RU2660386C2 - Способ и устройство для формирования рентгеновского изображения с энергетическим разрешением с адаптированным порогом энергии - Google Patents

Способ и устройство для формирования рентгеновского изображения с энергетическим разрешением с адаптированным порогом энергии Download PDF

Info

Publication number
RU2660386C2
RU2660386C2 RU2015147861A RU2015147861A RU2660386C2 RU 2660386 C2 RU2660386 C2 RU 2660386C2 RU 2015147861 A RU2015147861 A RU 2015147861A RU 2015147861 A RU2015147861 A RU 2015147861A RU 2660386 C2 RU2660386 C2 RU 2660386C2
Authority
RU
Russia
Prior art keywords
ray
intensity
ray beam
values
pixels
Prior art date
Application number
RU2015147861A
Other languages
English (en)
Other versions
RU2015147861A3 (ru
RU2015147861A (ru
Inventor
Хеннинг Пер Йохан БЕРГЛУНД
Йон Эрик ФРЕДЕНБЕРГ
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2015147861A publication Critical patent/RU2015147861A/ru
Publication of RU2015147861A3 publication Critical patent/RU2015147861A3/ru
Application granted granted Critical
Publication of RU2660386C2 publication Critical patent/RU2660386C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Использование: для формирования рентгеновского изображения с энергетическим разрешением. Сущность изобретения заключается в том, что сначала предпочтительно низкодозный рентгеновский пучок направляют сквозь исследуемую область объекта, такого как женская грудь, и получают исходные значения интенсивности рентгеновского пучка. На основе этих исходных значений интенсивности рентгеновского пучка пороговые значения энергии, например, энергоразрешающего рентгеновского детектора-счетчика фотонов адаптируются конкретно к локальным свойствам и признакам объекта. Имея такие адаптированные пороговые значения энергии, получают главные значения интенсивности рентгеновского пучка с энергетическим разрешением для формирования конечного рентгеновского изображения с энергетическим разрешением. Технический результат: обеспечение возможности установления пороговых значений энергии, обеспечивающих более качественное формирование рентгеновского изображения. 3 н. и 10 з.п. ф-лы, 7 ил.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к способу формирования рентгеновского изображения с энергетическим разрешением, состоящего из множества пикселей, в особенности для приложений маммографии или компьютерной томографии. Более подробно, изобретение относится к устройству для осуществления такого способа, к компьютерному программному продукту, управляющему таким способом, и к машиночитаемому носителю, на котором записан такой компьютерный программный продукт.
УРОВЕНЬ ТЕХНИКИ
Рентгеновская визуализация используется в широком диапазоне приложений. В ней рентгеновский пучок, выходящий из рентгеновского источника, обычно направляют сквозь исследуемую область объекта и используют детектор рентгеновского излучения для определения интенсивности рентгеновского пучка после прохождения сквозь объект.
Обычно сформированное рентгеновское изображение содержит множество пикселей, организованных в двумерную матрицу. Значение интенсивности рентгеновского пучка для каждого пикселя получают, например, используя детектор рентгеновского излучения. Детектор рентгеновского излучения может содержать один или множество детектирующих элементов. Например, количество детектирующих элементов может быть равно количеству пикселей изображения, и каждый детектирующий элемент из множества детектирующих элементов может получать значение интенсивности рентгеновского излучения для одного из пикселей изображения. Альтернативно, детектор содержит только небольшое количество детектирующих элементов по сравнению с количеством пикселей, и может производиться последовательное сканирование вдоль исследуемой области для получения значений интенсивности рентгеновского излучения для каждого из пикселей изображения.
Например, значения интенсивности рентгеновского излучения могут быть получены одновременно для каждого из пикселей при использовании детектора рентгеновского излучения, содержащего массив детектирующих элементов рентгеновского излучения в виде двумерной матрицы. При этом, например, каждый отдельный детектирующий элемент рентгеновского излучения может обеспечить значение интенсивности рентгеновского излучения для одного пикселя изображения или сумма сигналов от нескольких детектирующих элементов рентгеновского излучения может обеспечить значение интенсивности рентгеновского излучения для единственного пикселя изображения.
