добавляют 4,4'-диоксидифенил 1,63 г (0,00875 моль). Получают 13,7 г (85%) порошка капсулированного сополиэфирэфиркетона IV. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона IV даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 41-87 мкм.
Пример 11. Синтез, капсулирование и выделение продукта проводят по примеру 10, только загрузки реагентов равны: фенолфталеин - 8,36 г (0,02625 моль), 4,4'-диоксидифенил 1,63 г (0,00875 моль), а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 13,4 г (83%) порошка капсулированного сополиэфирэфиркетона IV. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона IV даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 38-139 мкм.
Пример 12. Синтез, капсулирование и выделение продукта проводят по примеру 10, только загрузки реагентов равны: фенолфталеин - 8,36 г (0,02625 моль), 4,4'-диоксидифенил 1,63 г (0,00875 моль), а вместо желатина используют смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 12,9 г (80%) порошка капсулированного полиэфирэфиркетона IV. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона IV даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 56-106 мкм.
Пример 13. Получение капсулированного ароматического сополиэфирэфиркетона V на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона.
Синтез, капсулирование и выделение продукта проводят по примеру 1, только загрузки дифенолов следующие: дифенилолпропан - 4,8 г (0,021 моль), фенолфталеин - 4,5 г (0,014 моль). Получают 14,3 г (93%) порошка капсулированного сополиэфирэфиркетона V. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона V даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 40-78 мкм.
Пример 14. Синтез, капсулирование и выделение продукта проводят по примеру 1, только загрузки дифенолов следующие: дифенилолпропан - 4,8 г (0,021 моль), фенолфталеин - 4,5 г (0,014 моль), а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 13,8 г (90%) порошка капсулированного сополиэфирэфиркетона V. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона V даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 37-165 мкм.
Пример 15. Синтез, капсулирование и выделение продукта проводят по примеру 1, только загрузки дифенолов следующие: дифенилолпропан - 4,8 г (0,021 моль), фенолфталеин - 4,5 г (0,014 моль), а вместо желатина используют смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 15,1 г (98%) порошка капсулированного полиэфирэфиркетона V. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона V даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 54-127 мкм.
Figure 00000011
Термогравиметрический анализ (ТГА) проведен на воздухе на дериватографе «Perkin-Elmer» при скорости подъема температуры 5°C в минуту. Температуры стеклования (Тстекл.) определены методом дифференциальной сканирующей калориметрии («Perkin-Elmer»). Приведенные вязкости (Цприв) определены для 0,5%-ных растворов ароматических полиэфирэфир- и сополиэфирэфиркетонов в хлороформе. Удельная ударная вязкость (
Figure 00000012
с надрезом) определена на образцах с размерами 4*6*10 мм на приборе «Динстат» по ГОСТ 4647-2015 (Межгосударственный стандарт. Пластмассы. Метод определения ударной вязкости по Шарпи). Насыпная плотность капсулированного полимерного материала определялась в соответствии с ГОСТ Р 50485-93.
Представленные примеры показывают, что разработанный процесс получения микрокапсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов является простым, исключающим стадии выделения полимеров после их синтеза, из раствора, их сушку, измельчение. Способ в экономическом плане выгоден, используемые реагенты легко регенерируются и их можно многократно использовать. Сами капсулированные образцы ароматических полиэфирэфир- и сополиэфирэфиркетонов являются неслипающимися, сыпучими, не дающими пыли, легко перерабатываемыми методами литья и экструзии материалами с более высокой (минимум в 7-8 раз) насыпной плотностью, чем у некапсулированных аналогичных полимеров.

Claims (7)

  1. Способ капсулирования ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов, полученных в результате синтеза смеси компонентов в соотношении:
  2. 0,021-0,035 моль дифенилолпропана и 0,035 моль 4,4'-дифторбензофенона;
  3. или смеси 0,021-0,035 моль дифенилолпропана, 0,035 моль 4,4'-дифторбензофенона и 0,00875-0,0105 моль 4,4'-диоксидифенила;
  4. или смеси 0,014-0,035 моль фенолфталеина и 0,035 моль 4,4'-дифторбензофенона;
  5. или смеси 0,014-0,035 моль фенолфталеина, 0,00875-0,0105 моль 4,4'-диоксидифенила и 0,035 моль 4,4'-дифторбензофенона;
  6. или смеси 0,021-0,035 моль дифенилолпропана, 0,014-0,035 моль фенолфталеина и 0,035 моль 4,4'-дифторбензофенона,
  7. при этом в каждом случае в присутствии 0,0455 моль карбоната калия, 90 мл N,N-диметилацетамида и 0,00764 г (0,1 мас.% от массы 4,4'-дифторбензофенона) наноуглерода марки GNC, характеризующийся тем, что осуществляют капсулирование непрерывным процессом путём обработки растворов полиэфиров в хлорированном органическом растворителе водным раствором желатина, пектина яблочного или смеси желатина, пектина яблочного и в хлороформе, причем при ступенчатом подъеме температуры от 20 до 65°С проводится отгонка и регенерация хлорированного органического растворителя при температурах 55±5°С, проводят разбавление реакционной смеси водой при 40±5°С, причем полученный материал имеет сферическую форму с диаметрами частиц от 27 до 165 мкм.
RU2018133122A 2018-09-18 2018-09-18 Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования RU2684329C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018133122A RU2684329C1 (ru) 2018-09-18 2018-09-18 Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018133122A RU2684329C1 (ru) 2018-09-18 2018-09-18 Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Publications (1)

