RU2666344C2 - Композиция для получения смачиваемого катода при выплавке алюминия - Google Patents

Композиция для получения смачиваемого катода при выплавке алюминия Download PDF

Info

Publication number
RU2666344C2
RU2666344C2 RU2014144006A RU2014144006A RU2666344C2 RU 2666344 C2 RU2666344 C2 RU 2666344C2 RU 2014144006 A RU2014144006 A RU 2014144006A RU 2014144006 A RU2014144006 A RU 2014144006A RU 2666344 C2 RU2666344 C2 RU 2666344C2
Authority
RU
Russia
Prior art keywords
tib
composition
density
component
electrode
Prior art date
Application number
RU2014144006A
Other languages
English (en)
Other versions
RU2014144006A (ru
RU2014144006A3 (ru
Inventor
Дуглас А. МЛ. ВЕЙРОЧ
Ланс М. СУОРТС
Брайан Дж. ТИЛШ
Роберт А. ДИМИЛИЯ
Original Assignee
Алкоа Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алкоа Инк. filed Critical Алкоа Инк.
Publication of RU2014144006A publication Critical patent/RU2014144006A/ru
Publication of RU2014144006A3 publication Critical patent/RU2014144006A3/ru
Application granted granted Critical
Publication of RU2666344C2 publication Critical patent/RU2666344C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Изобретение относится к компоненту алюминиевого электролизера, содержащему от 0,01 до менее чем 0,5 вес.% добавок металлов, причем добавки металлов выбраны из группы, состоящей из Cr, Mn, Mo, Pt, Pd, Fe, Ni, Co и W и их комбинаций; остальным являются TiBи неизбежные примеси, причем неизбежные примеси составляют менее 2 вес.% компонента; при этом компонент имеет плотность от по меньшей мере 85% до не более чем 99% от его теоретической плотности. Также изобретение относится к электроду, электролизеру и способу получения компонента. 4 н. и 7 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
[0001] Настоящая патентная заявка испрашивает приоритет предварительной заявки на патент США № 61/229083, озаглавленной "Композиция для получения смачиваемого катода при выплавке алюминия", поданной 28 июля 2009 г., которая включена сюда по ссылке во всей своей полноте.
УРОВЕНЬ ТЕХНИКИ
[0002] В алюминиевых электролизерах используется система анодов и катодов. Типично катод получают из аморфного углерода, который является долговечным и недорогим. Однако катод или компонент катода, который обладает лучшей смачиваемостью алюминием и который позволяет уменьшить расстояние между анодом и катодом благодаря снижению движения расплавленного алюминия, мог бы улучшить термодинамический кпд. Диборид титана (TiB2) является смачиваемым металлическим алюминием, и поэтому предпринимались попытки получения катодов из TiB2. См. патенты США №№ US 4439382 на имя Joo, US 2915442 на имя Lewis, US 3028324 на имя Ransley, US 3156639 на имя Kibby, US 3314876 на имя Ransley, 18 апреля 1967 г., US 3400061 на имя Lewis, US 4071420 на имя Foster, канадский патент № 922384, 6 марта 1973 г., и бельгийский патент № 882992. Однако, по-видимому, в настоящее время катоды из TiB2 не имеют коммерческого применения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0003] Описаны композиции для получения смачиваемых катодов для применения в алюминиевых электролизерах. Один вариант реализации раскрывает композицию, в целом содержащую диборид титана (TiB2). В некоторых вариантах реализации композиция состоит по существу из диборида титана и по меньшей мере одной добавки металла, а остальным являются неизбежные примеси. В некоторых вариантах реализации добавка металла включает Co, Fe, Ni и W, помимо прочих.
[0004] В одном подходе электрод получают из этой композиции. Электрод содержит (i) диборид титана, (ii) от примерно 0,01 до примерно 0,75 вес.% добавок металлов, и (iii) остаток, который составляют неизбежные примеси. В одном варианте реализации добавки металлов выбраны из группы, состоящей из Fe, Ni, Co и W, и их комбинаций. В одном варианте реализации электрод содержит не более чем примерно 0,65 вес.% добавок металлов. В других вариантах реализации электрод содержит не более чем примерно 0,60 вес.%, или не более чем примерно 0,55 вес.%, или не более чем примерно 0,50 вес.%, или не более чем примерно 0,45 вес.%, или не более чем примерно 0,40 вес.%, или не более чем примерно 0,35 вес.% добавок металлов. В одном варианте реализации электрод содержит по меньшей мере примерно 0,025 вес.% добавок металлов. В других вариантах реализации электрод содержит по меньшей мере примерно 0,050 вес.%, или по меньшей мере примерно 0,075 вес.%, или по меньшей мере примерно 0,10 вес.% добавок металлов. Использование таких количеств добавок металлов в комбинации с низкими количествами неизбежных примесей по меньшей мере частично способствует получению и применению электродов с подходящими свойствами плотности, электрического сопротивления и коррозионной стойкости.
[0005] Например, электроды могут быть изготовлены из порошков, имеющих составы, близкие к описанным выше. В одном варианте реализации электроды могут быть изготовлены с использованием традиционных процессов спекания порошков, таких как горячее прессование или спекание без давления, наряду с другими процессами спекания порошков. Спекание является способом получения объектов из порошков и включает в себя нагрев по меньшей мере одного материала в печи для спекания ниже его температуры плавления (твердофазное спекание) до тех пор, пока частицы порошка не слипнутся друг с другом. Могут вводиться облегчающие уплотнение добавки, такие как описанные выше добавки металлов, чтобы получить плотное обожженное изделие из композиции диборида титана. Облегчающие уплотнение добавки могут способствовать спеканию, образуя жидкую фазу при нагреве, что позволяет снизить энергию (например, температуру и/или давление) и уменьшить/ограничить общее количество добавок металлов.
[0006] Что касается температуры спекания, то электроды можно получать спеканием при температурах от примерно 1400°C до примерно 2100°C. В некоторых вариантах реализации температура может лежать в интервале от примерно 1600°C до примерно 2000°C. В одном варианте реализации для получения электродов применяются процессы уплотнения с помощью давления. В этих вариантах реализации при спекании может прикладываться давление от примерно 70 до по меньшей мере примерно 350 кг/см2.
[0007] Как описано выше, использование добавок металлов в вышеописанных количествах способствует уплотнению порошков в электроды. В одном варианте реализации добавки металлов выбирают таким образом, чтобы полученный электрод имел плотность от примерно 80% до примерно 99% от его теоретической плотности. Получение электродов с плотностью в этом диапазоне способствует длительному применению в алюминиевых электролизерах (например, при использовании угольных анодов и/или инертных анодов). Если плотность слишком высока, электроды могут трескаться при работе в электролизере. Если плотность слишком низкая, материал может не иметь достаточной долговечности.