Альтернативно, значения интенсивности рентгеновского излучения для множества пикселей могут быть получены последовательным сканированием исследуемой области рентгеновским пучком и/или детектором рентгеновского излучения. При этом детектор может иметь один или малое количество детектирующих элементов, которые за один шаг получают значения интенсивности рентгеновского излучения для единственного или для малого количества пикселей, и которые затем перемещаются в следующее положение для сканирования.
Рентгеновская визуализация может быть особенно выгодна в медицинских приложениях. С ее помощью можно исследовать различные внутрение структуры тела пациента, поскольку эти внутренние структуры обычно обладают различными характеристиками поглощения рентгеновского излучения. Например, при маммографии могут исследоваться структуры внутри женской груди с целью обнаружения какой-либо опухолевой ткани.
Были разработаны системы рентгеновской визуализации с энергетическим разрешением, и в настоящее время становится возможным их применение при рутинном скрининге и в клинической практике. Такие системы визуализации адаптированы для различения энергий фотонов детектируемых рентгеновских лучей и поэтому позволяют получить спектральную рентгеновскую информацию. В таких рентгеновских системах визуализации с энергетическим разрешением детектор рентгеновского излучения может не только измерять полную интенсивность рентгеновского излучения, падающую на один из детектирующих элементов, но дополнительно может быть способен различать энергии, то есть спектр длин волн, фотонов, создающих эту интенсивность падающего рентгеновского излучения.
Например, в рентгеновской визуализации с энергетическим разрешением до рентгеновского исследования могут быть предустановлены одно или несколько пороговых значений энергии или пороговых значений длин волн, и во время получения фактического рентгеновского изображения детектор тогда может отличать участки полной падающей интенсивности рентгеновского пучка, которые имеют энергии или длины волн фотонов ниже такого порогового значения (значений), от других участков полной интенсивности рентгеновского пучка, которые имеют энергии/длины волн фотонов выше такого порогового значения (значений). Эта информация может быть значима для дальнейшей интерпретации изображений.
US 2010/232669 A1 описывает способ динамической оптимизации отношения сигнал/шум в данных об ослаблении излучения, связанных с двумя различными энергиями рентгеновских пучков, для реконструкции изображения исследуемого объекта. Способ содержит (a) оценку толщины и состава материала объекта под множеством углов проекции, (b) для каждого из различных углов проекции вычисление множества комбинаций различных первой и второй энергий рентгеновского пучка и соответствующего общего отношения сигнал/шум, (c) для каждого из различных углов проекции выбор первой и второй энергии рентгеновского пучка, вызывающей максимальное соответствующее отношение сигнал/шум, и (d) для каждого из различных углов проекции получение данных об ослаблении рентгеновского излучения объектом, где две энергии рентгеновского излучения являются теми двумя энергиями рентгеновского излучения, которые вызывают максимальное отношение сигнал/шум, связанное с соответствующим углом проекции.
US 2010/301224 A1 описывает устройство рентгеновской визуализации, включающее в себя источник полихроматического рентгеновского излучения и пиксельный детектор, подходящий для работы в режиме счетчика фотонов в пределах по меньшей мере одного интервала энергии, ограниченного по крайней мере одним регулируемым пороговым значением, и по меньшей мере один счетчик, такой, что каждый пиксель выводит данные, зависящие от принятого пикселем числа фотонов в интервалах энергии во время заранее заданного промежутка времени. US 8442184 A1 описывает спектральный компьютерный томограф с массивом детекторов с энергетическим разрешением. WO 2013/093684 A2 описывает детектор рентгеновского излучения с подсчетом фотонов. US 2012/0087463 A1 описывает калибровку порога для детектора с подсчетом фотонов и с различением энергий.
