RU2667592C1 - Способ разделения галлия и алюминия на слабоосновном анионите d-403 из щелочных растворов - Google Patents
Способ разделения галлия и алюминия на слабоосновном анионите d-403 из щелочных растворов Download PDFInfo
- Publication number
- RU2667592C1 RU2667592C1 RU2018106769A RU2018106769A RU2667592C1 RU 2667592 C1 RU2667592 C1 RU 2667592C1 RU 2018106769 A RU2018106769 A RU 2018106769A RU 2018106769 A RU2018106769 A RU 2018106769A RU 2667592 C1 RU2667592 C1 RU 2667592C1
- Authority
- RU
- Russia
- Prior art keywords
- gallium
- aluminum
- exchange resin
- anion exchange
- concentration
- Prior art date
Links
- 229910052733 gallium Inorganic materials 0.000 title claims abstract description 59
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 40
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 37
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000012670 alkaline solution Substances 0.000 title claims abstract description 15
- 238000000926 separation method Methods 0.000 title abstract description 10
- 150000001450 anions Chemical class 0.000 title description 2
- 239000000243 solution Substances 0.000 claims abstract description 29
- 238000001179 sorption measurement Methods 0.000 claims abstract description 23
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 17
- 238000000605 extraction Methods 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 239000011651 chromium Substances 0.000 claims abstract description 7
- 239000013522 chelant Substances 0.000 claims abstract description 6
- 230000000536 complexating effect Effects 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 150000004645 aluminates Chemical class 0.000 abstract description 7
- 239000003456 ion exchange resin Substances 0.000 abstract description 7
- 229920003303 ion-exchange polymer Polymers 0.000 abstract description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000007790 solid phase Substances 0.000 abstract description 6
- 238000003795 desorption Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 125000000129 anionic group Chemical group 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000009854 hydrometallurgy Methods 0.000 abstract description 2
- 239000007791 liquid phase Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- 238000005272 metallurgy Methods 0.000 abstract 1
- 238000003756 stirring Methods 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 10
- 230000003068 static effect Effects 0.000 description 9
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- -1 iron ions Chemical class 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 4
- 239000012452 mother liquor Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000002594 sorbent Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 241001101998 Galium Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical compound C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- SFZULDYEOVSIKM-UHFFFAOYSA-N chembl321317 Chemical group C1=CC(C(=N)NO)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=N)NO)O1 SFZULDYEOVSIKM-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910001430 chromium ion Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940075554 sorbate Drugs 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B58/00—Obtaining gallium or indium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к области гидрометаллургии редких металлов, а именно к способам разделения галлия и алюминия в виде анионных гидроксокомплексов из щелочных растворов с привлечением ионообменных смол. Способ заключается в проведении сорбционного процесса извлечения галлия из щелочных алюминатных растворов, содержащих 50-55 г/л NaO, от 0,06 до 10,97 г/л галлия и алюминия 8,2 г/л в присутствии хрома и ванадия концентрацией 1,38 г/л и 2,57 г/л соответственно. Процесс ведут при соотношении твердой и жидкой фаз 1:30 на макропористой хелатной анионообменной смоле D-403 при перемешивании со скоростью встряхивания не менее 50 кол/мин не более 1,5 часов при комнатной температуре. Десорбцию ведут раствором серной кислоты концентрацией 1 моль/л. Техническим результатом является отделение галлия от алюминия вплоть до мольного отношения компонентов 1:150 и достижение значения емкости более 27 г галлия на 1 кг ионообменной смолы, что увеличивает производительность процесса. 3 ил., 3 табл., 5 пр.
Description
Изобретение относится к области гидрометаллургии редких металлов, а именно к способам разделения галлия и алюминия в виде анионных гидроксокомплексов из щелочных растворов. Изобретение может быть использовано в технологии получения галлия и отделения его от алюминия при переработке бокситовых и нефелиновых руд по методу Байера из оборотных и промывных растворов. Способ отделения галлия от алюминия включает ионообменный метод разделения с использованием слабоосновного анионита D-403.
Известен способ извлечения галлия из растворов (патент RU №2336349, опубл. 20.10.2008), в том числе алюминатных щелочных галлийсодержащих растворов глиноземного производства. Данный способ позволяет снизить затраты при извлечении галлия за счет использования в качестве сорбента шлама и пыли, уловленной в процессе газоочистки отходящих газов от электролизеров при получении алюминия. Процесс извлечения проводился при температуре 80°С и соотношении фаз Ж:Т=2:1. В изобретении приведено 2 примера, в которых степень извлечения галлия составила 25% и 18%, соответственно.
