RU2683831C1 - Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов - Google Patents
Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов Download PDFInfo
- Publication number
- RU2683831C1 RU2683831C1 RU2017143168A RU2017143168A RU2683831C1 RU 2683831 C1 RU2683831 C1 RU 2683831C1 RU 2017143168 A RU2017143168 A RU 2017143168A RU 2017143168 A RU2017143168 A RU 2017143168A RU 2683831 C1 RU2683831 C1 RU 2683831C1
- Authority
- RU
- Russia
- Prior art keywords
- polyolefins
- oxo
- additive
- amount
- stearate
- Prior art date
Links
- 239000000654 additive Substances 0.000 title claims abstract description 104
- 230000000996 additive effect Effects 0.000 title claims abstract description 88
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000292 calcium oxide Substances 0.000 claims abstract description 89
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 89
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 239000004594 Masterbatch (MB) Substances 0.000 claims abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 150000007942 carboxylates Chemical class 0.000 claims abstract description 25
- -1 polyethylene Polymers 0.000 claims abstract description 23
- 238000006065 biodegradation reaction Methods 0.000 claims abstract description 18
- 239000004698 Polyethylene Substances 0.000 claims abstract description 16
- 229920000573 polyethylene Polymers 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 13
- 238000010521 absorption reaction Methods 0.000 claims abstract description 7
- 239000008187 granular material Substances 0.000 claims abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 5
- 239000010941 cobalt Substances 0.000 claims abstract description 5
- 239000004615 ingredient Substances 0.000 claims abstract description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- PEVZEFCZINKUCG-UHFFFAOYSA-L copper;octadecanoate Chemical class [Cu+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O PEVZEFCZINKUCG-UHFFFAOYSA-L 0.000 claims abstract 2
- 239000013538 functional additive Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 230000003244 pro-oxidative effect Effects 0.000 abstract description 43
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 14
- 238000005516 engineering process Methods 0.000 abstract description 7
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 150000002739 metals Chemical class 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 229920002988 biodegradable polymer Polymers 0.000 abstract description 2
- 239000004621 biodegradable polymer Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract 1
- 239000000835 fiber Substances 0.000 abstract 1
- 229940087373 calcium oxide Drugs 0.000 description 49
- JXSRRBVHLUJJFC-UHFFFAOYSA-N 7-amino-2-methylsulfanyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitrile Chemical compound N1=CC(C#N)=C(N)N2N=C(SC)N=C21 JXSRRBVHLUJJFC-UHFFFAOYSA-N 0.000 description 36
- FRVCGRDGKAINSV-UHFFFAOYSA-L iron(2+);octadecanoate Chemical compound [Fe+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O FRVCGRDGKAINSV-UHFFFAOYSA-L 0.000 description 36
- AMFIJXSMYBKJQV-UHFFFAOYSA-L cobalt(2+);octadecanoate Chemical compound [Co+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AMFIJXSMYBKJQV-UHFFFAOYSA-L 0.000 description 28
- 239000010949 copper Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- 229910052802 copper Inorganic materials 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000004743 Polypropylene Substances 0.000 description 9
- 229920005601 base polymer Polymers 0.000 description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical group [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000012467 final product Substances 0.000 description 6
- 229920001684 low density polyethylene Polymers 0.000 description 6
- 239000004702 low-density polyethylene Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000344 soap Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001237 Oxo Biodegradable Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- OFYFURKXMHQOGG-UHFFFAOYSA-J 2-ethylhexanoate;zirconium(4+) Chemical class [Zr+4].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O OFYFURKXMHQOGG-UHFFFAOYSA-J 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- QAEKNCDIHIGLFI-UHFFFAOYSA-L cobalt(2+);2-ethylhexanoate Chemical compound [Co+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O QAEKNCDIHIGLFI-UHFFFAOYSA-L 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical group [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/16—Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Изобретение относится к технологиям создания оксо- и биоразлагаемых полимерных материалов, в частности к добавкам, повышающим способность полиолефинов к оксо- и биоразложению (прооксидантам), и может быть использовано для создания материалов и изделий из них, способных подвергаться ускоренному оксо- и биоразложению в природных условиях. Изобретение относится к способу получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, включающему нанесение на инертный носитель карбоксилата металла переменной валентности или смеси карбоксилатов металлов переменной валентности для получения целевого компонента полифункциональной добавки с последующим получением мастербатча на основе полиолефина. В качестве карбоксилата металла переменной валентности используют стеараты кобальта, железа, меди либо их комбинацию. В качестве инертного носителя используют оксид кальция, способствующий влагопоглощению при переработке вторичных полиолефинов, в качестве полиолефиновой основы мастербатча используют полиэтилен, целевой компонент полифункциональной добавки готовят при следующем содержании ингредиентов, мас.%: карбоксилат металла переменной валентности 10-30, оксид кальция 70-90. Нанесение карбоксилата металла переменной валентности на инертный носитель происходит путем смешения в высокоскоростном смесителе в течение 1-2 минут, полученный целевой компонент полифункциональной добавки смешивают с полиолефиновой основой мастербатча в высокоскоростном смесителе в соотношении (40-60):(40-60) мас.% и экструдируют в двухшнековом экструдере с гранулируюшим устройством с получением гранул полифункциональной добавки диаметром 2-8 мм. Технический результат - получение полифункциональной добавки, придающей изделиям способность к ускоренному оксо- и биоразложению, а также выполняющей функцию влагопоглотиля при производстве изделий из вторичных полиолефинов, упрощение технологии получения прооксиданта к полиолефинам, повышение экологичности производства, снижение стоимости продукта. 3 табл., 37 пр.
