RU2677998C1 - Люминесцирующие металлсодержащие полимерные композиции - Google Patents
Люминесцирующие металлсодержащие полимерные композиции Download PDFInfo
- Publication number
- RU2677998C1 RU2677998C1 RU2017140023A RU2017140023A RU2677998C1 RU 2677998 C1 RU2677998 C1 RU 2677998C1 RU 2017140023 A RU2017140023 A RU 2017140023A RU 2017140023 A RU2017140023 A RU 2017140023A RU 2677998 C1 RU2677998 C1 RU 2677998C1
- Authority
- RU
- Russia
- Prior art keywords
- compositions
- mol
- composition
- zinc
- obtained according
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 120
- 229920005588 metal-containing polymer Polymers 0.000 title claims description 20
- 229910052984 zinc sulfide Inorganic materials 0.000 claims abstract description 27
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims abstract description 20
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000005083 Zinc sulfide Substances 0.000 claims abstract description 16
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910001431 copper ion Inorganic materials 0.000 claims abstract description 13
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 5
- 230000003595 spectral effect Effects 0.000 abstract description 26
- 150000002148 esters Chemical class 0.000 abstract description 10
- 238000006116 polymerization reaction Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000004377 microelectronic Methods 0.000 abstract description 3
- 230000005693 optoelectronics Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000012780 transparent material Substances 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 29
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 description 27
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 27
- 239000000178 monomer Substances 0.000 description 22
- VCQWRGCXUWPSGY-UHFFFAOYSA-L zinc;2,2,2-trifluoroacetate Chemical class [Zn+2].[O-]C(=O)C(F)(F)F.[O-]C(=O)C(F)(F)F VCQWRGCXUWPSGY-UHFFFAOYSA-L 0.000 description 22
- 239000011701 zinc Substances 0.000 description 21
- 238000001228 spectrum Methods 0.000 description 20
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical class OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 14
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 14
- 239000004926 polymethyl methacrylate Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- JIDMEYQIXXJQCC-UHFFFAOYSA-L copper;2,2,2-trifluoroacetate Chemical compound [Cu+2].[O-]C(=O)C(F)(F)F.[O-]C(=O)C(F)(F)F JIDMEYQIXXJQCC-UHFFFAOYSA-L 0.000 description 10
- 238000001748 luminescence spectrum Methods 0.000 description 10
- 238000012719 thermal polymerization Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical class OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 239000004342 Benzoyl peroxide Substances 0.000 description 8
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 8
- 235000019400 benzoyl peroxide Nutrition 0.000 description 8
- 229910052793 cadmium Inorganic materials 0.000 description 8
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 8
- -1 lanthanide trifluoroacetates Chemical class 0.000 description 8
- 238000004020 luminiscence type Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 229940066528 trichloroacetate Drugs 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 244000309464 bull Species 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052747 lanthanoid Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 150000004763 sulfides Chemical class 0.000 description 4
- ZFQAUDJGELQDAN-UHFFFAOYSA-L zinc;2,2,2-trichloroacetate Chemical compound [Zn+2].[O-]C(=O)C(Cl)(Cl)Cl.[O-]C(=O)C(Cl)(Cl)Cl ZFQAUDJGELQDAN-UHFFFAOYSA-L 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 150000001253 acrylic acids Chemical class 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- DNRBMFBLOYODNO-UHFFFAOYSA-L copper;2,2,2-trichloroacetate Chemical compound [Cu+2].[O-]C(=O)C(Cl)(Cl)Cl.[O-]C(=O)C(Cl)(Cl)Cl DNRBMFBLOYODNO-UHFFFAOYSA-L 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 125000001741 organic sulfur group Chemical group 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical class [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910021644 lanthanide ion Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000004395 organic heterocyclic compounds Chemical class 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940035637 spectrum-4 Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/54—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
- C08K3/105—Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/58—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Graft Or Block Polymers (AREA)
- Luminescent Compositions (AREA)
Abstract
Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение, которые могут быть использованы для светотехники, опто- и микроэлектроники. Люминесцирующая композиция на основе эфиров (мет)акриловой кислоты содержит сульфид цинка и ионы меди в концентрации от 0,00010 до 0,010 моль/(л полимеризуемой композиции). Изобретение обеспечивает получение оптически прозрачного материала, люминесцирующего в области 400-550 нм с максимумом в области синего спектрального диапазона. 1 ил.
