RU2674891C2 - Микроорганизм, обладающий способностью продуцировать о-сукцинилгомосерин или янтарную кислоту, и способ продуцирования янтарной кислоты или о-сукцинилгомосерина посредством его применения - Google Patents
Микроорганизм, обладающий способностью продуцировать о-сукцинилгомосерин или янтарную кислоту, и способ продуцирования янтарной кислоты или о-сукцинилгомосерина посредством его применения Download PDFInfo
- Publication number
- RU2674891C2 RU2674891C2 RU2016149075A RU2016149075A RU2674891C2 RU 2674891 C2 RU2674891 C2 RU 2674891C2 RU 2016149075 A RU2016149075 A RU 2016149075A RU 2016149075 A RU2016149075 A RU 2016149075A RU 2674891 C2 RU2674891 C2 RU 2674891C2
- Authority
- RU
- Russia
- Prior art keywords
- gene
- microorganism
- homoserine
- activity
- gene encoding
- Prior art date
Links
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 244000005700 microbiome Species 0.000 title claims abstract description 56
- GNISQJGXJIDKDJ-YFKPBYRVSA-N O-succinyl-L-homoserine Chemical compound OC(=O)[C@@H](N)CCOC(=O)CCC(O)=O GNISQJGXJIDKDJ-YFKPBYRVSA-N 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000000694 effects Effects 0.000 claims abstract description 59
- 239000001384 succinic acid Substances 0.000 claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 claims abstract description 42
- 102000006589 Alpha-ketoglutarate dehydrogenase Human genes 0.000 claims abstract description 25
- 108020004306 Alpha-ketoglutarate dehydrogenase Proteins 0.000 claims abstract description 25
- 108010016979 Homoserine O-succinyltransferase Proteins 0.000 claims abstract description 15
- 108010061618 O-succinylhomoserine (thiol)-lyase Proteins 0.000 claims abstract description 15
- 102100033451 Thyroid hormone receptor beta Human genes 0.000 claims abstract description 12
- 108010071598 homoserine kinase Proteins 0.000 claims abstract description 12
- 241000588722 Escherichia Species 0.000 claims abstract description 11
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims abstract description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 69
- 230000014509 gene expression Effects 0.000 claims description 32
- 238000012217 deletion Methods 0.000 claims description 24
- 230000037430 deletion Effects 0.000 claims description 24
- 239000002609 medium Substances 0.000 claims description 23
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 16
- 229930182817 methionine Natural products 0.000 claims description 14
- 150000001413 amino acids Chemical group 0.000 claims description 11
- 239000001963 growth medium Substances 0.000 claims description 11
- 238000003780 insertion Methods 0.000 claims description 11
- 230000037431 insertion Effects 0.000 claims description 11
- 101150003180 metB gene Proteins 0.000 claims description 10
- 101150072448 thrB gene Proteins 0.000 claims description 10
- 241000588724 Escherichia coli Species 0.000 claims description 9
- 230000002018 overexpression Effects 0.000 claims description 8
- 238000006467 substitution reaction Methods 0.000 claims description 6
- 102000004357 Transferases Human genes 0.000 claims description 5
- 108090000992 Transferases Proteins 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 2
- 239000013598 vector Substances 0.000 description 42
- 102000004190 Enzymes Human genes 0.000 description 17
- 108090000790 Enzymes Proteins 0.000 description 17
- 239000000047 product Substances 0.000 description 15
- 108091008146 restriction endonucleases Proteins 0.000 description 15
- 238000004925 denaturation Methods 0.000 description 14
- 230000036425 denaturation Effects 0.000 description 14
- 101100453819 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) kgd gene Proteins 0.000 description 12
- 101150060102 metA gene Proteins 0.000 description 12
- 229960004452 methionine Drugs 0.000 description 12
- 101150111745 sucA gene Proteins 0.000 description 12
- VNOYUJKHFWYWIR-ITIYDSSPSA-N succinyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VNOYUJKHFWYWIR-ITIYDSSPSA-N 0.000 description 12
- 239000002773 nucleotide Chemical group 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 101150086633 metAA gene Proteins 0.000 description 8
- 101150091110 metAS gene Proteins 0.000 description 8
- 101150043924 metXA gene Proteins 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 6
- 239000011543 agarose gel Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 6
- 101100134884 Corynebacterium glutamicum (strain ATCC 13032 / DSM 20300 / BCRC 11384 / JCM 1318 / LMG 3730 / NCIMB 10025) aceF gene Proteins 0.000 description 5
- 101150090997 DLAT gene Proteins 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 229960005091 chloramphenicol Drugs 0.000 description 5
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 101150078036 odhB gene Proteins 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 101150055132 sucB gene Proteins 0.000 description 5
- 102000012410 DNA Ligases Human genes 0.000 description 4
- 108010061982 DNA Ligases Proteins 0.000 description 4
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 4
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 4
- 229960000723 ampicillin Drugs 0.000 description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229960000268 spectinomycin Drugs 0.000 description 4
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 4
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 101100290837 Bacillus subtilis (strain 168) metAA gene Proteins 0.000 description 3
- YPWSLBHSMIKTPR-UHFFFAOYSA-N Cystathionine Natural products OC(=O)C(N)CCSSCC(N)C(O)=O YPWSLBHSMIKTPR-UHFFFAOYSA-N 0.000 description 3
- ILRYLPWNYFXEMH-UHFFFAOYSA-N D-cystathionine Natural products OC(=O)C(N)CCSCC(N)C(O)=O ILRYLPWNYFXEMH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ILRYLPWNYFXEMH-WHFBIAKZSA-N L-cystathionine Chemical compound [O-]C(=O)[C@@H]([NH3+])CCSC[C@H]([NH3+])C([O-])=O ILRYLPWNYFXEMH-WHFBIAKZSA-N 0.000 description 3
- 101150053469 SDHC gene Proteins 0.000 description 3
- 241000607142 Salmonella Species 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 101100023132 Wolinella succinogenes (strain ATCC 29543 / DSM 1740 / LMG 7466 / NCTC 11488 / FDC 602W) sdhE gene Proteins 0.000 description 3
- 229940041514 candida albicans extract Drugs 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000013611 chromosomal DNA Substances 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000012224 gene deletion Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 101150114996 sdhd gene Proteins 0.000 description 3
- 239000012138 yeast extract Substances 0.000 description 3
- WIIZWVCIJKGZOK-IUCAKERBSA-N 2,2-dichloro-n-[(1s,2s)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide Chemical compound ClC(Cl)C(=O)N[C@@H](CO)[C@@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-IUCAKERBSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-HWQSCIPKSA-N L-arabinopyranose Chemical compound O[C@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-HWQSCIPKSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 229930195722 L-methionine Natural products 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012364 cultivation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 241000588881 Chromobacterium Species 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000589902 Leptospira Species 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000588768 Providencia Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 102000011929 Succinate-CoA Ligases Human genes 0.000 description 1
- 108010075728 Succinate-CoA Ligases Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000012365 batch cultivation Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000007376 cm-medium Substances 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 101150094831 cysK gene Proteins 0.000 description 1
- 101150112941 cysK1 gene Proteins 0.000 description 1
- 101150029709 cysM gene Proteins 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- IZFHEQBZOYJLPK-UHFFFAOYSA-N dihydrolipoic acid Chemical compound OC(=O)CCCCC(S)CCS IZFHEQBZOYJLPK-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000009123 feedback regulation Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 235000013882 gravy Nutrition 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000006861 primary carbon metabolism Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/06—Alanine; Leucine; Isoleucine; Serine; Homoserine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/04—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
- C12Y102/04002—Oxoglutarate dehydrogenase (succinyl-transferring) (1.2.4.2), i.e. alpha-ketoglutarat dehydrogenase
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Группа изобретений относится к биотехнологии. Предложен микроорганизм из рода Escherichia, обладающий способностью продуцировать О-сукцинилгомосерин или янтарную кислоту, в котором активность α-кетоглутаратдегидрогеназного комплекса (KGDHC) повышена по сравнению с уровнем его эндогенной активности, активность гомосерин-О-сукцинилтрансферазы дополнительно повышена по сравнению с уровнем ее эндогенной активности и активность по меньшей мере одной из цистатионин-гамма-синтазы и гомосеринкиназы устранена. Предложены также способ продуцирования О-сукцинилгомосерина, способ продуцирования янтарной кислоты и применение микроорганизма из рода Escherichia для продуцирования О-сукцинилгомосерина. Группа изобретений обеспечивает получение увеличенного выхода О-сукцинилгомосерина или янтарной кислоты. 5 н. и 10 з.п. ф-лы, 4 ил., 6 табл., 4 пр.
