RU2661584C1 - Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом - Google Patents

Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом Download PDF

Info

Publication number
RU2661584C1
RU2661584C1 RU2017111285A RU2017111285A RU2661584C1 RU 2661584 C1 RU2661584 C1 RU 2661584C1 RU 2017111285 A RU2017111285 A RU 2017111285A RU 2017111285 A RU2017111285 A RU 2017111285A RU 2661584 C1 RU2661584 C1 RU 2661584C1
Authority
RU
Russia
Prior art keywords
reagent
silicon
aluminum
hybrid
industrial wastewater
Prior art date
Application number
RU2017111285A
Other languages
English (en)
Inventor
Роман Алексеевич Александров
Иван Михайлович Курчатов
Николай Иванович Лагунцов
Дмитрий Юрьевич Феклистов
Original Assignee
Публичное акционерное общество "Аквасервис"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Аквасервис" filed Critical Публичное акционерное общество "Аквасервис"
Priority to RU2017111285A priority Critical patent/RU2661584C1/ru
Application granted granted Critical
Publication of RU2661584C1 publication Critical patent/RU2661584C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/68Aluminium compounds containing sulfur
    • C01F7/74Sulfates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Abstract

Группа изобретений может быть использована в технологии переработки алюмосиликатного сырья с получением алюмокремниевого гибридного реагента для применения в системах водоочистки и водоподготовки. Способ получения алюмокремниевого гибридного реагента в виде водных растворов включает обработку щелочных алюмосиликатов водным раствором 8-10%-ной серной кислоты при постоянном перемешивании низкооборотной мешалкой с числом оборотов 40-80 об/мин в течение часа, отделение жидкой фазы от твердой и корректировку соотношения алюминия и кремния в полученном растворе реагента так, чтобы оно в пересчете на их оксиды составляло 0,50-0,75. Основой структуры полученного алюмокремниевого гибридного реагента являются кремнекислородные тетраэдры (фиг. 1, а) и различные комбинации этих структурных единиц (фиг. 1, б,в,г,д). Способ очистки природных и промышленных сточных вод включает обработку вод полученным реагентом в виде его водных растворов. Изобретения обеспечивают использование низких доз реагента для получения высокой степени очистки за счет использования высокоэффективного реагента. 2 н.п. ф-лы, 5 ил., 5 пр.

