RU2680082C1 - Способ изготовления анода конденсатора на основе вентильного металла - Google Patents

Способ изготовления анода конденсатора на основе вентильного металла Download PDF

Info

Publication number
RU2680082C1
RU2680082C1 RU2018120284A RU2018120284A RU2680082C1 RU 2680082 C1 RU2680082 C1 RU 2680082C1 RU 2018120284 A RU2018120284 A RU 2018120284A RU 2018120284 A RU2018120284 A RU 2018120284A RU 2680082 C1 RU2680082 C1 RU 2680082C1
Authority
RU
Russia
Prior art keywords
anode
preform
billet
temperature
acid
Prior art date
Application number
RU2018120284A
Other languages
English (en)
Inventor
Татьяна Юрьевна Прохорова
Валерий Николаевич Колосов
Original Assignee
Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН)
Priority to RU2018120284A priority Critical patent/RU2680082C1/ru
Application granted granted Critical
Publication of RU2680082C1 publication Critical patent/RU2680082C1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к способу изготовления анодов электролитических объемно-пористых конденсаторов на основе вентильного металла, преимущественно тантала или ниобия. Формируют пористую заготовку анода путем прессования порошка тантала или ниобия с использованием прессового инструмента, изготовленного из штамповой стали для холодного деформирования. Заготовку спекают и проводят анодирование в растворах минеральной кислоты с нанесением на поверхность заготовки оксидной диэлектрической пленки заданной толщины. Анодированную заготовку подвергают обработке раствором кислоты до растворения анодной пленки на наружной поверхности заготовки и проводят повторное анодирование в растворе кислоты до получения заданной толщины пленки. После анодирования, кислотной обработки и повторного анодирования заготовку промывают дистиллированной водой и сушат при температуре 100-130°С. Изобретение обеспечивает сохранение высокого удельного заряда конденсатора при снижении тока утечки в 2,4-8,9 раза за счет уменьшения загрязнения анода материалом прессового инструмента. 4 з.п. ф-лы, 7 пр.

