RU2684087C1 - Применение сложного оксида лантана, молибдена и теллура - Google Patents

Применение сложного оксида лантана, молибдена и теллура Download PDF

Info

Publication number
RU2684087C1
RU2684087C1 RU2018127085A RU2018127085A RU2684087C1 RU 2684087 C1 RU2684087 C1 RU 2684087C1 RU 2018127085 A RU2018127085 A RU 2018127085A RU 2018127085 A RU2018127085 A RU 2018127085A RU 2684087 C1 RU2684087 C1 RU 2684087C1
Authority
RU
Russia
Prior art keywords
lanthanum
molybdenum
oxide
mote
compound
Prior art date
Application number
RU2018127085A
Other languages
English (en)
Inventor
Алексей Алексеевич Сибиркин
Ирина Геннадьевна Федотова
Станислав Андреевич Гаврин
Владислав Михайлович Горяев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority to RU2018127085A priority Critical patent/RU2684087C1/ru
Application granted granted Critical
Publication of RU2684087C1 publication Critical patent/RU2684087C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/004Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Glass Compositions (AREA)

Abstract

Изобретение относится к области химии и касается применения сложного оксида лантана, молибдена и теллура, имеющего химическую формулу LaMoTeO, для получения лантансодержащих теллуритно-молибдатных стекол простым и технологичным способом. LaMoTeOможет быть использован не только в качестве компонента шихты наряду с другими соединениями, но и в качестве шихты в индивидуальном состоянии. 3 ил., 1 табл., 3 пр.