Недостатками данного способа являются низкие степени извлечения галлия, повешенные температуры проведения сорбционного процесса, а также невозможность (регенерации) вторичного использования сорбента.
Известен способ комплексной переработки галийсодержащих алюминатных растворов (патент RU №2049825, опубл. 10.12.1995), включающий выделение из алюминатных щелочных растворов основной массы алюминия путем обработки силикатом натрия и последующую сорбцию галлия ионообменником из полученной пульпы или маточника после фильтрации.
Недостатком данного способа является многостадийность процесса, необходимость предварительной очистки от ряда примесных компонентов: ванадия, мышьяка, фосфора, фтора, а также большой расход сопутствующих реагентов.
Известен способ извлечения галлия из растворов хлорида алюминия (патент CN 104018012 (А), опубл. 16.04.2014) на ионообменной смоле. Способ заключается в пропускании раствора, содержащего галлий и алюминий через сорбционную колонку с последующим элюированием раствором соляной кислоты, промыванием водой и вторичном элюировании водным раствором щелочи.
Недостатками способа являются многостадийность процесса и дополнительное использование восстанавливающих агентов для устранения сорбции ионов железа(3+).
Известен ионообменный способ извлечения галлия (патент CN 103031449, опубл. 28.12.2012) из маточных растворов глиноземного производства. Процесс извлечения галлия включается в себя 6 стадий: сорбцию, центрифугирование, промывание, элюирование и повторное центрифугирование. Общее время проведения процесса составляет 30-80 минут, скорость пропускания маточного раствора 9,5 м/ч.
Недостатком этого способа являются многостадийность процесса и совместная сорбция алюминия и галлия, что осложняет дальнейший процесс их разделения.
Известен способ утилизации галлия из маточного раствора Байеровского производства (патент CN 102534214, опубл. 04.07.2012) с использованием хелатной смолы имеющей функциональные группы амидоксима. Способ заключается в пропускании маточного раствора через сорбционную колонку, с последующей десорбцией кислотными растворами и параллельным осаждением примесей. Для повторного использования ионита производят промывание его водой до рН=6-8. Сорбционная способность составила 300 мг/л.
Недостатками метода являются необходимость промывания хелатной смолы до низких значений рН=6-8, что влечет высокий расход воды, и незначительная емкость ионита.
Известен способ извлечения галлия сорбцией из щелочных алюминийсодержащих растворов глиноземного производства (патент RU №2112814, опубл. 10.06.1998), принятый за прототип, который позволяет извлекать галлий из щелочных растворов с предварительной карбонизацией раствора для связывания основной массы алюминия и последующей сорбцией галлия на комплексообразующем ионообменнике. При выделении около 50% алюминия из раствора в осадок за счет карбонизации емкость ионита возрастает почти в два раза, а при выделении в осадок более 90% алюминия емкость по галлию увеличивается более чем в 6 раз и составляет 4,9 г/л при соотношении фаз 1:20.
К недостаткам данного способа относится относительно низкая емкость анионита по галлию, соответственно низкая производительность сорбционного процесса, и невысокая степень отделения от алюминия, которая понижается с ростом концентрации алюминия в фильтрате после проведения процесса карбонизации и/или декомпозиции.
Техническим результатом изобретения является непосредственное разделение алюминия и галлия на ионообменной смоле D-403 в процессе сорбционного извлечения галлия из оборотных растворов Байеровского производства после проведения карбонизации или декомпозиции и из промывных вод с концентрацией галлия от 0,08 до 0,84 г/л, 50-55 г/л Na2O и алюминия от 3,25 до 10 г/л в присутствии хрома и ванадия концентрацией 0,31-1,38 г/л и 0,31 до 2,57 г/л, соответственно.
Технический результат достигается тем, в качестве комплексообразующего анионита используется макропористая хелатная анионообменная смола D-403, отделение галлия от алюминия в присутствии хрома и ванадия проводится при соотношении фаз Т:Ж 1:30, скорости встряхивания не менее 50 колебаний в минуту, комнатной температуре, времени контакта фаз до достижения насыщения не более 1,5 часов и в качестве десорбирующего агента используется раствор серной кислоты концентрацией 1 моль/л.
Способ поясняется следующими фигурами:
фиг. 1 - график изотермы сорбции анионных комплексов галлия на слабоосновном анионите D 403, переведенного в гидроксоформу, в присутствии 3,25 г/л (0,12 моль/кг) алюминия и температуре 2°С;
фиг. 2 - график зависимости концентрации галлия от времени при различной скорости встряхивания
фиг. 3 - график зависимости емкости анионита по галлию от соотношения твердой и жидкой фаз.