Description

Изобретение относится к технологиям переработки алюмосиликатного сырья с получением алюмокремниевого гибридного реагента и способу очистки с его помощью вод с различными видами загрязнений. Алюмокремниевый гибридный реагент может применяться в системах водоочистки и водоподготовки для получения чистой питьевой воды и воды требуемого качества для различных производственных, технологических и хозяйственно-бытовых целей, а также для очистки производственных сточных вод.
Для осуществления способа получения алюмокремниевого реагента гибридного проводят сернокислотную обработку минерального алюмокремниевого сырья - щелочных алюмосиликатов водным раствором серной кислоты, при этом берут 8-10% водный раствор серной кислоты и производят перемешивание в течение часа.
Известен способ переработки алюмосиликатного сырья с получением коагулянта (патент RU 2107027 [1]), при котором обработку нефелинсодержащего сырья ведут раствором 5-ной % (масс.) разбавленной серной кислоты без внешнего нагрева, проводят разделение твердой и жидкой фаз и получают коагулянт в жидком состоянии. После разделения твердой и жидкой фаз в жидкую фазу вводят стабилизирующие полимерные вещества или добавляют воду.
Недостатками способа являются снижение извлечения из исходного сырья в раствор коагулянта активных компонентов, увеличение продолжительности разложения сырья и использование стабилизирующих полимерных добавок и как следствие повышение энергозатрат на получение коагулянта.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу является способ получения алюмокремниевого флокулянта-коагулянта (патент RU 2388693 [2]), при котором обработку нефелинового концентрата в водной среде проводят концентрированной - 96%-ной серной кислотой при перемешивании в течение часа до получения 20-30%-ного водного раствора флокулянта-коагулянта, с последующим отделением жидкой фазы и упариванием под вакуумом или диспергированием в высокотемпературном потоке газа-теплоносителя с получением сухого продукта. В зависимом пункте формулы приведен способ очистки воды алюмокремниевым флокулянтом-коагулянтом в виде порошка в количестве 50-100 мг/л или водного раствора в количестве 25-100 мг/л с активирующей добавкой-воздухом с последующим отделением образующегося осадка. Данный способ получения алюмокремниевого флокулянта-коагулянта взят за прототип.
Недостатком способа-прототипа по п. 1 формулы изобретения являются низкое содержание активного флокулирующего компонента в твердом продукте, за счет необратимого перехода кремниевой составляющей в малоактивную форму, сложная аппаратурная схема производства, значительные энергозатраты, связанные с получением твердофазного продукта, процессом вакуумной и распылительной сушки, а также затраты при использовании, связанные с растворением порошка при приготовлении рабочих растворов.
Недостатками способа-прототипа по п. 2 формулы изобретения являются большие дозы (концентрации) используемых реагентов, недостаточная степень очистки воды.
Задачей настоящего изобретения является разработка способа получения гибридного алюмокремниевого реагента в виде раствора для очистки воды, обладающего свойствами коагулянта, флокулянта и сорбента. В результате взаимодействия входящих в состав гибридного реагента компонентов (сульфатов алюминия, натрия и калия и активной кремниевой кислоты) при водоочистке, при определенных условиях возможно образование алюмокремниевых комплексов, обладающих флокулирующей эффективностью и высокой сорбционной способностью за счет образования цеолитоподобных структур.
Поставленная задача решается способом получения алюмокремниевого гибридного реагента, использующегося в виде водных растворов, для очистки природных и промышленных сточных вод, включающим обработку щелочных алюмосиликатов в водной среде серной кислотой в течение часа, отделение жидкой фазы от твердой, обработку исходного сырья ведут раствором 8-10%-ной серной кислоты при постоянном перемешивании низкооборотной мешалкой с числом оборотов 40-80 об/мин и корректировку соотношения алюминия и кремния в полученном растворе реагента так, чтобы их соотношение в пересчете на их оксиды составляло 0,50:0,75.
Для изготовления гибридного алюмокремниевого реагента в качестве сырья используются природные алюмощелочные силикаты, например, нефелиновый, сиенитовый концентраты. Реагент получают методом сернокислотного разложения алюмосиликатного сырья. Продуктами реакции разложения являются твердая кислотонерастворимая часть в виде шлама, составляющего 20-25% от массы исходного сырья, и раствор, который является многокомпонентной неорганической композицией и после корректировки соотношения алюминия и кремния используется как гибридный алюмокремниевый реагент. Полученный раствор алюмокремниевого реагента имеет рН около 2, содержание в реагенте алюминия и кремния в пересчете на их оксиды лежит в диапазоне 0,50:0,75.
Основными действующими компонентами, входящими в состав полученного реагента, являются сульфат алюминия, широко потребляемый в качестве коагулянта и активная кремниевая кислота, являющаяся неорганическим анионным флокулянтом, а так же небольшое количество соединений натрия, калия, железа преимущественно виде сульфатов. Кроме того, при данном соотношении алюминия и кремния при введении реагента в воду за счет увеличения величины рН образуются алюмокремниевые цеолитоподобные пространственные структуры, обладающие повышенной сорбционной способностью.
