RU2676322C1 - Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата - Google Patents

Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата Download PDF

Info

Publication number
RU2676322C1
RU2676322C1 RU2017122806A RU2017122806A RU2676322C1 RU 2676322 C1 RU2676322 C1 RU 2676322C1 RU 2017122806 A RU2017122806 A RU 2017122806A RU 2017122806 A RU2017122806 A RU 2017122806A RU 2676322 C1 RU2676322 C1 RU 2676322C1
Authority
RU
Russia
Prior art keywords
triticain
protein
biologically active
preparation
seq
Prior art date
Application number
RU2017122806A
Other languages
English (en)
Inventor
Андрей Александрович ЗАМЯТНИН
Евгений Юрьевич Зерний
Неонила Васильевна Гороховец
Наталья Викторовна Кузнецова
Владимир Алексеевич Макаров
Людмила Владимировна Савватеева
Вадим Владимирович Тарасов
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет) filed Critical федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет)
Priority to RU2017122806A priority Critical patent/RU2676322C1/ru
Priority to EA202000021A priority patent/EA038578B1/ru
Priority to US16/626,206 priority patent/US11447780B2/en
Priority to PCT/RU2018/050071 priority patent/WO2019004878A1/ru
Application granted granted Critical
Publication of RU2676322C1 publication Critical patent/RU2676322C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/22Cysteine endopeptidases (3.4.22)
    • C12Y304/22002Papain (3.4.22.2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Изобретение относится к области молекулярной биологии и биотехнологии и представляет собой биологически активный белковый препарат, обладающий специфической активностью папаин-подобных цистеиновых протеиназ, характеризующийся тем, что представляет собой аминокислотную последовательность, выбранную из SEQ ID NO:2-4, экспрессирующийся в растворимой форме. Изобретение относится также к способу получения биологически активного белкового препарата, где способ включает трансформацию клеток плазмидами, содержащими ДНК, кодирующую белок с аминокислотной последовательностью, выбранной из SEQ ID NO: 2-4, культивирование и выделение биологически активного препарата. Изобретение обеспечивает возможность получения препарата тритикаина-альфа с высоким и стабильным выходом, высоким уровнем очистки и функциональной активности. 5 н. и 4 з.п. ф-лы, 8 ил., 7 пр.