Description
Изобретение относится к технологиям создания оксо- и биоразлагаемых полимерных материалов, в частности к добавкам, повышающим способность полиолефинов к оксо- и биоразложению (прооксидантам), и может быть использовано для создания материалов и изделий из них, способных подвергаться ускоренному оксо- и биоразложению в природных условиях.
Создание оксо- и биоразлагаемых полимеров на сегодняшний день является одним из возможных путей борьбы с засорением окружающей среды полимерными отходами. Такие материалы способны относительно быстро подвергаться деструкции под действием природных факторов (температура, УФ-излучение, влажность и т.д.) с вовлечением продуктов деструкции в круговорот веществ.
Известны технологические приемы получения полимерных материалов, в которых для повышения способности к биоразложению в полиолефины добавляют природные наполнители, например крахмал, целлюлозу, лузгу, жом и др. [RU 2480495 C2, опубл. 27.04.2013, RU 2446191 C1, опубл. 27.03.2012, RU 2408621 C2, опубл. 10.01.2011, RU 2363711 C1, опубл. 10.08.2009 и др.]. На практике введение в полиолефин природных полисахаридов затруднено высокими температурами переработки и высокой вязкостью смесей, что требует введения в композиции дополнительных модифицирующих добавок.
Применение добавок-прооксидантов, содержащих в своем составе инициатор разрушения полимерных цепей (чаще всего – соли металлов переменной валентности), и полученных в виде мастербатчей на полиолефиновой основе, наиболее удобно с технологической точки зрения, т.к. конечный продукт (пленки, пакеты, контейнеры и прочее) можно производить без дополнительных стадий обработки, путем простого смешения мастербатча и базового полимера.
Добавки – прооксиданты на рынке оксибиоразлагаемых материалов представлены в основном зарубежными продуктами, как, например, добавка D2W®, выпускаемая фирмой Symphony Environmental Technologies plc., присутствует на рынке многих стран для производства изделий из полиэтилена и полипропилена, известно, что в качестве активатора деструкции полимерных цепей она содержит соли переходных металлов (кобальта, железа, марганца, меди, цинка, церия, никеля). Оксо-биоразлагающая добавка фирмы EPI ENVIRONMENTAL PRODUCTS INC содержит стеарат кобальта, лимонную кислоту и дополнительно может включать оксид кальция [US 5854304 A, опубл. 29.12.1998].
Известен способ [Пат. CA 2821357 A1, опубл. 05.07.2012] получения композиционной добавки, не содержащей природных компонентов, сообщающей полиолефиновым материалам свойство биоразлагаемости после окончания срока их полезного использования. Добавка включает прооксидант (15-30 масс. %), в качестве которого используют один или несколько стеаратов металлов, выбранных из группы, включающей марганец, железо и кобальт, один или несколько фенольных антиоксидантов (10-20 масс. %), наполнитель - карбонат кальция и/или диоксид титана и полимерную основу (полиэтилен или полипропилен). Добавку вводят в базовый полимер в количестве 1-5 масс. %. Недостатком данного способа является применение только стеаратов металлов переменной валентности, что сужает область использования изобретения.
Известен способ [Пат. RU 2336286, опубл. 20.10.2008] получения добавки для создания термопластов, характеризующихся контролируемым разложением и очень светлой окраской, в котором соль металла в его наиболее высокой устойчивой степени окисления подвергают взаимодействию с С8-С24 жирной кислотой либо производным С8-С24 жирной кислоты в условиях образования жирорастворимого соединения металла и, по меньшей мере, одного летучего продукта реакции в процессе, в котором обычно используемый окислитель обеспечивает сохранение у всего металла, присутствующего в конечном продукте, его наиболее высокой степени окисления. Способ предусматривает промывку жирорастворимого соединения металла с использованием водного раствора пероксида водорода с целью удаления любых непрореагировавших количеств соли металла, далее диспергацию в водном разбавленном растворе пероксида водорода при 35-55°С в течение от 1 до 3 ч, промывку с использованием воды и высушивание в конвекционной сушилке. Также способ предусматривает добавление некоторого количества воска для связывания продукта в твердые комки, которые не вызывают пылеобразования. Недостатком описанного способа является сложность технологического процесса, необходимость использования дополнительных стадий диспергации, промывки, просушки и окамкования, и как следствие удорожание конечного продукта.
Известна добавка для ускорения биоразложения полиолефинов [US 3797690 А, опубл. 19.03.1974], содержащая 2-этилгексаноат кобальта. Добавку наносят на поверхность полимера в составе покрытия, которое может содержать или быть смешано с другими компонентами. Для проявления оксо-разлагающего действия добавка должна проникнуть из наружного слоя в толщу полимера, способствуя ускорению его разрушения под воздействием природных факторов. Недостатком является сложность механизма оксобиоразложения.