[0008] Теоретическая плотность (ρ theory ) представляет собой наивысшую плотность, которую материал мог бы достичь, согласно расчету по атомному весу и кристаллической структуре.
Figure 00000001
где:
Nc = число атомов в элементарной ячейке
A = атомный вес [кг⋅моль-1]
Vc = объем элементарной ячейки [м3]
NA = число Авогадро [атомов⋅моль-1]
Для целей настоящей патентной заявки принята теоретическая плотность 4,52 г/см3, что является приближенной теоретической плотностью чистого TiB2.
[0009] В одном варианте реализации электрод имеет плотность по меньшей мере примерно 85% от его теоретической плотности (т.е. ≥3,842 г/см3). В других вариантах реализации электрод имеет плотность по меньшей мере примерно 86% (≥3,887 г/см3), или по меньшей мере примерно 87% (≥3,932 г/см3), или по меньшей мере примерно 88% (≥3,978 г/см3), или по меньшей мере примерно 89% (≥4,023 г/см3), или по меньшей мере примерно 90% (≥4,068 г/см3) от его теоретической плотности. В одном варианте реализации электрод имеет плотность не более чем примерно 98,0% от его теоретической плотности (≤4,430 г/см3). В других вариантах реализации электрод имеет плотность не более чем примерно 97,5% (≤4,407 г/см3), или не более чем примерно 97,0% (≤4,384 г/см3), или не более чем примерно 96,5% (≤4,362 г/см3), или не более чем примерно 96,0% (≤4,339 г/см3), или не более чем примерно 95,5% (≤4,317 г/см3), или не более чем примерно 95,0% (≤4,294 г/см3) от его теоретической плотности. В некоторых вариантах реализации электроды имеют плотность в диапазоне от примерно 90% до 95% от их теоретической плотности (от 4,068 г/см3 до 4,294 г/см3), например, от примерно 91% до 94% от их теоретической плотности (от 4,113 г/см3 до 4,249 г/см3).
[0010] Электроды, имеющие плотность 80-99% от теоретической, могут иметь пористость, подходящую для применения в алюминиевом электролизере. Общая пористость рассчитывается в процентах от теоретической плотности. Например, если материал имеет плотность примерно 90% от его теоретической плотности, то он имеет общую пористость примерно 10% (100%-90%=10%). То есть, 100%-ая теоретическая плотность объекта минус реальная плотность объекта равна его общей пористости (TD-AD=TP). Общая пористость является суммой открытой (кажущейся) пористости и закрытой пористости (TP=OP+CP). Кажущаяся пористость материала может быть определена из закона Архимеда, как реализовано в стандарте ASTM C373-88(2006) «Метод испытаний водопоглощения, объемной плотности, кажущейся пористости и эффективного удельного веса обожженных фарфорофаянсовых изделий».
[0011] Обычно электроды, полученные с использованием настоящих композиций, могут реализовывать кажущуюся пористость от примерно 0,01 до примерно 20%. В противоположность традиционной точке зрения, было найдено, что электроды, имеющие высокую пористость и низкую плотность, были долговечными при применении в электролизной установке по производству алюминия, как показывают приводимые ниже примеры. В одном варианте реализации кажущаяся пористость лежит в интервале 0,03-10%. В другом варианте реализации кажущаяся пористость составляет 0,04-5%. В другом варианте реализации кажущаяся пористость составляет 0,05-4%.
[0012] Способы получения электродов могут включать в себя выбор подходящего количества добавки металла в соответствии с требуемой плотностью. В одном варианте реализации и со ссылкой теперь на фиг. 1, способ (100) может включать в себя выбор добавки металла, выбранной из группы, состоящей из Fe, Ni и Co, и их комбинаций (110), выбор плотности и/или пористости получаемого электрода (120), выбор количества добавки металла для достижения выбранной плотности и/или пористости (130), смешение выбранного количества добавки металла с порошком TiB2, чтобы получить смешанную порошковую композицию (140), и получение электрода из смешанной композиция (150), при этом электрод реализует фактическую плотность и/или пористость, которая по существу аналогична выбранной плотности и/или пористости. В одном варианте реализации выбирают плотность. В одном варианте реализации выбирают пористость. В одном варианте реализации выбирают и плотность, и пористость, причем первостепенной считается плотность, а пористость рассматривают во вторую очередь. В одном варианте реализации выбирают и плотность, и пористость, причем первостепенной считается пористость, а плотность рассматривают во вторую очередь. В одном варианте реализации выбирают и плотность, и пористость, причем обе являются одинаково важными. В свою очередь, электрод может применяться в качестве одного из катода и анода в алюминиевом электролизере. Применение может включать в себя пропускание электричества через электрод, пока электрод находится в связи с ванной солевого расплава в алюминиевом электролизере. В ответ на это Al2O3 из ванны солевого расплава может восстанавливаться до металлического алюминия. В одном варианте реализации электрод остается целым и не обнаруживает отслоения и/или растрескивания на продолжении по меньшей мере 120 дней непрерывного применения в алюминиевом электролизере.
[0013] Чтобы достичь выбранной плотности, можно использовать определенное количество комбинаций добавок металлов. Например, композиции для электрода могут включать в себя по меньшей мере одну добавку металла Fe, Ni, Co и W в диапазоне от примерно 0,01 вес.% до примерно 0,35 вес.%, остальным являются TiB2 и неизбежные примеси, причем общее количество добавок металлов не превышает 0,75 вес.%. В одном варианте реализации композиция включает от 0,01 до 0,10 вес.% каждого из Fe, Ni и Co, и от 0,01 до 0,35 вес.% W, остальным являются TiB2 и неизбежные примеси, причем общее количество добавок металлов не превышает 0,55 вес.%. В другом варианте реализации композиция включает от 0,01 до 0,075 вес.% каждого из Fe, Ni и Co и от 0,01 до 0,20 вес.% W, остальным являются TiB2 и неизбежные примеси, причем общее количество добавок металлов не превышает 0,375 вес.%. В другом варианте реализации композиция включает от 0,01 до 0,06 вес.% каждого из Fe, Ni и Co и от 0,01 до 0,175 вес.% W, остальным являются TiB2 и неизбежные примеси, причем общее количество добавок металлов не превышает 0,35 вес.%.