Description
ОБЛАСТЬ ТЕХНИКИ
[0001] Идея настоящего изобретения относится к микроорганизму, обладающему способностью продуцировать О-сукцинилгомосерин или янтарную кислоту, и к способу продуцирования О-сукцинилгомосерина или янтарной кислоты посредством его применения.
УРОВЕНЬ ТЕХНИКИ
[0002] Для стимуляции продуцирования О-сукцинилгомосерина или янтарной кислоты в аэробных условиях необходим сукцинил-СоА в качестве предшественника. α-Кетоглутаратдегидрогеназный комплекс выступает в качестве катализатора для превращения α-кетоглутарата в янтарную кислоту путем дегидрогенизации в цикле трикарбоновых кислот (ТСА). Ген sucAB, кодирующий данный фермент, экспрессируется в виде кластера в хромосоме вместе с sdhCDAB, кодирующим сукцинатдегидрогеназу, и sucCD, кодирующим сукцинил-СоА-синтетазу, и известно, что эта экспрессия индуцируется двумя промоторами, включенными в кластер. Экспрессия генов в кластере индуцируется главным образом промотором sdhC. При этом sdhCDAB, sucAB и sucCD экспрессируются в указанном порядке. Цикл ТСА является преимущественным для экспрессии гена sdhCDAB, кодирующего сукцинатдегидрогеназу, и соответственно является преимущественным для быстрого разложения сукцинил-СоА по причине стимулируемой экспрессии сукцинатдегидрогеназы даже при том, что сукцинил-СоА продуцируется в результате экспрессии sucAB. Промотор sucA расположен между sdhCDAB и sucAB в центре кластера. Промотор sucA вызывает экспрессию sucAB, но более важным промотором в этом кластере является sdhC, который индуцирует экспрессию sdhCDAB. Промотор sucA является более слабым, чем промотор sdhC (SJ Park, G Chao and RP Gunsalus, J. Bacteriol. 1997; Cunningham, L. & Guest, J.R. (1998) Microbiology 144, 2113-2123). Имеется сообщение, в котором демонстрируется, что продуцирование янтарной кислоты увеличивалось при делеции sdhAB у штамма, продуцирующего янтарную кислоту, в аэробных условиях (A.Yu. Skorofkhodova, et al., Applied Biochemistry and Microbiology, December 2013, Vol. 49, Issue 7, pp. 629-637).
[0003] В ходе исследования стимуляции продуцирования янтарной кислоты или О-сукцинилгомосерина авторы настоящего изобретения создали микроорганизм, способный к стимуляции продуцирования О-сукцинилгомосерина или янтарной кислоты путем повышения активности α-кетоглутаратдегидрогеназного комплекса, что приводит к выполнению настоящего раскрытия.
ПОДРОБНОЕ ОПИСАНИЕ ИДЕИ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ЗАДАЧА
[0004] Целью настоящего раскрытия является обеспечение микроорганизма, продуцирующего О-сукцинилгомосерин или янтарную кислоту.
[0005] Другой целью настоящего раскрытия является обеспечение способа продуцирования О-сукцинилгомосерина или янтарной кислоты, включающего стадию культивирования микроорганизма, обладающего способностью продуцировать О-сукцинилгомосерин или янтарную кислоту.
ТЕХНИЧЕСКОЕ РЕШЕНИЕ
[0006] В соответствии с одним аспектом идеи настоящего изобретения обеспечивается микроорганизм, обладающий способностью продуцировать О-сукцинилгомосерин или янтарную кислоту.
[0007] В варианте осуществления настоящего раскрытия микроорганизм, обладающий способностью продуцировать О-сукцинилгомосерин или янтарную кислоту, может представлять собой микроорганизм, у которого активность α-кетоглутаратдегидрогеназного комплекса повышена относительно уровня ее эндогенной активности, что, таким образом, стимулирует продуцирование О-сукцинилгомосерина или янтарной кислоты.
[0008] Термин "микроорганизм, обладающий способностью продуцировать О-сукцинилгомосерин или янтарную кислоту", используемый в данном документе, означает прокариотический или эукариотический микроорганизм, который продуцирует О-сукцинилгомосерин или янтарную кислоту в живом организме и может накапливать или секретировать О-сукцинилгомосерин или янтарную кислоту в нем. Например, микроорганизм, обладающий способностью продуцировать О-сукцинилгомосерин или янтарную кислоту, может представлять собой микроорганизм, принадлежащий к роду Escherichia, роду Erwinia, роду Serratia, роду Providencia, роду Corynebacterium, роду Pseudomonas, роду Leptospira, роду Salmonella, роду Brevibacterium, роду Hypomonas, роду Chromobacterium, роду Nocardia или грибам или дрожжам. В одном варианте осуществления микроорганизм в соответствии с настоящим раскрытием может представлять собой микроорганизм, принадлежащий к роду Escherichia. В одном варианте осуществления микроорганизм в соответствии с Настоящим раскрытием может представлять собой Е. coli.
[0009] Для стимуляции продуцирования янтарной кислоты и О-сукцинилгомосерина необходим сукцинил-СоА. Сукцинил-СоА образуется путем дегидрогенизации α-кетоглутарата в цикле ТСА.
[0010] α-Кетоглутаратдегидрогеназный комплекс представляет собой каталитический фермент, который катализирует продуцирование янтарной кислоты путем дегидрогенизации α-кетоглутарата в цикле ТСА. α-Кетоглутаратдегидрогеназный комплекс состоит из α-кетоглутаратдегидрогеназы и дигидролипоатсукцинилтрансферазы и кодируется геном sucAB (sucA, № доступа в GenBank ВАА35392.1, sucB, № доступа в GenBank ВАА35393.1). α-Кетоглутаратдегидрогеназа и дигидролипоатсукцинилтрансфераза могут иметь аминокислотные последовательности, приведенные соответственно под SEQ ID NO: 22 и SEQ ID NO: 24, или последовательности, по меньшей мере на 70%, 80%, 90% или 95% гомологичные последовательностям, кодируемым генами sucA и sucB. sucA и sucB могут иметь последовательности, приведенные соответственно под SEQ ID NO: 23 и SEQ ID NO: 25, или последовательности, по меньшей мере на 70%, 80%, 90% или 95% гомологичные данным последовательностям. sucAB экспрессируется в виде кластера с sdhCDAB и sucCD. sdhCDAB, кодирующий сукцинатдегидрогеназу, экспрессируется на высоком уровне благодаря сильному промотору для sdhCDAB, и поэтому янтарная кислота м сукцинил-СоА быстро разрушаются (Louise Cunningham et al., Microbiology (1998), 144, p. 211-2123). Таким образом, продуцирование янтарной кислоты и сукцинил-СоА можно стимулировать посредством увеличения продуцирования янтарной кислоты путем повышения активности фермента.
[0011] Термин "эндогенная активность", используемый в данном документе, означает активность в исходном микроорганизме или клетке в естественных условиях или до мутации.
[0012] В варианте осуществления настоящего раскрытия вышеупомянутый микроорганизм представляет собой микроорганизм, принадлежащий к роду Escherichia, у которого активность гомосерин-О-сукцинилтрансферазы повышена относительно уровня ее эндогенной активности.
[0013] Гомосерин-О-сукцинилтрансфераза представляет собой фермент, выступающий в качестве катализатора для продуцирования O-сукцинилгомосерина из сукцинил-СоА и гомосерина, который вовлечен в первую стадию пути биосинтеза метионина. Фермент может иметь аминокислотную последовательность, приведенную под SEQ ID NO: 26, или аминокислотную последовательность, по меньшей мере на 70%, 80%, 90% или 95% гомологичную данной последовательности, и может кодироваться геном metA (№ доступа в GenBank ВАЕ78015.1). Ген metA может иметь последовательность, приведенную под SEQ ID NO: 27, или последовательность, по меньшей мере на 70%, 80%, 90% или 95% гомологичную данной последовательности. Экспрессия этого гена ингибируется путем контроля метионином по принципу обратной связи. Таким образом, для стимуляции продуцирования метионина применялась мутантная форма, разработанная для увеличения экспрессии metA посредством устранения контроля метионином по принципу обратной связи. Гомосерин-О-сукцинилтрансфераза, не подвергаемая опосредованному метионином контролю по принципу обратной связи, может иметь аминокислотную последовательность, приведенную под SEQ ID NO: 32, или последовательность, по меньшей мере на 70%, 80%, 90% или 95% гомологичную данной последовательности, и ее ген может кодироваться последовательностью, приведенной под SEQ ID NO: 33 (metA11: публикация корейского патента №2009-0106365), или последовательностью, по меньшей мере на 80%, 90% или 95% гомологичной данной последовательности.