Description

Изобретение относится к области молекулярной биологии, препаративной биохимии, биотехнологии, биофармакологии, а именно к созданию способов получения рекомбинантных белков семейства цистеиновых протеиназ пшеницы (Triticum aestivum) в растворимой форме и препараты белка тритикаина-альфа, состоящие из фрагмента тритикаина-альфа пшеницы. Изобретение может быть использовано в исследовательских целях для изучения функционирования папаин-подобных цистеиновых протеиназ, а также в медицине для разработки ферментных терапевтических препаратов.
Тритикаины (triticain-α, -β, -γ) - высококонсервативные папаин-подобные цистеиновые эндопротеазы пшеницы, состоящие из сигнального (лидерного) пептида, удаляющегося при активации про-пептидного домена, гранулин-подобного домена [GenBank АВ267407] и каталитического домена с каталитической триадой Cys-His-Asn [1]. Цистеиновые протеиназы распространены в растениях и экспрессируются в их различных органах [2, 3]. Предполагается, что эти ферменты участвуют в стадиеспецифическом расщеплении и пост-трансляционных модификациях запасающих белков [4, 5]. Среди папаин-подобных цистеиновых протеиназ растений наиболее широко изучены ферменты риса и ячменя - оризаины (oryzain-α, -β, -γ) и эндопептидазы ЕРВ (barley cysteine proteinase B-1, -2) [6, 7], однако протеазы пшеницы начали изучать относительно недавно [1, 8].
Основным преимуществом папаин-подобных цистеиновых протеиназ из семян растений на данный момент является их эндопептидазная активность, в частности, глютеназная активность - способность эффективно гидролизовать пептиды глютена (запасного белка пшеницы, состоящего из смеси мономерных глиадинов и полимерных глютенинов) или родственных запасных белков ржи и ячменя. Это свойство растительных ферментов позволяет считать их перспективными объектами при разработке лекарственных средств для борьбы с целиакией. Целиакия (глютеновая энтеропатия) представляет собой комплексное воспалительное заболевание человека, которое развивается при наличии соответствующей генетической предрасположенности в ответ на обогащенные остатками пролина и глутамина пептиды, являющиеся продуктами происходящего в пищеварительном тракте частичного протеолиза глютена [9, 10]. Распространенность глютеновой энтеропатии во взрослой популяции большинства стран мира оценена как 1:100 - 1:250 или 0.5-1% от общей популяции [11]. Доказанной эффективной терапией целиакии является пожизненная строгая безглютеновая диета, позволяющая предотвратить развитие осложнений и исключить клинические симптомы заболевания [12]. Однако главным недостатком безглютеновой диеты является сложность ее соблюдения из-за ее ограничительного характера, обусловленного как высокой стоимостью, так и сложностью подбора глютен-несодержащих продуктов питания.
В связи с этим, исследование и разработка способов получения высокоспецифичных протеиназ, стабильных и активных в присутствии эндогенных ферментов желудочно-кишечного тракта человека (т.е. в месте предполагаемого действия лекарственного препарата на их основе) имеет большое значение в терапевтических целях [13].
Из литературы известен метод получения проэнзимной формы цистеиновой протеиназы ячменя ЕР-В2 (proЕР-В2) в E.coli. [14, 15].
В рамках данного изобретения была выбрана протеиназа пшеницы Triticum aestivum - тритикаин-альфа, т.к. пшеница играет существенную роль как источник питания в России, а значит, наиболее подходящая для разработки отечественных терапевтических препаратов для лечения целиакии.
Молекула полноразмерного тритикаина-альфа состоит из 461 аминокислотного остатка с молекулярным весом 50,4 кДа. Впервые фермент был клонирован и экспрессирован в зародыше и алейроновом слое пшеницы для выяснения его роли в процессе созревания семян [1]. Однако непосредственно белок тритикаин-альфа выделен не был.
Биосинтез рекомбинантного тритикаина-альфа для исследования его протеолитических функций был осуществлен нами ранее [16, 17]. В описанном способе рекомбинантный тритикаин-альфа (фрагмент полноразмерного белка) синтезировался в бактериальных клетках в нерастворимой форме, что требовало включения дополнительной, трудно валидируемой, стадии рефолдинга в процессе выделения целевого белка. Также, полученные препараты обладали меньшей активностью, чем полученные препараты в настоящей заявке, а также обладали меньшим выходом при выделении и меньшей чистотой.
Задачей, решаемой в рамках настоящей заявки, является расширение ассортимента ферментативных препаратов, с потенциалом использования в качестве лекарственного средства, а также разработка эффективного способа получения высокоочищенного и высокоактивного препарата белка с последующим потенциальным применением в промышленных условиях. Существует необходимость разработки усовершенствованных экономически целесообразных технологий получения таких белков с сохранением высокого качества (степень чистоты, выход и активность) препаратов для исследовательских и прикладных целей.
Техническим результатом настоящего изобретения является получение высокоочищенного и высокоактивного препарата фрагмента протеазы пшеницы тритикаина-альфа, состоящего из пропептидного (продомена) и каталитического доменов полноразмерного тритикаина-альфа пшеницы (т.е. без лидерного пептида и гранулин-подобного домена), в растворимой форме с высоким выходом при выделении, для фундаментальных и прикладных исследований (в частности, для использования в составе ферментных терапевтических средств).
Поставленная задача решается следующим образом:
Пример 1. Клонирование усеченных фрагментов гена тритикаина-альфа для бактериальной экспрессии белков в растворимой форме.