Publication Number Publication Date
RU2684329C1 true RU2684329C1 (ru) 2019-04-08

Family

ID=66090087

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018133122A RU2684329C1 (ru) 2018-09-18 2018-09-18 Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Country Status (1)

Country Link
RU (1) RU2684329C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744894C1 (ru) * 2020-03-18 2021-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) Способ получения порошкообразных ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов
CN113952846A (zh) * 2021-10-14 2022-01-21 天津工业大学 耐热型两性离子化聚醚醚酮疏松纳滤膜及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2107542C1 (ru) * 1996-10-08 1998-03-27 Ивановский государственный университет Способ получения микрокапсул
US7217780B2 (en) * 2001-12-11 2007-05-15 Mitsui Chemicals, Inc. Polyether ketone and method of producing the same
RU2343169C2 (ru) * 2004-03-21 2009-01-10 Тойота Моторшпорт Гмбх Порошок для быстрого создания прототипа и способ его получения
RU2561586C1 (ru) * 2014-02-12 2015-08-27 Александр Александрович Кролевец Способ получения микрокапсул биопага-д в пектине
US20170291327A1 (en) * 2014-09-02 2017-10-12 Empire Technology Development Llc Feedstocks for additive manufacturing and methods for their preparation and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2107542C1 (ru) * 1996-10-08 1998-03-27 Ивановский государственный университет Способ получения микрокапсул
US7217780B2 (en) * 2001-12-11 2007-05-15 Mitsui Chemicals, Inc. Polyether ketone and method of producing the same
RU2343169C2 (ru) * 2004-03-21 2009-01-10 Тойота Моторшпорт Гмбх Порошок для быстрого создания прототипа и способ его получения
RU2561586C1 (ru) * 2014-02-12 2015-08-27 Александр Александрович Кролевец Способ получения микрокапсул биопага-д в пектине
US20170291327A1 (en) * 2014-09-02 2017-10-12 Empire Technology Development Llc Feedstocks for additive manufacturing and methods for their preparation and use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744894C1 (ru) * 2020-03-18 2021-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) Способ получения порошкообразных ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов
CN113952846A (zh) * 2021-10-14 2022-01-21 天津工业大学 耐热型两性离子化聚醚醚酮疏松纳滤膜及其制备方法和用途
CN113952846B (zh) * 2021-10-14 2024-01-26 天津工业大学 耐热型两性离子化聚醚醚酮疏松纳滤膜及其制备方法和用途

Similar Documents

Publication Publication Date Title
RU2670441C1 (ru) Способ получения капсулированного ароматического огнестойкого полиэфирэфиркетона
RU2684329C1 (ru) Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования
JP3995696B2 (ja) 芳香族縮合系高分子により被覆されたカーボンナノチューブ
Gu et al. Synthesis of novel epoxy-group modified phosphazene-containing nanotube and its reinforcing effect in epoxy resin
CN109071808B (zh) 包含填料的双酚m双邻苯二甲腈醚树脂共混物,以及制品
JP5405830B2 (ja) 電離放射線に安定な熱可塑性組成物、製造方法、およびそれから形成された物品
CN107189051B (zh) 一种二醇类小分子改性并接枝的pet成核添加剂制备方法及应用
JP2010248023A (ja) 表面修飾ナノダイヤモンド及びその製造法
Lee et al. Highly homogeneous carbon nanotube-polycaprolactone composites with various and controllable concentrations of ionically-modified-MWCNTs
CN108251107A (zh) 一种钴离子掺杂碳量子点的制备及得到的碳量子点与应用
US9718928B2 (en) Block copolymer and production method of the same
Bhushan et al. Multifunctional carbon dots as efficient fluorescent nanotags for tracking cells through successive generations
Satilmis et al. Fabrication of thermally crosslinked hydrolyzed polymers of intrinsic microporosity (HPIM)/polybenzoxazine electrospun nanofibrous membranes
JP2010254784A5 (ru)
CN109534322B (zh) 一种氨基化石墨烯量子点的制备方法及应用
Bai et al. Modification of liquid silicone rubber by octavinyl‐polyhedral oligosilsesquioxanes
RU2744894C1 (ru) Способ получения порошкообразных ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов
RU2691409C1 (ru) Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
RU2712181C1 (ru) Способ получения капсулированных полигидроксиэфиров и сополигидроксиэфиров
RU2712182C1 (ru) Способ получения капсулированных полигидроксиэфиров и сополигидроксиэфиров
CA3038501A1 (en) Phthalonitrile monomer modified with organophosphorus fragments, a method of producing thereof, a binder based thereon, and a prepreg
Mirmoeini et al. Synthesis and characterization of functionalized calix [4] arene derivatives and preparation of rigid polyurethane foams by the incorporation of calixarene
RU2707747C1 (ru) Способ получения капсулированного огнестойкого полигидроксиэфира
RU2493178C1 (ru) Ненасыщенные блок-сополиэфиркетоны
RU2669790C1 (ru) Способ получения ароматических сополиариленэфирсульфонов

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210211

Effective date: 20210211