Состояние кремниевой кислоты в полученном растворе алюмокремниевого реагента значительно зависит от концентрации серной кислоты, используемой для разложения алюмосиликатного сырья. При использовании серной кислоты с концентрациями до 18-20% кремний переходит в раствор в виде кремниевой кислоты, которая находится в нем в виде золя коллоидных частиц, мономеров и форм с низкой степенью полимеризации. При концентрации серной кислоты выше 20% происходит процесс полимеризации с образованием плохо растворимой поликремниевой кислоты, высаждаемой из раствора вследствие образования силоксановых связей в гелеобразной форме и слабо проявляющей флокуляционные свойства.
Использование для разложения алюмокремниевого сырья серной кислоты с концентрацией 8-10% масс. позволяет предотвратить коагуляцию жидкой фазы, а так же стабилизировать процесс разложения за счет того, что реакционная масса не подвержена сильному саморазогреву. При концентрациях серной кислоты от 8 до 10% реакционная смесь нагревается до температуры не выше 40°C.
Несмотря на то, что отсутствие внешнего нагрева смеси увеличивает продолжительность разложения сырья, процесс протекает стабильно без выпадения скоагулированных частиц кремнекислоты и перехода раствора в состояние геля. Использование для перемешивания низкооборотной мешалки с числом оборотов 40-80 об/мин, способствует стабильному извлечению из сырья в раствор реагента активной кремнекислоты без процесса гелеобразования раствора. Кроме того, предложенный способ является экономичным, позволяет снизить коррозию оборудования и получить реагент непосредственно пригодный к употреблению. К основным достоинствам данного способа можно отнести упрощение технологии получения и аппаратурного оформления производства за счет исключения стадии сушки полученного раствора реагента, а также более высокое, по сравнению с прототипом, содержание в конечном продукте активной кремниевой кислоты, усиливающей флокулирующее действие реагента. Важным является то, что предложенный способ получения реагента позволяет реализовать способ очистки воды, в котором при добавлении реагента за счет повышения величины рН от 5,5 и выше образуются алюмокремниевые цеолитоподобные структуры с высокой сорбционной способностью, что позволяет достигать высоких степеней очистки воды.
Образующиеся при введении в очищаемую воду гибридного реагента алюмокремниевые комплексы, обладают более высокой сорбционной способностью, чем индивидуальные соединения - сульфат алюминия и активная кремниевая кислота, входящие в состав реагента. Таким образом, при водоочистке с гибридным реагентом имеет место синергетический эффект, достигаемый за счет самоорганизации алюмокремниевых комплексов и образования объемных макроскопических структур с развитой межфазной поверхностью, обладающих повышенной сорбционной способностью. В этом случае механизм очистки воды реализуется не только за счет химического взаимодействия компонентов реагента, но и за счет объемной сорбции загрязнителей на самоорганизующихся мезопористых алюмокремниевых структурах. Механизм формирования таких алюмокремниевых структур в растворе сходен с процессом образования синтетических цеолитов. Кремнекислородные тетраэдры являются основными структурными единицами (фиг. 1, а), поскольку для нейтрализации катиона кремния Si4+ необходимы 4 аниона кислорода, которые будут оставлены с зарядом - 1 для связи с другими тетраэдрическими группами [SiO4]4-. Такие связи будут создаваться посредством объединения атома О2-, находящегося на общей вершине, и будут устойчивыми, позволяя образовывать сложные комплексные анионные радикалы по вершинам основной структурной единицы (фиг. 1, б-в). Возможны различные комбинации основных структурных единиц, например: двойные островные структуры (фиг. 1, б), кольцевые структуры, образованные из n тетраэдров (фиг. 1, в), бесконечные цепочки, каркасные структуры (г).
Наибольший интерес представляют каркасные фигуры, образованные из кольцевых структур, поскольку они могут создавать массивные цеолитоподобные структуры (фиг. 1, д) с помощью 4 кислородных связей на одной из граней. Поскольку атомы Si4+ изоморфны по отношению к атомам Al3+, то возможно замещение кремнекислородных тетраэдров на алюмокислородные в каркасных структурах. Это приводит к тому, что [AlO4] в комплексном анионном радикале увеличивает его отрицательный заряд, что приводит к необходимости компенсации положительно заряженным одновалентным катионом, например Na+ или K+ [3].
Сущность предлагаемого способа и результаты, достигаемые при применении данного изобретения, иллюстрируются следующими примерами.
Пример 1.
В 500 мл водного раствора серной кислоты с концентрацией 9% масс. при перемешивании вводят 50 г нефелинового концентрата (химический состав, масс. %: SiO2 44,0; Al2O3 28,0; Na2O 12,5; K2O 7,5; Fe2O3 2,3; FeO 0,6; CaO 1,7; вода 1,0; прочие 3,4). Перемешивание реакционной массы продолжается в течение одного часа при скорости 60 об/мин. Затем реакционная масса фильтруется, полученный фильтрат является гибридным алюмокремниевым реагентом с соотношением оксидов алюминия и кремния в полученном продукте в пересчете на их оксиды равным 0,67.