Известна фотодеградирующая композиция на основе полиолефинов (полиэтилен высокой или низкой плотности, полипропилен, сополимеры этилена с полипропиленом, высшими олефинами, винилацетатом и др.), содержащая в качестве фотосенсибилизирующей добавки алкилокси-силилферроцен [RU 94023952, А, опубл. 27.05.1997]. Недостатком является наличие в составе композиции производного ферроцена, что ограничивает использование композиции невозможностью изготовления материалов, контактирующих с человеком.
Известна светоразрушаемая полимерная композиция [JP 2007177083 А, опубл. 12.07.2007], содержащая смесь полиэтилена и полипропилена, а в качестве добавки - 40-65 масс. % карбоната кальция, 3-5 масс. % стеарина и 1-3 масс. % стеариновой кислоты. Недостатком является отсутствие в составе композиции металлов переменной валентности – наиболее высокоэффективных прооксидантов.
Наиболее близким по технической сущности и достигаемому эффекту является способ получения [RU 2540273, опубл. 10.02.2015] оксо-разлагающей добавкаи к полиолефинам, которая включает карбоксилаты металлов или смеси карбоксилатов металлов, нанесенные на инертный носитель, в качестве карбоксилатов металлов используют, например, 2-этилгексаноаты цинка и циркония, в качестве инертного носителя может быть использован карбонат кальция.
Недостатком указанного способа является то, что процесс нанесения карбоксилата металла на инертный носитель проводится в среде органического растворителя (уайт-спирит), пары которого обладают выраженным токсическим эффектом, а необходимость последующей сушки и измельчения усложняет и удорожает процесс, кроме того, применение дорогостоящего 2-этилгексаноата циркония также приводит к удорожанию продукта.
Технической задачей изобретения является разработка способа получения полифункциональной добавки, придающей изделиям способность к ускоренному оксо-и биоразложению, а также выполняющей функцию влагопоглотиля при производстве изделий из вторичных полиолефинов за счет наличия в составе оксида кальция, кроме того, в задачу изобретения входит упрощение технологии получения прооксиданта к полиолефинам, повышение экологичности производства, снижение стоимости и повышение качества продукта.
Техническая задача изобретения достигается тем, что в способе получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, включающем нанесение на инертный носитель карбоксилата металла переменной валентности или смеси карбоксилатов металлов переменной валентности для получения целевого компонента полифункциональной добавки с последующим получением мастербатча на основе полиолефина, новым является то, что в качестве карбоксилата металла переменной валентности используют карбоксилаты кобальта, железа, меди, либо их комбинацию, в том числе полученные на основе жирных кислот, выделенных из соапстоков, в качестве инертного носителя используют оксид кальция, способствующий влагопоглощению при переработке вторичных полиолефинов, в качестве полиолефиновой основы мастербатча используют полиэтилен, целевой компонент полифункциональной добавки готовят при следующем содержании ингредиентов, мас.%:
- карбоксилат металла переменной валентности – 10 ÷ 30,
- оксид кальция – 70 ÷ 90,
нанесение карбоксилата металла переменной валентности на инертный носитель происходит путем прямого смешения в высокоскоростном смесителе в течении 1 ÷ 2 минут, полученный целевой компонент полифункциональной добавки смешивают с полиолефиновой основой мастербатча в соотношении (40 ÷ 60) : (40 ÷ 60) мас.% и экструдируют в двухшнековом экструдере с гранулируюшим устройством с получением гранул полифункциональной добавки диаметром 2 ÷ 8 мм.
Технический результат изобретения заключается в разработке способа получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, а также выполняющей функцию влагопоглотиля при производстве изделий из вторичных полиолефинов за счет наличия в составе оксида кальция, упрощении технологии получения прооксиданта к полиолефинам, повышении экологичности производства, снижении стоимости и повышении качества продукта.
Введение в целевой компонент полифункциональной добавки карбоксилата металла переменной валентности в количестве менее 10 мас.% не рекомендуется вследствие ухудшения прооксидантной способности добавки.
Введение в целевой компонент полифункциональной добавки карбоксилата металла переменной валентности в количестве более 30 мас.% не рекомендуется вследствие снижения технологических свойств добавки, а именно вследствие снижения вязкости расплава при получении мастербатча, способствующего дефектам продукта (разрыв стренг, порообразование и т.д.).
Введение в целевой компонент полифункциональной добавки оксида кальция менее 70 мас.% не рекомендуется вследствие снижения влагопоглотительной способности добавки при переработке вторичных полиолефинов.
Оптимальное соотношение ингредиентов целевого компонента полифункциональной добавки рекомендуется принимать 80 : 20 мас.%, что обеспечивает и влагопоглотительную, и прооксидантную способность добавки, а также способствует хорошей перерабатываемости мастербатча в современном высокоскоростном оборудовании.
Введение целевого компонента полифункциональной добавки в полиолефиновую основу мастербатча в количестве менее 40 мас.% не рекомендуется вследствие снижения функциональности продукта, то есть снижения прооксидантной и влагопоглотительной способности добавки.