Качество рентгеновского изображения с энергетическим разрешением и особенно спектральной информации, содержащейся в нем, может зависеть от установки конкретных пороговых значений. Например, ненадлежащая установка таких пороговых значений может привести к тому, что будут получены рентгеновские изображения с энергетическим разрешением с избыточным шумом. Однако оказалось, что оптимизация установки таких пороговых значений не является тривиальной, так как, например, свойства объекта могут существенно меняться по всей площади или объему, изображение которого получают.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Может возникнуть потребность в способе формирования рентгеновского изображения с энергетическим разрешением высокого качества благодаря оптимизации настроек порогового значения энергии предпочтительно во всех точках изображения. Более того, может возникнуть потребность в соответствующем устройстве для формирования рентгеновских изображений с энергетическим разрешением, а также в компьютерном программном продукте, дающем компьютеру инструкцию управлять таким способом рентгеновской визуализации с энергетическим разрешением, и в машиночитаемом носителе, содержащем этот компьютерный программный продукт.
Эти потребности могут быть удовлетворены объектом независимых пунктов формулы изобретения. Варианты осуществления изобретения определены в зависимых пунктах формулы изобретения и описаны в нижеследующем описании.
Согласно первому аспекту настоящего изобретения описывается способ формирования оптимизированного рентгеновского изображения с энергетическим разрешением, содержащего множество пикселей. Способ содержит следующие этапы: (a) направление рентгеновского пучка сквозь исследуемую область объекта и получение исходных значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, для каждого из пикселей; (b) адаптирование по меньшей мере одного порогового значения энергии в зависимости от полученных значений интенсивности рентгеновского излучения для каждого из пикселей и (c) направление рентгеновского пучка с рентгеновским спектром сквозь исследуемую область объекта и получение первых главных значений интенсивности рентгеновского излучения рентгеновского пучка, прошедшего сквозь исследуемую область, в первом частичного рентгеновском спектральном диапазоне с энергиями ниже адаптированного порогового значения энергии, и получение вторых главных значений интенсивности рентгеновского излучения рентгеновского пучка, прошедшего сквозь исследуемую область, во втором частичном спектральном диапазоне с энергиями выше адаптированного порогового значения энергии для каждого из пикселей соответственно. Наконец, рентгеновское изображение с энергетическим разрешением формируют на основе первого и второго главных значений интенсивности для каждого из пикселей.
Второй аспект настоящего изобретения относится к устройству для формирования рентгеновского изображения с энергетическим разрешением, содержащего множество пикселей, причем устройство предназначено для осуществления способа согласно вышеописанному первому аспекту изобретения.
Третий аспект изобретения относится к компьютерному программному продукту, содержащему машиночитаемые инструкции, которые, при исполнении компьютером, управляют способом согласно вышеописанному первому аспекту изобретения.
Четвертый аспект изобретения относится к машиночитаемому носителю, на котором хранится компьютерный программный продукт согласно вышеописанному третьему аспекту изобретения.
Без ограничения объема изобретения идея изобретения может быть понята как основанная на следующих наблюдениях и идеях.
Для получения рентгеновского изображения с энергетическим разрешением по меньшей мере одно пороговое значение энергии должно быть установлено так, чтобы во время фактического детектирования рентгеновских лучей, проходящих сквозь исследуемую область объекта, использование порогового значения позволяло отличить высокоэнергетическую часть прошедшего рентгеновского пучка от низкоэнергетической части прошедшего рентгеновского пучка, причем высокоэнергетическая часть содержит рентгеновские фотоны, имеющие длину волны ниже порогового значения, и низкоэнергетическая часть содержит рентгеновские фотоны с длиной волны выше этого порогового значения.
В подходах предыдущего уровня техники пороговые значения энергии элементов рентгеновского детектора обычно устанавливаются на общем уровне перед фактическим рентгеновским исследованием, например, при процедуре калибровки, которая оптимизирована для среднего гомогенного объекта.
Соответственно, до получения значений интенсивности рентгеновского пучка для каждого из множества пикселей получаемого рентгеновского изображения не происходит пространственных изменений пороговых значений.
Однако было обнаружено, что исследуемый объект влияет не только на интенсивность излучения, проходящего сквозь объект и затем падающего на детектор, но и на распределение энергии в рентгеновском спектре излучения, проходящего сквозь объект.