Description
Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение. Оно используется для получения оптически прозрачных люминесцирующих металлсодержащих полимерных композиций для светотехники, опто- и микроэлектроники.
Известны (Аналог 1) композиции на основе полимеров акрилового ряда, стирола и его производных, содержащие галогенацетаты металлов и органические гетероциклические соединения в качестве фотоактивных добавок (Смагин В.П., Майер Р.А., Мокроусов Г.М., Чупахина Р.А. Полимеризуемый состав для получения прозрачных полимерных материалов / Патент СССР №1806152 A3, опубл. 30.03.93 г., бюл. №12.). Композиции получают растворением солей галогенуксусных кислот s-, р-, d- и f-металлов Периодической системы Д.И. Менделеева или их смеси в мономерах акрилового ряда, стироле и его производных, или в смеси мономеров. После полимеризации мономеров образуются прозрачные металлсодержащие полимерные композиции, преобразующие электромагнитное излучение. В процессе синтеза взаимодействие солей металлов с фотоактивными добавками, в том числе с серосодержащими органическими соединениями, проводят при комнатной температуре. Оно ограничивается комплексообразованием. Композиции не люминесцируют в спектральном диапазоне 400-550 нм, так как при данных условиях синтеза сульфиды цинка и меди не образуются. Следовательно, их нет в составе полимерных композиций.
Известны композиции (Аналог 2) на основе полиметилметакрилата, содержащие сульфиды кадмия, свинца и цинка (Смагин В.П., Еремина Н.С., Давыдов Д.А., Назарова К.В., Мокроусов Г.М. Фотолюминесценция сульфида кадмия в композициях на основе полиметилметакрилата // Неорганические материалы. 2016. Т. 52. №6. С. 664-671). Композиции получены взаимодействием трифторацетатов металлов с тиоацетамидом в метилметакрилате. Отверждение композиций проведено радикальной полимеризацией метилметакрилата в блоке. Композиции поглощают электромагнитное излучение видимой области спектра и люминесцируют в спектральном диапазоне >600 нм.
Композиции (Аналога 2) не люминесцируют в спектральном диапазоне 400-550 нм. Это объясняется отсутствием в их составе ионов меди, выступающих в качестве компонента, легирующего ZnS, придающего способность композициям люминесцировать в данном спектральном диапазоне. Наличие в составе композиции сульфидов кадмия и свинца усложняет цвет свечения композиций за счет характерной для них люминесценции в спектральном диапазоне >600 нм.
Известны композиции (Аналог 3) на основе полиметилметакрилата и/или полистирола, содержащие сульфиды кадмия, свинца и цинка, ионы лантаноидов, а также фотоактивные добавки (2,2'-дипиридил, 1,10-фенантролин), являющиеся сенсибилизаторами люминесценции лантаноидов (Смагин В.П., Исаева А.А. Светопреобразующие металлсодержащие полимерные композиции и способ их получения. Патент РФ №2610614 С2, опубл. 14.02.2017. Бюл. №5; Смагин В.П., Исаева А.А., Еремина Н.С. Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения. Патент РФ №2615701, опубл. 06.04.2017. Бюл. №10). Композиции получены взаимодействием трифторацетатов кадмия, свинца, цинка с тиоацетамидом в среде метилметакрилата. Последующим введением в их состав трифторацетатов лантаноидов и, при необходимости, одновременным с трифторацетатами лантаноидов или последующим введением 2,2'-дипиридила и/или 1,10-фенантролина для увеличения интенсивности люминесценции лантаноидов. Отверждение композиций до стеклообразного состояния проводят радикальной полимеризацией метилметакрилата в блоке.
Недостатком данных композиций (Аналог 3), как и композиций аналога 2, является отсутствие в их составе ионов меди, легирующих сульфид цинка. Следовательно, композиции не способны проявлять люминесценцию в спектральной области 400-550 нм, которая характерна для сульфида цинка, легированного ионами меди. Также, их недостатком является сложность состава, приводящая к уменьшению светопропускания в видимой области спектра, включая область 400-550 нм.