[0014] Термин "гомология", используемый в отношении последовательности, используемой в данном документе, означает степень совпадения с указанной аминокислотной последовательностью или нуклеотидной последовательностью, которая может быть представлена в виде процентного значения (%). В настоящем раскрытии гомологичная последовательность, обладающая активностью, идентичной или подобной таковой у указанной аминокислотной последовательности или нуклеотидной последовательности, представлена как "% гомологии", который могут легко определить специалисты в данной области техники, способные использовать компьютерную программу BLAST 2.0, которая рассчитывает такие параметры, как вес выравнивания, идентичность и подобие.
[0015] Термины "повышать" или "усиливать", используемые в данном документе в отношении активности фермента, означают увеличение активности фермента до уровня, превышающего таковой для эндогенной активности, которое может быть обусловлено сверхэкспрессией гена, кодирующего фермент, или увеличение активности фермента до уровня, превышающего уровень эндогенной активности, посредством генной мутации. Например, число копий гена, кодирующего фермент, можно увеличить, или эндогенный промотор гена можно заместить более сильным промотором; в качестве альтернативы, всю последовательность или часть последовательности гена или всю последовательность, регулирующую экспрессию, или ее часть в хромосоме можно подвергнуть мутации путем делеции, замены или вставки или посредством их комбинации.
[0016] Термин "последовательность, регулирующая экспрессию", используемый в данном документе, означает нуклеотидную последовательность, регулирующую экспрессию гена, которая представляет собой сегмент, который может увеличивать или уменьшать экспрессию конкретного гена в организме, и включает в себя промотор, сайт связывания фактора транскрипции и т.п., но не ограничивается этим.
[0017] В варианте осуществления настоящего раскрытия промотор гена, кодирующего соответствующий фермент, можно заместить более сильным промотором, чем эндогенный промотор, или число копий гена можно увеличить с целью увеличения активности соответствующего фермента.
[0018] В варианте осуществления настоящего раскрытия промотор может представлять собой Ptac, Ptrc, Ppro, PR, PL, Prmf или PcysK, все из которых известны как промоторы с сильной активностью, но не ограничиваться ими.
[0019] В варианте осуществления настоящего раскрытия микроорганизм может представлять собой микроорганизм, принадлежащий к роду Escherichia, у которого активность одного или нескольких из ферментов цистатионин-гамма-синтазы и гомосеринкиназы ослаблена по сравнению с соответствующим уровнем эндогенной активности или устранена.
[0020] Цистатионин-гамма-синтаза катализирует превращение О-сукцинилгомосерина в цистатионин. Цистатионин-гамма-синтаза может иметь аминокислотную последовательность, приведенную под SEQ ID NO: 28, Или последовательность по меньшей мере на 70%, 80%, 90% или 95% гомологичную данной последовательности, и может кодироваться геном metB (№ доступа в GenBank ВАЕ77371.1). Ген metB может иметь последовательность, приведенную под SEQ ID NO: 29, или последовательность, по меньшей мере на 70%, 80%, 90% или 95% гомологичную данной последовательности. При ослаблении или устранении активности данного фермента О-сукцинилгомосерин не превращается в цистатионин или если и превращается, то скорость превращения является очень низкой.
[0021] Гомосеринкиназа выступает в качестве катализатора для синтеза О-фосфогомосерина из гомосерина и может иметь аминокислотную последовательность, приведенную под SEQ ID NO: 30, или последовательность, по меньшей мере на 70%, 80%, 90% или 95% гомологичную данной последовательности, и она может кодироваться геном thrB (№ доступа в GenBank ВАВ96580.1). Ген thrB может иметь последовательность, приведенную под SEQ ID NO: 31, или последовательность, по меньшей мере на 70%, 80%, 90% или 95% гомологичную данной последовательности. При ослаблении или устранении активности данного фермента гомосерин не превращается в О-фосфогомосерин или если и превращается, то скорость превращения является очень низкой.
[0022] Термины "ослабленная" или "устраненная", используемые в данном документе в отношении активности фермента, означают соответственно уменьшение экспрессии гена, кодирующего его соответствующий фермент, до уровня, более низкого, чем эндогенный уровень, или полное прекращение активности фермента. Этого можно достичь с помощью мутации всей нуклеотидной последовательности или части нуклеотидной последовательности или всей или части последовательности, регулирующей экспрессию, путем делеции, замещения, вставки или посредством их комбинации.
[0023] В варианте осуществления настоящего раскрытия микроорганизм может представлять собой Е. coli. Микроорганизм можно сконструировать для увеличения активности α-кетоглутаратдегидрогеназного комплеса до уровня, превышающего эндогенный уровень, и дополнительно для повышения активности гомосерин-О-сукцинилтрансферазы до уровня, более высокого, чем ондогенный уровень; или активность одного или обоих из ферментов цистатионин-гамма-синтазы и гомосеринкиназы можно ослабить до уровня, более низкого, чем эндогенный уровень, или устранить.
[0024] В варианте осуществления настоящего раскрытия микроорганизм по настоящему раскрытию может иметь замещение гена metA в хромосоме Е. coli мутантным metA11 (SEQ ID NO: 33, WO2008-127240 A1), для которого регуляция по принципу обратной связи, опосредованная метионином, была устранена, может иметь делецию генов thrB и metB в хромосоме, и может быть трансформирован вектором, содержащим sucAB, который находится под контролем промотора, более сильного, чем его исходный промотор.
[0025] В аспекте настоящего раскрытия обеспечивается способ продуцирования О-сукцинилгомосерина или янтарной кислоты, при этом способ включает культивирование микроорганизма из рода Escherichia в культуральной среде, у которого активность α-кетоглутаратдегидрогеназного комплеса повышена по сравнению с уровнем его эндогенной активности, и извлечение О-сукцинилгомосерина или янтарной кислоты из культуральной среды или культивированного микроорганизма.
[0026] В варианте осуществления настоящего раскрытия в способе продуцирования О-сукцинилгомосерина или янтарной кислоты культивирование микроорганизма, обладающего способностью продуцировать О-сукцинилгомосерин или янтарную кислоту, можно осуществлять посредством применения подходящей среды и условий культивирования, хорошо известных специалистам в данной области техники. Этот процесс культивирования можно легко регулировать в зависимости от штамма, выбранного специалистами в данной области техники. В качестве примеров способа культивирования включены без ограничений все из периодического культивирования, непрерывного культивирования и культивирования с подпиткой. Различные способы культивирования, включающие вышеупомянутые, пояснены в литературном источнике ("Biochemical Engineering", James М. Lee, Prentice-Hall International Editions, pp 138-176.).
[0027] Культуральная среда в данном документе должна удовлетворять условия культивирования, необходимые для культивирования конкретного штамма в данном документе. Различные культуральные среды для микроорганизмов описаны в литературном источнике ("Manual of Methods for General Bacteriology", American Society for Bacteriology, Washington D.C., USA, 1981). Эти среды содержат различные источники углерода, источники азота и следовые элементы. Источники углерода включают углеводы, такие как глюкоза, лактоза, сахароза, фруктоза, мальтоза, крахмал и целлюлоза; жиры, такие как соевое масло, подсолнечное масло, касторовое масло и кокосовое масло; жирные кислоты, такие как пальмитиновая кислота, стеариновая кислота и линолевая кислота; спирты, такие как глицерин и этанол; а также органические кислоты, такие как уксусная кислота. Источник углерода можно применять независимо или в виде комбинации по меньшей мере двух источников углерода. Источник азота включает органические источники азота, такие как пептон, дрожжевой экстракт, подлива, солодовый экстракт, жидкий кукурузный экстракт (CSL) и бобовая мука; а также неорганические источники азота, такие как мочевина, сульфат аммония, хлорид аммония, фосфат аммония, карбонат аммония и нитрат аммония. Эти источники азота можно применять в отдельности или в комбинации. В дополнение, в вышеупомянутую культуральную среду может быть дополнительно включен источник фосфора, и его примеры включают дигидрофосфат калия, гидрофосфат дикалия и соответствующие натрийсодержащие соли. Культуральная среда в данном документе также может содержать металл, такой как сульфат магния или сульфат железа. Дополнительно, культуральная среда может включать аминокислоты, витамины и подходящие предшественники.
[0028] Для поддержания аэробных условий в культуральной жидкости в культуральную среду можно вводить кислород или кислородсодержащий газ (воздух). Температура культивирования в данном документе обычно составляет от 20 до 45°С и предпочтительно от 25 до 40°С. Культивирование можно продолжать до тех пор, пока продуцирование О-сукцинилгомосерина или янтарной кислоты не достигнет желаемого уровня, и предпочтительное время культивирования составляет от 10 ч. до 160 ч.