Description

Заявляемое изобретение относится к области химии и касается нового применения сложного оксида лантана, молибдена и теллура для получения многокомпонентных лантансодержащих теллуритно-молибдатных стекол.
К настоящему времени известно единственное соединение, являющееся сложным оксидом лантана, молибдена и теллура состава La2MoTe3O12 (Inorganic Chemistry 44 (2005) 9314-9321). Указанное соединение может быть использовано в качестве компонента шихты для получения многокомпонентных теллуритных стекол.
Недостатком указанного соединения является то, что его состав не входит в область стеклования тройной системы TeO2-MoO3-La2O3. Поэтому соединение La2MoTe3O12 в индивидуальном состоянии не может быть использовано для получения лантансодержащих теллуритно-молибдатных стекол.
Известна шихта для получения теллуритно-молибдатных стекол, которая содержит смесь сложного оксида теллура и молибдена, сложного оксида теллура и лантана и сложного оксида лантана и молибдена (RU 2587199 С1, кл. С03С 6/00, G02B 6/00, опубл. 20.06.2016 г.). Например, шихта для получения стекла состава (TeO2)0.50(MoO3)0.25(LaO1.5)0.25 содержит 3.8454 г La2TeO6, 1.1767 г La2Mo2O9 и 7.1011 г Te2MoO7. Указанную смесь растирают в фарфоровой ступке и помещают в фарфоровый тигель, выполняют гомогенизирующее плавление шихты в муфельной печи, разогретой до 850°С, после чего расплав выливают в металлическую форму для отжига.
Получают образец стекла, характеризующийся коротковолновой границей пропускания 501 нм.
Недостатком указанной смеси является ее многокомпонентность, а именно, необходимость включения в исходную шихту нескольких сложных оксидов, что требует наличия, по крайней мере, трех исходных компонентов в фазово чистом состоянии и свободных от поглощающих излучение примесей. Описанные в прототипе сложные оксиды не являются товарными продуктами, поэтому синтезу стекла по прототипу предшествует стадия получения как минимум трех исходных компонентов.
В задачу изобретения положено новое применение нового сложного оксида лантана, молибдена и теллура для синтеза многокомпонентных лантансодержащих теллуритно-молибдатных стекол, который может быть использован не только в качестве компонента шихты наряду с другими соединениями, но и в качестве шихты в индивидуальном состоянии.
Техническим результатом от использования предлагаемого изобретения является упрощение способа получения лантансодержащих теллуритно-молибдатных стекол.
Поставленная задача достигается тем, что сложный оксид лантана, молибдена и теллура, имеющего химическую формулу La2MoTe6O18, применяют для получения лантансодержащих теллуритно-молибдатных стекол.
На фиг. 1 представлена порошковая дифрактограмма соединения La2MoTe6O18.
На фиг. 2 представлена рентгенограмма измельченного в порошок стекла, полученного охлаждением расплава сложного оксида La2MoTe6Oi8.
На фиг. 3 представлена рентгенограмма измельченного в порошок стекла состава 58TeO2 - 29MoO3 - 13LaO1.5, полученного из смеси сложного оксида La2MoTe6O18, оксида молибдена MoO3 и оксида теллура TeO2.
В таблице 1 представлены данные порошковой дифрактографии соединения La2MoTe6O18.
Соединение La2MoTe6O18 в кристаллическом состоянии получают из гексагидрата нитрата лантана La(NO3)3 ⋅ 6H2O, тетрагидрата гептамолибдата аммония (NH4)6Mo7O24 ⋅ 4H2O и ортотеллуровой кислоты H6TeO6 по реакции:
Figure 00000001
Для синтеза соединения La2MoTe6O18 отбирают навески исходных соединений La(NO3)3 ⋅ 6H2O, (NH4)6Mo7O24 ⋅ 4H2O, H6TeO6 таких масс, чтобы выполнялось атомное соотношение La : Mo : Те равное 2:1:6. Далее навески по отдельности растворяют в дистиллированной воде, смешивают полученные растворы. При смешивании растворов выпадает осадок. Осадок и окружающий его раствор выпаривают досуха, не разделяя их. Полученный сухой остаток измельчают и прокаливают при температуре не менее 600°С. После прокаливания соединение представляет собой порошок белого цвета.
Если при синтезе соединения La2MoTe6O18 нарушить атомное соотношение La : Mo : Те, равное 2:1:6, и изменить содержание любого из компонентов, то в результате прокаливания получается смесь веществ. Кроме синтезируемого La2MoTe6O18, в системе будет присутствовать оксид того макрокомпонента, содержание которого было превышено. Температура прокаливания может превышать 600°С, но это не улучшает качество продукта синтеза и поэтому не целесообразно. При температурах ниже 600°С целевая твердая фаза не образуется либо содержит примеси исходных веществ или промежуточных продуктов реакции либо не обладает достаточной кристалличностью.
В дифрактограмме порошка соединения La2MoTe6O18 (фиг. 1) отсутствуют рефлексы, относящиеся к исходным веществам La(NO3)3 ⋅ 6H2O, (NH4)6Mo7O24 ⋅ 4H2O, Н6ТеО6 и продуктам их термического разложения La2O3, MoO3, TeO2, что свидетельствует о том, что в системе произошло химическое взаимодействие и образование нового химического соединения, обладающего собственной характерной кристаллической структурой.
Состав полученного соединения входит в область стеклообразования тройной системы TeO2 - MoO3 - La2O3.
Более высокое содержание теллура в полученном соединении по сравнению с известным соединением La2MoTe3O12 обеспечивает возможность использования полученного соединения не только в качестве компонента шихты, наряду с другими соединениями, но и в качестве единственного вещества в составе шихты для синтеза лантансодержащих теллуритно-молибдатных стекол.
Ниже представлен пример конкретного осуществления предлагаемого изобретения.
Пример. 1.
Гексагидрат нитрата лантана массой 3.4635 г, тетрагидрат гептамолибдата аммония массой 0.7056 г, ортотеллуровую кислоту массой 5.5246 г растворяли в воде, растворы смешивали, и эту смесь выпаривали досуха на воздухе на электрической плитке. Сухой остаток измельчали в фарфоровой ступке, помещали в фарфоровый тигель и прокаливали при 600°С в течение 5 часов. Дифрактограмму полученного соединения регистрировали на дифрактометре Shimadzu LabX XRD-6000. Дифрактограмма полученного соединения совпадает с дифрактограммой, приведенной в таблице 1.
Пример 2.
Шихту, представляющую собой навеску сложного оксида La2MoTe6O18 массой 3.5929 г, помещали в фарфоровый тигель и подвергали плавлению в муфельной печи при 850°С. Полученный расплав выливали в стальную форму, разогретую до 350°С, и медленно охлаждали до комнатной температуры. После охлаждения расплав представлял собой стекло состава 67ТеО2-11МоО3-22LaO1.5. Стеклообразное состояние подтверждено методом рентгенофазового анализа (фиг. 2).
Пример 3.
Для получения стекла необходимого состава в шихту, кроме соединения La2MoTe6O18 добавляли рассчитанные массы бинарных оксидов. Так, для синтеза 5.0000 г стекла состава 58TeO2-29МоО3-13LaO1.5 смешивали навески сложного оксида La2MoTe6O18 массой 2.9789 г, оксида молибдена MoO3 массой 1.0479 г и оксида теллура TeO2 массой 0.9734 г. Далее полученную смесь помещали в фарфоровый тигель и подвергали плавлению в муфельной печи при 850°С. Полученный расплав выливали в стальную форму, разогретую до 350°С, и медленно охлаждали до комнатной температуры. После охлаждения полученный твердый образец представляет собой стекло. Стеклообразное состояние подтверждено методом рентгенофазового анализа (фиг. 3).
Figure 00000002