Известны композиции (Прототип) на основе полистирола и/или полимеров эфиров (мет)акриловой кислоты, содержащие сульфиды кадмия, свинца и цинка (Смагин В.П., Давыдов Д.А., Унжакова Н.М. Способ получения прозрачных металлсодержащих полимеризуемых композиций. Патент РФ №2561278 С1. Опубл. 27.08.2015. Бюл. №24). Композиции получены взаимодействием растворимых солей металлов или их смесей с органическими серосодержащими соединениями, взятых в мольных соотношениях, не превышающих 1:1,5, в среде стирола и/или эфиров (мет)акриловой кислоты при мольном отношении в смеси стирола к эфирам (мет)акриловой кислоты от 0 до 1, при нагревании в интервале температур 70-90°С в течение 5-20 минут. В качестве растворимых солей металлов для проведения синтеза взяты соли тригалогенуксусных кислот, из которых преимущественно используются соли трифторуксусной и/или трихлоруксусной кислот. В качестве органических серосодержащих соединений преимущественно применяется тиоацетамид. В результате проведения синтеза в указанных условиях образуются полимеризуемые композиции содержащие сульфиды кадмия, свинца и цинка. Отверждение композиций проведено радикальной полимеризацией стирола и/или эфиров (мет)акриловой кислоты в блоке.
Недостатком композиций является то, что они не люминесцируют в спектральном диапазоне 400-550 нм. Также недостатком является сложность состава композиций. Нахождение в составе композиций сульфидов кадмия и свинца приводит к возникновению характерной для них люминесценции в спектральном диапазоне >600 нм. Это усложняет цвет свечения композиций.
Целью настоящего изобретения является разработка оптически прозрачных металлсодержащих полимерных композиций, люминесцирующих в интервале длин волн 400-550 нм с максимумом люминесценции в области синего спектрального диапазона. Поставленная цель достигается тем, что в качестве основы композиций используются полимеры эфиров (мет)акриловой кислоты (полиалкил(мет)акрилаты), а в качестве люминесцирующего компонента сульфид цинка, легированный ионами меди.
Синтез сульфида цинка, легированного ионами меди, проводится непосредственно в среде мономера - эфира (мет)акриловой кислоты или их смеси, взаимодействием трифторацетатов и/или трихлорацетатов цинка и меди с тиоацетамидом при нагревании в интервале температур 70-90°С в течение 5-20 минут. Концентрация сульфида цинка в полимеризуемой смеси не должна превышать 0,10 моль/л, а концентрация ионов меди находиться в интервале от 0,00010 моль/л до 0,010 моль/л. Отверждение композиций проводится полимеризацией мономера в блоке одним из известных способов.
Синтез композиций проводится по следующей прописи:
1. В предварительно очищенном мономере - эфире (мет)акриловой кислоты или их смеси, являющимся одновременно реакционной средой синтеза легированного ионами меди сульфида цинка и предшественником основы стеклообразной композиции (полиалкил(мет)такрилата), растворяют заданное количество трифторацетата и/или трихлорацетата цинка и меди.
2. В раствор, полученный по п. 1, добавляют тиоацетамид (ТАА) в мольном соотношении Zn : TAA непревышающем 1:1,5.
3. Раствор, полученный по п. 2., нагревают в интервале температур 70-90°С в течение 5-20 минут, обеспечивая образование в растворе сульфида цинка, легированного ионами меди.
4. В раствор, полученный по п. 3, при необходимости, добавляют инициатор полимеризации.
5. Полученный по п. 4 раствор переводят в стеклообразное состояние полимеризацией мономера в блоке одним из известных способов.
Существенными отличиями предлагаемого решения от Прототипа являются:
- Присутствие в составе композиций ионов меди, которые выступают в качестве компонента, легирующего сульфид цинка, обеспечивающего люминесценцию в диапазоне длин волн 400-550 нм с максимумом полосы в синей области спектра.
- Отсутствие в составе композиций сульфидов кадмия и свинца с характерной для них люминесценцией в спектральной области >600 нм, отрицательно влияющей на цвет люминесцентного свечения.
Для получения композиций используются.