Введение целевого компонента полифункциональной добавки в полиолефиновую основу мастербатча в количестве более 60 мас.% не рекомендуется вследствие увеличения вязкости мастербатча (связанное с увеличением содержания в составе оксида кальция), что влечет повышение нагрузки на перерабатывающее оборудование, а также способствует «забиванию» сеток и фильер.
Оптимальное соотношение ингредиентов полифункциональной добавки (целевой компонент : полиолефиновая основа) рекомендуется принимать 50 : 50 мас.%, что обеспечивает функциональность продукта и хорошую перерабатываемость мастербатча.
Полифункциональную добавку, способствующую оксо- и биоразложению полиолефинов, рекомендуется вводить в состав материалов при изготовлении продукции целевого назначения (пленки, пакеты, контейнеры и прочее) в количестве 1 ÷ 3 мас.% в зависимости от требуемой скорости оксо- и биоразложения.
Применение в качестве инертного носителя оксида кальция улучшает технологический процесс переработки вторичных полиолефинов, так как способствует влагопоглощению и, как следствие, устранению дефектов, связанных с парообразованием в теле экструдера. Кроме того, применение оксида кальция способствует биоразложению полимерных материалов и изделий при ведении в них полифункциональной добавки за счет влагопоглощающей способности и способности к «вымыванию» кальция с последующим образованием пустот в полимерной матрице, инициирующих деструктивные процессы.
Применение карбоксилатов металлов переменной валентности, полученных на основе жирных кислот, выделенных из соапстоков, способствует снижению стоимости конечного продукта за счет использования вторичного сырья (соапсток – отход масложирового производства), а также повышает биодеструкционную способность конечного продукта за счет содержания в составе соапстоков биогенных элементов (прежде всего, фосфорных соединений).
Переработка полиолефиновой основы и целевого компонента полифункциональной добавки (нанесенного на оксид кальция карбоксилата металла переменной валентности) в двухшнековом экструдере позволяет получить гомогенную смесь с равномерным распределением активных компонентов в полимерной матрице.
В способе получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, используют:
- карбоксилаты металлов переменной валентности, полученные на основе жирных кислот, выделенных из соапстока светлых растительных масел (ТУ 10-10-04-02-80-91);
- оксид кальция (ГОСТ 8677-76 Реактивы. Кальция оксид. Технические условия),
- полиэтилен (ТУ 2211-145-05766801-2008), возможно применение полиэтилена различных марок, в зависимости от целевого назначения полифункциональной добавки.
Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, осуществляют следующим образом.
В смеситель загружают оксид кальция в виде порошка и карбоксилат металла переменной валентности (либо комбинацию нескольких карбоксилатов металлов переменной валентности) в виде крошки, в соотношении, масс.%, равном (70 ÷ 90) : (10 ÷ 30) соответственно, и перемешивают в течении 1 ÷ 2 минут. Далее к полученной смеси, являющейся целевым компонентом мастербатча, добавляют необходимое количество полиолефиновой основы мастербатча (полиэтилен) в соотношении, масс.%, «полиэтилен : целевой компонент» равном (40 ÷ 60) : (40 ÷ 60), и еще раз перемешивают в течении 1 ÷ 2 мин. Полученную смесь экструдируют в двухшнековом экструдере при температуре, соответствующей температуре переработки полиолефиновой основы мастербатча, с получением конечного продукта в виде гранул.
Способ поясняется следующими примерами.
Пример 1 (прототип)
Измельченный на шаровой мельнице карбонат кальция (размер частиц 70 - 90 нм) тщательно смешивают с раствором соли или смеси солей в уайт-спирите до получения гомогенной пастообразной массы. Полученную массу высушивают при температуре 90°С в течение 24 часов до полного удаления растворителя и измельчают до получения однородного рассыпчатого порошка (80- 100 нм).
Приготовление модельного мастербатча. Готовят модельный мастербатч, содержащий по 50 масс. % оксо-разлагающей добавки и полиолефиновой основы, которую выбирают в зависимости от температуры плавления базового полимера, для добавления к которому предназначен мастербатч. Для низкоплавкого полиэтилена используют мастербатч на основе полиэтилена, а для полимеров, содержащих полипропилен, может быть использован мастербатч на основе полиэтилена или полипропилена. Рассчитанное количество полимера расплавляют в лабораторном смесителе типа Брабендер (20 - 30 об/мин) при температуре, превышающей плавление полимера на 15 - 20°С, после чего в расплав вносят равное весовое количество добавки, приготовленной, как описано выше, и продолжают перемешивание в течение 6-10 мин до полной гомогенизации смеси. Материал охлаждают до комнатной температуры, механически измельчают до размера 2 - 3 мм и используют для приготовления пленок или для добавления в базовый полимер.
Приготовление базового полимера с добавкой мастербатча. В качестве базовых полимеров использованы ПЭНП марки 15803-020 или ПП марки 01130. Содержание мастербатча в базовом полимере 1-3 масс. %. Рассчитанное количество базового полимера расплавляют в лабораторном смесителе типа Брабендер (20-30 об/мин) при 140±2°С в случае ПЭНП или при 190±2°С в случае ПП, после чего в него вносят требуемое весовое количество мастербатча, приготовленного, как описано выше, и продолжают перемешивание до полной гомогенизации смеси (6-8 мин). Материал охлаждают до комнатной температуры, механически измельчают до размера частиц 2-3 мм и используют для приготовления пленок.