Claims (1)

  1. Применение сложного оксида лантана, молибдена и теллура, имеющего химическую формулу La2MoTe6O18, для получения лантансодержащих теллуритно-молибдатных стекол.
RU2018127085A 2018-07-23 2018-07-23 Применение сложного оксида лантана, молибдена и теллура RU2684087C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018127085A RU2684087C1 (ru) 2018-07-23 2018-07-23 Применение сложного оксида лантана, молибдена и теллура

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018127085A RU2684087C1 (ru) 2018-07-23 2018-07-23 Применение сложного оксида лантана, молибдена и теллура

Publications (1)

Publication Number Publication Date
RU2684087C1 true RU2684087C1 (ru) 2019-04-03

Family

ID=66089672

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018127085A RU2684087C1 (ru) 2018-07-23 2018-07-23 Применение сложного оксида лантана, молибдена и теллура

Country Status (1)

Country Link
RU (1) RU2684087C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484026C1 (ru) * 2011-12-27 2013-06-10 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения особо чистых теллуритно-молибдатных стекол
RU2584482C1 (ru) * 2015-04-07 2016-05-20 федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" Шихта для получения теллуритных стекол (варианты)
RU2584474C1 (ru) * 2015-04-07 2016-05-20 федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" Способ получения многокомпонентных теллуритных стекол

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484026C1 (ru) * 2011-12-27 2013-06-10 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения особо чистых теллуритно-молибдатных стекол
RU2584482C1 (ru) * 2015-04-07 2016-05-20 федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" Шихта для получения теллуритных стекол (варианты)
RU2584474C1 (ru) * 2015-04-07 2016-05-20 федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" Способ получения многокомпонентных теллуритных стекол

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUE-LING SHEN et al., Luminescent Lanthanide Selenites and Tellurites Decorated by MoO 4 Tetrahedra or MoO 6 Octahedra: Nd 2 MoSe 2 O 10 , Gd 2 MoTe 3 O 12 , La 2 MoTe 3 O 12 and Nd 2 MoTe 3 O 12 , "Inorganic Chemistry", 2005, 44, 9314-9321. *

Similar Documents

Publication Publication Date Title
KR102028362B1 (ko) 가넷형 산화물 고체 전해질의 제조 방법
Hasegawa et al. Phase relations and crystallization of glass in the system PbO-GeO 2
Kalay et al. Crystallization kinetics and phase transformation mechanisms in Cu 56 Zr 44 glassy alloy
Vakalova et al. Solid-phase synthesis of wollastonite in natural and technogenic siliceous stock mixtures with varying levels of calcium carbonate component
Ray et al. Synthesis of sodium β and β ″alumina
Gasek et al. Characteristic of synthesis and transformations of hardystonite in willemite glass-crystalline glaze based on thermal analysis
Yu et al. Mineral transition and formation mechanism of calcium aluminate compounds in CaO-Al 2 O 3-Na 2 O system during high-temperature sintering
RU2684087C1 (ru) Применение сложного оксида лантана, молибдена и теллура
RU2683834C1 (ru) Сложный оксид лантана, молибдена и теллура
Hoffmann et al. Structural models for intergrowth structures in the phase system Al2O3–TiO2
RU2683833C1 (ru) Способ получения сложного оксида лантана, молибдена и теллура
RU2665626C1 (ru) СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТА ВИСМУТА Bi12SiO20 МЕТОДОМ КРИСТАЛЛИЗАЦИИ В ТИГЛЕ
Araujo et al. Residual glass and crystalline phases in a barium disilicate glass–ceramic
RU2713841C1 (ru) ПРИМЕНЕНИЕ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА Pr2MoTe4O14
RU2690812C1 (ru) СЛОЖНЫЙ ОКСИД ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА Pr2Mo2Te2O13
RU2686941C1 (ru) ПРИМЕНЕНИЕ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА Pr2Mo2Te2O13
RU2687420C1 (ru) СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА Pr2MoTe4O14
Smirnova et al. Phase Formation in the MgO–B2O3–P2O5 System
Petrova et al. Triangulation in the Li2ZnP2O7–Na2ZnP2O7–K2ZnP2O7 System
RU2687419C1 (ru) СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА Pr2Mo2Te2O13
RU2724760C1 (ru) Способ получения германата-силиката висмута
Petrova et al. Phase relationships in the Na 2 ZnP 2 O 7–LiKZnP 2 O 7 system
Klepp et al. Über die Phase CrTe 3
Sycheva et al. Surface crystallization of glass based on blast furnace slags
RU2669677C1 (ru) Способ получения силиката висмута Bi12SiO20 методом литья