[0014] В одном подходе электрод включает от 0,01 до 0,14 вес.% Fe, от 0,01 до 0,14 вес.% Ni, от 0,01 до 0,14 вес.% Co и от 0,01 до 0,45 вес.% W, остальным являются TiB2 и неизбежные примеси, причем общее количество добавок металлов не превышает 0,75 вес.%. В одном варианте реализации электрод содержит не более 0,10 вес.% каждого из Fe, Ni и Co. В другом варианте реализации электрод содержит не более 0,07 вес.% каждого из Fe, Ni и Co. В другом варианте реализации электрод содержит не более 0,05 вес.% каждого из Fe, Ni и Co. В одном варианте реализации электрод содержит не более 0,30 вес.% W. В одном варианте реализации электрод содержит не более 0,20 вес.% W.
[0015] Как он используется здесь, термин "неизбежные примеси" и тому подобное означает компоненты, которые могут быть включены в композицию (например, электрод), отличные от описанных выше добавок металлов и TiB2. Неизбежные примеси могут попасть в композицию из-за самих производственных процессов, применявшихся для получения композиции. Примеры неизбежных примесей включают, наряду с прочими, O и C. Что касается кислорода, то этот элемент может присутствовать как примесь в количествах до примерно 2,0 вес.%. В одном варианте реализации в композицию включено не более чем примерно 1,5 вес.% O. В других вариантах реализации в композицию включено не более чем примерно 1,25 вес.% O, или не более чем примерно 1,0 вес.% O, или не более чем примерно 0,75 вес.% O, или не более чем примерно 0,5 вес.% O, или даже меньше. В некоторых случаях уровень кислорода в электроде может составлять приблизительно 0,5 вес.%, чтобы предотвратить аномальный рост зерен во время получения электрода.
[0016] Что касается углерода, то этот элемент может присутствовать как неизбежная примесь в количествах до примерно 1,0 вес.%. В одном варианте реализации в композицию включено не более чем примерно 0,9 вес.% C. В других вариантах реализации в композицию включено не более чем примерно 0,8 вес.% C, или не более чем примерно 0,7 вес.% C, или не более чем примерно 0,6 вес.% C, или не более чем примерно 0,5 вес.% C, или даже меньше.
[0017] В композицию могут вводиться различные сочетания добавок для получения оптимальных вариантов. Например, композиция может включать только одну, две или три добавки, а не четыре, описанные выше. В этих ситуациях добавки могут быть включены в композицию в количествах, близких к описанным выше, и композиция может потенциально корректироваться, чтобы включить чуть больше этих добавок с тем, чтобы учесть удаление другой добавки или добавок. В некоторых вариантах реализации могут применяться заместители Fe, Ni, Co и/или W, такие как Cr, Mn, Mo, Pt, Pd, помимо прочих. Эти заместители добавок металлов могут использоваться, в дополнение к главным добавкам металлов Fe, Ni, Co или W, или в качестве их замены.
[0018] Электроды могут применяться в качестве анода или катода в алюминиевом электролизере. В одном варианте реализации электрод является катодом. В некоторых вариантах реализации пластины могут использоваться как катоды в вертикальной конфигурации, горизонтальной конфигурации или наклонной конфигурации (например, дренируемой), наряду с прочими. В одном варианте реализации электрод является смачиваемым, что означает, что получаемый при электролизе материал (например, алюминий) может проявлять тенденцию прилипать к поверхности электрода во время операций электролиза.
[0019] В некоторых вариантах реализации композиции могут применяться для получения других компонентов алюминиевого электролизера, таких как верхние конструкции электролизера, защитные трубы, и другие приложения в процессах выплавки алюминия или обработки жидкого алюминия в целом. В одном варианте реализации трубки для защиты термопар могут включать описанные здесь композиции. В других вариантах реализации композиции могут использоваться для сооружения боковых стенок электролизера. В некоторых случаях композиции способны обеспечить, помимо прочего, электрическую поляризацию и/или антикоррозионные свойства. В некоторых примерах композиции могут использоваться в качестве покрытия или как присадки в производстве деталей, в числе других методов формования. Например, композиции могут включаться в качестве добавок в процесс производства порошков. В другом примере композиции могут добавляться при обработке обожженных деталей. В других примерах композиции могут вводиться как присадки при физическом изготовлении детали (например, боковой стенки электролизера, защитных трубок).
[0020] Продукты, использующие описанную композицию, могут быть изготовлены с различными геометриями, включая трубки, пластины, стержни, помимо прочих. Размер и форма конечного продукта могут меняться в зависимости от требуемых электрических и механических свойств катода в алюминиевом электролизере. Примеры размеров электродных пластин включают квадратные пластины с длиной/шириной примерно 12 дюймов и толщиной примерно 0,25 дюйма или 0,5 дюйма, и прямоугольные бруски, имеющие ширину примерно 4 дюйма, длину примерно 8 дюймов и толщину примерно 0,25 или 0,5 дюйма. В некоторых вариантах реализации прямоугольная пластина имеет примерно 12 дюймов в ширину, примерно 16 дюймов в длину и примерно 0,25 или 0,5 дюймов в толщину. В одном варианте реализации прямоугольная пластина имеет примерно 15 дюймов в ширину, примерно 22 дюймов в длину и примерно 1 или 2 дюйма в толщину.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0021] Фиг. 1 является блок-схемой, иллюстрирующей один вариант реализации способа получения электродов, имеющих выбранную плотность.
ПОДРОБНОЕ ОПИСАНИЕ
[0022] Пример 1
[0023] Три разных порошка TiB2, имеющих химический состав, указанный в таблице 1 ниже, получали, смешивая порошки TiB2 (например, в V-образном смесителе) с различными другими порошками (все величины являются приближенными). Композиция D представляет собой порошок чистого TiB2, не содержащий никаких добавок металлов. Из композиций A-D делали различные пластины, прессуя эти композиции в форме пластин, используя промышленный пресс для горячего прессования.
Таблица 1
Химический состав пластин A-D
Материал (вес.%) Композиция А Композиция B Композиция C Композиция D
Fe 0,14 0,08 0,05 пренебрежимо
Ni 0,16 0,08 0,04 пренебрежимо
Co 0,16 0,08 0,04 пренебрежимо
W 0,49 0,31 0,16 пренебрежимо
TiB2 и неизбежные примеси остальное остальное остальное остальное
Средняя плотность
(% от теоретической)
98,9% 98,2% 94,9% 68,8%
Объемная плотность (г/см3) 4,47 4,44 4,29 3,11
Кажущаяся пористость, % 0,07 0,09 0,13 28,6
Добавки металлов, всего (вес.%) 0,95% 0,55% 0,29% 0%
[0024] Пластины, сделанные из композиций A-C, помещали в ванну солевого расплава в пилотном алюминиевом электролизере на 10000 ампер. Пластины, сделанные из композиции A, не прошли испытания, обнаружив расщепление/отслоение. Среди пластин, сделанных из композиции B, имеется смешанная частота отказов. Все пластины, сделанные из композиции C, прошли испытание, то есть они выдержали примерно 120 дней испытания без существенного потери толщины и без расщепления/отслоения.