Приготовление полиолефиновых пленок. Образцы пленок толщиной 80 - 100 мкм получают методом экструзии с помощью экструдера со щелевой головкой при температуре плавления полимера.
Пример 2
В смеситель загружали 1,80 кг порошка оксида кальция и 0,20 кг стеарата кобальта и перемешивали в течении 1 минуты, затем добавляли 3,00 кг полиэтилена высокого давления (ПВД) и еще раз перемешивали в течении 1 минуты, полученную смесь экструдировали в двухшнековом экструдере при температуре 190 °С с получением полифункциональной добавки в виде гранул. Готовили полиэтиленовые пленки методом выдувной экструзии, содержащие 1 мас.% заявленной полифункциональной добавки, пленки подвергали ускоренному старению под действием УФ- излучения при температуре 25 ºС в течении 96 часов; показателями эффективности оксиразложения были выбраны максимальный предел прочности при растяжении и относительное удлинение при разрыве, испытания проводили по ГОСТ 11262-80.
Пример 3
Получали полифункциональную добавку аналогично примеру 2, но количество оксида кальция составляло 1,60 кг, количество стеарата кобальта составляло 0,40 кг.
Пример 4
Получали полифункциональную добавку аналогично примеру 2, но количество оксида кальция составляло 1,40 кг, количество стеарата кобальта составляло 0,60 кг.
Пример 5
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 1,80 кг, количество стеарата железа составляло 0,20 кг.
Пример 6
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 1,60 кг, количество стеарата железа составляло 0,40 кг.
Пример 7
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 1,40 кг, количество стеарата железа составляло 0,60 кг.
Пример 8
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 1,80 кг, количество стеарата меди составляло 0,20 кг.
Пример 9
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 1,60 кг, количество стеарата меди составляло 0,40 кг.
Пример 10
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 1,40 кг, количество стеарата меди составляло 0,60 кг.
Пример 11
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1) , при этом количество оксида кальция составляло 1,80 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,20 кг.
Пример 12
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), количество оксида кальция составляло 1,60 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,40 кг.
Пример 13
Получали полифункциональную добавку аналогично примеру 2, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), количество оксида кальция составляло 1,40 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,60 кг.
Результаты исследований прооксидантной способности добавок по примерам 2-13 представлены в таблице 1.
Пример 14
В смеситель загружали 2,25 кг порошка оксида кальция и 0,25 кг стеарата кобальта и перемешивали в течении 1 минуты, затем добавляли 2,50 кг полиэтилена высокого давления (ПВД) и еще раз перемешивали в течении 1 минуты, полученную смесь экструдировали в двухшнековом экструдере при температуре 190 °С с получением полифункциональной добавки в виде гранул. Готовили полиэтиленовые пленки методом выдувной экструзии, содержащие 1 мас.% заявленной полифункциональной добавки, пленки подвергали ускоренному старению под действием УФ- излучения при температуре 25 ºС в течении 96 часов; показателями эффективности оксиразложения были выбраны максимальный предел прочности при растяжении и относительное удлинение при разрыве, испытания проводили по ГОСТ 11262-80.
Пример 15
Получали полифункциональную добавку аналогично примеру 14, но количество оксида кальция составляло 2,00 кг, количество стеарата кобальта составляло 0,50 кг.
Пример 16
Получали полифункциональную добавку аналогично примеру 14, но количество оксида кальция составляло 1,75 кг, количество стеарата кобальта составляло 0,75 кг.
Пример 17
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 2,25 кг, количество стеарата железа составляло 0,25 кг.
Пример 18
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 2,00 кг, количество стеарата железа составляло 0,50 кг.
Пример 19
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 1,75 кг, количество стеарата железа составляло 0,75 кг.
Пример 20
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 2,25 кг, количество стеарата меди составляло 0,25 кг.
Пример 21
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 2,00 кг, количество стеарата меди составляло 0,50 кг.
Пример 22
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 1,75 кг, количество стеарата меди составляло 0,75 кг.
Пример 23
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), при этом количество оксида кальция составляло 2,25 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,25 кг.
Пример 24
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), количество оксида кальция составляло 2,00 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,50 кг.
Пример 25
Получали полифункциональную добавку аналогично примеру 14, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), количество оксида кальция составляло 1,75 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,75 кг.
Результаты исследований прооксидантной способности добавок по примерам 14 – 25 представлены в таблице 2.
Пример 26
В смеситель загружали 2,70 кг порошка оксида кальция и 0,30 кг стеарата кобальта и перемешивали в течении 1 минуты, затем добавляли 2,00 кг полиэтилена высокого давления (ПВД) и еще раз перемешивали в течении 1 минуты, полученную смесь экструдировали в двухшнековом экструдере при температуре 190 °С с получением полифункциональной добавки в виде гранул. Готовили полиэтиленовые пленки методом выдувной экструзии, содержащие 1 мас.% заявленной полифункциональной добавки, пленки подвергали ускоренному старению под действием УФ- излучения при температуре 25 ºС в течении 96 часов; показателями эффективности оксиразложения были выбраны максимальный предел прочности при растяжении и относительное удлинение при разрыве, испытания проводили по ГОСТ 11262-80.