а). Эфиры (мет)акриловой кислоты в качестве основы жидкой композиций. Одновременно они являются реакционной средой, в которой происходит химическая реакция между трифторацетатами и/или трихлорацетатами цинка, меди и тиоацетамидом с образованием легированного ионами меди сульфида цинка, а также предшественником основы стеклообразной композиции, которая образуется при полимеризации эфиров (мет)акриловой кислоты в блоке одним из известных способов. Выбор эфиров (мет)акриловой кислоты в качестве основы жидких композиций обусловлен их высокой прозрачностью в оптической области спектра (250-1000 нм). Они являются мономерами наиболее прозрачных полимеров (полиалкил(мет)акрилаты). В качестве мономера предпочтительнее использовать метилметакрилат. Метилметакрилат и получаемый при его полимеризации полимер - полиметилметакрилат по сравнению с известными оптическими мономерами и полимерами характеризуются наибольшим светопропусканием в оптической области спектра. Применение этих соединений позволяет до минимума уменьшить влияние основы (мономер, полимер) на спектральные свойства в области прозрачности композиций. Метилметакрилат является коммерчески доступным, технология получения его полимеров хорошо изучена и широко применяется в промышленности. Применение алкил(мет)акрилатов и, в частности метилметакрилата, позволяет получать прозрачные в оптической области спектра люминесцирующие металлсодержащие композиции.
б). Трифторацетат и/или трихлорацетат цинка являются предшественниками сульфида цинка. Трифторацетат и/или трихлорацетат меди обеспечивают доставку ионов меди в реакционную смесь и легирование образующегося в растворе сульфида цинка. Использование в качестве металлсодержащих соединений солей трифторуксусной и трихлоруксусной кислот обусловлено их хорошей растворимостью в эфирах (мет)акриловой кислоты (Смагин В.П., Майер Р.А., Мокроусов Г.М., Чупахина Р.А. Полимеризуемый состав для получения прозрачных полимерных материалов / Патент СССР №1806152 A3, опубл. 30.03.93 г., бюл. №12.). Предпочтительнее использовать трифторацетаты металлов. Они характеризуются большей растворимостью в эфирах (мет)акриловых кислот. Трифторуксусная кислота, в отличие от других тригалогенуксусных кислот, при нормальных условиях находится в жидком агрегатном состоянии, что облегчает синтез солей. Выбор солей цинка и меди, кроме их хорошей растворимости в эфирах (мет)акриловой кислоты, связан с их способностью образовывать сульфиды и сульфид-содержащие композиции, люминесцирующие в диапазоне длин волн 400-550 нм с максимумом в синей области спектра.
в). Тиоацетамид в качестве источника сульфид-ионов. Выбор тиоацетамида в качестве источника сульфид-ионов обусловлен его технологичностью (не газообразное состояние), растворимостью в эфирах (мет)криловых кислот, способностью при взаимодействии с трифторацетатами и трихлорацетатами металлов в среде эфиров (мет)акриловых кислот при нагревании образовывать устойчивые композиции, содержащие сульфиды металлов. Тиоацетамид является коммерчески доступным соединением. При температуре окружающей среды находится в твердом агрегатном состоянии. Его применение позволяет получать оптически прозрачные люминесцирующие металлсодержащие полимерные композиции.
Примеры заявляемых люминесцирующих металлсодержащих полимерных композиций с описанием способа их получения:
Пример 1.
1. B 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,00029 г (0,00010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1: 0,01.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоина в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°С в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 1). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 2.
1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, раствор подвергают термической полимеризации в блоке при температуре 60-70°С в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 2). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 3.
1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0290 г (0,010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:1.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоина в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 3). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 4.
1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,291 г (0,10 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,01.
2. В раствор, полученный по п. 1, добавляют 0,075 г (0,10 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 5.
1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.
2. В раствор, полученный по п. 1, добавляют 0,0113 г (0,015 моль/л) (тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1,5.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 4). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 6.
1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0015 г (0,00050 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,05.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 70°С в течение 5 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 7.
1. В 10,0 мл предварительно очищенного этилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 8.
1. В 10,0 мл смеси, состоящей из 5,0 мл предварительно очищенного метилметакрилата и 5,0 мл предварительно очищенного этилакрилата, растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 9.
1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0390 г (0,010 моль/л) трихлорацетата цинка и 0,0039 г (0,0010 моль/л) трихлорацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трихлорацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Пример 10.