На основе известной последовательности мРНК пшеницы (Triticum aestivum), кодирующей полноразмерный ген тритикаина-альфа (GenBank АВ267407), синтезируют комплементарную ДНК (кДНК) с использованием обратной транскриптазы мышиного вируса лейкемии Молони и праймера на 3'-нетранслируемую область мРНК 5'-gggggatccttacgcgctacttttcttgccg. Амплификацию кодирующей транслируемую область гена полноразмерного тритикаина-альфа ДНК, фланкированную сайтами рестрикции NdeI и BamHI (TRIT-α, фиг. 1, SEQ ID NO: 1), проводят с использованием следующих прямого и обратного праймеров: 5'-ccccatatgcatcatcatcatcatcatgccatgaggagctccatggccctc и 5'-gggggatccttacgcgctacttttcttgccg (сайты рестрикции NdeI и BamHI выделены подчеркиванием). Продукт амплификации и плазмидную ДНК рЕТ-42а(+) обрабатывают рестриктазами NdeI и BamHI, соединяют при помощи лигазной реакции, после чего реакционную смесь трансфицируют в компетентные клетки E.coli BL21-CodonPlus(DE3)-RIL. Трансформированные клетки высевают на агаризованную среду LB, содержащую антибиотик (канамицин). Из отобранных методом ПЦР (с помощью универсальных праймеров для рЕТ-векторов) клонов выделяют целевую плазмидную ДНК (pET_TRIT-α). Нуклеотидную последовательность встроенного фрагмента подтверждают секвенированием по Сенгеру. Отобранные клоны наращивают для оценки продуктивности, устойчивости к антибиотикам и стабильности трансформации.
Конструирование новой последовательности ДНК, кодирующей усеченный фрагмент гена тритикаина-альфа (6HIS-Triticain-α-GM, без лидерного пептида и гранулин-подобного домена, с N-концевой полигистидиновой последовательностью, фиг. 2, SEQ ID NO:2) для экспрессии в бактериальной системе, осуществляют на основе плазмидной ДНК pET_TRIT-α в качестве матрицы и праймеров: 5'-tatacatatgtcgatcgtgtcgtacgg (сайт рестрикции NdeI выделен подчеркиванием) и 5'-ttctcgagttagcccgtcttcgtcgg (сайт рестрикции XhoI выделен подчеркиванием). Продукт амплификации клонируют в экспрессионную плазмиду рЕТ-15b (Novagen, Germany) по сайтам рестрикции NdeI и XhoI, используя штамм E.coli Rosetta gami В (DE3). Скрининг колоний проводят методом рестрикционного анализа и последующего секвенирования.
Аналогичным образом осуществляют конструирование новой последовательности ДНК, кодирующей усеченный фрагмент гена тритикаина-альфа (Triticain-α-GM-6HIS), без лидерного пептида и гранулин-подобного домена, с С-концевой полигистидиновой последовательностью, фиг. 3, SEQ ID NO:3), используя следующую пару праймеров: 5'-ataccatggcgctgccggagaccgtcg и 5'-attctcgagtcagtggtggtggtggtggtggcccgtcttcgtcgggt и сайты рестрикции NcoI и XhoI соответственно (выделены подчеркиванием).
Пример 2. Клонирование фрагмента гена тритикаина-альфа для дрожжевой экспрессии белка в растворимой форме.
Конструирование новой последовательности ДНК, кодирующей усеченный фрагмент гена тритикаина-альфа (y-Triticain-α-GM, фиг. 4, SEQ ID NO:4) для экспрессии в дрожжевой системе, осуществляют на основе плазмидной ДНК pET_TRIT-α в качестве матрицы и праймеров: 5'-tgaattctccatcgtgtcgtacggg (сайт рестрикции EcoRI выделен подчеркиванием) и 5'-attgcggccgcttagcccgtcttcgtcgg (сайт рестрикции NotI выделен подчеркиванием). Продукт амплификации клонируют в экспрессионный вектор Pichia pastoris рРIС9 по указанным сайтам, который позволяет получать целевой белок в секретируемом виде за счет сигнальной последовательности (α-фактора, фиг. 4).
Пример 3. Экспрессия фрагмента тритикаина-альфа пшеницы в растворимой форме в E.coli.
Штамм E.coli Rosetta gami В (DE3), трансформированный плазмидой pET15-6HIS-Triticain-α-GM выращивают в среде LB (10 г/л триптон, 5 г/л дрожжевой экстракт, 5 г/л NaCl) при 37°С в аэробных условиях с добавлением ампициллина (до конечной концентрации 50 мг/мл) в течение 12-14 ч (посевной материал), инокулируют новую порцию питательной среды в соотношении 1:50, растят культуру до достижения оптической плотности А600 0.6-0.8, охлаждают во льду в течение 15 мин и индуцируют изопропилтио-β-О-галактозидом (ИПТГ) до конечной концентрации 1 мМ, после чего клетки продолжают инкубировать 20 ч при 18°С. При индукции ИПТГ происходит биосинтез рекомбинантного 6HIS-Triticain-α-GM (SEQ ID NO:2), который накапливается в клетках как в растворимой форме, так и в тельцах включения (фиг. 5). Отбирают пробы клеточной суспензии до и после индукции в количестве, соответствующем 0.1 оптических единиц (о.е.), осаждают центрифугированием, суспендируют в лизирующем буфере (0.03 М Трис-HCl, рН 6.8, 10% глицерин, 1% додецилсульфат натрия, 3% меркаптоэтанол, 0.005% бромфеноловый синий), нагревают 5 мин при 95°С, и образцы объемом 20 мкл анализируют электрофорезом в 12% полиакриламидном геле с додецилсульфатом натрия. Гель прокрашивают кумасси R-250 по стандартной методике и сканируют для определения относительного количества белка в полосе целевого белка (фиг. 5). По данным сканирования содержание рекомбинантного 6HIS-Triticain-α-GM составляет 15-20% от всех клеточных белков.
Аналогичным образом осуществляют экспрессию фрагмента тритикаина-альфа Triticain-α-GM-6HIS (SEQ ID NO:3), используя трансформированные плазмидой pET15-Triticain-α-GM-6HIS клетки штамма Rosetta gami В (DE3). Результат биосинтеза рекомбинантного белка анализируют электрофорезом в 12% полиакриламидном геле с додецилсульфатом натрия (фиг. 6). По данным сканирования геля содержание рекомбинантного Triticain-α-GM-6HIS составляет 15-20% от всех клеточных белков, причем целевой белок синтезируется в бактериальных клетках исключительно в растворимой форме.
Пример 4. Получение высокоочищенного препарата рекомбинантного фрагмента тритикаина-альфа из E.coli.