Способ разделения галлия и алюминия осуществляется следующим образом. Щелочной алюминатный раствор, соответствующий оборотным растворам Байеровского производства, с содержанием Na2O 50-55 г/л, галлия от 0,06 до 10,97 г/л, алюминия 8,2 г/л, ванадия и хрома концентрацией 1,38 г/л и 2,57 г/л, соответственно, в пластиковых контейнерах емкостью 500 см3, помещенных в лабораторный встряхиватель SHR-1D (производитель Daihan Scientific, Корея) со скоростью встряхивания 50 колебаний в минуту при комнатной температуре и соотношении фаз Т:Ж=1:30 в статических условиях в течение 1,5 часов уравновешивают макропористой хелатной анионообменной смолой D-403 в гидрософорме, используемой в качестве комплексообразующего анионита. В качестве десорбирующего агента используются растворы серной кислоты концентрацией 1 моль/л.
В ходе эксперимента по сорбции галлия на анионите D-403 при увеличении содержания алюминия в растворе вплоть до мольного соотношения к галлию 150:1, характерное для технологических алюминатных щелочных растворов, не наблюдается извлечение гидроксоалюминат-ионов в твердую фазу анионита. Установлено, что химическое сродство тетрагидроксогаллат ионов к твердой фазе смолы D-403 выше сродства тетрагидроксокомплексов алюминия в силу более высокого электростатического взаимодействия ионов галлия во внутреннем электролите ионообменной смолы и дополнительным ковалентным эффектом химической связи гидроксокомплексов галлия за счет неподеленной электронной пары атома азота ионообменного материала по сравнению с алюминием, хромом и ванадием.
Полученное значение полной обменной емкости смолы в статических условиях по отношению к галлию составило 27-29 г/кг. Способ поясняется следующей фигурой.
Способ поясняется следующими примерами.
Пример 1. Щелочной раствор с содержанием Na2O 50-55 г/л, галлия от 0,06 до 10,42 г/л и алюминия 8,1 г/л объемом 200 см3 приводили в равновесие со смолой объмом 20 см3 (7,2 г) в пластиковых контейнерах емкостью 500 см3 при комнатной температуре. Емкости плотно закрывали крышками и обеспечивали скорость встряхивания 50 кол/мин с помощью лабораторного встряхивателя SHR-1D. Сорбцию проводили в статических условиях при соотношении фаз т:ж=1:30 в течение 1,5 ч. После окончания сорбции растворы отделяли от ионита, направляя твердую фазу на регенерацию.
Концентрацию галлия и алюминия в исходных и равновесных фазах измеряли спектрофотометрическим методом и рентгенофлуоресцентным с помощью энергодисперсионного спектрометра Epsilon3 производства PANanalitical. Результаты опытов приведены в табл. 1.
Согласно полученным результатам использование анионита D-403 в щелочных растворах, содержащих галлий и алюминий вплоть до мольного соотношения 1:150, позволяет полностью отделить галлий от алюминия при достижении полной обменной емкости по галию в статических условиях 27-29 г/кг.
Пример 2. Сорбцию галлат-ионов проводили из щелочных алюминатных растворов, содержащих от 0,06 до 10,97 г/л галлия, 8,2 г/л алюминия, 2,57 г/л хрома в виде хром-ионов, 1,38 г/л ванадия в виде ванадат-ионов и Na2O 50-55 г/л при комнатной температуре (25°С).
Щелочной раствор с содержанием указанных компонентов объемом 200 см3 уравновешивали смолой D-403 объмом 20 см3 (7,2 г). Сорбцию проводили в статических условиях при скорости встряхивания 50 кол/мин и соотношении фаз т:ж=1:30 в течение 1,5 ч. Результаты опытов приведены в табл. 2.
Полная статическая обменная емкость анионита по галлию составила 27-29 г/кг. Присутствие алюминия, хрома и ванадия не оказывает вияние на извлечение галлия из щелочных растворов, что позволяет рекомендовать данный анионит в качестве селективного сорбента по отношению к галлат-ионам.
Пример 3. Щелочной раствор, содержащий Na2O 50-55 г/л, 8,44 г/л галлия объемом 200 см3 уравновешивали смолой D-403 объмом 20 см3 (7,2 г) в статических условиях при соотношении фаз т:ж=1:30 и скорости встряхивания 50 и 100 колебаний в минуту. Через заданные промежутки времени отбирали аликвоты щелочного раствора и определяли в них содержание галлия. Согласно результатам эксперимента, приведенными на фиг. 2., время установления равновесия не превышает 1,5 часа и не зависит от скорости встряхивания, минимальным значением которой, является 50 кол/мин.