[0025] Пластины, сделанные из композиции D, т.е. чистого диборида титана, обрабатывали механически с получением образцов для испытаний (например, размерами 2 дюйма×2 дюйма×0,5 дюйма), и образцы помещали в ванну расплавленного алюминия, покрытую солевой коркой, в корундовом тигле. Температура расплавленного алюминия была сравнима с условиями, использующимися в алюминиевых электролизерах, в которых применяются инертные аноды (например, в пределах 840-910°C). Образцы для испытаний подвергали действию расплавленного алюминия примерно 480 часов. По истечение периода воздействия образцы извлекали горячими из тигля и закаливали на воздухе. Образцы подвергали как макроскопическому обследованию, так и анализу микроструктуры (например, с помощью СЭМ-металлографии). Образец "прошел" испытание, если он (a) является неповрежденным, как показало макроскопическое обследование, и (b) визуально не наблюдается растрескивания из-за наполненных алюминием трещин, как показал анализ микроструктуры. Если какой-то из критериев не выполняется, считается, что образец не прошел испытания. Образцы, сделанные из композиции D, не выдержали испытания, обнаружив коррозию по границам зерен и разрушение где-то через 7-20 дней испытания, что иллюстрирует неадекватность электродных пластин из чистого TiB2.
[0026] Что касается пластин A и B, можно теоретически предположить, но не связывая себя этой теорией, что более высокая концентрация таких добавок, как Ni, Co, Fe и/или W, могут привести к коррозионному растрескиванию под напряжением. Высокие уровни добавок могут также привести в процессе производства металлов к потенциальным реакциям, протекающим с увеличением объема, между широко применяемыми металлами и алюминием. Однако когда уровни добавок металлов достаточно низкие, коррозионного растрескивания под напряжением не происходит (например, из-за недостаточного количества материалов для реакции с металлическим алюминием в ванне).
[0027] Пластины с плотностью, слишком близкой к теоретической, т.е. пластины, сделанные из композиции A, и некоторые пластины, сделанные из композиции B, не прошли испытание. Это указывает, что теоретическая плотность должна быть ниже примерно 98%. Действительно, сделанные из композиции C пластины, которые имеют плотность примерно 95% от теоретической, успешно прошли контрольные испытания. Таким образом, можно ожидать, что пластины с плотностью в диапазоне 90-98% от теоретической могут эффективно применяться в качестве электродов в алюминиевом электролизере. Отмеченные добавки металлов могут быть полезны при получении таких пластин с подходящей пористостью.
[0028] Эти данные предполагают также, что общее количество добавок металлов должно быть меньше 0,55 вес.%. Однако можно ожидать, что в некоторых обстоятельствах можно использовать более значительные количества добавок металлов (например, до примерно 0,75 вес.% в сумме). Данные показывают также, что по меньшей мере какие-то добавки металлов необходимы: пластины, сделанные из чистого TiB2 (композиция D) имели самые плохие характеристики, что указывает на то, что требуются по меньшей мере какие-то добавки металлов.
Пример 2
[0029] Аналогично примеру 1 смешиванием получали различные порошковые смеси. Весовая процентная доля добавок металлов в порошковых смесях приведена в таблице 2 ниже, причем остальное составляют TiB2 и неизбежные примеси. Образцы порошков TiB2 прессовали в форме пластины, используя лабораторный пресс для горячего прессования. После прессования пластины обрабатывали на станке с получением образцов для испытаний (например, размерами 2 дюйма×2 дюйма×0,5 дюйма).
Таблица 2
Химический состав образцов 1-9
Образец Материал (вес.%) Добавки металлов, всего (вес.%) Средняя плотность
(% от теоретической)
Кажущаяся пористость (%) Результат
1 0,125 Ni 0,125 97,2 0,09 прошел
2 0,25 Ni 0,25 98,5 0,23 прошел
3 0,063 Fe 0,063 88,9 3,79 прошел
4 0,125 Fe 0,125 97,0 0,10 прошел
5 0,25 Fe 0,25 98,0 0,05 прошел
6 0,50 Fe 0,50 98,8 0,12 не прошел
7 0,6 W 0,60 61,9 37,2 не прошел
8 0,5 Fe+0,6 W 1,1 99,6 0,07 не прошел
9 по 0,05 каждого из Fe, Ni, Co+0,15 W 0,30 97,8 0,18 прошел
[0030] Образцы помещали в ванну расплавленного алюминия, покрытую солевой коркой, в корундовом тигле. Температура расплавленного алюминия была сравнима с условиями, использующимися в алюминиевых электролизерах, в которых применяются инертные аноды (например, в пределах 840-910°C). Образцы для испытаний подвергали воздействию расплавленного алюминия примерно 480 часов. По истечении периода воздействия образцы извлекали горячими из тигля и закаливали на воздухе. Образцы подвергали как макроскопическому обследованию, так и анализу микроструктуры (например, с помощью СЭМ-металлографии). Образец "прошел" испытание, если он (a) является неповрежденным, как показало макроскопическое обследование, и (b) визуально не наблюдается растрескивания из-за наполненных алюминием трещин, как показал анализ микроструктуры. Если какой-то из этих критериев не выполняется, считается, что образец не прошел испытания.
[0031] Пластины с плотностью, слишком близкой к теоретической, т.е. пластины, сделанные из образцов 6 и 8, не прошли испытание. Однако пластины с плотностью ниже примерно 98,5%, но выше примерно 88,9% (от теоретической плотности) были способны выдержать испытание. Аналогично пластины со слишком низкой плотностью, т.е. пластины, сделанные из образца 7, не прошли испытание. Эти данные предполагают, что в качестве добавки металлов можно выбирать любую из добавок металлов Fe, Ni и/или Co, если только конечные продукты имеют плотность от примерно 85% до примерно 98,5% от теоретической плотности. В некоторых случаях вместо добавок металлов Fe, Ni и Co и/или в дополнение к ним можно использовать W и/или другие заместители, описанные выше. Эти данные предполагают, что общее количество добавок металлов должно быть ниже 0,50 вес.%. Однако можно ожидать, что в некоторых обстоятельствах можно использовать более значительные количества добавок металлов (например, до примерно 0,75 вес.% в сумме).
[0032] Хотя выше были подробно описаны различные варианты реализации настоящего изобретения, очевидно, что специалистам в данной области могут прийти в голову модификации и адаптации этих вариантов реализации. Однако следует четко понимать, что такие модификации и адаптации лежат в пределах сущности и объема настоящего изобретения.