Очистку целевых белков 6HIS-Triticain-α-GM (SEQ ID NO:2) и Triticain-α-GM-6HIS (SEQ ID NO:3) проводят методом аффинной (металл-хелатной) хроматографии. Получение рекомбинантного 6HIS-Triticain-α-GM и Triticain-α-GM-6HIS из клеток штаммов-продуцентов Rosetta gami В (DE3)/pET15-6HIS-Triticain-α-GM и Rosetta gami В (DE3)/pET15-Triticain-α-GM-6HIS соответственно, включает несколько стадий. Осажденную центрифугированием клеточную биомассу экспрессионной культуры ресуспендируют в 0.02 М фосфатном буфере, рН 8.0, содержащем 0.5 М NaCl и 0.01 М имидазол (буфер А), и гомогенизируют на ультразвуковом дезинтеграторе в течение 1 мин (12×5 с) при 4°С. Полученную после центрифугирования лизата (10000×g, 4°С, 15 мин) надосадочную жидкость наносят на колонку с активированной ионами никеля иминодиацетат-сефарозой, уравновешенную буфером А. Процесс хроматографии проводят на системе BioLogic (BioRad) с детекцией при 280 нм. Сорбент последовательно промывают уравновешивающим буфером А. Связавшийся с сорбентом белок элюируют буфером А с содержанием 0.3 М имидазола. Раствор диализуют против 0.02 М фосфатного буфера, рН 8.0 при 4°С в течение 24 ч, трижды производя замену буфера на свежий. Концентрацию целевого белка определяют с помощью ВСА-реагента (бицинхониновой кислоты), аликвотируют по стеклянным флаконам, замораживают и лиофилизуют.
Выход полученных таким способом рекомбинантных вариантов усеченного тритикаина-альфа в растворимой форме составляет не менее 15 мг (15-24 мг) с 1 л для бактериальной культуры Rosetta gami В (DE3)/pET15-6HIS-Triticain-α-GM и не менее 5 мг с 1 л - для Rosetta gami В (DE3)/pET15-Triticain-α-GM-6HIS. Чистота полученных препаратов по данным электрофоретического анализа составляет не менее 85% (фиг. 5, 6; следует отметить, что целевые белки 6HIS-Triticain-α-GM (SEQ ID NO:2) и Triticain-α-GM-6HIS (SEQ ID NO:3), проявляющие протеолитическую активность, подвергаются автопротеолизу в процессе выделения).
Пример 5. Экспрессия фрагмента тритикаина-альфа пшеницы в растворимой форме в P.pastoris.
Для трансформации клеток Pichia pastoris дрожжевой экспрессионной плазмидой pPIC9-Triticain-α-GM был использован ауксотрофный по гистидину штамм Pichia pastoris GS115 (His-, Mut+). Плазмиду pPIC9-Triticain-α-GM линеаризуют по сайту BglII. Трансформацию клеток Pichia pastoris проводят методом электропорации. Клетки штамма GS115 высевают на чашку с агаризованной средой YPD (1% дрожжевой экстракт, 2% пептон, 2% глюкоза) и инкубируют при 30°С 2 дня до появления отдельных колоний. Одной колонией инокулируют 5 мл среды YPD в колбе объемом 50 мл и наращивают клетки в течение ночи при 30°С в шейкер-инкубаторе при 300 об/мин. Далее 200 мл свежей среды YPD засевают 0.2 мл ночной культуры и снова наращивают клетки в течение ночи при 30°С в шейкер-инкубаторе до достижения оптической плотности клеточной суспензии А600 1.5. Клетки осаждают центрифугированием (1500×g, 5 мин, 4°С), осадок дважды промывают 200 мл и 100 мл охлажденной во льду стерильной воды соответственно, после чего клетки снова осаждают и ресуспендируют в 8 мл холодного 1 М сорбита. Затем клетки снова осаждают и ресуспендируют в 0.6 мл ледяного 1 М сорбита. 40 мкл клеточной суспензии смешивают с 5 мкг линеаризованной плазмиды в 10 мкл буфера ТЕ (0.01 М Трис-HCl, 0.001 М ЭДТА, рН 8.0). Смесь помещают в охлажденную 2 мм кювету и охлаждают во льду 5 мин. Затем кювету помещают в отсек шоковой камеры электропоратора и генерируют единичный импульс. Кювету извлекают из камеры и быстро добавляют 1 мл ледяного 1 М сорбита. Содержимое кюветы переносят в стерильные микропробирки. По 100, 300 и 600 мкл клеточной суспензии, трансформированной линеаризованной плазмидой рРIС9-Triticain-α-GM, растирают на чашке Петри с минимальной безгистидиновой агаризованной средой. Для контроля выживаемости по 10 мкл клеточных суспензий после электропорации суспендируют в 100 мкл 1 М сорбита и по 10 мкл растирают на чашках Петри с агаризованной YPD средой. Чашки инкубируют при 30°С до появления колоний (2-4 дня).
В зависимости от способа рекомбинации и локуса встраивания линеаризованной плазмиды трансформированные клетки Pichia pastoris GS115 (Mut+) могут приобретать MutS фенотип. Для подтверждения Mut+ и MutS фенотипов трансформантов колонии высевают на чашки с минимальной агаризованной средой, содержащей метанол и глюкозу (ММ и MD соответственно), подразумевая, что дрожжевые клетки фенотипа MutS делятся в ММ среде медленнее, чем в MD среде (что визуально определяется сравнением размеров колоний на ММ и MD чашках через 2-3 суток инкубации при 30°С). Точную принадлежность дрожжевых трансформантов к Mut+ или MutS фенотипу подтверждают методом полимеразной цепной реакции. Для этого из выбранных клонов с ММ и MD чашек выделяют ДНК и анализируют методом ПЦР с использованием прямого 5'АОХ1 (gactggttccaattgacaagc) и обратного 3'АОХ1 (gcaaatggcattctgacatcc) праймеров при условиях амплификации: 95°С 3 мин, денатурация 95°С 30 с, 30 циклов, отжиг 54°С 30 с, элонгация 72°С 2 мин, затем 72°С 5 мин. Пробы анализируют методом горизонтального электрофореза в 1% агарозном геле с окрашиванием бромистым этидием. По размерам ампликонов ДНК клонов Mut+ и MutS фенотипа (2140 п.н. и 1476 п.н. соответственно) выявляют преобладающий фенотип (Mut+). Полученные трансформанты Pichia pastoris GS115/pPIC9-Triticain-α-GM содержат как минимум одну копию фрагмента гена тритикаина-альфа. По результатам анализа отбирают несколько клонов Mut+ и MutS фенотипов для экспрессии целевого рекомбинантного белка.
Для получения двойных трансформантов линеализированную по сайту рестрикции SalI плазмиду pPIC9K-Triticain-α-GM трансформировали в полученные ранее клетки Pichia pastoris GS 115/pPIC9-Triticain-α-GM (Mut+и MutS). Отбор двойных трансформантов проводили на генетицин-содержащей среде (0,15 мг/мл).