Пример 4. Щелочной раствор с содержанием Na2O 50-55 г/л, галлия 10,42 г/л и алюминия 8,1 г/л объемом 200 см3 приводили в равновесие со смолой объмом 20 см3 (7,2 г) при различных соотношениях массы анионита и объема раствора (т:ж): 1:100, 1:50, 1:40, 1:30, 1:20. Сорбцию проводили в статических условиях при скорости встряхивания 50 кол/мин в течение 1,5 ч. Результаты опытов приведены на фиг. 3.
Полная статическая емкость анионита по галлию, равная 27-29 г/кг достигается при использовании соотношения фаз 1:30, дальнейшее уменьшение значения т:ж не влияет на величину емкости. Концентрация алюминия в растворах после контакта с твердой фазой ионообменной смолы не изменилась и составила 8,1 г/л.
Пример 5. В качестве десорбирующего агента использовали раствор серной кислоты концентрацией от 0,5 до 2 моль/л. Для этих целей анионит D-403, насыщенный в условиях примеров 1 и 2, промыли водой, поместили в стекляные сорбционные колонки и десорбировали раствором серной кислоты в динамическом режиме. Раствор, вытекающий из колонок (сорбат) после пропускания 100 мл кислоты, анализировали на содержание галлия. Результаты опыта приведены в таблице 3.
Согласно полученным результатам степень десорбции галлия в сернокислый раствор составила свыше 95% при использовании серной кислоты концентрации 1 и 2 моль/л, из которых 1 М является оптимальной. Использование сернокислых растворов с концентрацией ниже 1 М не обеспечивает высокую степень десорбции галлия из твердой фазы ионообменной смолы.
Таким образом, использование анионобменной смолы D-403 в процессе сорбции галлия из промышленных щелочных растворов позволяет его отделить от основного сопутствующего компонента алюминия, достичь высокой емкости по галлию вплоть до значения 27-29 г/кг и десорбировать раствором серной кислоты концентрацией 1 моль/л.
Claims (1)
- Способ разделения галлия и алюминия из щелочных растворов, включающий сорбционное извлечение галлия комплексообразующим анионитом, отличающийся тем, что в качестве комплексообразующего анионита используют макропористую хелатную анионообменную смолу D-403, при этом отделение галлия от алюминия ведут в присутствии в растворе хрома и ванадия при соотношении фаз Т:Ж 1:30, скорости встряхивания емкости не менее 50 колебаний в минуту, комнатной температуре и времени контакта фаз до достижения насыщения не более 1,5 часов, а в качестве десорбирующего агента используют раствор серной кислоты концентрацией 1 моль/л.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018106769A RU2667592C1 (ru) | 2018-02-22 | 2018-02-22 | Способ разделения галлия и алюминия на слабоосновном анионите d-403 из щелочных растворов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018106769A RU2667592C1 (ru) | 2018-02-22 | 2018-02-22 | Способ разделения галлия и алюминия на слабоосновном анионите d-403 из щелочных растворов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2667592C1 true RU2667592C1 (ru) | 2018-09-21 |
Family
ID=63668853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018106769A RU2667592C1 (ru) | 2018-02-22 | 2018-02-22 | Способ разделения галлия и алюминия на слабоосновном анионите d-403 из щелочных растворов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2667592C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114507778A (zh) * | 2022-03-18 | 2022-05-17 | 郑州轻工业大学 | 一种金属镓生产过程中钒渣的综合利用方法 |
CN115109951A (zh) * | 2022-06-28 | 2022-09-27 | 郑州轻工业大学 | 一种氧化铝生产中硫酸脱附含镓液的综合利用方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5852450A (ja) * | 1981-09-19 | 1983-03-28 | Sumitomo Chem Co Ltd | ガリウムの回収方法 |
JPS60215721A (ja) * | 1984-04-06 | 1985-10-29 | Unitika Ltd | ガリウムの回収方法 |
US4999171A (en) * | 1987-04-03 | 1991-03-12 | Sumitomo Chemical Co. Ltd. | Process for recovery of gallium by chelate resin |