ПОЛЕЗНЫЕ ЭФФЕКТЫ
[0029] Штамм, продуцирующий О-сукцинилгомосерин или янтарную кислоту, в соответствии с настоящим раскрытием является эффективным в продуцировании О-сукцинилгомосерина или янтарной кислоты, и его можно применять в различных областях благодаря возможностям ферментативного или химического превращения.
ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
[0030] Фиг. 1 представляет собой схематическое изображение рекомбинантного вектора pCL_PsucA-sucAB.
[0031] Фиг. 2 представляет собой схематическое изображение рекомбинантного вектора pCL_Prmf-sucAB.
[0032] Фиг. 3 представляет собой схематическое изображение рекомбинантного вектора pCL_Ptrc-sucAB.
[0033] Фиг. 4 представляет собой схематическое изображение рекомбинантного вектора pCL_Pcysk-metA11_PsucA-sucAB.
ПРИНЦИП ИДЕИ ИЗОБРЕТЕНИЯ
[0034] Далее настоящее раскрытие будет описано более подробно со ссылками на примеры. Однако данные примеры приведены только в целях иллюстрации, и не подразумевается ограничение объема настоящего раскрытия данными примерами.
[0035]
[0036] Сравнительный пример. Конструирование штамма, продуцирующего О-сукцинилгомосерин или янтарную кислоту
[0037] 1) Делеция гена metB
[0038] Для увеличения накопления О-сукцинилгомосерина или янтарной кислоты конструировали штамм путем делеции гена metB, кодирующего цистатионин-гамма-синтазу, участвующую в распаде предшественника L-метионина.
[0039] Подвергали делеции ген metB, кодирующий цистатионин-гамма-синтазу у штамма W3110 Е. coli (K12) дикого типа. Известно, что цистатионин-гамма-синтаза связывается с различными предшественниками метионина и тем самым может обуславливать продуцирование различных побочных продуктов. Таким образом, сверхэкспрессия цистатионинсинтазы может приводить к увеличению частоты побочных реакций, снижая эффективность внутриклеточных реакций. Для делеции гена metB осуществляли одностадийный способ внесения делеции с использованием продуктов ПЦР и FRT (PNAS (2000), Vol. 197, р 6640-6645). Для делеции гена metB осуществляли ПЦР с праймерами, представленными под SEQ ID NO: 12 и SEQ ID NO: 13, с применением вектора pKD3 (PNAS (2000) Vol. 97, p 6640-6645) в качестве матрицы, в результате чего сконструировали делеционную кассету.
[0040] SEQ ID NO: 12:
[0042] SEQ ID NO: 13:
[0044] ПЦР осуществляли следующим образом: денатурация при 95°С в течение 30 секунд, отжиг при 55°С в течение 30 секунд и удлинение при 72°С в течение 1 минуты, осуществляя 30 циклов от денатурации до удлинения. Продукт ПЦР подвергали электрофорезу в 1,0% агарозном геле. Полосу размером 1,1 т.п.о. элюировали и очищали. Извлеченный фрагмент ДНК вводили путем электропорации в штамм W3110 Е. coli (K12), предварительно трансформированный вектором pKD46 (PNAS (2000) Vol. 97, р 6640-6645). Для электропорации штамм W3110, трансформированный с помощью pKD46, культивировали в среде LB, дополненной 200 мкг/л ампициллина и 5 мМ L-арабинозы, при 30°С до достижения OD600 0,5. Штамм промывали 10% глицерином три раза. Электропорацию осуществляли при 2500 В. Извлеченный штамм наносили на чашку со средой LB, содержащей 30 мкг/л хлорамфеникола, с последующим культивированием при 37°С в течение 1-2 дней. Затем отбирали устойчивый штамм.
[0045] Отобранный штамм затем применяли для ПЦР с применением праймеров, представленных под SEQ ID NO: 14 и SEQ ID NO: 15, в соответствии с условиями, упомянутыми выше.
В 1,0% агарозном геле наблюдали полосу размером 1,5 т.п.о., что позволяет предположить, что ген metB был подвергнут делеции.
[0046] SEQ ID NO: 14: 5'-TATTCGCCGCTCCATTCAGC-3'
[0047] SEQ ID NO: 15: 5'-TACCCCTTGTTTGCAGCCCG-3'
[0048] Штамм с делецией гена metB трансформировали вектором рСР20 (PNAS (2000) vol.97, р6640-6645), и его затем культивировали в среде LB, дополненной 100 мкг/л ампициллина. ПЦР осуществляли таким же образом, как описано выше, и отбирали конечный штамм с делецией гена metB, характеризующийся суженной полосой в 1,0% агарозном геле. Подтверждали делецию маркера устойчивости к хлорамфениколу. Полученный штамм, гуксотрофный по метионину, назвали СС03-0132.
[0049] 2) Делеция гена thrB
[0050] Для увеличения продуцирования О-сукцинилгомосерина из гомосерина ген thrB, кодирующий гомосеринкиназу, подвергали делеции. В частности, если применяют штамм, продуцирующий треонин, требуется делеция данного гена, поскольку активность утилизации гомосерина является очень сильной. Для делеции гена thrB у штамма СС03-0132, сконструированного в 1) выше, осуществляли одностадийный способ внесения делеций с использованием продуктов ПЦР и FRT (PNAS (2000) Vol. 97, р 6640-6645). Для делеции гена thrB осуществляли ПЦР с праймерами, представленными под SEQ ID NO: 16 и SEQ ID NO: 17, с применением вектора pKD3 (PNAS (2000) Vol. 97, p 6640-6645) в качестве матрицы, в результате чего сконструировали делеционную кассету.
[0051] SEQ ID NO: 16:
[0053] SEQ ID NO: 17:
[0055] ПЦР осуществляли следующим образом: денатурация при 95°С в течение 30 секунд, отжиг при 55°С в течение 30 секунд и удлинение при 72°С в течение 1 минуты, осуществляя 30 циклов от денатурации до удлинения. Продукт ПЦР подвергали электрофорезу в 1,0% агарозном геле. Полосу размером 1,1 т.п.о. элюировали и очищали. Извлеченный фрагмент ДНК вводили путем электропорации в штамм СС03-0132, предварительно трансформированный вектором pKD46 (PNAS (2000) Vol.97, р6640-6645). Для электропорации штамм СС03-0132, трансформированный с помощью pKD46, культивировали в среде LB, дополненной 200 мкг/л ампициллина и 5 мМ L-арабинозы, при 30°С до достижения OD600 0,5. Штамм промывали 10% глицерином три раза. Электропорацию осуществляли при 2500 В. Извлеченный штамм наносили на чашку со средой LB, содержащей 30 мкг/л хлорамфеникола, с последующим культивированием при 37°С в течение 1-2 дней. Затем отбирали устойчивый штамм.
[0056] Отобранный штамм направляли на ПЦР с применением праймеров, представленных под SEQ ID NO: 18 и SEQ ID NO: 19, в соответствии с условиями, упомянутыми выше. В 1,0% агарозном геле наблюдали полосу размером 1,5 т.п.о., что позволяет предположить, что ген thrB был подвергнут делеции.
[0057] SEQ ID NO: 18: 5'-CTCGACGATCTCTTTGCC-3'
[0058] SEQ ID NO: 19: 5'-ACGCCGAGAGGATCTTCGCAG-3'
[0059] Подтвержденный штамм трансформировали вектором рСР20 (PNAS (2000) vol. 97, р6640-6645), и его затем культивировали в среде LB, Дополненной 100 мкг/л ампициллина. С ним осуществляли ПЦР таким же образом, как описано выше, и отбирали конечный штамм с делецией гена thrB, характеризующийся меньшей полосой, как подтверждалось посредством электрофореза в 1,0% агарозном геле. Подтверждали делецию маркера устойчивости к хлорамфениколу. Полученный штамм назвали СС03-0133.
[0060]
[0061] 3) Конструирование вектора pSG для вставки metA11
[0062] Гомосеринсукцинилтрансфераза находится под контролем следовых количеств метионина, добавляемого в среду, по принципу обратной связи, поэтому большая часть активности гомосеринсукцинилтрансферазы ингибируется. Для увеличения получения О-сукцинилгомосерина применяли предшественник L-метионина, мутантную форму, не подвергаемую контролю метионином по принципу обратной связи. Для замещения гена metA дикого типа (SEQ ID NO: 27), кодирующего гомосеринсукцинилтрансферазу, в хромосоме Е. coli мутантной формой metA11 (SEQ ID NO: 33), не подвергаемой контролю метионином по принципу обратной связи, конструировали инсерционный вектор pSG-metA11. В соответствии с инструкцией, приведенной в WO 2008/127240 А1, получали информацию о нуклеотидной последовательности гена metA11, и на основании данной информации синтезировали праймеры (SEQ ID NO: 20 и SEQ ID NO: 21), содержащие открытую рамку считывания (ORF), начиная со стартового кодона ATG гена metA11, и сайты распознавания для ферментов рестрикции EcoRI и Sacl. С данными праймерами, представленными следующими последовательностями, осуществляли ПЦР с применением штамма TF4076BJF metA#11, указанного в WO 2008/127240 А1, в качестве матрицы.