Для исследования способности трансформантов P.pastoris Mut+ и MutS фенотипов секретировать y-Triticain-α-GM (SEQ ID NO:4) одной колонией каждого клона трансформанта и контрольных штаммов со свежих чашек инокулируют 4 мл среды BMGY (1% дрожжевой экстракт, 2% пептон, 1.34% YNB, 4×10-5% биотин, 1% глицерин, 0.1 М фосфат калия, рН 6.0). Клеточную массу наращивают при 30°С в шейкер-инкубаторе при 300 об/мин до достижения А600 1 о.е. (для Mut+) и А600 5 о.е. (для MutS). Для АОХ-контролируемой индуции экспрессии клеточные суспензии в объеме, содержащем 5 о.е. (Mut+) или 25 о.е. (MutS), осаждают центрифугированием и осадки ресуспендируют в 5 мл среды BMMY (1% дрожжевой экстракт, 2% пептон, 1.34%) YNB, 4×10-5% биотин, 0.5% метанол, 0.1 М фосфат калия, рН 6.0). Клетки инкубируют в течение 96 ч при 30°С и 300 об/мин. Каждые 24 ч добавляют метанол до конечной концентрации 0.7%. После окончания инкубации клетки осаждают центрифугированием (4000×g, 5 мин, 4°С). Супернатанты отбирают, замораживают в жидком азоте и хранят при -70°С до последующего анализа. Наличие рекомбинантного y-Triticain-α-GM в супернатантах клеточной культуры P. pastoris определяют методом электрофореза в 14% полиакриламидном геле с додецилсульфатом натрия.
Пример 6. Получение высокоочищенного рекомбинантного y-Triticain-α-GM из Pichia pastoris.
Надосадочную культуральную жидкость Pichia pastoris GS115/pPIC9-Triticain-α-GM фильтруют (0.45 мкм) и диализуют против 0.02 М раствора фосфата натрия, рН 8.0 при 4°С в течение 24 ч, трижды производя замену буфера на свежий. Диализат концентрируют ультрафильтрацией на ячейке Amicon с мембраной RC-10 (Millipore) и наносят на колонку с сорбентом Sephacryl S-200HR, уравновешенную 0.02 М фосфатным буфером, рН 8.0, содержащем 130 мМ NaCl. Процесс гель-фильтрации проводят со скоростью 0,5 мл/мин, фракции по 6 мл собирают и анализируют на присутствие целевого белка методами электрофоретического анализа и определения протеолитической активности. Очищенный белок концентрируют на ячейке Amicon с мембраной RC-10 (Millipore), определяют концентрацию с помощью ВСА-реагента (бицинхониновой кислоты), аликвотируют по стеклянным флаконам, замораживают и лиофилизуют.
Выход полученного таким способом рекомбинантного y-Triticain-α-GM (SEQ ID NO:4) составляет 80-300 мг с 1 л дрожжевой культуры (с чистотой не менее 90% по данным электрофоретического анализа, фиг. 7; следует отметить, что целевой белок y-Triticain-α-GM (SEQ ID NO:4) в процессе секреции подвергается автопротеолизу).
Пример 7. Определение протеолитической активности вариантов рекомбинантных белков усеченного тритикаина-альфа (6HIS-Triticain-α-GM, Triticain-α-GM-6HIS и y-Triticain-α-GM).
Ферментативную (протеолитическую) активность рекомбинантного усеченного тритикаина-альфа определяют по способности гидролизовать синтетический модельный пептидный субстрат PLVQ-AMК, конъюгированный с 7-Амино-4-метилкумарином (АМК), с определением продуктов гидролиза по интенсивности флуоресценции свободного AMK. Последовательность и структура выбранного пептида PLVQ (пролин-лейцин-валин-глутамин), представляющего собой фрагмент глютена, являются оптимальными для связывания и гидролиза тритикаином-альфа [15].
Анализ проводят при 25°С в реакционной смеси, состоящей из 20 нМ целевого белка (рекомбинантного тритикаина-альфа) и 50 мкМ PLVQ-АМК в 200 мМ ацетатном буфере, рН 5.6, содержащем 100 мМ NaCl, 15 мМ 2-меркаптоэтанол, 0.6 мМ ЭДТА, 0.5% ДМСО. Количество гидролизованного субстрата PLVQ-AMK определяют по интенсивности флуоресценции свободного AMK с использованием многорежимного автоматического спектрофлуориметра при длине волны возбуждения флуоресценции, равной 360 нм, и длине волны испускания флуоресценции, равной 460 нм. Скорость реакции определяли по графику зависимости количества субстрата (моль) от времени гидролиза (с) с последующей обработкой полученных данных с применением метода линейной регрессиии. Для репрезентативности данные по специфической активности представлены в виде гистограммы (фиг. 8).
Сравнивали активность полученных препаратов усеченного тритикаина-альфа, полученного в растворимой форме, с препаратами усеченного тритикаина-альфа, полученного ранее в нашей лаборатории в нерастворимой форме и папаином.
Активность белковых препаратов усеченного тритикаина-альфа, полученного в растворимой форме 6HIS-Triticain-α-GM (SEQ ID NO:2) и Triticain-α-GM-6HIS (SEQ ID NO:3) значительно превысила активность препарата усеченного тритикаина-альфа 6HIS-Triticain-α-GM, полученного в нерастворимой форме, а также папаина, что является существенным преимуществом препаратов, полученных нами в рамках данной заявки. Активность препарата усеченного тритикаина-альфа y-Triticain-α-GM (SEQ ID NO:4), полученного в дрожжевой экспрессионной системе, оказалась ниже, чем активность препарата усеченного тритикаина-альфа 6HIS-Triticain-α-GM, полученного в нерастворимой форме, и папаина, однако, принимая во внимание высокое содержание в препарате и высокий выход при экспрессии белка y-Triticain-α-GM, такой результат также является промышленно применимым и технически значимым.
Преимуществами заявленного технического решения являются, во-первых, получение протеолитически активного препарата тритикаина-альфа, состоящего из пропептидного (продомена) и каталитического доменов полноразмерного тритикаина-альфа пшеницы, который может быть использован для создания новых более эффективных лекарственных энзиматических средств, а также в исследовательстких целях, в частности, для изучения функционирования папаин-подобных цистеиновых протеиназ; во-вторых, возможность получения вариантов протеолитически активного тритикаина-альфа в растворимой форме как в бактериальных, так и в дрожжевых клетках; в-третьих, упрощенная методика выделения вариантов рекомбинантного белка из E.coli за счет исключения стадии рефолдинга in vitro, т.е. времязатратной и сложно валидируемой процедуры, что в последствии послужит основой для создания ферментных лекарственных средств в терапии некоторых заболеваний (в частности, целиакии).