Description

Настоящее изобретение относится к способу изготовления анодов электролитических объемно-пористых конденсаторов на основе вентильного металла, преимущественно тантала или ниобия.
Аноды конденсаторов обычно изготавливают прессованием порошка вентильного металла и спеканием заготовки с последующим нанесением оксидной диэлектрической пленки путем поляризации в растворах минеральных кислот. Качество анода определяется величиной удельной поверхности порошка вентильного металла, его чистотой и пористостью спеченной заготовки. Емкость конденсатора прямо пропорциональна величине поверхности спеченного анода. Для различных типов конденсаторов используют порошок с соответствующей удельной поверхностью, обеспечивающей необходимый удельный заряд. Важными факторами также являются чистота металла и морфология частиц порошка. Примеси и микронеровности ухудшают свойства диэлектрической оксидной пленки, приводя к росту тока утечки и увеличению коэффициента рассеяния. Хотя высокие температуры спекания и способствуют удалению летучих примесей и сглаживанию микронеровностей, они ведут также и к усадке пористой заготовки, что снижает ее удельную поверхность и, соответственно, емкость конденсатора. Создание условий сохранения высокой удельной поверхности пористой заготовки и повышение чистоты вентильного металла является необходимым фактором получения конденсаторов с высоким удельным зарядом и низким током утечки.
Известен способ изготовления анода конденсатора на основе вентильного металла, преимущественно тантала (см. пат. 4052273 США, МКИ2 C25D 11/26, 11/02, 1977), включающий формирование пористой заготовки анода, ее спекание и анодирование в водном растворе азотной кислоты с нанесением оксидной диэлектрической пленки на поверхность заготовки. После нанесения оксидной пленки заготовку извлекают из раствора азотной кислоты и высушивают в печи при температуре 150-300°С. Затем перечисленные операции анодирования и сушки могут быть повторены. В результате каждого цикла анодирования-сушки происходит снижение тока утечки анода, однако при этом эффект снижения тока утечки с каждым последующим циклом уменьшается.
Недостатком данного способа является то, что для снижения тока утечки следует провести большое количество циклов анодирования-сушки. Кроме того, высокая температура сушки в сочетании с коррозионной активностью паров азотной кислоты может приводить к коррозии аппаратуры и вторичному загрязнению заготовки. Все это ведет к снижению технологичности способа.
Известен также принятый в качестве прототипа способ изготовления анода конденсатора на основе вентильного металла (см. пат. 2543486 РФ, МПК H01G 9/04, 9/052, 9/00 (2006.01), 2015), включающий формирование пористой заготовки анода путем прессования порошка, преимущественно тантала, ниобия или субоксида ниобия, до плотности 1,5-5 г/см3 (порошки на основе ниобия) или до плотности 3,5-9 г/см3 (порошки тантала) с использованием прессового инструмента. Прессовый инструмент может быть изготовлен из карбида, оксида, борида, нитрида или силицида металла, карбо-нитрида или их сплавов, керамического материала, закаленной и/или легированной стали или материала анода конденсатора. При этом содержание материала, из которого изготовлен прессовый инструмент, на поверхности пористой заготовки анода может достигать 0,03%. Затем прессованную заготовку анода спекают при температуре более 1000°С и подвергают анодированию в водном растворе фосфорной кислоты при наложении напряжения от 1 до 300 В, величина которого обусловлена заданной толщиной оксидного слоя, с последующими промывкой и сушкой при 85°С. Для снижения тока утечки анода проводят обработку заготовки путем погружения в различные химические реактивы: комплексообразующие агенты, окислители, основания или кислоты. Погружение в любой из перечисленных реактивов может быть осуществлено на любом этапе изготовления анода: после прессования, после спекания или после нанесения оксидной диэлектрической пленки. После извлечения из химического реактива заготовку промывают дистиллированной водой при температуре 85°С и сушат при этой температуре в течение 1 часа. Полученный анод конденсатора в результате обработки химическим реактивом характеризуется снижением тока утечки с 2130 мкА до 1145 мкА при уменьшении величины удельного заряда с 79,6 до 74,2 мкФ.
Известный способ характеризуется недостаточной технологичностью, поскольку использует прессовый инструмент, изготовленный из специальных материалов, обычно не применяемых для прессового оборудования, которые вызывают загрязнение анода материалом прессового инструмента. При химической обработке заготовок анода происходит снижение величины удельного заряда на 6,8% при снижении тока утечки в 1,9 раза. В то же время, после обработки химическим реактивом возможно образование дефектов в оксидной пленке.
Изобретение направлено на достижение технического результата, заключающегося в повышении технологичности способа за счет использования стандартного материала прессового инструмента и снижения загрязнения анода материалом инструмента. Технический результат заключается также в снижении тока утечки конденсатора и сохранении его высокого удельного заряда.