1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0039 г (0,0010 моль/л) трихлорацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.
2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.
3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.
4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.
5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.
Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.
Анализ примеров показывает, что люминесцирующие металлсодержащие оптически прозрачные полимерные композиции образуются после введения в мономеры оптических полимеров (эфиры (мет)акриловых кислот, предпочтительнее метилметакрилат) трифтор- и/или трихлорацетатов цинка и меди (предпочтительнее трифторацетатов цинка и меди), а также тиоацетамида в качестве источника сульфид-ионов. При этом, концентрация трифтор- и/или трихлорацетата цинка в полимеризуемой смеси не должна превышать 0,10 моль/л, концентрация трифтор- и/или трихлорацетата меди должна находиться в интервале от 0,00010 моль/л до 0,010 моль/л. Мольное соотношение трифтор- и/или трихлорацетата цинка и тиоацетамида в растворе не должно превышать 1:1,5. Далее, проведение химической реакции между трифтор- и/или трихлорацетатами металлов и тиоацетамидом в растворе при температуре 70-90°C в течение 5-20 минут и отверждение растворов полимеризацией эфиров (мет)акриловых кислот в блоке одним из известных способов. В итоге, образуются стеклообразные полимерные композиции. Светопропускание композиций при длинах волн >400 нм достигает 90-92% при их толщине до 5 мм. Способность композиций люминесцировать в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, 434-450 нм) связана с протеканием в среде эфиров (мет)акриловых кислот при нагревании химической реакции между трифтор- и/или трихлорацетатами металлов и тиоацетамидом с образованием легированного ионами меди сульфида цинка, находящегося после отверждения растворов в стеклообразной полимерной матрице. Нагревание при температуре больше 90°C или меньше 70°C не приводит к желаемому результату. Композиции разрушаются или люминесцирующий продукт реакции не образуется. Нагревание растворов менее 5 и более 20 мин не приводит к желаемому результату. В первом случае люминесцирующий продукт не образуется, во втором случае нагревание является не эффективным или композиции разрушаются. При нагревании растворов, содержащих трифтор- и/или трихлорацетат цинка в концентрации больше 0,10 моль/л и при мольном соотношении Zn : TAA>1:1,5, сульфид цинка выделяется в виде грубодисперсной фазы. При содержании трифтор- и/или трихлорацетата меди в концентрации меньше 0,00010 моль/л заявляемый результат не проявляется, при его содержании больше 0,010 моль/л легирование сульфида цинка не происходит, сульфид меди выделяется в виде грубодисперсной фазы.
Таким образом, при использовании трифтор- и/или трихлорацетатов цинка, меди и тиоацетамида в заявляемом концентрационном диапазоне и мольных отношениях для приготовления растворов, проведения синтеза в соответствии с приведенной прописью, образуются прозрачные металлсодержащие полимерные композиции, люминесцирующие в спектральном диапазоне 400-550 нм с максимумом в синей области спектра (фиг. 1). Высокое светопропускание композиций подчеркивает их однородность. Неизменность спектральных свойств в течение длительного времени характеризует их стабильность. Возможность получения в стеклообразном состоянии и изготовления из них изделий различной формы и размера подчеркивает их технологичность. Доступность исходных соединений, незначительный расход на единицу продукции, простота способа получения, а также совокупность получаемых свойств позволяет использовать металлсодержащие полимерные композиции для изготовления люминесцирующих прозрачных полимерных материалов для светотехники, опто- и микроэлектроники.