Источники информации, принятые во внимание
1. Т. Kiyosaki, Т. Asakura, I. Matsumoto, et al. J Plant Physiol, 2009, 1, 166(1), 101-6.
2. K. Muntz, M.A. Belozersky, Y.E. Dunaevsky, et al. J Exp Bot, 2001, 52, 1741-52.
3. J.Q. Ling, T. Kojima, M. Shiraiwa, et al. Biochim Biophys Acta, 2003, 1627, 129-39.
4. A. Capocchi, M. Cinollo, L. Galleschi, et al. JAgric Food Chem, 2000, 48, 6271-79.
5. T. Okamoto, T. Shimada, I. Hara-Nishimura, et al. Plant Physiol, 2003, 132, 1892-1900.
6. A. Mikkonen, I Porali, M. Cercos, et al. Plant Mol Biol, 1996, 31(2), 239-54.
7. H. Kondo, K. Abe, I. Nishimura, et al. J Biol Chem, 1990, 15, 265(26), 15832-37.
8. T. Kiyosaki, I. Matsumoto, T. Asakura, et al. FEBS J, 2007, 274, 1908-17.
9. N. McGough, J.H. Cummings. Proc Nutr Soc, 2005, 64(4), 434-50.
10. J.S. Leeds, A.D. Hopper, D.S. Sanders. Br Med Bull, 2008, 88(1), 157-70.
11. WGO - OMGE: Practice guidelines. World Gastroenterology News, 10 (2, 2), 2005, 1-8.
12. S. Rashtak, J.A. Murray. Aliment Pharmacol Ther, 2012, 35(7), 768-81.
13. L.V. Savvateeva, A.A. Zamyatnin. Curr Pharm Des, 2016, 22(16), 2439-49.
14. H. Vora, J. McIntire, P. Kumar, et al. Biotechnol Bioeng, 2007, 1, 98(1), 177-85.
15. Патент WO 2008115428 A2, 25.09.2008.
16. L.V. Savvateeva, N.V. Gorokhovets, V.A. Makarov, et al. Int J Biochem Cell Biol, 2015, 62, 115-24.
17. Патент RU 2603054 C2, 20.11.2016.
Подписи к фигурам:
Фиг. 1. Аминокислотная и нуклеотидная последовательности рекомбинантного полноразмерного тритикаина-альфа, экспрессирующегося в E.coli (SEQ ID NO:1, TRIT-α, курсивом выделена последовательность от экспрессионной плазмиды рЕТ-42а(+); курсивом и подчеркиванием выделены сайты узнавания рестриктазами; подчеркиванием выделен лидерный пептид; курсивом и цветом выделена каталитическая триада Cys-His-Asn, определяющая принадлежность белка к цистеиновым протеазам; цветом выделен гранулин-подобный домен; подчеркиванием выделены сайты узнавания рестриктазами);
Фиг. 2. Аминокислотная и нуклеотидная последовательности рекомбинантного усеченного тритикаина-альфа с N-концевой полигистидиновой последовательностью, экспрессирующегося в E.coli в растворимой форме (SEQ ID NO:2, 6HIS-Triticain-α-GM; курсивом выделена последовательность от экспрессионной плазмиды рЕТ-15b; подчеркиванием выделены сайты узнавания рестриктазами; курсивом и цветом выделена каталитическая триада Cys-His-Asn, определяющая принадлежность белка к цистеиновым протеазам);
Фиг. 3. Аминокислотная и нуклеотидная последовательности рекомбинантного усеченного тритикаина-альфа с С-концевой полигистидиновой последовательностью, экспрессирующегося в E.coli в растворимой форме (SEQ ID NO:3, Triticain-α-GM-6HIS; курсивом выделена последовательность от экспрессионной плазмиды рЕТ-15b; подчеркиванием выделены сайты узнавания рестриктазами; курсивом и цветом выделена каталитическая триада Cys-His-Asn, определяющая принадлежность белка к цистеиновым протеазам);
Фиг. 4. Аминокислотная и нуклеотидная последовательности рекомбинантного усеченного тритикаина-альфа, экспрессирующегося в P.pastoris (SEQ ID NO:4, y-Triticain-α-GM; курсивом выделена последовательность от экспрессионной плазмиды рPIС9; цветом выделен α-фактор; стрелкой выделен сигнал отщепления α-фактора; подчеркиванием выделены сайты узнавания рестриктазами);
Фиг. 5. Электрофореграмма в 12% полиакриламидном геле в присутствии SDS: лизатов клеток штамма-продуцента E.coli Rosetta gami B(DE3) / pET15-6HIS-Triticain-α-GM до индукции (дорожка 1), лизатов клеток штамма-продуцента E.coli Rosetta gami B(DE3) / pET15-6HIS-Triticain-α-GM после индукции изопропилтио-β-D-галактозидом (дорожка 2); растворимая клеточная фракция (дорожка 3), нерастворимая клеточная фракция (дорожка 4); рекомбинантный усеченный тритикаин-альфа (SEQ ID NO:2, 6HIS-Triticain-α-GM, дорожка 5) после хроматографического выделения; М - белковые маркеры молекулярной массы (кДа).
Фиг. 6. Электрофореграмма в 12% полиакриламидном геле в присутствии SDS: лизатов клеток штамма-продуцента E.coli Rosetta gami B(DE3) / Triticain-α-GM-6HIS до индукции (дорожка 1), лизатов клеток штамма-продуцента E.coli Rosetta gami B(DE3) / Triticain-α-GM-6HIS после индукции изопропилтио-β-D-галактозидом (дорожка 2); растворимая клеточная фракция (дорожка 3), нерастворимая клеточная фракция (дорожка 4); рекомбинантный усеченный тритикаин-альфа (SEQ ID NO:3, Triticain-α-GM-6HIS, дорожка 5) после хроматографического выделения; М - белковые маркеры молекулярной массы (кДа).
Фиг. 7. Рекомбинантный усеченный тритикаин-альфа (SEQ ID NO:4, y-Triticain-α-GM, экспрессированный в клетках P.pastoris) после хроматографического выделения в 14% полиакриламидном геле в присутствии SDS (М - белковые маркеры молекулярной массы, кДа); (М - белковые маркеры молекулярной массы, кДа);
Фиг. 8. Специфическая (протеолитическая) активность вариантов рекомбинантных белков усеченного тритикаина-альфа и папаина (как контроля цистеиновых папаин-подобных протеиназ): 1 - папаин; 2 - рекомбинантный фрагмент тритикаин-альфа из нерастворимой фракции; 3 - усеченный тритикаин-альфа, экспрессированный в клетках P.pastoris (SEQ ID NO:4, y-Triticain-α-GM); 4 - усеченный тритикаин-альфа с N-концевой полигистидиновой последовательностью (SEQ ID NO:2, 6HIS-Triticain-α-GM); 5 - усеченный тритикаин-альфа с С-концевой полигистидиновой последовательностью (SEQ ID NO:3, Triticain-α-GM-6HIS).