[0063] SEQ ID NO: 20: 5'-ggccgaattcatgccgattcgtgtgccgga-3'
[0064] SEQ ID NO: 21: 5'-ggccgagttcttaatccagcgttggattca-3'
[0065] ПЦР осуществляли с применением ДНК-полимеразы Pfu-X (Solgent, SPX16-R250) следующим образом: денатурация при 95°С в течение 30 секунд, отжиг при 55°С в течение 30 секунд и удлинение при 72°С в течение 2 минут с 30 циклами от денатурации до удлинения. В результате получали продукт ПЦР, в котором была амплифицирована ORF metA11, содержащая на обоих концах сайты распознавания для EcoRI и Sacl. Ген metA11, полученный посредством вышеописанной ПЦР, обрабатывали ферментами рестрикции EcoRI и Sacl с последующим лигированием с вектором pSG76-C (J Bacteriol. 1997 Jul; 179(13): 4426-8.), который также обрабатывали ферментами рестрикции EcoRI и Sacl. Наконец, конструировали рекомбинантный вектор pSG-metA11, содержащий клонированный ген metA11.
[0066] 4) Конструирование штамма со вставкой metA11
[0067] Инсерционный вектор pSG-metA11 metA11, сконструированный в сравнительном примере 3), вводили в штамм, полученный в сравнительном примере 2), с последующим культивированием в среде LB-Cm (дрожжевой экстракт - 10 г/л, NaCl - 5 г/л, триптон - 10 г/л, хлорамфеникол - 30 мкг/л). Затем отбирали колонии, устойчивые к хлорамфениколу. Отобранный трансформант представлял собой первичный штамм, в хромосому которого в положении metA был вставлен вектор pSG-metA11. Штамм, в который был введен ген metA11, трансформировали вектором pASceP (JOURNAL OF BACTERIOLOGY, July 1997, 4426-4428), экспрессирующим фермент рестрикции I-SceI для расщепления сайта I-SceI вектора pSG. Штамм отбирали после выращивания в среде LB-Amp (дрожжевой экстракт - 10 г/л, NaCl - 5 г/л, триптон - 10 г/л, хлорамфеникол - 100 мкг/л). В отобранном штамме metA дикого типа был замещен на metA11, и из него был удален вставленный вектор pSG76-C. Этот штамм назвали Е. coli СС03-0038.
[0068] 5) Конструирование штамма, продуцирующего О-сукцинилгомосерин, на основе штамма, продуцирующего треонин
[0069] Штамм, обладающий способностью продуцировать янтарную кислоту и О-сукцинилгомосерин, конструировали с помощью того же способа, который описан в 1)-4) выше, путем применения штамма KCCM 10541Р Е. соli, продуцирующего треонин, описанного в международной заявке на патент WO 2005/075625, вместо штамма W3110 дикого типа, и сконструированный штамм назвали CJM2-A11.
[0070] Пример 1. Конструирование плазмиды для повышенной экспрессии sucAB
[0071] 1-1. Конструирование плазмиды для повышенной экспрессии sucAB с промотором sucA
[0072] Информацию о нуклеотидной последовательности для с-кетоглутаратдегидрогеназного комплекса, кодируемого sucAB (sucA, № доступа в GenBank ВАА35392.1: SEQ ID NO: 23, sucB, № доступа в GenBank BAA35393.1: SEQ ID NO: 25), получали из базы данных Национального центра биотехнологической информации США, и на ее основании синтезировали праймеры, представленные под SEQ ID NO: 1 и SEQ ID NO: 2 и распознаваемые соответственно ферментами рестрикции HindIII и XbaI, содержащие последовательность в пределах до -188 от ATG, инициаторного кодона ORF sucAB, с целью получения гена sucAB под контролем промотора sucA.
[0075] Применяя хромосомную ДНК E. coli W3110 дикого типа в качестве матрицы, осуществляли клонирование гена sucAB, кодирующего α-кетоглутаратдегидрогеназный комплекс, с помощью ПЦР с праймерами, представленными под SEQ ID NO: 1 и SEQ ID NO: 2. ПЦР [Sambrook et al, Molecular Cloning, A Laboratory Manual (1989), Cold Spring Harbor Laboratories] осуществляли с применением ДНК-полимеразы Pfu-X (Solgent, SPX16-R250) следующим образом: денатурация при 95°С в течение 30 секунд, отжиг при 55°С в течение 30 секунд и удлинение при 72°С в течение 5 минут с 30 циклами от денатурации до удлинения. В результате получали продукт ПЦР размером примерно 4,5 т.п.о., содержащий промотор sucA, ген sucAB и сайты распознавания для HindIII и XbaI. Полученный продукт ПЦР обрабатывали ферментами рестрикции HindIII и XbaI. Путем применения ДНК-лигазы Т4 продукт ПЦР лигировали с вектором pCL1920 (Lerner, C.G. and Inouye, M., Nucl. Acids Res.(1990) 18:4631), который был предварительно обработан ферментами рестрикции HindIII и XbaI, в результате чего сконструировали рекомбинантный вектор pCL_PsucA-sucAB. Фиг. 1 представляет собой схематическое изображение, иллюстрирующее рекомбинантный вектор pCL_PsucA-sucAB.
[0076] 1-2. Конструирование плазмиды для повышенной экспрессии sucAB с промотором rmf или trc
[0077] Информацию о нуклеотидной последовательности (sucA, № доступа в GenBank ВАА35392.1: SEQ ID NO: 23, sucB, № доступа в GenBank BAA35393.1: SEQ ID NO: 25) гена sucAB (гена, кодирующего α-кетоглутаратдегидрогеназный комплекс) получали из базы данных Национального центра биотехнологической информации США, и на ее основании синтезировали праймеры, представленные под SEQ ID NO: 3 и SEQ ID NO: 4, имеющие сайты распознавания для EcoRV и HindIII, с целью получения гена sucAB.
[0078] SEQ ID NO: 3: 5'-ATCATGCAGAACAGCGCTTTGAA-3'
[0079] SEQ ID NO: 4: 5'-COCCAACCTTTGTCCATCCTTCACTAATCC-3'
[0080] Применяя хромосомную ДНК Е. coli W3110 дикого типа в качестве матрицы, осуществляли клонирование sucAB с помощью ПЦР с праймерами, представленными под SEQ ID NO: 3 и SEQ ID NO: 4. ПЦР [Sambrook et al, Molecular Cloning, A Laboratory Manual (1989), Cold Spring Harbor Laboratories] осуществляли с применением ДНК-полимеразы Pfu-X (Solgent, SPX16-R250) следующим образом: денатурация при 95°С в течение 30 секунд, отжиг при 55°С в течение 30 секунд и удлинение при 72°С в течение 5 минут с 30 циклами от денатурации до удлинения. В результате получали продукт ПЦР размером примерно 4,3 т.п.о., содержащий ген sucAB и сайт распознавания для фермента рестрикции HindIII. Полученный продукт ПЦР обрабатывали ферментом рестрикции HindIII. Для замещения промотора sucA, то есть нативного промотора гена sucAB, векторы pCL_Prmf-gfp (SEQ ID NO: 5) и pCL_Ptrc-gfp (SEQ ID NO: 6), содержащие соответственно промоторы rmf и trc, обрабатывали ферментами рестрикции EcoRV и HindIII с последующим лигированием с продуктом ПЦР с помощью ДНК-лигазы Т4 (Roche: 10481220001). В результате сконструировали рекомбинантные векторы pCL_Prmf-sucAB и pCL_Ptrc-sucAB. В векторы pCL_Prmf-gfp и pCL_Ptrc-gfp вводили ген зеленого флуоресцентного белка gfp с целью измерения силы промоторов rmf и trc. В это же время sucAB лигировали с промоторным участком вектора, в результате чего сконструировали вектор, содержащий sucAB, который может экспрессироваться под контролем промоторов rmf и trc. Фиг. 2 и фиг. 3 представляют собой схематические изображения, иллюстрирующие соответственно рекомбинантные векторы pCl__Prmf-sucAB и pCL_Ptrc-sucAB.