Например, сильно ослабляющий излучение плотный объект может смещать спектр прошедшего рентгеновского пучка в область более высоких энергий по сравнению со слабопоглощающим объектом, поскольку низкоэнергетические рентгеновские фотоны обычно поглощаются с большей вероятностью, чем высокоэнергетические фотоны. Такой эффект еще называют «увеличением жесткости пучка».
Идея, лежащая в основе вариантов осуществления настоящего изобретения, состоит в том, чтобы при формировании рентгеновского изображения с энергетическим разрешением учитывать такие эффекты увеличения жесткости пучка. В частности, чтобы скомпенсировать эти эффекты, не следует проводить оптимизацию порогового значения на общем уровне, то есть при получении значений интенсивности рентгеновского пучка не следует устанавливать одинаковые пороговые значения энергии для всех пикселей рентгеновского изображения с энергетическим разрешением, а вместо этого следует учитывать локально меняющиеся свойства исследуемого объекта.
Другими словами, следует предусмотреть возможность того, что свойства исследуемого объекта могут влиять на пороговые значения энергии, применяемые при измерении зависящей от энергии интенсивности рентгеновского пучка, проходящего сквозь исследуемую область, для каждого из множества пикселей рентгеновского изображения с энергетическим разрешением.
Согласно вариантам осуществления настоящего изобретения, таким образом, предлагается разделить весь процесс получения изображения на две части.
Во-первых, рентгеновский пучок направляют сквозь исследуемую область объекта, и значения интенсивности рентгеновского пучка получают после прохождения объекта. При этом такие значения интенсивности рентгеновского пучка получают для каждого пикселя полного рентгеновского изображения, которое должно быть сформировано. Такие значения интенсивности рентгеновского пучка, полученные на первом этапе, будут называться «исходными» значениями интенсивности рентгеновского пучка и могут быть получены с использованием, например, сравнительно низкой дозы рентгеновского излучения. Эти исходные значения интенсивности рентгеновского пучка могут использоваться позднее на этапе обработки для получения конечного рентгеновского изображения с энергетическим разрешением, хотя основной целью этих значений является получение информационного базиса для последующего адаптирования порогового значения энергии, которое может быть установлено для последующего получения «главных» значений интенсивности рентгеновского пучка. Другими словами, исходные значения интенсивности рентгеновского пучка, предварительно полученные таким образом, могут использоваться для определения локальных свойств и характеристик объекта и затем для установки пространственных пороговых значений относительно этих локальных свойств объекта, так что можно определить оптимальную долю облучения для каждой части объекта. Исходные значения интенсивности рентгеновского пучка могут обладать или не обладать энергетическим разрешением, и/или могут быть получены той же или другой технологией детектирования, что и главные значения интенсивности рентгеновского пучка.
Во-вторых, после установки пороговых значений энергии на те значения, которые были адаптированы в зависимости от ранее полученного исходного значения интенсивности рентгеновского пучка для соответствующего пикселя, главные значения интенсивности рентгеновского пучка, из которого должно быть сформировано полное или большая часть конечного рентгеновского изображения с энергетическим разрешением, могут быть получены с применением установленных таким образом пороговых значений энергии для каждого пикселя.
Соответственно, в каждом пикселе, то есть в каждом месте внутри исследуемой области объекта, устанавливаются конкретные локальные пороговые значения энергии, зависящие от ранее полученных исходных значений интенсивности рентгеновского пучка в данном месте, то есть учитывается локальная способность объекта ослаблять рентгеновский пучок.
Соответственно, при формировании рентгеновского изображения с энергетическим разрешением, пороговые значения энергии могут быть адаптированы оптимальным способом относительно локальных характеристик ослабления рентгеновского пучка исследуемым объектом, причем информация о локальных ослабляющих характеристиках может быть получена предшествующим получением исходных значений интенсивности рентгеновского пучка в соответствующем месте.
Согласно варианту осуществления изобретения, получение исходных значений интенсивности рентгеновского пучка содержит получение первых исходных значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, в первом исходном частичном спектральном диапазоне рентгеновского излучения с энергиями ниже предустановленного порогового значения энергии и получение вторых исходных значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, во втором исходном частичном спектральном диапазоне рентегеновского излучения с энергиями выше предустановленного порогового значения энергии для каждого из пикселей соответственно. Пороговое значение энергии затем может быть адаптировано в зависимости от полученных первого и второго исходных значений интенсивности рентгеновского пучка для каждого из пикселей.