Claims (21)

1. Компонент алюминиевого электролизера, содержащий:
от 0,01 до менее чем 0,5 вес.% добавок металлов, причем добавки металлов выбраны из группы, состоящей из Cr, Mn, Mo, Pt, Pd, Fe, Ni, Co и W и их комбинаций;
остальным являются TiB2 и неизбежные примеси, причем неизбежные примеси составляют менее 2 вес.% компонента;
при этом компонент имеет плотность от по меньшей мере 85% до не более чем 99% от его теоретической плотности.
2. Компонент по п. 1, причем компонент имеет геометрию, выбранную из группы, состоящей из трубки, пластины, стержня.
3. Компонент по п. 1, содержащий электрод для применения в алюминиевом электролизере.
4. Электрод для применения в алюминиевом электролизере, содержащий:
от 0,01 до менее чем 0,5 вес.% добавок металлов, причем добавки металлов выбраны из группы, состоящей из Cr, Mn, Mo, Pt, Pd, Fe, Ni, Co и W и их комбинаций;
остальным являются TiB2 и неизбежные примеси, причем неизбежные примеси составляют менее 2 вес.% электрода;
при этом электрод имеет плотность от по меньшей мере 85% до не более чем 99% от его теоретической плотности.
5. Алюминиевый электролизер, содержащий электрод по п. 4.
6. Способ получения компонента алюминиевого электролизера, включающий:
получение компонента на основе TiB2 из композиции TiB2, содержащей от 0,01 до менее чем 0,5 вес.% добавок металлов, причем добавки металлов выбраны из группы, состоящей из Cr, Mn, Mo, Pt, Pd, Fe, Ni, Co и W и их комбинаций, остальным являются TiB2 и неизбежные примеси, причем неизбежные примеси составляют менее 2 вес.% компонента;
при этом компонент на основе TiB2 имеет плотность от по меньшей мере 85% до не более чем 99% от его теоретической плотности.
7. Способ по п. 6, причем этап получения дополнительно включает:
(a) прессование композиции TiB2 и
(b) спекание спрессованной композиции TiB2 с получением компонента на основе TiB2.
8. Способ по п. 6, причем способ дополнительно включает формование компонента на основе TiB2, причем компонент имеет геометрию, выбранную из группы, состоящей из пластины, стержня и трубки.
9. Способ по п. 6, причем этап получения дополнительно включает спекание без давления композиции TiB2 с получением компонента на основе TiB2.
10. Способ по п. 6, причем этап получения дополнительно включает спекание композиции TiB2 при температурах от 1400°C до 2100°C.
11. Способ по п. 10, причем этап получения дополнительно включает прессование композиции TiB2 при давлении от 70 кг/см2 до по меньшей мере 350 кг/см2.
RU2014144006A 2009-07-28 2014-10-30 Композиция для получения смачиваемого катода при выплавке алюминия RU2666344C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22908309P 2009-07-28 2009-07-28
US61/229,083 2009-07-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2012107070/04A Division RU2540953C2 (ru) 2009-07-28 2010-07-28 Композиция для получения смачиваемого катода при выплавке алюминия