RU2020176C1 (ru) * | 1992-04-02 | 1994-09-30 | Донецкий государственный университет | Способ обогащения галлием угольной золы-уноса |
RU2112813C1 (ru) * | 1996-11-20 | 1998-06-10 | Арендное предприятие "Николаевский глиноземный завод" | Способ извлечения галлия из растворов при переработке алюминиевого сырья методом спекания |
RU2324655C2 (ru) * | 2006-04-26 | 2008-05-20 | Институт горючих ископаемых-научно-технический центр по комплексной переработке твердых горючих ископаемых (ФГУП ИГИ) | Способ переработки угля |
CN101368231A (zh) * | 2008-09-25 | 2009-02-18 | 吉林大学 | 从粉煤灰中提取金属镓的方法 |
-
2018
- 2018-02-22 RU RU2018106769A patent/RU2667592C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5852450A (ja) * | 1981-09-19 | 1983-03-28 | Sumitomo Chem Co Ltd | ガリウムの回収方法 |
JPS60215721A (ja) * | 1984-04-06 | 1985-10-29 | Unitika Ltd | ガリウムの回収方法 |
US4999171A (en) * | 1987-04-03 | 1991-03-12 | Sumitomo Chemical Co. Ltd. | Process for recovery of gallium by chelate resin |
RU2020176C1 (ru) * | 1992-04-02 | 1994-09-30 | Донецкий государственный университет | Способ обогащения галлием угольной золы-уноса |
RU2112813C1 (ru) * | 1996-11-20 | 1998-06-10 | Арендное предприятие "Николаевский глиноземный завод" | Способ извлечения галлия из растворов при переработке алюминиевого сырья методом спекания |
RU2324655C2 (ru) * | 2006-04-26 | 2008-05-20 | Институт горючих ископаемых-научно-технический центр по комплексной переработке твердых горючих ископаемых (ФГУП ИГИ) | Способ переработки угля |
CN101368231A (zh) * | 2008-09-25 | 2009-02-18 | 吉林大学 | 从粉煤灰中提取金属镓的方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114507778A (zh) * | 2022-03-18 | 2022-05-17 | 郑州轻工业大学 | 一种金属镓生产过程中钒渣的综合利用方法 |
CN115109951A (zh) * | 2022-06-28 | 2022-09-27 | 郑州轻工业大学 | 一种氧化铝生产中硫酸脱附含镓液的综合利用方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9102999B2 (en) | Methods of recovering scandium from titanium residue streams | |
RU2667592C1 (ru) | Способ разделения галлия и алюминия на слабоосновном анионите d-403 из щелочных растворов | |
RU2582425C1 (ru) | Способ извлечения скандия из скандийсодержащего материала | |
CN109182791B (zh) | 一种有机酸络合-固相吸附从稀土料液中除铝的方法 | |
WO2019143264A1 (ru) | Способ получения оксида скандия из скандий-содержащих концентратов | |
CN108950249A (zh) | 一种含钒页岩酸浸液的钒铝分离方法 | |
CN110423902B (zh) | 一种高纯碳酸稀土的制备方法及系统 | |
RU2294392C1 (ru) | Способ извлечения рения из растворов | |
RU2196184C2 (ru) | Способ переработки скандийсодержащих растворов | |
RU2226177C2 (ru) | Способ сорбционного извлечения урана из растворов и пульп | |
US20190360073A1 (en) | Method for recovering scandium from red mud left from alumina production | |
Panova et al. | Selection of sorption materials for the extraction of nickel and cobalt from the ore of the Gornostaevskoye deposit | |
CN109811130B (zh) | 一种从冶炼酸性废水回收铊和汞的方法 | |
CN111302394B (zh) | 一步酸溶法生产氧化铝时所用深度净化药剂的再生方法 | |
RU2427535C1 (ru) | Способ извлечения рения из растворов, содержащих молибден | |
RU2112813C1 (ru) | Способ извлечения галлия из растворов при переработке алюминиевого сырья методом спекания | |
Matyasova et al. | Ion-exchange processes in the reprocessing of sulfate solutions and pulps with production of high-purity beryllium compounds | |
RU2049824C1 (ru) | Способ извлечения галлия из щелочных алюминийсодержащих растворов | |
RU2039011C1 (ru) | Способ извлечения мышьяка из растворов | |
RU2684663C1 (ru) | Способ получения концентрата скандия из скандийсодержащего раствора | |
Ultarakova et al. | Recovery of niobium pentaoxide and ammonium sulfate from titanium-magnesium production waste | |
RU2066697C1 (ru) | Способ очистки концентратов химического обогащения от примесей | |
RU2817727C1 (ru) | Способ получения пентаоксида ванадия высокой чистоты | |
CN113816480B (zh) | 一种从含硫酸根和氟离子混合液中脱除氟的药剂和方法 | |
CN113088258B (zh) | 一种利用除钙解析液制备融雪剂的方法 |