Пример 27
Получали полифункциональную добавку аналогично примеру 26, но количество оксида кальция составляло 2,40 кг, количество стеарата кобальта составляло 0,60 кг.
Пример 28
Получали полифункциональную добавку аналогично примеру 26, но количество оксида кальция составляло 2,10 кг, количество стеарата кобальта составляло 0,90 кг.
Пример 29
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 2,70 кг, количество стеарата железа составляло 0,30 кг.
Пример 30
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 2,40 кг, количество стеарата железа составляло 0,60 кг.
Пример 31
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли стеарат железа, количество оксида кальция составляло 2,10 кг, количество стеарата железа составляло 0,90 кг.
Пример 32
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 2,70 кг, количество стеарата меди составляло 0,30 кг.
Пример 33
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 2,40 кг, количество стеарата меди составляло 0,60 кг.
Пример 34
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли стеарат меди, количество оксида кальция составляло 2,10 кг, количество стеарата меди составляло 0,90 кг.
Пример 35
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), при этом количество оксида кальция составляло 2,70 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,30 кг.
Пример 36
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), количество оксида кальция составляло 2,40 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,60 кг.
Пример 37
Получали полифункциональную добавку аналогично примеру 26, но в качестве прооксиданта применяли смесь стеарата кобальта, стеарата железа и стеарата меди в соотношении, мас.%, (1 : 1 : 1), количество оксида кальция составляло 2,10 кг, количество стеарата кобальта, стеарата железа и стеарата меди составляло 0,90 кг.
Результаты исследований прооксидантной способности добавок по примерам 26 – 37 представлены в таблице 3.
Таблица 1
Результаты испытаний пленочных образцов, содержащих 1 мас.% полифункциональной добавки, содержащей 40 мас.% целевого компонента
(средние показатели по 5 опытным образцам)
Состав целевого компонента поли-функциональной добавки, масс.% | Данные по примерам | ||||
Пример | Максимальный предел прочности при растяжении [МПа] | Относительное удлинение при разрыве [%] | |||
до облу-чения |
после 96 часов облучения |
до облу-чения | после 96 часов облучения |
||
прототип | 1 | 20 | не известно | 322 | не известно |
Со : СаО = 10 : 90 | 2 | 7,0 | 2,0 | 250 | 100 |
Со : СаО = 20 : 80 | 3 | 7,0 | 1,8 | 250 | 90 |
Со : СаО = 30 : 70 | 4 | 7,0 | 1,5 | 250 | 75 |
Fe : СаО = 10 : 90 | 5 | 7,0 | 3,5 | 250 | 200 |
Fe : СаО = 20 : 80 | 6 | 7,0 | 3,1 | 250 | 180 |
Fe : СаО = 30 : 70 | 7 | 7,0 | 2,8 | 250 | 175 |
Сu : СаО = 10 : 90 | 8 | 7,0 | 2,7 | 250 | 150 |
Сu : СаО = 20 : 80 | 9 | 7,0 | 2,4 | 250 | 130 |
Сu : СаО = 30 : 70 | 10 | 7,0 | 2,2 | 250 | 120 |
(Co, Cu, Fe) : СаО = 10 : 90 | 11 | 7,0 | 2,3 | 250 | 130 |
(Co, Cu, Fe) : СаО = 20 : 80 | 12 | 7,0 | 2,0 | 250 | 115 |
(Co, Cu, Fe) : СаО = 30 : 70 | 13 | 7,0 | 1,8 | 250 | 95 |
Таблица 2
Результаты испытаний пленочных образцов, содержащих 1 мас.% полифункциональной добавки, содержащей 50 мас.% целевого компонента
(средние показатели по 5 опытным образцам)
Состав целевого компонента поли-функциональной добавки, масс.% | Данные по примерам | ||||
Пример | Максимальный предел прочности при растяжении [МПа] | Относительное удлинение при разрыве [%] | |||
до облу-чения |
после 96 часов облучения |
до облу-чения | после 96 часов облучения |
||
Со : СаО = 10 : 90 | 14 | 6,9 | 1,8 | 248 | 90 |
Со : СаО = 20 : 80 | 15 | 6,9 | 1,5 | 248 | 75 |
Со : СаО = 30 : 70 | 16 | 6,9 | 1,2 | 248 | 60 |
Fe : СаО = 10 : 90 | 17 | 6,9 | 3,4 | 248 | 185 |
Fe : СаО = 20 : 80 | 18 | 6,9 | 3,0 | 248 | 175 |
Fe : СаО = 30 : 70 | 19 | 6,9 | 2,7 | 248 | 150 |
Сu : СаО = 10 : 90 | 20 | 6,9 | 2,5 | 248 | 140 |
Сu : СаО = 20 : 80 | 21 | 6,9 | 2,3 | 248 | 120 |
Сu : СаО = 30 : 70 | 22 | 6,9 | 2,0 | 248 | 100 |
(Co, Cu, Fe) : СаО = 10 : 90 | 23 | 6,9 | 2,2 | 248 | 125 |
(Co, Cu, Fe) : СаО = 20 : 80 | 24 | 6,9 | 1,9 | 248 | 105 |
(Co, Cu, Fe) : СаО = 30 : 70 | 25 | 6,9 | 1,6 | 248 | 80 |
Таблица 3
Результаты испытаний пленочных образцов, содержащих 1 мас.% полифункциональной добавки, содержащей 60 мас.% целевого компонента