Publications (3)

Publication Number Publication Date
RU2014144006A RU2014144006A (ru) 2016-05-27
RU2014144006A3 RU2014144006A3 (ru) 2018-06-21
RU2666344C2 true RU2666344C2 (ru) 2018-09-07

Family

ID=43525983

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2012107070/04A RU2540953C2 (ru) 2009-07-28 2010-07-28 Композиция для получения смачиваемого катода при выплавке алюминия
RU2014144006A RU2666344C2 (ru) 2009-07-28 2014-10-30 Композиция для получения смачиваемого катода при выплавке алюминия

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2012107070/04A RU2540953C2 (ru) 2009-07-28 2010-07-28 Композиция для получения смачиваемого катода при выплавке алюминия

Country Status (9)

Country Link
US (4) US8211278B2 (ru)
EP (1) EP2459775B1 (ru)
CN (3) CN102575362B (ru)
AU (1) AU2010281392B2 (ru)
BR (2) BR122013010012B1 (ru)
CA (1) CA2768992C (ru)
RU (2) RU2540953C2 (ru)
SI (1) SI2459775T1 (ru)
WO (1) WO2011017166A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070270302A1 (en) * 2006-05-22 2007-11-22 Zhang Shi C Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
BR122013010012B1 (pt) * 2009-07-28 2020-09-29 Alcoa Usa Corp. Componentes de uma célula de eletrólise de alumínio, eletrodo para uso em uma célula de eletrólise de alumínio, célula de eletrólise de alumínio, processo para produzir componentes de tib2
WO2014204883A1 (en) * 2013-06-19 2014-12-24 Alcoa Inc. Setter plate for sintering
AU2015391979A1 (en) * 2015-04-23 2017-08-10 Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" Aluminum electrolyzer electrode (variants)
JP6714100B2 (ja) * 2016-03-30 2020-06-24 アルコア ユーエスエイ コーポレイション 鉛直型電解セル用装置及びシステム
BR122024000714A2 (pt) 2016-06-23 2024-02-27 Alcoa Usa Corp. Métodos para preparar uma mistura precursora
EA039236B1 (ru) 2016-07-08 2021-12-21 АЛКОА ЮЭсЭй КОРП. Системы и способы получения керамических порошков
CN106278281B (zh) * 2016-08-16 2019-05-21 东北大学 一种硼化钛基复合阴极材料及其制备方法
CN110157998B (zh) * 2019-05-27 2021-02-02 太原理工大学 一种超硬自润滑刀具材料及其制备方法
CN110760887B (zh) * 2019-11-27 2020-07-31 镇江慧诚新材料科技有限公司 氧铝联产电解用的电极结构
CN115398039A (zh) * 2020-03-25 2022-11-25 美铝美国公司 涂铜的二硼化钛制品
WO2023177628A1 (en) * 2022-03-15 2023-09-21 Alcoa Usa Corp. Electrodes for aluminum electrolysis cells and methods of making the same
CN115947602B (zh) * 2022-10-10 2023-11-07 中南大学 一种ZrB2基金属陶瓷惰性阳极及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071420A (en) * 1975-12-31 1978-01-31 Aluminum Company Of America Electrolytic production of metal
US20020125125A1 (en) * 2001-03-06 2002-09-12 Rapp Robert A. Cathode for aluminum production and electrolytic cell
RU2006120459A (ru) * 2003-11-26 2008-01-10 Алкан Интернешнел Лимитед (Ca) Стабилизаторы для элементов катодных ячеек, содержащих диборид титана
WO2008131207A2 (en) * 2007-04-20 2008-10-30 University Of Massachusetts Stabilized electrodes for electrochemical cells