Пример 2.
В 500 мл водного раствора серной кислоты с концентрацией 8% масс. при перемешивании вводят 50 г сиенитового алюмощелочного концентрата (химический состав, масс. %: SiO2 44,0; Al2O3 27,0; Na2O 12,0; K2O 7,5; Fe2O3 2,5; FeO 1,0; CaO 2,0; TiO2 0,5; вода 1,0; прочие 2,5). К реакционной смеси добавляют 0,6 грамм сульфата алюминия. Перемешивание реакционной массы продолжается в течение 40 минут при скорости 70 об/мин. Затем реакционная масса фильтруется, полученный фильтрат является гибридным алюмокремниевым реагентом с соотношением оксидов алюминия и кремния в полученном продукте в пересчете на их оксиды равным 0,75.
Эффективность действия гибридного реагента в сравнении с флокулянтом-коагулянтом прототипом (АКФК, Тривектр) определяли по способности реагентов очищать воду от ионов металлов на примере извлечения ионов Cu(II), Fe(III) и нефтепродуктов. Кроме того, проведено сравнение эффективности очистки воды по другим показателям.
Пример 3
Для анализа эффективности очистки при помощи алюмокремниевого гибридного реагента в сравнении с флокулянтом-коагулянтом, взятым в качестве прототипа, были проведены эксперименты на модельных водах, содержащих нефтепродукты, ионы меди(II) и железа(III). На фиг. 2. представлен график зависимости концентрации загрязнителей от дозы реагентов. При оптимальной дозе алюмокремниевого гибридного реагента 20-30 мг/л степень очистки от общего железа достигает значений свыше 99%, от ионов меди - 75%, а от нефтепродуктов - 97%. Для сравнения, концентрация меди в обработанной воде при использовании реагента-прототипа (АКФК, Тривектр) в аналогичных условиях снижается лишь на 55%. Данный факт свидетельствует о более высокой эффективности алюмокремниевого гибридного реагента. На фиг. 3 приведен график зависимости степени извлечения меди(II) Е, % от дозы реагента. Сравнивали степени извлечения меди при использовании гибридного алюмокремниевого реагента, реагента-прототипа АКФК-II и реагента АКФК-I, полученного по способу, описанному в патенте RU 2447021 [4].
Пример 4
Помимо коагуляционных и сорбционных свойств, сравнивалась кинетика осветления модельной воды, загрязненной железом(III) и взвешенными веществами с использованием гибридного алюмокремниевого реагента и реагента-прототипа (АКФК, Тривектр). На фиг. 4 представлен график зависимости концентрации железа(III) от времени для экспериментов по осветлению модельной воды, содержащей железо в концентрации 18 мг/л. Эксперименты проводились в два этапа. На первом этапе исследовалась кинетика осветления воды без участия реагента, на втором этапе исследовалась кинетика осветления воды с добавлением дозы 30 мг/л (в пересчете на оксид алюминия) гибридного алюмокремниевого реагента и реагента-прототипа (АКФК, Тривектр). Пробы воды для анализа отбирались с одного уровня через равные промежутки времени. Выяснено, что при добавлении гибридного алюмокремниевого реагента концентрация железа падает на 99,5% за 10 мин, в то время как без реагента тот же эффект достигается за 4 часа т.е. в данном случае реагент выступает в роли катализатора, при введении которого скорость очистки увеличивается более чем в 20 раз. При добавлении реагента-прототипа (АКФК, Тривектр) (пунктирная линия) концентрация железа(III) за тоже время снижается лишь на 86%.
Пример 5
Для сравнения эффективности осветления глиносодержащих вод по показателю скорости осаждения взвешенных веществ были проведены сравнительные эксперименты. На фиг. 5 представлена фотография отстаивания модельных вод с начальным содержанием глины 200 мг/л. На фотографии, сделанной через 10 минут после начала отстаивания, показаны образцы при самопроизвольном отстаивании без добавления реагентов, а также при отстаивании с применением реагента-прототипа (АКФК, Тривектр) и гибридного алюмокремниевого реагента. Доза 2% раствора реагента-прототипа (АКФК, Тривектр) и 10% раствора гибридного алюмокремниевого реагента составляла 30 мг/л в пересчете на оксид алюминия. Наиболее высокая степень осветления достигается в случае применения гибридного реагента, что свидетельствует о высокой эффективности его использования в качестве интенсификатора процесса осветления вод от высокомутных вод с высоким содержанием взвешенных веществ.
Список документов, цитированных в отчете о поиске:
1. Патент RU 2107027 «Способ переработки алюмосиликатного сырья», МПК C01B 33/26, C02F 1/52, C01F 7/74 опубл. 20.03.1998 г.
2. Патент RU 2388693 «Способ получения алюмокремниевого флокулянта-коагулянта и способ очистки с его помощью воды», МПК С01В 33/26, C01F 7/74, C02F 1/52, опубл. 10.05.2010 г.
3. Захаров В.И., Калинников В.Т., Матвеев В.А., Майоров Д.В. Химико-технологические основы и разработка новых направлений комплексной переработки и использования щелочных алюмосиликатов. Часть 1. - РАН, Кольский научный центр: Апатиты, 1995. - 181 с.
4. Патент RU 2447021 «Способ получения композиционного алюмокремниевого флокулянта-коагулянта», МПК С01В 33/26, C02F 1/52, C01F 7/74, опубл. 10.04.2012 г.