[0081] Пример 2. Конструирование плазмиды для одновременной повышенной экспрессии sucAB и metA11
[0082] Для синтезирования О-сукцинилгомосерина конструировали вектор экспрессии, одновременно экспрессирующий sucAB и metA11. Информацию о нуклеотидной последовательности гена metA11 получали на основании кодируемой аминокислотной последовательности мутантной О-сукцинилтрансферазы штамма TF4076BJF metA#11, описанного в публикации международной заявки на патент № WO 2008/127240 А1, и на основании информации о нуклеотидной последовательности синтезировали праймеры, представленные под SEQ ID NO: 7 и SEQ ID NO: 8, имеющие на обоих концах сайты распознавания для ферментов рестрикции EcoRV и HindIII, с целью амплификации ORF в пределах от ATG до ТАА гена metA11.
[0083] SEQ ID NO: 7: 5'-GAGTGCGATATC atgccgattcgtgtgccggac-3'
[0084] SEQ ID NO: 8: 5'-GCACTCAAGCTT ttaatccagcgttggatacatg-3'
[0085] Применяя TF4076BJF metA#11 в качестве матрицы, осуществляли ПЦР с праймерами, представленными под SEQ ID NO: 7 и SEQ ID NO: 8. ПЦР осуществляли с применением ДНК-полимеразы Pfu-X (Solgent, SPX16-R250) следующим образом: денатурация при 95°С в течение 30 секунд, отжиг при 55°С в течение 30 секунд и удлинение при 72°С в течение 1 минуты с 30 циклами от денатурации до удлинения. Полученный продукт ПЦР обрабатывали ферментами рестрикции EcoRV и HindIII. Вектор pCL_Pcysk-gfp (3EQ ID NO: 9) обрабатывали ферментами рестрикции EcoRV и HindIII с последующим лигированием с помощью ДНК-лигазы Т4 (Roche: 10481220001). В результате сконструировали рекомбинантный вектор pCL_Pcysk-metA11. Для вставки sucAB в вышеупомянутый сконструированный вектор синтезировали праймеры, представленные под SEQ ID NO: 10 и SEQ ID NO: 11, имеющие сайт распознавания для HindIII.
[0088] Для одновременной экспрессии metA11 и sucAB конструировали вектор pCL_Pcysk-metA11_PsucA-sucAB. Вначале, применяя хромосомную ДНК Е. coli W3110 дикого типа в качестве матрицы, осуществляли ПЦР с праймерами, представленными под SEQ ID NO: 10 и SEQ ID NO: 11. ПЦР [Sambrook et al, Molecular Cloning, A Laboratory Manual (1989), Cold Spring Harbor Laboratories] осуществляли с применением ДНК-полимеразы Pfu-X (Solgent, SPX16-R250) следующим образом: денатурация при 95°С в течение 30 секунд, отжиг при 55°С в течение 30 секунд и удлинение при 72°С в течение 5 минут с циклами от денатурации до удлинения. В результате получали продукт ПЦР размером примерно 4,5 т.п.о., имеющий PsucA-sucAB, включающий в себя сайт распознавания для HindIII. Полученный продукт ПЦР обрабатывали ферментом рестрикции HindIII с последующим лигированием с помощью ДНК-лигазы Т4 (Roche: 10481220001), с вектором pCL_Pcysk-metA11, который был предварительно обработан ферментом рестрикции HindIII. В результате сконструировали рекомбинантный вектор pCL_Pcysk-metA11_PsucA-sucAB. Фиг. 4 представляет собой схематическое изображение, иллюстрирующее рекомбинантный вектор pCL_Pcysk-metA11_PsucA-sucAB.
[0089] Пример 3. Брожение для продуцирования янтарной кислоты
[0090] Осуществляли культивирование в колбе для исследования продуцирования янтарной кислоты в случае, когда у штамма, продуцирующего О-сукцинилгомосерин, сконструированного в сравнительном примере, была повышена только активность sucAB. Штамм СС03-0038 из сравнительного примера 4) и штамм CJM2-A11 из сравнительного примера 5) трансформировали плазмидами pCL_PsucA-sucAB, pCL_Prmf-sucAB и pCL_Ptrc-sucAB, сконструированными в примере 1. Штаммы наносили на чашку со средой LB, содержащей спектиномицин, в результате чего получали штаммы со вставкой sucAB. В качестве контролей получали штаммы СС03-0038 и CJM2-A11, в которые был введен вектор рСL1920. Вектор pCC1BAC-scrO (SEQ ID NO: 34), имеющий последовательность scrO в плазмиде pUR 400, происходящей из штамма сальмонеллы, описанного в публикации международной заявки на патент № WO 10/101360, вводили в эти штаммы для обеспечения использования ими нерафинированного сахара в качестве источника углерода. Полученные в результате штаммы культивировали в среде, имеющей состав, указанный в таблице 2 ниже, для оценки продуцирования янтарной кислоты.
[0091] Каждый штамм инокулпровали в среду и культивировали при 33°С в течение ночи. Одну колонию инокулировали в 2 мл среды LB, содержащей спектиномицин, с последующим культивированием при 33°С в течение 2 часов. Штамм вновь инокулировали в колбу Эрленмейера на 250 мл, содержащую 25 мл среды в колбе, при плотности OD600=0,5 с последующим культивированием при 33°С при 200 об./мин. в течение 33 часов. Для исследования продуцирования янтарной кислоты осуществляли высокоэффективную жидкостную хроматографию (HPLC). Результаты указаны в таблице 3.
[0092] В результате по мере повышения экспрессии sucAB увеличивалось продуцирование янтарной кислоты. Этот результат означает, что повышенная экспрессия sucAB обладает эффектом снижения уровня глутамата, но увеличения потока продуцирования сукцинил-СоА с увеличением продуцирования янтарной кислоты. Если в качестве источника углерода применяют глюкозу, то продуцирование янтарной кислоты увеличивается максимум на 30%. Ожидалось, что продуцирование янтарной кислоты будет дополнительно увеличиваться по мере повышения синтеза янтарной кислоты у штамма в аэробных условиях. Если в качестве источника углерода применяют нерафинированный сахар, продуцирование янтарной кислоты увеличивается настолько же, как в случае применения глюкозы в качестве источника углерода. Результаты указаны в таблице 4.
[0093] Таблица 1. Состав среды с глюкозой в колбе
[0094]
[0095]
[0096] Таблица 2. Состав среды с нерафинированным сахаром в колбе
[0097]
[0098]
[0099] Таблица 3. Продуцирование янтарной кислоты посредством культивирования в колбе с применением глюкозы
[00100]
[00101]
[00102] Таблица 4. Продуцирование янтарной кислоты посредством культивирования в колбе с применением нерафинированного сахара
[00103]
[00104]
[00105] Пример 4. Брожение для продуцирования О-сукцинилгомосерина
[00106] Для повышения совместной экспрессии генов sucAB и metA у штаммов СС03-0038 и CJM2-A11 штаммы трансформировали плазмидой pCL_Pcysk-metA11_PsucA-sucAB, сконструированной в примере 2, с последующим культивированием в колбе Эрленмейера для исследования продуцирования О-сукцинилгомосерина. Состав среды в колбе соответствовал приведенному в таблице 1. Повышенная экспрессия гена metA11 в сравнительном примере 4) находилась под контролем исходного промотора. Поэтому с целью повышения экспрессии metA11 его клонировали в вектор, где он мог экспрессироваться под контролем промотора cysK, при этом одновременно индуцировали экспрессию sucAB.
[00107] СС03-0038 трансформировали плазмидой pCL_Pcysk-metA11_PsucA-sucAB, сконструированной в примере 2. Штамм наносили на чашку со средой LB, содержащей спектиномицин, в результате чего получали трансформированный штамм. Что касается контролей, штаммы СС03-0038 и CJM2-A11 трансформировали вектором рСL1920. Штамм, который может использовать нерафинированный сахар в качестве источника углерода, конструировали путем введения в штаммы вектора pCC1BAC-scrO, имеющего последовательность scrO в плазмиде pUR 400, происходящей из штамма сальмонеллы, описанного в заявке на корейский патент №2009-0018128. Штамм культивировали в среде с нерафинированным сахаром в колбе, имеющей состав, указанный в таблице 2, для оценки продуцирования О-сукцинилгомосерина. В целях оценки некоторые из штаммов, описанных выше, инокулировали в среду и культивировали при 33°С в течение ночи. Одну колонию инокулировали в 2 мл среды LB, содержащей спектиномицин, с последующим культивированием при 33°С в течение 2 часов. Штаммы вновь инокулировали в колбу Эрленмейера объемом 250 мл, содержащую 25 мл среды в колбе, при плотности OD600=0,5 с последующим культивированием при 33°С при 200 об./мин. в течение 33 часов. Для исследования продуцирования О-сукцинилгомосерина осуществляли HPLC. Результаты указаны в таблице 5.