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES203316A1 (es) * 1951-05-04 1952-07-01 British Aluminium Co Ltd UNA CELDA ELECTROLiTICA DE REDUCCIoN PARA LA PRODUCCIoN DE ALUMINIO
US3330756A (en) * 1951-05-04 1967-07-11 British Aluminum Company Ltd Current conducting elements
US2915442A (en) 1955-11-28 1959-12-01 Kaiser Aluminium Chem Corp Production of aluminum
US3028324A (en) 1957-05-01 1962-04-03 British Aluminium Co Ltd Producing or refining aluminum
US3151053A (en) * 1958-06-12 1964-09-29 Kaiser Aluminium Chem Corp Metallurgy
US3314876A (en) 1960-11-28 1967-04-18 British Aluminium Co Ltd Method for manufacturing solid current conducting elements
US3156639A (en) 1961-08-17 1964-11-10 Reynolds Metals Co Electrode
US3274093A (en) * 1961-08-29 1966-09-20 Reynolds Metals Co Cathode construction for aluminum production
DE1251962B (de) 1963-11-21 1967-10-12 The British Aluminium Company Limited, London Kathode fur eine Elektrolysezelle zur Herstellung von Aluminium und Verfahren zur Herstellung derselben
US3647576A (en) * 1967-12-26 1972-03-07 Suwa Seikosha Kk Method of hardening sintered cemented carbide compositions by boronizing
DE1904408A1 (de) 1969-01-30 1970-08-06 Conradty Fa C Hoechstleistungselektrode mit stabilisiertem Lichtbogen
ZA703723B (en) * 1969-06-24 1972-01-26 Ppg Industries Inc Diaphragm cell
US4134806A (en) 1973-01-29 1979-01-16 Diamond Shamrock Technologies, S.A. Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density
US4282195A (en) 1975-02-03 1981-08-04 Ppg Industries, Inc. Submicron titanium boride powder and method for preparing same
US4266977A (en) 1975-02-03 1981-05-12 Ppg Industries, Inc. Submicron carbon-containing titanium boride powder and method for preparing same
NO764014L (ru) * 1975-12-31 1977-07-01 Aluminum Co Of America
US4146438A (en) 1976-03-31 1979-03-27 Diamond Shamrock Technologies S.A. Sintered electrodes with electrocatalytic coating
US4097567A (en) * 1976-08-25 1978-06-27 Aluminum Company Of America Titanium diboride shapes
US4187155A (en) 1977-03-07 1980-02-05 Diamond Shamrock Technologies S.A. Molten salt electrolysis
US4181583A (en) * 1978-12-06 1980-01-01 Ppg Industries, Inc. Method for heating electrolytic cell
US4353885A (en) 1979-02-12 1982-10-12 Ppg Industries, Inc. Titanium diboride article and method for preparing same
US4231853A (en) 1979-04-27 1980-11-04 Ppg Industries, Inc. Cathodic current conducting elements for use in aluminum reduction cells
US4670110A (en) * 1979-07-30 1987-06-02 Metallurgical, Inc. Process for the electrolytic deposition of aluminum using a composite anode
US4224128A (en) * 1979-08-17 1980-09-23 Ppg Industries, Inc. Cathode assembly for electrolytic aluminum reduction cell
US4342792A (en) * 1980-05-13 1982-08-03 The British Petroleum Company Limited Electrodes and method of preparation thereof for use in electrochemical cells
US4308114A (en) * 1980-07-21 1981-12-29 Aluminum Company Of America Electrolytic production of aluminum using a composite cathode
US4478693A (en) * 1980-11-10 1984-10-23 Aluminum Company Of America Inert electrode compositions
US4465581A (en) 1981-07-27 1984-08-14 Great Lakes Carbon Corporation Composite of TiB2 -graphite
US4377463A (en) 1981-07-27 1983-03-22 Great Lakes Carbon Corporation Controlled atmosphere processing of TiB2 /carbon composites
US4439382A (en) 1981-07-27 1984-03-27 Great Lakes Carbon Corporation Titanium diboride-graphite composites
US4544469A (en) * 1982-07-22 1985-10-01 Commonwealth Aluminum Corporation Aluminum cell having aluminum wettable cathode surface
US4540475A (en) 1982-12-30 1985-09-10 Corning Glass Works Electrolytic Al production with reactive sintered ceramic components of boride-oxide phases
CH654031A5 (de) * 1983-02-10 1986-01-31 Alusuisse Verfahren zur herstellung von festkoerperkathoden.
US4503021A (en) * 1983-04-26 1985-03-05 The United States Of America As Represented By The Department Of Energy Preparation of titanium diboride powder
DE3377337D1 (en) * 1983-05-27 1988-08-18 Ford Motor Co Method of making and using a titanium diboride comprising body
SU1260155A1 (ru) * 1985-06-11 1986-09-30 Ивано-Франковский Институт Нефти И Газа Материал неплав щегос электрода
BR8707792A (pt) 1986-08-21 1989-08-15 Moltech Invent Sa Eletrodo para eletroproducao de sal em fusao processo e celula
US5102835A (en) * 1987-02-20 1992-04-07 Stk Ceramics Laboratory Corporation Metal boride ceramic material
US5078031A (en) * 1988-02-22 1992-01-07 Gte Laboratories Incorporated Titanium diboride-eased composite articles with improved fracture toughness
US4865701A (en) * 1988-08-31 1989-09-12 Beck Theodore R Electrolytic reduction of alumina
US5227045A (en) * 1989-01-09 1993-07-13 Townsend Douglas W Supersaturation coating of cathode substrate
US4983340A (en) * 1989-12-28 1991-01-08 Union Carbide Coatings Service Technology Corporation Method for forming a high density metal boride composite
CN2079618U (zh) * 1990-01-11 1991-06-26 东北工学院 一种新型的硼化钛阴极结构的铝电解槽
US5006209A (en) * 1990-02-13 1991-04-09 Electrochemical Technology Corp. Electrolytic reduction of alumina
US5374392A (en) * 1991-12-04 1994-12-20 The Dow Chemical Company Process for densification of powdered ceramics and cermets at temperatures above 1400 degrees centigrade
US6001236A (en) 1992-04-01 1999-12-14 Moltech Invent S.A. Application of refractory borides to protect carbon-containing components of aluminium production cells
DE4237423A1 (de) * 1992-11-05 1994-05-11 Kempten Elektroschmelz Gmbh Verbundwerkstoffe auf der Basis von Titandiborid und Verfahren zu ihrer Herstellung
US5427987A (en) * 1993-05-10 1995-06-27 Kennametal Inc. Group IVB boride based cutting tools for machining group IVB based materials
US5746895A (en) * 1993-11-12 1998-05-05 Moltech Invent S.A. Composite refractory/carbon components of aluminium production cells
MX9602104A (es) * 1995-06-12 1998-04-30 Praxair Technology Inc Metodo para producir un revestimiento basado en tib2 y el articulo revestido asi producido.
US5961811A (en) * 1997-10-02 1999-10-05 Emec Consultants Potlining to enhance cell performance in aluminum production
US6497807B1 (en) * 1998-02-11 2002-12-24 Northwest Aluminum Technologies Electrolyte treatment for aluminum reduction
US6419813B1 (en) * 2000-11-25 2002-07-16 Northwest Aluminum Technologies Cathode connector for aluminum low temperature smelting cell
CA2330352A1 (en) * 2001-01-05 2002-07-05 Groupe Minutia Inc. Refractory hard metals in powder form for use in the manufacture of electrodes
US6719890B2 (en) * 2002-04-22 2004-04-13 Northwest Aluminum Technologies Cathode for a hall-heroult type electrolytic cell for producing aluminum
US6811676B2 (en) * 2002-07-16 2004-11-02 Northwest Aluminum Technologies Electrolytic cell for production of aluminum from alumina
CN100349687C (zh) * 2004-08-08 2007-11-21 湖北汽车工业学院 点焊电极表面电火花熔敷涂层用的熔敷棒及其制备方法
DE102006013729A1 (de) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Gesinterter Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
CN1986898A (zh) * 2006-11-22 2007-06-27 贵州大学 一种惰性电极铝电解槽
CN1986897A (zh) 2006-11-22 2007-06-27 贵州大学 铝电解金属陶瓷惰性阳极的制备与组装方法
US8142749B2 (en) * 2008-11-17 2012-03-27 Kennametal Inc. Readily-densified titanium diboride and process for making same
BR122013010012B1 (pt) * 2009-07-28 2020-09-29 Alcoa Usa Corp. Componentes de uma célula de eletrólise de alumínio, eletrodo para uso em uma célula de eletrólise de alumínio, célula de eletrólise de alumínio, processo para produzir componentes de tib2
CN101724861B (zh) * 2009-12-18 2011-07-27 中国铝业股份有限公司 一种铝电解槽用TiB2-C复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071420A (en) * 1975-12-31 1978-01-31 Aluminum Company Of America Electrolytic production of metal
US20020125125A1 (en) * 2001-03-06 2002-09-12 Rapp Robert A. Cathode for aluminum production and electrolytic cell
RU2006120459A (ru) * 2003-11-26 2008-01-10 Алкан Интернешнел Лимитед (Ca) Стабилизаторы для элементов катодных ячеек, содержащих диборид титана
WO2008131207A2 (en) * 2007-04-20 2008-10-30 University Of Massachusetts Stabilized electrodes for electrochemical cells