Другими словами, получение исходных значений интенсивности рентгеновского пучка уже осуществляется энергоразрешающим способом. При этом пороговое значение энергии может быть предустановлено на предзаданное значение. Такие предзаданные значения могут быть, например, идентичны для всех пикселей или могут оцениваться для каждого положения исследуемого объекта. На основе таких предварительно полученных исходных значений интенсивности рентгеновского пучка пороговые значения энергии затем могут быть локально адаптированы для каждого из пикселей, и затем может быть осуществлено получение главного изображения с энергетическим разрешением с такими оптимизированными пороговыми значениями энергии.
Например, согласно одному варианту осуществления изобретения, пороговые значения энергии могут быть адаптированы для каждого из пикселей так, что первые главные значения интенсивности будут по существу равны вторым главным значениям интенсивности для каждого из пикселей.
Другими словами, пороговые значения энергии для каждого из пикселей могут быть адаптированы так, что, при последующем получении главного изображения значения интенсивности рентгеновского излучения, полученные для падающего рентгеновского пучка с энергиями ниже пороговых значений, и значения интенсивности, полученные для падающего рентгеновского пучка с энергиями выше пороговых значений энергии, будут по существу равны. Здесь «по существу равны» можно интерпретировать как ограничение отклонения от равенства вплоть до относительных 20% или, альтернативно, до относительных 10%.
Согласно одному варианту осуществления изобретения, рентгеновский пучок сканируется вдоль пути сканирования через исследуемую область, таким образом одновременно облучая подобласть исследуемой области, причем эта подобласть соответствует, например, подмассиву пикселей полного изображения. Исходное значение интенсивности рентгеновского пучка для каждого из пикселей получают, когда соответствующий пиксель облучается расположенным выше по потоку участком сканирующего рентгеновского пучка, и главное первое и главное второе значения интенсивности рентгеновского пучка для каждого пикселя получают, когда соответствующий пиксель облучается расположенным ниже по потоку участком сканирующего рентгеновского пучка.
Другими словами, рентгеновский пучок и детектор могут сканироваться сквозь исследуемую область. Площади сечения рентгеновского пучка и детектора при этом так же велики, как и множество соседних пикселей получаемого изображения. При сканировании рентгеновского пучка и детектора каждая часть исследуемой области, таким образом, сначала освещается расположенным выше по потоку участком сканирующего рентгеновского пучка, который затем регистрируется расположенным выше по потоку участком детектора, и затем освещается расположенным ниже по потоку участком этого рентгеновского пучка, который регистрируется расположенным ниже по потоку участком детектора («выше по потоку» и «ниже по потоку» рассматривается относительно направления сканирования). Соответственно, расположенные выше по потоку участки рентгеновского пучка и детектора могут использоваться для получения исходных значений интенсивности рентгеновского пучка. На основе этих исходных значений интенсивности рентгеновского пучка пороговые значения энергии для соответствующего пикселя или подобласти исследуемой области могут быть затем адаптированы должным образом. Соответственно, когда расположенные ниже по потоку участки рентгеновского пучка и детектора достигают соответствующих пикселей или подобластей, главные значения интенсивности рентгеновского пучка могут быть получены с использованием ранее адаптированных пороговых значений энергии.
Таким образом, и исходные значения интенсивности рентгеновского пучка, и главные значения интенсивности рентгеновского пучка рентгеновского изображения с энергетическим разрешением могут быть получены в единственном процессе сканирования.
При этом, согласно одному варианту осуществления, исходные значения интенсивности рентгеновского пучка и главные значения интенсивности рентгеновского пучка получают с использованием детектора рентгеновского излучения, имеющего множество детектирующих элементов, расположенных вдоль линий.