Технический результат достигается тем, что в способе изготовления анода конденсатора на основе вентильного металла, включающем формирование пористой заготовки анода путем прессования порошка вентильного металла с использованием стального прессового инструмента, спекание заготовки, анодирование в растворе минеральной кислоты с нанесением оксидной диэлектрической пленки заданной толщины на поверхность заготовки, первую промывку заготовки дистиллированной водой при повышенной температуре, первую сушку, кислотную обработку анодированной заготовки, ее вторую промывку дистиллированной водой при повышенной температуре и вторую сушку, согласно изобретению, используют прессовый инструмент, изготовленный из штамповой стали для холодного деформирования, кислотную обработку анодированной заготовки ведут до растворения анодной пленки на наружной поверхности заготовки, после второй сушки осуществляют повторное анодирование в растворе минеральной кислоты до получения заданной толщины пленки, проводят ее третью промывку дистиллированной водой при повышенной температуре и третью сушку, причем операции сушки ведут при температуре 100-130°С.
Технический результат достигается также тем, что в качестве вентильного металла используют тантал или ниобий.
Технический результат достигается также и тем, что анодирование и повторное анодирование заготовки ведут в растворах 0,01-1% ортофосфорной или 0,1-4,5% серной кислоты.
Технический результат достигается и тем, что кислотную обработку анодированной заготовки ведут 1-40% раствором фтористоводородной кислоты или смесью фтористоводородной, азотной и серной кислот, взятых в соотношении 1:0,5-1,5:1-2.
На достижение технического результата направлено также то, что операции промывки дистиллированной водой ведут при температуре 70-80°С.
Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.
Использование прессового инструмента, изготовленного из штамповой стали для холодного деформирования, позволяет повысить технологичность и экономичность способа за счет упрощения его создания на основе имеющихся промышленных материалов и оборудования.
Проведение кислотной обработки анодированной заготовки до растворения анодной пленки на ее наружной поверхности позволяет снизить загрязнение поверхности анода материалом прессового инструмента. Кроме того, при этом происходит частичное растворение анодной пленки внутри заготовки, что также способствует повышению чистоты поверхности в объеме заготовки за счет снижения содержания адсорбированных примесей. Кислотная обработка, за счет растворения микронеровностей, которые образуют мелкие поры внутри заготовки, позволяет увеличить пористость спеченной заготовки, обеспечивая сохранение высокого удельного заряда.
Проведение повторного анодирования в растворе минеральной кислоты до получения заданной толщины пленки позволяет сформировать оксидную диэлектрическую пленку с низким содержанием примесей, так как металл, из которого она образована, не контактировал с прессовым инструментом и имеет меньшее количество сорбированных примесей, что обеспечивает снижение тока утечки анода.
Проведение после повторного анодирования третьей промывки дистиллированной водой при повышенной температуре и третьей сушки позволяет очистить поры заготовки и удалить остаточную влагу.
Осуществление всех операций сушки при температуре 100-130°С позволяет полностью удалить остатки влаги после каждой очередной промывки, подготовив тем самым пористую заготовку анода к последующим операциям. При температуре сушки ниже 100°С в порах может остаться влага, которая в случае повторного анодирования снижает качество анодной пленки из-за разности электрического сопротивления воды и раствора минеральной кислоты. Вследствие этого будет образовываться оксидная пленка различной толщины на разных участках поверхности заготовки. В случае же кислотной обработки остаточная влага затруднит доступ кислоты в поры. Сушка при температуре выше 130°С нецелесообразна, так как приводит к дополнительному расходу энергии без улучшения качества анодной заготовки.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении технологичности способа за счет использования стандартного материала прессового инструмента и снижения загрязнения анода материалом инструмента, что обеспечивает снижение тока утечки конденсатора и сохранение его высокого удельного заряда.
В частных случаях осуществления изобретения предпочтительны следующие режимные параметры.
Использование тантала или ниобия в качестве вентильного металла анода позволяет получать анодные оксидные пленки, обладающие повышенными диэлектрическими характеристиками, что обеспечивает высокий удельный заряд изготавливаемых конденсаторов.
Проведение анодирования и повторного анодирования заготовки в растворах 0,01-1% ортофосфорной или 0,1-4,5% серной кислоты способствует росту анодных оксидных пленок заданной толщины с низким содержанием дефектов, что обеспечивает снижение токов утечки изготавливаемых конденсаторов.
Проведение кислотной обработки анодированной заготовки в 1-40% растворе фтористоводородной кислоты позволяет растворить на наружной поверхности заготовки анодную пленку, содержащую примеси материала прессового инструмента и, тем самым, повысить чистоту анодной пленки, которая формируется при повторном анодировании.
Использование раствора с концентрацией фтористоводородной кислоты менее 1% значительно увеличивает время обработки заготовки, что снижает технологичность способа. При концентрации более 40% будет иметь место избыточный расход кислоты без существенного улучшения качества анода конденсатора.
Проведение кислотной обработки смесью фтористоводородной, азотной и серной кислот, взятых в соотношении 1:0,5-1,5:1-2, приводит к интенсификации процесса, что позволяет сократить время обработки. Проведение кислотной обработки при содержании азотной и серной кислот менее 0,5 и 1 в соотношении 1:0,5-1,5:1-2 увеличивает время обработки. Проведение кислотной обработки при содержании азотной и серной кислот более 1,5 и 2 в соотношении 1:0,5-1,5:1-2 приводит к химической полировке поверхности заготовки, которая может продолжаться на начальной стадии промывки, что приводит к снижению удельной поверхности заготовки и, соответственно, удельного заряда.