Also Published As

Publication number Publication date
AU2010281392B2 (en) 2014-02-27
BR112012002034A8 (pt) 2018-01-02
EP2459775A4 (en) 2014-10-08
RU2014144006A (ru) 2016-05-27
RU2540953C2 (ru) 2015-02-10
EP2459775B1 (en) 2018-09-05
CA2768992C (en) 2018-01-02
US11041250B2 (en) 2021-06-22
BR112012002034B1 (pt) 2019-11-05
AU2010281392A1 (en) 2012-02-16
EP2459775A1 (en) 2012-06-06
CN104087973A (zh) 2014-10-08
RU2014144006A3 (ru) 2018-06-21
US20120222964A1 (en) 2012-09-06
CN105040027A (zh) 2015-11-11
CN105040027B (zh) 2018-06-22
BR122013010012A2 (pt) 2019-08-06
US8211278B2 (en) 2012-07-03
BR122013010012B1 (pt) 2020-09-29
US20190055660A1 (en) 2019-02-21
SI2459775T1 (sl) 2019-03-29
CN102575362B (zh) 2015-09-02
RU2012107070A (ru) 2013-09-10
CN104087973B (zh) 2018-01-09
CN102575362A (zh) 2012-07-11
WO2011017166A1 (en) 2011-02-10
BR112012002034A2 (pt) 2016-11-08
CA2768992A1 (en) 2011-02-10
US20110024304A1 (en) 2011-02-03
US20150075975A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
RU2666344C2 (ru) Композиция для получения смачиваемого катода при выплавке алюминия
Olsen et al. Nickel ferrite as inert anodes in aluminium electrolysis: Part I Material fabrication and preliminary testing
WO2021132350A1 (ja) Ni基合金、耐熱・耐食部品、熱処理炉用部品
Feng et al. Exploring Cu2O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way
CN101255570A (zh) 一种铝电解用惰性阳极材料及其制造方法
CN102586853A (zh) 一种提高金属陶瓷惰性阳极耐高温熔盐腐蚀性能的方法
Padamata et al. Primary Production of Aluminium with Oxygen Evolving Anodes
Liu et al. Microstructure and electrolysis behavior of self-healing Cu–Ni–Fe composite inert anodes for aluminum electrowinning
AU2018229563B2 (en) Composition for making wettable cathode in aluminum smelting
US20210355592A1 (en) Copper-coated titanium diboride articles
CN111996471B (zh) 一种锆基非晶合金及其制备方法与应用
ZHANG et al. Effect of metallic phase content on mechanical properties of (85Cu-15Ni)/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis
Heidari Development of wettable cathode for aluminium smelting
RU2716569C1 (ru) Способ электролиза криолитоглиноземных расплавов с применением твердых катодов
AU2014200780A1 (en) Composition for making wettable cathode in aluminum smelting
RU2412284C1 (ru) Материал смачиваемого катода алюминиевого электролизера
CN106591889A (zh) 镁铝合金的制备方法
Kim Corrosion of Commercially Pure Titanium in a Sea Water Electro-Chlorination Equipment
CN1552935A (zh) 一种镝金属合金及制备方法
Owais Effects of material and shape of starting cathodes on electrowinning of copper powder
Davis et al. Nickel Ferrite Cermets as inert Anodes for Aluminum Electrolysis
Zhu et al. High Temperature Corrosion of M-40Cr-0.5 Ce Alloys as Inert Anodes in Aluminium Electrolysis