(средние показатели по 5 опытным образцам)
Состав целевого компонента поли-функциональной добавки, масс.% | Данные по примерам | ||||
Пример | Максимальный предел прочности при растяжении [МПа] | Относительное удлинение при разрыве [%] | |||
до облу-чения |
после 96 часов облучения |
до облу-чения | после 96 часов облучения |
||
Со : СаО = 10 : 90 | 26 | 6,8 | 1,6 | 245 | 85 |
Со : СаО = 20 : 80 | 27 | 6,8 | 1,4 | 245 | 60 |
Со : СаО = 30 : 70 | 28 | 6,8 | 1,1 | 245 | 50 |
Fe : СаО = 10 : 90 | 29 | 6,8 | 3,2 | 245 | 150 |
Fe : СаО = 20 : 80 | 30 | 6,8 | 2,8 | 245 | 120 |
Fe : СаО = 30 : 70 | 31 | 6,8 | 2,5 | 245 | 95 |
Сu : СаО = 10 : 90 | 32 | 6,8 | 2,4 | 245 | 110 |
Сu : СаО = 20 : 80 | 33 | 6,8 | 2,1 | 245 | 90 |
Сu : СаО = 30 : 70 | 34 | 6,8 | 1,8 | 245 | 80 |
(Co, Cu, Fe) : СаО = 10 : 90 | 35 | 6,8 | 2,0 | 245 | 95 |
(Co, Cu, Fe) : СаО = 20 : 80 | 36 | 6,8 | 1,6 | 245 | 80 |
(Co, Cu, Fe) : СаО = 30 : 70 | 37 | 6,8 | 1,3 | 245 | 65 |
Как видно из таблиц 1 – 3 способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, позволяет придать пленкам, содержащим заявленную добавку, способность к ускоренному оксоразложению.
Предложенный способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, позволяет:
- получить полифункциональную добавку, придающую изделиям способность к ускоренному оксо- и биоразложению, а также выполняющую функцию влагопоглотиля при производстве изделий из вторичных полиолефинов,
- упростить технологию получения прооксиданта к полиолефинам,
- повысить экологичность производства,
- снизить стоимость продукта,
- заменить импортные оксобиоразлагающие добавки для полимерных материалов на российском рынке отечественными аналогами.
Claims (3)
- Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов, включающий нанесение на инертный носитель карбоксилата металла переменной валентности или смеси карбоксилатов металлов переменной валентности для получения целевого компонента полифункциональной добавки с последующим получением мастербатча на основе полиолефина, отличающийся тем, что в качестве карбоксилата металла переменной валентности используют стеараты кобальта, железа, меди либо их комбинацию, в качестве инертного носителя используют оксид кальция, способствующий влагопоглощению при переработке вторичных полиолефинов, в качестве полиолефиновой основы мастербатча используют полиэтилен, целевой компонент полифункциональной добавки готовят при следующем содержании ингредиентов, мас.%:
-
карбоксилат металла переменной валентности 10-30 оксид кальция 70-90, - нанесение карбоксилата металла переменной валентности на инертный носитель происходит путем смешения в высокоскоростном смесителе в течение 1-2 минут, полученный целевой компонент полифункциональной добавки смешивают в высокоскоростном смесителе с полиолефиновой основой мастербатча в соотношении (40-60):(40-60) мас.% и экструдируют в двухшнековом экструдере с гранулируюшим устройством с получением гранул полифункциональной добавки диаметром 2-8 мм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143168A RU2683831C1 (ru) | 2017-12-11 | 2017-12-11 | Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143168A RU2683831C1 (ru) | 2017-12-11 | 2017-12-11 | Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2683831C1 true RU2683831C1 (ru) | 2019-04-02 |
Family
ID=66089987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017143168A RU2683831C1 (ru) | 2017-12-11 | 2017-12-11 | Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2683831C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2710834C1 (ru) * | 2019-08-20 | 2020-01-14 | Казанское публичное акционерное общество "Органический синтез" | Биологически разрушаемая термопластичная композиция |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ286678A (en) * | 1996-05-28 | 1997-12-19 | Epi Environmental Products Inc | Degradable/compostable additive for polyolefins comprising metal carboxylate and polyhydroxy carboxylic acid |
US5854304A (en) * | 1994-12-14 | 1998-12-29 | Epi Environmental Products Inc. | Degradable/compostable concentrates, process for making degradable/compostable packaging materials and the products thereof |
RU2352597C1 (ru) * | 2008-06-25 | 2009-04-20 | Александр Николаевич Пономарев | Биоразлагаемая гранулированная полиолефиновая композиция и способ ее получения |