Например, такие линейные детекторы могут сканироваться при расположении их продольных осей перпендикулярно направлению сканирования, и одна или более первых линий детектора может использоваться для получения исходного значения интенсивности рентгеновского пучка в конкретном пикселе или месте исследуемой области перед тем, как при последующем сканировании дополнительные расположенные ниже по потоку линии будут использоваться для получения первого и второго главных значений интенсивности рентгеновского пучка, когда связанные с ними порогоые значения энергии уже установлены на оптимальном уровне на основе информации, полученной первыми линиями детектора.
Согласно альтернативному варианту осуществления изобретения, рентгеновский пучок направляют сквозь исследуемую область, одновременно облучая все пиксели, и исходные значения интенсивности рентгеновского пучка для каждого из пикселей получают одновременно. При этом на следующем этапе рентгеновский пучок направляют сквозь исследуемую область, одновременно облучая все пиксели, и первое и второе главные значения интенсивности рентгеновского пучка для каждого из пикселей получают одновременно.
Другими словами, в отличие от предшествующего варианта осуществления, сканирование не выполняется, а вместо этого исходные значения интенсивности рентгеновского пучка получают для множества пикселей одновременно, затем адаптируют пороговые значения энергии для всех пикселей, причем каждое пороговое значение энергии для одного конкретного пикселя адаптируют в зависимости от полученного исходного значения интенсивности для того же пикселя. Наконец, получение главного изображения осуществляется получением первого и второго главных значений интенсивности рентгеновского пучка для первого и второго частичных спектральных диапазонов рентгеновского излучения при энергия ниже и выше адаптированных пороговых значений энергии соответственно.
В таком варианте осуществления исходные значения интенсивности рентгеновского пучка и первое и второе главные значения интенсивности рентгеновского пучка могут быть получены с использованием детектора рентгеновского излучения, множество элементов которого расположены в виде двумерной матрицы.
Другими словами, значения интенсивности рентгеновского излучения могут быть получены с использованием детектора рентгеновского излучения, у которого детектирующие элементы не только расположены на линии, но и распределены по площади поверхности так, что при использовании такого детектора множество пикселей двумерного рентгеновского изображения могут быть получены одновременно.
Согласно одному варианту осуществления изобретения, рентгеновское изображение с энергетическим разрешением окончательно формируют не только на основе первого и второго главных значений интенсивности рентгеновского пучка для каждого пикселя, но на основе комбинации исходных значений интенсивности рентгеновского пучка и первого и второго главного значения интенсивности рентгеновского пучка для каждого из пикселей.
Другими словами, исходные значения интенсивности рентгеновского пучка получают не только для последующего адаптирования пороговых значений энергии для каждого из пикселей, но получение этих исходных значений интенсивности рентгеновского пучка является частью получения полного значения интенсивности рентгеновского пучка так, что конечное рентгеновское изображение с энергетическим разрешением формируют на основе этих исходных значений интенсивности рентгеновского пучка и на основе полученных после этого главных значений интенсивности рентгеновского пучка. Соответственно, информация, содержащаяся в предварительно полученном исходном значении интенсивности рентгеновского пучка, может быть снова использована для конечного изображения. Таким образом можно избежать облучения избыточными дозами рентгеновского излучения.
Следует отметить, что описанные здесь возможные признаки и преимущества вариантов осуществления настоящего изобретения частично относятся к способу формирования рентгеновского изображения с энергетическим разрешением по изобретению и частично относятся к устройству для формирования такого рентгеновского изображения. Специалисты в данной области техники поймут, что признаки, описанные по отношению к способу, аналогичным образом могут быть применены к устройству, и наоборот, и что признаки могут быть объединены или заменены надлежащим образом, чтобы осуществить дополнительные варианты осуществления изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Далее варианты осуществления настоящего изобретения будут описаны со ссылкой на прилагаемые чертежи, причем ни описание, ни чертежи не должны рассматриваться как ограничивающие объем изобретения.
Фигура 1 показывает вид сбоку устройства для формирования рентгеновского изображения с энергетическим разрешением согласно одному варианту осуществления настоящего изобретения.
Фигура 2 показывает вид сверху двумерного детектора рентгеновского излучения.
Фигура 3 показывает блок-схему способа формирования рентгеновского изображения с энергетическим разрешением согласно одному варианту осуществления настоящего изобретения.