Claims (1)
- Люминесцирующая металлсодержащая полимерная композиция, предназначенная для преобразования электромагнитного излучения, на основе эфиров (мет)акриловой кислоты и сульфида цинка, отличающаяся тем, что содержит ионы меди в концентрации от 0,00010 моль/(л полимеризуемой композиции) до 0,010 моль/(л полимеризуемой композиции).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017140023A RU2677998C1 (ru) | 2017-11-03 | 2017-11-03 | Люминесцирующие металлсодержащие полимерные композиции |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017140023A RU2677998C1 (ru) | 2017-11-03 | 2017-11-03 | Люминесцирующие металлсодержащие полимерные композиции |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2677998C1 true RU2677998C1 (ru) | 2019-01-22 |
Family
ID=65085067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017140023A RU2677998C1 (ru) | 2017-11-03 | 2017-11-03 | Люминесцирующие металлсодержащие полимерные композиции |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2677998C1 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2561278C1 (ru) * | 2014-07-07 | 2015-08-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" | Способ получения прозрачных металлсодержащих полимеризуемых композиций |
RU2615701C2 (ru) * | 2015-09-30 | 2017-04-06 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" | Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения |
-
2017
- 2017-11-03 RU RU2017140023A patent/RU2677998C1/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2561278C1 (ru) * | 2014-07-07 | 2015-08-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" | Способ получения прозрачных металлсодержащих полимеризуемых композиций |
RU2615701C2 (ru) * | 2015-09-30 | 2017-04-06 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" | Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения |
Non-Patent Citations (1)
Title |
---|
М.М. Сычев, Влияние концентрации меди и обработки ZnS на характеристики синтезированных электролюминофоров ZnS : Cu,Cl, Физика и техника полупроводников, 2012, том 46, вып. 5, стр. 714-718. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Efremova et al. | Photoluminescent materials based on PMMA and a highly-emissive octahedral molybdenum metal cluster complex | |
NL8004876A (nl) | Organische zeldzame aardmetaalzoutfosfor. | |
RU2610614C2 (ru) | Светопреобразующие металлсодержащие полимеризуемые композиции и способ их получения | |
RU2677998C1 (ru) | Люминесцирующие металлсодержащие полимерные композиции | |
CN114774113B (zh) | 一种超长磷光寿命有机室温磷光材料的制备方法 | |
CN104498032A (zh) | 侧挂型聚甲基丙烯酸甲酯稀土配合物发光材料及其制备方法 | |
RU2747641C1 (ru) | Люминесцирующие металлсодержащие полимерные композиции | |
RU2676986C1 (ru) | Светопреобразующие полимерные композиции | |
CN110878031A (zh) | 发光材料、发光材料的合成方法及应用 | |
CN108659843B (zh) | 一种防伪标签材料 | |
CN110922576B (zh) | 一种可发光双向可逆形状记忆聚合物及制备与应用 | |
RU2615701C2 (ru) | Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения | |
Ren et al. | Poly (MMA-co-FMA) as a platform for tuning emission by clicking with luminescent lanthanide complexes | |
JP2010215728A (ja) | 橙色蛍光体とその製造方法 | |
Wang et al. | A novel red emitting polymeric complex as a directly film-forming phosphor applied in NUV-based LEDs | |
RU2561278C1 (ru) | Способ получения прозрачных металлсодержащих полимеризуемых композиций | |
CN103804658A (zh) | 一种可聚合聚芴大单体及其合成方法 | |
CN107674537B (zh) | 一种基于聚集诱导发光机理的自交联荧光乳胶及其制备方法 | |
RU2036217C1 (ru) | Полимерная композиция для получения пленки | |
Zhao et al. | A warm white light macromolecular complex phosphor containing Eu (III), Tb (III) and Zn (II) with low color temperature and high color index | |
RU2450025C2 (ru) | МЕТАЛЛ-ПОЛИМЕРНЫЙ КОМПЛЕКС ЕВРОПИЯ (Eu3+) И (СО)ПОЛИ-(МЕТИЛМЕТАКРИЛАТ)-(1-МЕТАКРИЛОИЛ-2-(2-ПИРИДИЛ)-4-КАРБОКСИХИНОЛИЛ)ГИДРАЗИНА | |
RU2415157C1 (ru) | Сополимеры n-винилкарбазола с n-винилкапролактамом и твердые растворы полиметилметакрилата, включающие ионы тербия и такие сополимеры | |
Anufrieva et al. | Luminescence of terbium ions in copolymers containing N-vinylcarbazole and vinylamide units of various structures in poly (methyl methacrylate) films | |
Keshtov et al. | New π-conjugated polymers based on N-(4-(3, 5-bis (4-bromophenyl)-[1, 2, 4] triazol-4-yl)-phenyl) carbazole: Synthesis and photoluminescent, electroluminescent, and electrochromic properties | |
CN113024752B (zh) | 一种纯有机非掺杂聚合物室温磷光材料的制备方法和应用 |