[00108] Результаты показали, что у штамма, в который была введена pCL_Pcysk-metA11_PsucA-sucAB, был повышен уровень О-сукцинилгомосерина. Выход продукта был повышен на приблизительно 40% по сравнению с контролем. По мере увеличения уровня О-сукцинилгомосерина происходило снижение уровней глутамата и гомосерина. Результаты означают, что повышенная экспрессия sucAB играет важную роль в выработке сукцинил-СоА. В случае, когда при применении сукцинил-СоА в качестве субстрата одновременно повышалась экспрессия metA, концентрация О-сукцинилгомосерина быстро возрастала.
[00109]
[00110] Таблица 5. Продуцирование О-сукцинилгомосерина посредством культивирования в колбе с применением глюкозы
[00111]
[00112]
[00113] Таблица 6. Продуцирование О-сукцинилгомосерина посредством культивирования в колбе с применением нерафинированного сахара
[00114]
[00115]
[00116] В случае, когда микроорганизм, принадлежащий к роду Escherichia, трансформировали вектором, содержащим sucAB, в соответствии с вариантом осуществления настоящего раскрытия для повышения экспрессии sucAB, продуцирование сукцинил-СоА и янтарной кислоты увеличивалось. Таким образом, повышение экспрессии sucAB можно применять к тем микроорганизмам, которые в том, что касается центрального метаболизма углерода, имеют такой же цикл ТСА, что и вышеупомянутые, например, к таким микроорганизмам, как дрожжи и актиномицеты и т.п.
[00117] Сконструированный штамм CC03-0038/pCL_Pcysk-metA11_PsucA-sucAB с подтвержденной способностью продуцировать О-сукцинилгомосерин назвали СС03-0157 и депонировали в Корейском центре культур микроорганизмов (KССМ) согласно Будапештскому договору 22 ноября 2013 г. (№ доступа: KССМ11488Р).
Свободный текст перечня последовательностей
[00118] Последовательности, представленные под SEQ ID NO: 1 - SEQ ID NO: 34, описанные в данном документе, указаны в прилагаемом перечне последовательностей.
Claims (58)
1. Микроорганизм из рода Escherichia, обладающий способностью продуцировать О-сукцинилгомосерин, где:
- активность α-кетоглутаратдегидрогеназного комплекса (KGDHC) повышена по сравнению с уровнем его эндогенной активности
посредством сверхэкспрессии гена, кодирующего α-кетоглутаратдегидрогеназный комплекс,
путем увеличения числа копий гена, кодирующего α-кетоглутаратдегидрогеназный комплекс, или
посредством замещения эндогенного промотора этого гена более сильным промотором,
по сравнению с его эндогенной активностью у микроорганизма дикого типа;
- активность гомосерин-О-сукцинилтрансферазы дополнительно повышена по сравнению с уровнем ее эндогенной активности
посредством замены гена, кодирующего гомосерин-О-сукцинилтрансферазу, геном, не имеющим контроля метионином по принципу обратной связи,
посредством сверхэкспрессии гена, кодирующего гомосерин-О-сукцинилтрансферазу,
путем увеличения числа копий гена, кодирующего гомосерин-О-сукцинилтрансферазу,
посредством замещения эндогенного промотора этого гена более сильным промотором, или
посредством их комбинации, по сравнению с эндогенной активностью микроорганизма дикого типа; и
- активность по меньшей мере одной из цистатионин-гамма-синтазы и гомосеринкиназы устранена путем делеции, замены или вставки всего или части гена, кодирующего одну или более из цистатионин-гамма-синтазы и гомосеринкиназы, или
путем делеции, замены или вставки всей или части последовательности, регулирующей экспрессию этого гена.
2. Микроорганизм по п.1, где α-кетоглутаратдегидрогеназный комплекс содержит аминокислотные последовательности, приведенные под SEQ ID NO: 22 и SEQ ID NO: 24.
3. Микроорганизм по п.1 или 2, который представляет собой Escherichia coli.
4. Способ продуцирования О-сукцинилгомосерина, включающий:
культивирование микроорганизма по п.1 в среде и
извлечение О-сукцинилгомосерина из культуральной среды или культивируемого микроорганизма.
5. Способ по п.4, где микроорганизм представляет собой Escherichia coli.
6. Микроорганизм по п.1, где более сильный промотор выбран из группы, состоящей из Ptac, Ptrc, Ppro, PR, PL, Prmf и PcysK.
7. Микроорганизм по п.1, где более сильный промотор представляет собой Ptrc или Prmf.
8. Микроорганизм по п.1, где ген, кодирующий α-кетоглутаратдегидрогеназный комплекс, представляет собой ген sucAB.
9. Микроорганизм по п.1, где более сильный промотор выбран из группы, состоящей из Ptac, Ptrc, Ppro, PR, PL, Prmf и PcysK.
10. Микроорганизм по п.1, где ген, не имеющий контроля метионином по принципу обратной связи, представляет собой ген metA11.
11. Микроорганизм по п.1, где ген, кодирующий цистатионин-гамма-синтазу, представляет собой ген metB и ген, кодирующий гомосеринкиназу, представляет собой ген thrB.
12. Микроорганизм из рода Escherichia, обладающий способностью продуцировать янтарную кислоту, где:
- активность α-кетоглутаратдегидрогеназного комплекса повышена по сравнению с уровнем его эндогенной активности
посредством сверхэкспрессии гена, кодирующего α-кетоглутаратдегидрогеназный комплекс,
путем увеличения числа копий гена, кодирующего α-кетоглутаратдегидрогеназный комплекс, или
посредством замещения эндогенного промотора этого гена более сильным промотором,
по сравнению с его эндогенной активностью у микроорганизма дикого типа; и
- активность гомосерин-О-сукцинилтрансферазы дополнительно повышена по сравнению с уровнем ее эндогенной активности
посредством замены гена, кодирующего гомосерин-О-сукцинилтрансферазу, геном, не имеющим контроля метионином по принципу обратной связи,
посредством сверхэкспрессии гена, кодирующего гомосерин-О-сукцинилтрансферазу,
путем увеличения числа копий гена, кодирующего гомосерин-О-сукцинилтрансферазу,
посредством замещения эндогенного промотора этого гена более сильным промотором, или
посредством их комбинации, по сравнению с ее эндогенной активностью у микроорганизма дикого типа; и
- активность по меньшей мере одной из цистатионин-гамма-синтазы и гомосеринкиназы устранена посредством делеции, замены или вставки всего или части гена, кодирующего одну или более из цистатионин-гамма-синтазы и гомосеринкиназы, или
путем делеции, замены или вставки всей или части последовательности, регулирующей экспрессию этого гена.
13. Микроорганизм по п.12, где более сильный промотор представляет собой Ptrc или PcysK.
14. Способ продуцирования янтарной кислоты, включающий:
культивирование микроорганизма по п.12 или 13 в среде и
извлечение янтарной кислоты из культуральной среды или культивируемого микроорганизма.