Claims (2)

1. Способ получения гибридного алюмокремниевого реагента, использующегося в виде водных растворов, для очистки природных и промышленных сточных вод, включающий обработку щелочных алюмосиликатов в водной среде серной кислотой в течение часа, отделение жидкой фазы от твердой, отличающийся тем, что обработку исходного сырья ведут раствором 8-10%-ной серной кислоты при постоянном перемешивании низкооборотной мешалкой с числом оборотов 40-80 об/мин, корректируют соотношение алюминия и кремния в полученном растворе реагента так, чтобы их соотношение в пересчете на их оксиды составляло 0,50:0,75.
2. Способ очистки природных и промышленных сточных вод алюмокремниевым реагентом с последующим отделением образующегося осадка, отличающийся тем, что в качестве алюмокремниевого реагента используют реагент, полученный по п. 1, в виде водных растворов.
RU2017111285A 2017-04-04 2017-04-04 Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом RU2661584C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017111285A RU2661584C1 (ru) 2017-04-04 2017-04-04 Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111285A RU2661584C1 (ru) 2017-04-04 2017-04-04 Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом

Publications (1)

Publication Number Publication Date
RU2661584C1 true RU2661584C1 (ru) 2018-07-17

Family

ID=62917059

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111285A RU2661584C1 (ru) 2017-04-04 2017-04-04 Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом

Country Status (1)

Country Link
RU (1) RU2661584C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2049735C1 (ru) * 1993-02-11 1995-12-10 Леонид Михайлович Делицын Способ очистки промышленных сточных вод
KR20010084089A (ko) * 2000-02-23 2001-09-06 김남호 산업폐수처리용 분말상 무기응집제 조성물
US6447686B1 (en) * 1998-09-25 2002-09-10 Chun Sik Choi Rapid coagulation-flocculation and sedimentation type waste water treatment method
PL349553A1 (en) * 2001-09-07 2003-03-10 Inst Chemii Nieorganicznej Method of simultaneously obtaining sorbents and multi-component coagulators from natural stratified aluminosilicates
RU2288181C1 (ru) * 2005-06-07 2006-11-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ получения водорастворимого реагента для очистки природных и сточных вод и разделения фаз
RU2388693C2 (ru) * 2008-07-28 2010-05-10 Общество с ограниченной ответственностью Научно-производственное предприятие "ТРИВЕКТР" Способ получения алюмокремниевого флокулянта-коагулянта и способ очистки с его помощью воды
RU2588535C1 (ru) * 2015-04-02 2016-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения алюмокремниевого флокулянта-коагулянта