Фигура 4 показывает вид сбоку сканирующего устройства для формирования рентгеновского изображения с энергетическим разрешением согласно другому варианту осуществления настоящего изобретения.
Фигура 5 показывает частичный вид сверху по линии детектора рентгеновского излучения.
Фигура 6 показывает увеличенный вид сбоку детекторной установки устройства, показанного на фигуре 4.
Фигура 7 показывает схематическое представление элемента детектора и вычислительного блока рентгеновского детектора устройства для формирования рентгеновского изображения с энергетическим разрешением согласно одному варианту осуществления настоящего изобретения.
Фигуры являются только схематическими и выполнены не в масштабе. Одинаковые ссылочные позиции относятся к одинаковым или похожим признакам на всех фигурах.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
В последующем описании возможные признаки изобретения будут объяснены относительно конкретных вариантов осуществления изобретения.
В общем варианты осуществления настоящего изобретения относятся к любой рентгеновской визуализации с энергетическим разрешением. Ниже будут даны конкретные примеры для приложений маммографии и компьютерной томографии (КТ).
В рентгеновской визуализации с энергетическим разрешением система визуализации может различать энергии фотонов регистрируемого рентгеновского пучка и поэтому может получать спектральную информацию рентгеновского пучка. Известны несколько приложений энергоразрешающей регистрации, иногда также называемой спектральной визуализацией, например, в области маммографии, включая взвешивание энергии, вычитание энергии и характеристику ткани.
Одним примером системы рентгеновской визуализации с энергетическим разрешением может быть система со счетчиком фотонов. Такая система со счетчиком фотонов предложена, например, заявителем «Philips MicroDose». В детекторах-счетчиках фотонов энергия фотона обычно измеряется одним или более дифференциальными порогами энергии. При этом интенсивность рентгеновского излучения, достигающего детектора, может быть измерена для рентгеновского пучка, в котором часть энергии фотонов лежит ниже порогового значения и часть энергии фотонов лежит выше порогового значения.
Качество спектральной информации, содержащейся в конечном рентгеновском изображении с энергетическим разрешением, обычно зависит от установки пороговых уровней относительно энергетического спектра рентгеновских фотонов, падающих на детектор. Соответственно, требуется оптимизация пороговых значений. Тривиальным примером является то, что спектральная информация не может быть получена, если все пороговые значения лежат вне диапазона рентгеновского спектра падающего излучения, и интуитивно понятно, что более эффективно будет установить пороговое значение вблизи центра рентгеновского спектра падающего на детектор излучения.
Когда предстоит исследовать объект с помощью рентгеновской визуализации, пучок рентгеновских лучей направляют сквозь исследуемую область (ИО) объекта и измеряют интенсивность рентгеновского пучка, прошедшего сквозь эту ИО. Внутренние структуры объекта могут иметь отличающиеся физические свойства, такие как различные плотности или состав материала, и могут поэтому менять характеристики ослабления рентгеновского пучка так, что из измерения интенсивностей прошедшего рентгеновского пучка можно получить информацию об этих внутренних структурах.
Однако исследуемый объект влияет не только на интенсивность прошедшего рентгеновского излучения, но обычно также влияет на распределение энергии в спектре прошедшего рентгеновского пучка. Например, сильно ослабляющий плотный участок объекта обычно смещает рентгеновский спектр в область более высоких энергий по сравнению со слабопоглощающим участком объекта, поскольку низкоэнергетические фотоны поглощаются с большей вероятностью. Этот эффект широко известен как увеличение жесткости пучка.
Соответственно, если в подходах предыдущего уровня техники все пороговые значения энергии детектирующих элементов устройства рентгеновской визуализации с энергетическим разрешением устанавливались обычно на общем уровне перед рентгеновским исследованием, например, при процедуре калибровки, которая оптимизирована для среднего гомогенного объекта без пространственных вариаций порогового уровня по всей области регистрации рентгеновского излучения детектором рентгеновского излучения, то здесь предлагается учитывать увеличение жесткости рентгеновского пучка и по меньшей мере частично компенсировать этот эффект, осуществляя оптимизацию пороговых значений с учетом локальных свойств и признаков объекта. При этом варианты осуществления настоящего изобретения позволяют учитывать влияние признаков и свойства исследуемого объекта на пороговые значения детектирующих элементов. Таким образом, исполнение спектральных исследований может быть улучшено за счет оптимизации пороговых значений относительно объекта.