15. Применение микроорганизма из рода Escherichia для продуцирования О-сукцинилгомосерина, в котором:
- активность α-кетоглутаратдегидрогеназного комплекса повышена по сравнению с уровнем его эндогенной активности
посредством сверхэкспрессии гена, кодирующего α-кетоглутаратдегидрогеназный комплекс,
путем увеличения числа копий гена, кодирующего α-кетоглутаратдегидрогеназный комплекс, или
посредством замещения эндогенного промотора этого гена более сильным промотором,
по сравнению с его эндогенной активностью у микроорганизма дикого типа;
- активность гомосерин-О-сукцинилтрансферазы дополнительно повышена по сравнению с уровнем ее эндогенной активности
посредством замены гена, кодирующего гомосерин-О-сукцинилтрансферазу, геном, не имеющим контроля метионином по принципу обратной связи,
посредством сверхэкспрессии гена, кодирующего гомосерин-О-сукцинилтрансферазу,
путем увеличения числа копий гена, кодирующего гомосерин-О-сукцинилтрансферазу,
посредством замещения эндогенного промотора этого гена более сильным промотором, или
посредством их комбинации, по сравнению с эндогенной активностью микроорганизма дикого типа; и
- активность по меньшей мере одной из цистатионин-гамма-синтазы и гомосеринкиназы устранена посредством делеции, замены или вставки всего или части гена, кодирующего одну или более из цистатионин-гамма-синтазы и гомосеринкиназы, или
путем делеции, замены или вставки всей или части последовательности, регулирующей экспрессию этого гена.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140067787A KR101547651B1 (ko) | 2014-06-03 | 2014-06-03 | O-숙시닐호모세린 또는 숙신산의 생산능을 갖는 미생물 및 이를 이용한 숙신산 또는 o-숙시닐호모세린의 생산 방법 |
KR10-2014-0067787 | 2014-06-03 | ||
PCT/KR2015/005548 WO2015186958A1 (ko) | 2014-06-03 | 2015-06-03 | O-숙시닐호모세린 또는 숙신산의 생산능을 갖는 미생물 및 이를 이용한 숙신산 또는 o-숙시닐호모세린의 생산 방법 |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2016149075A3 RU2016149075A3 (ru) | 2018-07-09 |
RU2016149075A RU2016149075A (ru) | 2018-07-09 |
RU2674891C2 true RU2674891C2 (ru) | 2018-12-13 |
Family
ID=54062037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016149075A RU2674891C2 (ru) | 2014-06-03 | 2015-06-03 | Микроорганизм, обладающий способностью продуцировать о-сукцинилгомосерин или янтарную кислоту, и способ продуцирования янтарной кислоты или о-сукцинилгомосерина посредством его применения |
Country Status (11)
Country | Link |
---|---|
US (1) | US20170247727A1 (ru) |
EP (1) | EP3153575B1 (ru) |
JP (1) | JP6506314B2 (ru) |
KR (1) | KR101547651B1 (ru) |
CN (1) | CN107109357A (ru) |
BR (1) | BR112016028432A2 (ru) |
ES (1) | ES2734412T3 (ru) |
MY (1) | MY175821A (ru) |
PL (1) | PL3153575T3 (ru) |
RU (1) | RU2674891C2 (ru) |
WO (1) | WO2015186958A1 (ru) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251734A1 (ko) | 2020-06-09 | 2021-12-16 | 씨제이제일제당 (주) | O-포스포세린 배출 단백질 변이체 및 이를 이용한 o-포스포세린, 시스테인 및 이의 유도체의 생산방법 |
KR102654301B1 (ko) | 2021-06-23 | 2024-04-04 | 씨제이제일제당 주식회사 | NADH:quinone 산화환원효소의 발현이 조절된 재조합 미생물 및 이를 이용한 O-포스포세린, 시스테인 및 이의 유도체의 생산방법 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008013432A1 (en) * | 2006-07-28 | 2008-01-31 | Cj Cheiljedang Corporation | Microorganism producing l-methionine precursor and method of producing l-methionine and organic acid from the l-methionine precursor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1272437C (zh) | 1994-06-14 | 2006-08-30 | 味之素株式会社 | α-酮戊二酸脱氢酶基因以及赖氨酸的生产方法 |
JP4821606B2 (ja) * | 2003-03-12 | 2011-11-24 | 味の素株式会社 | 効率的にL−グルタミン酸を生産するためのプロモーター変異による細菌のsucAB発現の最適化 |
JP2005192450A (ja) * | 2004-01-05 | 2005-07-21 | Nippon Medical School | Dlst遺伝子の遺伝子多型を用いた骨粗鬆症発症リスクの判定方法 |
DE102004003410A1 (de) * | 2004-01-23 | 2005-08-25 | Degussa Ag | Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von Stämmen der Familie Enterobacteriaceae |
BRPI0515035A (pt) * | 2004-09-10 | 2008-07-01 | Ajinomoto Kk | bactéria corineforme produtora de ácido l-glutámico, método para produzir ácido l-glutámico, gene codificador de alfa-ceto-glutarato desidrogenase mutante, e, alfa-ceto-glutarato desidrogenase mutante |
DE102005043979A1 (de) * | 2005-09-15 | 2007-03-22 | Forschungszentrum Jülich GmbH | Verfahren zur Produktion von Aminosäuren in aminosäureproduzierenden Mikroorganismen |
JP5180060B2 (ja) * | 2006-02-24 | 2013-04-10 | 三菱化学株式会社 | 有機酸生産菌及び有機酸の製造法 |
KR101136248B1 (ko) * | 2008-04-04 | 2012-04-20 | 씨제이제일제당 (주) | L-메치오닌 전구체 생산 균주 및 이를 이용한 l-메치오닌 전구체의 생산 방법 |
US7851180B2 (en) * | 2008-04-04 | 2010-12-14 | Cj Cheiljedang Corporation | Microorganism producing L-methionine precursor and the method of producing L-methionine precursor using the microorganism |
-
2014
- 2014-06-03 KR KR1020140067787A patent/KR101547651B1/ko active IP Right Grant
-
2015
- 2015-06-03 EP EP15803800.0A patent/EP3153575B1/en active Active
- 2015-06-03 PL PL15803800T patent/PL3153575T3/pl unknown
- 2015-06-03 MY MYPI2016002131A patent/MY175821A/en unknown
- 2015-06-03 CN CN201580029967.5A patent/CN107109357A/zh active Pending
- 2015-06-03 RU RU2016149075A patent/RU2674891C2/ru active
- 2015-06-03 ES ES15803800T patent/ES2734412T3/es active Active
- 2015-06-03 US US15/316,476 patent/US20170247727A1/en not_active Abandoned
- 2015-06-03 JP JP2016571317A patent/JP6506314B2/ja active Active
- 2015-06-03 WO PCT/KR2015/005548 patent/WO2015186958A1/ko active Application Filing
- 2015-06-03 BR BR112016028432A patent/BR112016028432A2/pt not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008013432A1 (en) * | 2006-07-28 | 2008-01-31 | Cj Cheiljedang Corporation | Microorganism producing l-methionine precursor and method of producing l-methionine and organic acid from the l-methionine precursor |
Non-Patent Citations (3)
Title |
---|
NING LI et al. Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol // J Ind Microbiol Biotechnol (2013) 40: 1461-1475. HENRY LIN et al. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield // Metabolic Engineering 7 (2005) 116-127. * |
NING LI et al. Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol // J Ind Microbiol Biotechnol (2013) 40: 1461-1475. HENRY LIN et al. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield // Metabolic Engineering 7 (2005) 116-127. СКОРОХОДОВА А.Ю. Aнаэробный синтез янтарной кислоты рекомбинантными штаммами Escherichia coli с активированным НАД+-восстанавливающим пируватдегидрогеназным комплексом // Прикладная биохимия и микробиология, 2011, том 47, номер 4, с. 415-423. * |
СКОРОХОДОВА А.Ю. Aнаэробный синтез янтарной кислоты рекомбинантными штаммами Escherichia coli с активированным НАД+-восстанавливающим пируватдегидрогеназным комплексом // Прикладная биохимия и микробиология, 2011, том 47, номер 4, с. 415-423. * |
Also Published As
Publication number | Publication date |
---|---|
ES2734412T3 (es) | 2019-12-05 |
EP3153575A1 (en) | 2017-04-12 |
KR101547651B1 (ko) | 2015-08-26 |
JP6506314B2 (ja) | 2019-04-24 |
JP2017516488A (ja) | 2017-06-22 |
RU2016149075A3 (ru) | 2018-07-09 |
RU2016149075A (ru) | 2018-07-09 |
EP3153575A4 (en) | 2017-04-19 |
MY175821A (en) | 2020-07-10 |
BR112016028432A2 (pt) | 2017-10-24 |
CN107109357A (zh) | 2017-08-29 |
US20170247727A1 (en) | 2017-08-31 |
PL3153575T3 (pl) | 2020-02-28 |
EP3153575B1 (en) | 2019-04-24 |
WO2015186958A1 (ko) | 2015-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3783096B1 (en) | Microorganism producing o-acetyl homoserine and the method of producing o-acetyl homoserine using the same | |
RU2676137C2 (ru) | Микроорганизм для продуцирования О-ацетилгомосерина и способ получения О-ацетилгомосерина с использованием этого микроорганизма | |
JP2020078312A (ja) | L−アミノ酸の生産方法 | |
RU2674891C2 (ru) | Микроорганизм, обладающий способностью продуцировать о-сукцинилгомосерин или янтарную кислоту, и способ продуцирования янтарной кислоты или о-сукцинилгомосерина посредством его применения | |
EP3061814B1 (en) | Microorganism producing o-succinyl homoserine and method for producing o-succinyl homoserine by using same | |
JP6386551B2 (ja) | O−スクシニルホモセリンの生産のための微生物及びこれを用いたo−スクシニルホモセリンの生産方法 | |
EP3061812B1 (en) | Microorganism for production o-succinylhomoserine and method for production of o-succinylhomoserine using the same | |
RU2691581C2 (ru) | О-сукцинилгомосерин - продуцирующий микроорганизм и способ получения о-сукцинилгомосерина с его использованием | |
JP6697525B2 (ja) | キノリン酸を生産する組み換え微生物、及びそれを利用したキノリン酸の生産方法 | |
EP3196300B1 (en) | Microorganism with improved l-lysine productivity, and method for producing l-lysine by using same |