Проведение операций промывки дистиллированной водой при температуре 70-80°С обеспечивает необходимую вязкость рабочих жидкостей, что способствует ускоренной очистке заготовки анода от остатков кислот.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения снижения загрязнения анода материалом прессового инструмента и снижения тока утечки анода при сохранении высокого удельного заряда.
Сущность и преимущества предлагаемого способа изготовления анода конденсатора на основе вентильного металла могут быть пояснены следующими Примерами конкретного выполнения изобретения.
Пример 1. Из порошка тантала на прессовом инструменте формируют пористую заготовку анода массой 0,17 г и плотностью 6 г/см3. Прессовый инструмент изготовлен из штамповой стали для холодного деформирования марки X12 (ГОСТ 5950-73). Полученную заготовку спекают при температуре 1300°С и проводят ее анодирование в 0,01% растворе ортофосфорной кислоты с нанесением оксидной диэлектрической пленки толщиной, соответствующей напряжению анодирования 16 В. Анодированную заготовку промывают дистиллированной водой при температуре 80°С, после чего сушат при 100°С. Затем заготовку подвергают обработке 40% раствором фтористоводородной кислоты, в результате которой происходит растворение нанесенной анодной пленки. После этого заготовку промывают дистиллированной водой при температуре 80°С, сушат при температуре 100°С и проводят повторное анодирование при напряжении 16 В в растворе 0,01% ортофосфорной кислоты с последующей промывкой дистиллированной водой при температуре 80°С и сушкой при 100°С.
Измерение тока утечки и удельного заряда изготовленного анода проводят с помощью прибора Е7-20 в 38% растворе серной кислоты на частоте 50 Гц с использованием катода из черненой платины. Величина погрешности измерения характеристик анодов не превышает 3%. Анод имеет ток утечки 0,0006 А/Кл и удельный заряд 50400 мкКл/г. Изменение заряда не превышает 3%. Анод, изготовленный без кислотной обработки и повторного анодирования, имеет ток утечки 0,002 А/Кл, удельный заряд 51000 мкКл/г.
Пример 2. Из порошка ниобия на прессовом инструменте формируют пористую заготовку анода массой 0,065 г и плотностью 2,5 г/см3. Прессовый инструмент изготовлен из штамповой стали для холодного деформирования марки X12 (ГОСТ 5950-73). Полученную заготовку спекают при температуре 1100°С и проводят ее анодирование в 1% растворе ортофосфорной кислоты с нанесением оксидной диэлектрической пленки толщиной, соответствующей напряжению анодирования 16 В. Анодированную заготовку промывают дистиллированной водой при температуре 80°С, после чего сушат при 120°С. Затем заготовку подвергают обработке 1% раствором фтористоводородной кислоты, в результате которой происходит растворение нанесенной анодной пленки. После этого заготовку промывают дистиллированной водой при температуре 80°С, сушат при температуре 120°С и проводят повторное анодирование при напряжении 16 В в растворе 1% ортофосфорной кислоты с последующей промывкой дистиллированной водой при температуре 80°С и сушкой при 120°С.
Измерение тока утечки и удельного заряда изготовленного анода проводят с помощью прибора Е7-20 в 38% растворе серной кислоты на частоте 50 Гц с использованием катода из черненой платины. Величина погрешности измерения характеристик анодов не превышает 3%. Анод имеет ток утечки 0,0007 А/Кл и удельный заряд 180700 мкКл/г. Изменение заряда не превышает 3%. Анод, изготовленный без кислотной обработки и повторного анодирования, имеет ток утечки 0,0062 А/Кл, удельный заряд 180100 мкКл/г.
Пример 3. Из порошка тантала на прессовом инструменте формируют пористую заготовку анода массой 0,12 г и плотностью 4,5 г/см3. Прессовый инструмент изготовлен из штамповой стали для холодного деформирования марки X12 (ГОСТ 5950-73). Полученную заготовку спекают при температуре 1300°С и проводят ее анодирование в 0,1% растворе ортофосфорной кислоты с нанесением оксидной диэлектрической пленки толщиной, соответствующей напряжению анодирования 30 В. Анодированную заготовку промывают дистиллированной водой при температуре 70°С, после чего сушат при 130°С. Затем заготовку подвергают обработке 10% раствором фтористоводородной кислоты, в результате которой происходит растворение нанесенной анодной пленки. После этого заготовку промывают дистиллированной водой при температуре 80°С, сушат при температуре 130°С и проводят повторное анодирование при напряжении 30 В в растворе 0,1% ортофосфорной кислоты с последующей промывкой дистиллированной водой при температуре 70°С и сушкой при 130°С.
Измерение тока утечки и удельного заряда изготовленного анода проводят с помощью прибора Е7-20 в 38% растворе серной кислоты на частоте 50 Гц с использованием катода из черненой платины. Величина погрешности измерения характеристик анодов не превышает 3%. Анод имеет ток утечки 0,0003 А/Кл и удельный заряд 82300 мкКл/г. Изменение заряда не превышает 3%. Анод, изготовленный без кислотной обработки и повторного анодирования, имеет ток утечки 0,0012 А/Кл, удельный заряд 81700 мкКл/г.
Пример 4. Из порошка тантала на прессовом инструменте формируют пористую заготовку анода массой 0,137 г и плотностью 5 г/см3. Прессовый инструмент изготовлен из штамповой стали для холодного деформирования марки X12 (ГОСТ 5950-73). Полученную заготовку спекают при температуре 1450°С и проводят ее анодирование в 4,5% растворе серной кислоты с нанесением оксидной диэлектрической пленки толщиной, соответствующей напряжению анодирования 70 В. Анодированную заготовку промывают дистиллированной водой при температуре 80°С, после чего сушат при 130°С. Затем заготовку подвергают обработке смесью фтористоводородной, азотной и серной кислот, взятых в соотношении 1:1,5:2, в результате которой происходит растворение нанесенной анодной пленки. После этого заготовку промывают дистиллированной водой при температуре 80°С, сушат при температуре 130°С и проводят повторное анодирование при напряжении 70 В в 4,5% растворе ортофосфорной кислоты с последующей промывкой дистиллированной водой при температуре 80°С и сушкой при 130°С.