CA2821357A1 (en) * | 2010-12-30 | 2012-07-05 | Enerplastics Llc | Oxo-biodegradable additives for use in fossil fuel polymer films and once-used packaging |
RU2011130445A (ru) * | 2011-07-22 | 2013-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ | Способ получения полимерного концентрата с нанодобавками |
RU2540273C1 (ru) * | 2013-12-12 | 2015-02-10 | Федеральное Государственное Бюджетное Учреждение Науки Институт Биохимической Физики Им. Н.М. Эмануэля Российской Академии Наук (Ибхф Ран) | Оксо-разлагающая добавка к полиолефинам |
RU2013141488A (ru) * | 2012-09-10 | 2015-03-20 | Крафт Фудс Груп Брэндс Ллк. | Поглощающая кислород система в полиолефиновой матрице |
-
2017
- 2017-12-11 RU RU2017143168A patent/RU2683831C1/ru not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5854304A (en) * | 1994-12-14 | 1998-12-29 | Epi Environmental Products Inc. | Degradable/compostable concentrates, process for making degradable/compostable packaging materials and the products thereof |
NZ286678A (en) * | 1996-05-28 | 1997-12-19 | Epi Environmental Products Inc | Degradable/compostable additive for polyolefins comprising metal carboxylate and polyhydroxy carboxylic acid |
RU2352597C1 (ru) * | 2008-06-25 | 2009-04-20 | Александр Николаевич Пономарев | Биоразлагаемая гранулированная полиолефиновая композиция и способ ее получения |
CA2821357A1 (en) * | 2010-12-30 | 2012-07-05 | Enerplastics Llc | Oxo-biodegradable additives for use in fossil fuel polymer films and once-used packaging |
RU2011130445A (ru) * | 2011-07-22 | 2013-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ | Способ получения полимерного концентрата с нанодобавками |
RU2013141488A (ru) * | 2012-09-10 | 2015-03-20 | Крафт Фудс Груп Брэндс Ллк. | Поглощающая кислород система в полиолефиновой матрице |
RU2540273C1 (ru) * | 2013-12-12 | 2015-02-10 | Федеральное Государственное Бюджетное Учреждение Науки Институт Биохимической Физики Им. Н.М. Эмануэля Российской Академии Наук (Ибхф Ран) | Оксо-разлагающая добавка к полиолефинам |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2710834C1 (ru) * | 2019-08-20 | 2020-01-14 | Казанское публичное акционерное общество "Органический синтез" | Биологически разрушаемая термопластичная композиция |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69830029T2 (de) | Verbundharzzusammensetzung | |
US20210198455A1 (en) | Cellulose-Containing Resin Composition and Cellulosic Ingredient | |
EP0755964B1 (de) | Hydrophile, hochquellfähige Hydrogele | |
EP2536771B1 (de) | Verfahren zur rückführung von polymerfeinteilchen | |
EP0305413A1 (de) | Abbaubare kunststoffzusammensetzungen. | |
EP1769004A2 (de) | Wasserabsorbierendes polysaccharid sowie ein verfahren zu seiner herstellung | |
RU2683831C1 (ru) | Способ получения полифункциональной добавки, способствующей оксо- и биоразложению полиолефинов | |
US20050043482A1 (en) | Method for preparing cyclodextrin-polyolefin blends and products made therefrom | |
CN105419063B (zh) | 一种可降解木塑复合材料及其制备方法 | |
DE1141786B (de) | Verfahren zur Herstellung von Formkoerpern unter Vernetzen eines fuellstoffhaltigen Polyaethylens | |
DE10010826A1 (de) | Verfahren zur Reduktion der Wasserdampfpermeabilität von Folien oder Beschichtungen | |
JP2023027908A (ja) | 樹脂成形体及びその製造方法、並びに樹脂成形体形成用キット | |
CN109957172A (zh) | 一种除味剂,低散发、耐高温的汽车内饰聚丙烯材料及其制备方法 | |
KR102163944B1 (ko) | 신선도 유지 기능을 갖는 복합분해성 시트 또는 진공성형품 | |
KR20160089977A (ko) | 셀룰로오스 가소화를 통한 열가소성 셀룰로오스, 이를 이용한 산화생분해 첨가제, 및 그 제조방법 | |
RU2540273C1 (ru) | Оксо-разлагающая добавка к полиолефинам | |
KR20160147394A (ko) | 이중결합을 함유하여 신속 저분자화가 가능한 복합분해 원료 펠릿 및 그 제조방법 | |
EP3902661A1 (de) | Compound bzw. folie enthaltend thermoplastische stärke sowie ein thermoplastisches polymer | |
CN107619529A (zh) | 一种生物基全降解塑料、其制备方法和应用 | |
KR102317394B1 (ko) | 셀룰로오스를 포함하는 응집체화 된 컴파운드용 재료의 제조방법 및 그를 이용한 복합재료 | |
DE10027862B4 (de) | Zusammensetzung zur Herstellung von Formkörpern, Verfahren zur Herstellung derselben und Formkörper aus einer solchen Zusammensetzung | |
JP7359643B2 (ja) | 複合樹脂組成物及びその製造方法 | |
RU2686179C1 (ru) | Одностадийный способ получения добавки-прооксиданта к полиолефинам | |
CN116970238B (zh) | 一种高浓度白色母粒及其制备方法 | |
CN117446346B (zh) | 一种可降解包装材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191212 |