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2049735C1 (ru) * 1993-02-11 1995-12-10 Леонид Михайлович Делицын Способ очистки промышленных сточных вод
US6447686B1 (en) * 1998-09-25 2002-09-10 Chun Sik Choi Rapid coagulation-flocculation and sedimentation type waste water treatment method
KR20010084089A (ko) * 2000-02-23 2001-09-06 김남호 산업폐수처리용 분말상 무기응집제 조성물
PL349553A1 (en) * 2001-09-07 2003-03-10 Inst Chemii Nieorganicznej Method of simultaneously obtaining sorbents and multi-component coagulators from natural stratified aluminosilicates
RU2288181C1 (ru) * 2005-06-07 2006-11-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ получения водорастворимого реагента для очистки природных и сточных вод и разделения фаз
RU2388693C2 (ru) * 2008-07-28 2010-05-10 Общество с ограниченной ответственностью Научно-производственное предприятие "ТРИВЕКТР" Способ получения алюмокремниевого флокулянта-коагулянта и способ очистки с его помощью воды
RU2588535C1 (ru) * 2015-04-02 2016-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения алюмокремниевого флокулянта-коагулянта

Similar Documents

Publication Publication Date Title
Moussas et al. A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant—Polyferric silicate sulphate (PFSiS)
Zeng et al. Characterization and coagulation performance of a novel inorganic polymer coagulant—Poly-zinc-silicate-sulfate
Lartiges et al. Flocculation of colloidal silica with hydrolyzed aluminum: an 27Al solid state NMR investigation
CN103342406B (zh) 聚合硅酸聚合硫酸钛无机高分子复合絮凝剂及其制备方法与应用
CN101182061A (zh) 用粉煤灰和高岭土生产高效复合聚硅酸铝铁絮凝剂的方法
CN110921772A (zh) 一种废切削液破乳剂
WO2007023872A1 (ja) シリコン粉含有排水の処理方法
JPH04501529A (ja) 廃水処理用沈澱剤または凝集剤およびそれを用いた処理方法
JP4272122B2 (ja) 凝集沈殿水処理方法及び装置
RU2661584C1 (ru) Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом
CN106477695B (zh) 复合絮凝剂、其制备方法以及油田污水处理方法
JP2010172882A (ja) 凝集剤及び汚濁廃水の処理方法
JPH10272304A (ja) 無機電解凝集剤
RU2288181C1 (ru) Способ получения водорастворимого реагента для очистки природных и сточных вод и разделения фаз
JP2010172883A (ja) 凝集剤及び汚濁排水の処理方法
Zouboulis et al. Inorganic pre-polymerized coagulants: current status and future trends
Wang et al. Flocculant Containing Silicon, Aluminum, and Starch for Sewage Treatment
CN101555055A (zh) 复合脱色味混凝剂及其制造工艺
JP2003251104A (ja) 水処理用無機凝集剤およびその使用方法
JPH1043770A (ja) 懸濁粒子を含む排水の処理方法
JPH10503459A (ja) 廃棄物処理剤
RU2529536C2 (ru) Способ получения водорастворимого реагента для очистки природных и сточных вод и разделения фаз
Singh et al. Effect of thermal Energy on Artificial Coagulation for the Treatment of Wastewater
RU2617155C1 (ru) Способ получения коагулянта на основе полиоксисульфата алюминия, коагулянт, полученный указанным способом
JP3173981B2 (ja) 廃液処理方法

Legal Events

Date Code Title Description
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20191011