Измерение тока утечки и удельного заряда изготовленного анода проводят с помощью прибора Е7-20 в 38% растворе серной кислоты на частоте 50 Гц с использованием катода из черненой платины. Величина погрешности измерения характеристик анодов не превышает 3%. Анод имеет ток утечки 0,0012 А/Кл и удельный заряд 26900 мкКл/г. Изменение заряда не превышает 3%. Анод, изготовленный без кислотной обработки и повторного анодирования, имеет ток утечки 0,0036 А/Кл, удельный заряд 27650 мкКл/г.
Пример 5. Из порошка ниобия на прессовом инструменте формируют пористую заготовку анода массой 0,055 г и плотностью 2 г/см3. Прессовый инструмент изготовлен из штамповой стали для холодного деформирования марки X12 (ГОСТ 5950-73). Полученную заготовку спекают при температуре 1100°С и проводят ее анодирование в 0,1% растворе серной кислоты с нанесением оксидной диэлектрической пленки толщиной, соответствующей напряжению анодирования 16 В. Анодированную заготовку промывают дистиллированной водой при температуре 80°С, после чего сушат при 120°С. Затем заготовку подвергают обработке 1% раствором фтористоводородной кислоты, в результате которой происходит растворение нанесенной анодной пленки. После этого заготовку промывают дистиллированной водой при температуре 80°С, сушат при температуре 120°С и проводят повторное анодирование при напряжении 16 В в растворе 0,1% серной кислоты с последующей промывкой дистиллированной водой при температуре 80°С и сушкой при 120°С.
Измерение тока утечки и удельного заряда изготовленного анода проводят с помощью прибора Е7-20 в 38% растворе серной кислоты на частоте 50 Гц с использованием катода из черненой платины. Величина погрешности измерения характеристик анодов не превышает 3%. Анод имеет ток утечки 0,0009 А/Кл и удельный заряд 207500 мкКл/г. Изменение заряда не превышает 3%. Анод, изготовленный без кислотной обработки и повторного анодирования, имеет ток утечки 0,0039 А/Кл, удельный заряд 213000 мкКл/г.
Пример 6. Из порошка тантала на прессовом инструменте формируют пористую заготовку анода массой по 0,148 г и плотностью 5,5 г/см3. Прессовый инструмент изготовлен из штамповой стали для холодного деформирования марки X12 (ГОСТ 5950-73). Полученную заготовку спекают при температуре 1300°С и проводят ее анодирование в 1% растворе серной кислоты с нанесением оксидной диэлектрической пленки толщиной, соответствующей напряжению анодирования 30 В. Анодированную заготовку промываютдистиллированной водой при температуре 80°С, после чего сушат при 120°С. Затем заготовку подвергают обработке 10% раствором фтористоводородной кислоты, в результате которой происходит растворение нанесенной анодной пленки. После этого заготовку промывают дистиллированной водой при температуре 80°С, сушат при температуре 120°С и проводят повторное анодирование при напряжении 30 В в растворе 1% серной кислоты с последующей промывкой дистиллированной водой при температуре 80°С и сушкой при 120°С.
Измерение тока утечки и удельного заряда изготовленного анода проводят с помощью прибора Е7-20 в 38% растворе серной кислоты на частоте 50 Гц с использованием катода из черненой платины. Величина погрешности измерения характеристик анодов не превышает 3%. Анод имеет ток утечки 0,0008 А/Кл и удельный заряд 94000 мкКл/г. Изменение заряда не превышает 3%. Анод, изготовленный без кислотной обработки и повторного анодирования, имеет ток утечки 0,0019 А/Кл, удельный заряд 94300 мкКл/г.
Пример 7. Из порошка тантала на прессовом инструменте формируют пористую заготовку анода массой 0,137 г и плотностью 5 г/см3. Прессовый инструмент изготовлен из штамповой стали для холодного деформирования марки X12 (ГОСТ 5950-73). Полученную заготовку спекают при температуре 1450°С и проводят ее анодирование в 0,1% растворе ортофосфорной кислоты с нанесением оксидной диэлектрической пленки толщиной, соответствующей напряжению анодирования 70 В. Анодированную заготовку промывают дистиллированной водой при температуре 80°С, после чего сушат при 130°С. Затем заготовку подвергают обработке смесью фтористоводородной, азотной и серной кислот, взятых в соотношении 1:0,5:1, в результате которой происходит растворение нанесенной анодной пленки. После этого заготовку промывают дистиллированной водой при температуре 80°С, сушат при температуре 130°С и проводят повторное анодирование при напряжении 70 В в растворе 0,1% ортофосфорной кислоты с последующей промывкой дистиллированной водой при температуре 80°С и сушкой при 130°С.
Измерение тока утечки и удельного заряда изготовленного анода проводят с помощью прибора Е7-20 в 38% растворе серной кислоты на частоте 50 Гц с использованием катода из черненой платины. Величина погрешности измерения характеристик анодов не превышает 3%. Анод имеет ток утечки 0,0014 А/Кл и удельный заряд 27190 мкКл/г. Изменение заряда не превышает 3%. Анод, изготовленный без кислотной обработки и повторного анодирования, имеет ток утечки 0,0038 А/Кл, удельный заряд 27800 мкКл/г.
Из вышеприведенных Примеров видно, что способ согласно изобретению обеспечивает сохранение высокого удельного заряда конденсатора при снижении тока утечки в 2,4-8,9 раза за счет уменьшения загрязнения анода материалом прессового инструмента, изготовленного из стандартной штамповой стали для холодного деформирования. Заявляемый способ относительно прост, технологичен и может быть реализован в промышленных условиях.