Claims (9)

1. Биологически активный белковый препарат, обладающий специфической активностью папаин-подобных цистеиновых протеиназ, характеризующийся тем, что представляет собой аминокислотную последовательность, выбранную из SEQ ID NO:2-4, экспрессирующийся в растворимой форме.
2. Способ получения биологически активного белкового препарата по п. 1, обладающего специфической активностью папаин-подобных цистеиновых протеиназ, характеризующийся тем, что включает трансформацию клеток плазмидами, содержащими ДНК, кодирующую белок с аминокислотной последовательностью, выбранной из SEQ ID NO: 2-4, культивирование и выделение биологически активного препарата.
3. Способ по п. 2, характеризующийся тем, что для трансформации плазмидами, содержащими последовательности ДНК, кодирующие белки с аминокислотной последовательностью, выбранной из SEQ ID NO:2-3, используют клетки E.coli штамма Rosetta gami В (DE3), в качестве среды культивирования используют среду LB с добавлением ампициллина и инкубируют при 37°С в аэробных условиях в течение 12-14 ч, посевным материалом инокулируют питательную среду, растят культуру до достижения оптической плотности А600 0.6-0.8, индуцируют 1 мМ изопропилтио-β-D-галактозидом и растят еще 20 ч при 18°С с накоплением растворимой формы белка, а выделение биологически активного препарата осуществляют осаждением путем центрифугирования экспрессионной культуры, после чего осадок ресуспендируют в 0.02 М фосфатном буфере, рН 8.0, содержащем 0.5 М NaCl и 0.01 М имидазол (буфер А), и гомогенизируют на ультразвуковом дезинтеграторе в течение 1 мин при 4°С, полученный лизат центрифугируют, надосадочную жидкость наносят на колонку с активированной ионами никеля иминодиацетат-сефарозой, уравновешенную буфером А, сорбент последовательно промывают уравновешивающим буфером А, затем белок элюируют буфером А с содержанием G.3 М имидазола, далее раствор белка диализуют против 0.02 М фосфатного буфера, рН 8.0 и после определения концентрации и протеолитической активности белка в полученном препарате аликвотируют по стеклянным флаконам, замораживают и лиофилизуют.
4. Способ по п. 2, характеризующийся тем, что для трансформации плазмидой, содержащей последовательность ДНК, кодирующую белок с аминокислотной последовательностью SEQ ID NO:4, используют клетки P.pastoris штамма GS115, в качестве среды культивирования используют среду YPD и инкубируют при 30°С в шейкере-инкубаторе до достижения оптической плотности А600 1-5, клеточные суспензии растирают на чашке Петри с минимальной безгистидиновой агаризованной средой и инкубируют при 30°С до появления колоний, затем одной колонией полученных трансформантов Pichia pastoris GS115/pPIC9-Triticain-α-GM, содержащих одну или две копии фрагмента гена усеченного тритикаина-альфа, инокулируют питательную среду BMGY и наращивают клеточную массу при 30°С в шейкере-инкубаторе до оптической плотности 5 о.е. (Mut+) или 25 о.е. (MutS), выделение биологически активного препарата осуществляют осаждением путем центрифугирования, полученный осадок ресуспендируют в среде BMMY с последующим инкубированием в течение 96 ч при 30°С и 300 об/мин, добавляя каждые 24 ч в качестве индуктора экспрессии метанол до конечной концентрации 0.7%, затем клетки осаждают, отбирают супернатанты; далее надосадочную культуральную жидкость фильтруют (0.45 мкм) и диализуют против 0.02 М раствора фосфата натрия, рН 8.0 при 4°С в течение 24 ч, диализат концентрируют и наносят на колонку с сорбентом Sephacryl S-200HR, уравновешенную 0.02 М фосфатным буфером, рН 8.0, содержащим 130 мМ NaCl, далее собирают белковые фракции по 6 мл и анализируют на присутствие белка методами электрофоретического анализа и определяют концентрацию и протеолитическую активность, далее биологически активный белковый препарат аликвотируют по стеклянным флаконам, замораживают и лиофилизуют.
5. Нуклеиновая кислота, кодирующая биологически активный белковый препарат, обладающий специфической активностью папаин-подобных цистеиновых протеиназ, по п. 1, характеризующаяся тем, что предназначена для использования в способе по п. 2.
6. Вектор экспрессии, характеризующийся тем, что содержит нуклеиновую кислоту по п. 5 для использования в способе по п. 2.
7. Вектор экспрессии по п. 6, характеризующийся тем, что представляет собой вектор на основе pET15b или pPIC9.
8. Клетка-хозяин, характеризующаяся тем, что содержит нуклеиновую кислоту по п. 5, кодирующую биологически активный белковый препарат по п. 1, для использования в способе по п. 2.
9. Клетка-хозяин по п. 8, характеризующаяся тем, что представляет собой клетку E.coli штамма Rosetta gami В (DE3) или P.pastoris штамма GS115.
RU2017122806A 2017-06-28 2017-06-28 Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата RU2676322C1 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017122806A RU2676322C1 (ru) 2017-06-28 2017-06-28 Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата
EA202000021A EA038578B1 (ru) 2017-06-28 2018-06-28 Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата
US16/626,206 US11447780B2 (en) 2017-06-28 2018-06-28 Preparation of wheat cysteine protease triticain-alpha produced in soluble form and method of producing same
PCT/RU2018/050071 WO2019004878A1 (ru) 2017-06-28 2018-06-28 Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017122806A RU2676322C1 (ru) 2017-06-28 2017-06-28 Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата

Publications (1)

Publication Number Publication Date
RU2676322C1 true RU2676322C1 (ru) 2018-12-27

Family

ID=64741789

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017122806A RU2676322C1 (ru) 2017-06-28 2017-06-28 Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата

Country Status (4)

Country Link
US (1) US11447780B2 (ru)
EA (1) EA038578B1 (ru)
RU (1) RU2676322C1 (ru)
WO (1) WO2019004878A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791534B (zh) * 2019-11-27 2022-12-30 安徽师范大学 一种提高水溶性藻青素外源合成产量的方法
RU2740319C1 (ru) * 2020-03-19 2021-01-13 Общество с ограниченной ответственностью "Альфа-Тритикаин" Способ повышения активности тритикаина-альфа
CN117143257B (zh) * 2023-10-31 2024-02-09 深圳市帝迈生物技术有限公司 Trim28-krab-znf10二元复合物、制备方法及用于前列腺癌筛查的试剂盒

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115428A2 (en) * 2007-03-16 2008-09-25 The Board Of Trustees Of The Leland Stanford Junior University A scaleable manufacturing process for cysteine endoprotease b, isoform 2
RU2603054C2 (ru) * 2015-02-17 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (ФГБОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России) Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115428A2 (en) * 2007-03-16 2008-09-25 The Board Of Trustees Of The Leland Stanford Junior University A scaleable manufacturing process for cysteine endoprotease b, isoform 2
RU2603054C2 (ru) * 2015-02-17 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (ФГБОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России) Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом

Also Published As

Publication number Publication date
EA038578B1 (ru) 2021-09-17
US20220162619A1 (en) 2022-05-26
EA202000021A1 (ru) 2020-04-22
WO2019004878A1 (ru) 2019-01-03
US11447780B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
RU2676322C1 (ru) Препарат цистеиновой протеиназы пшеницы тритикаина-альфа, полученной в растворимой форме, и способ получения препарата
KR102495283B1 (ko) 재조합 숙주 세포에서 탄소 공급원 조절된 단백질 생산
OLSEN et al. Identification and characterization of Saccharomyces cerevisiae yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene
RU2603054C2 (ru) Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом
Yu et al. High-level expression and characterization of carboxypeptidase Y from Saccharomyces cerevisiae in Pichia pastoris GS115
CN113166231A (zh) 胰凝乳蛋白酶抑制剂变体及其用途
KR101634078B1 (ko) 봉입체 형성 단백질의 제조방법
RU2560577C2 (ru) Композиции и способы получения энтерокиназы в дрожжах
CN116478969A (zh) 胶原酶突变体、促进重组胶原酶分泌表达的方法及其应用
WO2004106524A1 (ja) プロテアーゼ、このプロテアーゼをコードするdna、プロテアーゼの製造方法
Guerrero‐Olazarán et al. Recombinant shrimp (Litopenaeus vannamei) trypsinogen production in Pichia pastoris
MX2011007492A (es) Proteinas de fusion, proceso de preparacion y uso de estas en sistemas de expresion de proteinas recombinantes.
El-Sohaimy et al. Cloning and in vitro-transcription of chymosin gene in E. coli
Park et al. Site-directed mutagenesis of conserved Trp39 in Rhizomucor pusillus pepsin: possible role of Trp39 in maintaining Tyr75 in the correct orientation for maximizing catalytic activity
KR0180103B1 (ko) 바실러스 서브틸리스 속 균주 유래의 혈전용해효소
KR20010109348A (ko) 췌장의 프로카복시-펩티다제 b, 이의 동질 효소 및뮤테인의 제조 방법, 및 이들의 용도
Tanaka et al. High-level production and purification of clostripain expressed in a virulence-attenuated strain of Clostridium perfringens
KR100770665B1 (ko) 고호열성 프로릴올리고펩티다아제 효소 및 이의 제조방법
US20110200541A1 (en) Recombinant preparation of bromelain inhibitors and bromelain inhibitor precursor
Dong et al. Nucleotide sequence analysis of a cDNA encoding chloroplastic fructose-1, 6-bisphosphatase from pea (Pisum sativum l.).
KR101498012B1 (ko) HpGAS1 유전자 파쇄 효모 균주 및 이를 이용한 재조합 단백질의 생산 방법
KR100757278B1 (ko) 고호열성 아미노펩티다아제 p 효소 및 이의 제조방법
WO2019215280A1 (en) Gycomodule motifs and uses thereof
CN114703168A (zh) 一种肝素酶iii及其编码核苷酸序列、包括该核苷酸序列的重组载体和宿主细胞以及应用
JPWO2019069977A1 (ja) アルカリホスファターゼの製造方法及びそれを用いて得られるアルカリホスファターゼ、並びにその製造のためのベクター及び形質転換体