Claims (5)

1. Способ изготовления анода конденсатора на основе вентильного металла, включающий формирование пористой заготовки анода путем прессования порошка вентильного металла с использованием стального прессового инструмента, спекание заготовки, анодирование в растворе минеральной кислоты с нанесением оксидной диэлектрической пленки заданной толщины на поверхность заготовки, первую промывку заготовки дистиллированной водой при повышенной температуре, первую сушку, кислотную обработку анодированной заготовки, ее вторую промывку дистиллированной водой при повышенной температуре и вторую сушку, отличающийся тем, что используют прессовый инструмент, изготовленный из штамповой стали для холодного деформирования, кислотную обработку анодированной заготовки ведут до растворения анодной пленки на наружной поверхности заготовки, после второй сушки осуществляют повторное анодирование в растворе минеральной кислоты до получения заданной толщины пленки, проводят ее третью промывку дистиллированной водой при повышенной температуре и третью сушку, причем операции сушки ведут при температуре 100-130°C.
2. Способ по п. 1, отличающийся тем, что в качестве вентильного металла используют тантал или ниобий.
3. Способ по п. 1, отличающийся тем, что анодирование и повторное анодирование заготовки ведут в растворах 0,01-1% ортофосфорной или 0,1-4,5% серной кислоты.
4. Способ по п. 1, отличающийся тем, что кислотную обработку анодированной заготовки ведут 1-40% раствором фтористоводородной кислоты или смесью фтористоводородной, азотной и серной кислот, взятых в соотношении 1:0,5-1,5:1-2.
5. Способ по пп. 1-4, отличающийся тем, что операции промывки дистиллированной водой ведут при температуре 70-80°C.
RU2018120284A 2018-05-31 2018-05-31 Способ изготовления анода конденсатора на основе вентильного металла RU2680082C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018120284A RU2680082C1 (ru) 2018-05-31 2018-05-31 Способ изготовления анода конденсатора на основе вентильного металла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018120284A RU2680082C1 (ru) 2018-05-31 2018-05-31 Способ изготовления анода конденсатора на основе вентильного металла

Publications (1)

Publication Number Publication Date
RU2680082C1 true RU2680082C1 (ru) 2019-02-15

Family

ID=65442579

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018120284A RU2680082C1 (ru) 2018-05-31 2018-05-31 Способ изготовления анода конденсатора на основе вентильного металла

Country Status (1)

Country Link
RU (1) RU2680082C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242481A (en) * 1989-06-26 1993-09-07 Cabot Corporation Method of making powders and products of tantalum and niobium
SU1556422A1 (ru) * 1987-12-03 1994-02-28 Специальное конструкторское бюро при заводе "Элеконд" Способ изготовления объемно-пористого анода оксидно-полупроводникового конденсатора
US8168118B2 (en) * 2003-01-07 2012-05-01 Cabot Corporation Powder metallurgy sputtering targets and methods of producing same
RU2543486C2 (ru) * 2008-06-02 2015-03-10 Х.К. Штарк Гмбх Способ получения электролитических конденсаторов, имеющих низкий ток утечки
RU2551889C9 (ru) * 2008-12-19 2016-05-20 Х.К. Штарк Гмбх Анод конденсатора

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1556422A1 (ru) * 1987-12-03 1994-02-28 Специальное конструкторское бюро при заводе "Элеконд" Способ изготовления объемно-пористого анода оксидно-полупроводникового конденсатора
US5242481A (en) * 1989-06-26 1993-09-07 Cabot Corporation Method of making powders and products of tantalum and niobium
US8168118B2 (en) * 2003-01-07 2012-05-01 Cabot Corporation Powder metallurgy sputtering targets and methods of producing same
RU2543486C2 (ru) * 2008-06-02 2015-03-10 Х.К. Штарк Гмбх Способ получения электролитических конденсаторов, имеющих низкий ток утечки
RU2551889C9 (ru) * 2008-12-19 2016-05-20 Х.К. Штарк Гмбх Анод конденсатора

Similar Documents

Publication Publication Date Title
WO2001029291A1 (en) Method of anodizing tantalum powder
JP2022508052A (ja) 多孔質金属箔又はワイヤ、及びそれから製造したコンデンサアノード、及びその製造方法
RU2680082C1 (ru) Способ изготовления анода конденсатора на основе вентильного металла
WO2016038959A1 (ja) タングステンコンデンサ素子及びその製造方法
JPH09184094A (ja) 表面処理アルミニウム材及びその製造方法
CN105702466A (zh) 一种高介电常数化成铝箔的制备方法
JP5798279B1 (ja) タングステン系コンデンサ素子の製造方法
JPH02267915A (ja) 固体電解コンデンサの製造方法
WO2015166670A1 (ja) タングステン系コンデンサ素子の製造方法
JP2007036043A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
JP3995406B2 (ja) 電解コンデンサ用アルミニウム箔
JP4289717B2 (ja) アルミニウム電解コンデンサおよびアルミニウム電解コンデンサ用陰極箔の製造方法
JPH059710A (ja) 電解コンデンサ用アルミニウム電極の製造方法
JP2005015916A (ja) 電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法およびアルミニウム電解コンデンサ
US3366556A (en) Process for the manufacture of dry electrolytic condensers
JPH0722078B2 (ja) 固体電解コンデンサの製造法
JP2013247203A (ja) 電解コンデンサ用アルミニウム電極板の製造方法
JP3537127B2 (ja) 電解コンデンサ電極用アルミニウム箔
JP4308556B2 (ja) 電解コンデンサ電極用アルミニウム材および電解コンデンサ電極材の製造方法並びに電解コンデンサ
RU2516525C1 (ru) Способ получения катодной обкладки оксидно-полупроводникового конденсатора
WO2015016066A1 (ja) 固体電解コンデンサ素子の陽極体及びその製造方法
JPS6217185A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
JP2847001B2 (ja) 固体電解コンデンサの製法
JP5840821B1 (ja) タングステンコンデンサ素子及びその製造方法
RU2110611C1 (ru) Способ получения покрытия на титане и его сплавах