Например, в приложениях маммографии, локально меняющимися признаками и свойствами объекта могут быть толщина груди и плотность грудных желез (которое обычно называют плотностью груди). Большая толщина и плотность груди обычно смещают спектр прошедшего рентгеновского излучения в сторону больших значений энергии.
В альтернативном примере КТ локально меняющимися признаками и свойствами объекта могут быть толщина исследуемой части тела и структура ткани. Например, кости, кровь, кожа и толстые части тела смещают спектр прошедшего рентгеновского излучения в сторону больших значений энергии по сравнению с жировой тканью, легочной тканью и тонкими частями тела.
Обычно в рентгеновской визуализации с энергетическим разрешением согласно вариантам осуществления настоящего изобретения получение значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область объекта, осуществляется в два этапа для каждого из пикселей формируемого рентгеновского изображения с энергетическим разрешением.
Сначала, на первом этапе, осуществляют предварительное получение интенсивности рентгеновского пучка. Это предварительное получение интенсивности рентгеновского пучка обычно осуществляется при низкой дозе рентгеновского излучения. Исходные значения интенсивности рентгеновского пучка, полученные на этом предварительном этапе, могут затем использоваться для определения локально меняющихся признаков и свойств объекта, и пороговые уровни или значения могут устанавливаться относительно этих определенных признаков и свойств объекта так, что на последующем главном этапе получения может быть определена оптимальная доля рентгеновского излучения для каждой части или для каждого расположения исследуемого объекта.
Затем, на главном этапе получения, рентгеновский пучок с предпочтительно более высокой дозой, чем на предварительном этапе получения, может направляться сквозь ИО, и значения интенсивности рентгеновского пучка могут быть получены энергоразрешающим способом, при котором ранее установленные оптимизированные пороговые значения энергии позволят оптимизировать различение энергий рентгеновских фотонов на нижнюю часть спектра ниже порогового значения энергии и на энергии фотонов верхней части спектра выше такого порогового значения.
В принципе, получение изображения с энергетическим разрешением может также осуществляться более чем с одним пороговым значением, то есть рентгеновские фотоны более чем двух различных участков спектра можно различить и рассортировать в разные «ячейки».
Первый простой вариант осуществления настоящего изобретения, ориентированный на приложения маммографии, будет теперь описан со ссылкой на фигуры 1, 2 и 3.
Фигура 1 показывает вид сбоку устройства 1 для формирования рентгеновского изображения с энергетическим разрешением, содержащего множество пикселей. Устройство 1 содержит рентгеновский источник 3 для формирования рентгеновского пучка 5, коллиматор 7, детектор 9 рентгеновского излучения, опору 11 и управляющий и вычислительный блок 13.
Рентгеновский источник 3 содержит рентгеновскую трубку. Рентгеновский пучок 5 испускается рентгеновским источником 3 под таким углом испускания, что вся полная воспринимающая поверхность 10 детектора 9 рентгеновского излучения может облучаться одновременно. Исследуемый объект 15, такой как женская грудь, размещается на воспринимающей поверхности 10 детектора 9 рентгеновского излучения, размещенного на опоре 11 так, что исследуемая область расположена на верху воспринимающей поверхности 10.
Как показано на виде сверху с фигуры 2, воспринимающая поверхность 10 детектора 9 рентгеновского излучения содержит множество детектирующих элементов 17, расположенных в виде двумерной матрицы так, что детектирующие элементы 17 организованы во множество рядов и столбцов. Коллиматор 7 коллимирует рентгеновский пучок 5 так, что участки 19 пучка одновременно направляются на все детектирующие элементы 17 детектора 9 рентгеновского излучения.
При таком стационарном размещении каждый из детектирующих элементов 17 может генерировать сигнал, показывающий интенсивность рентгеновского излучения, падающего на данный конкретный детектирующий элемент 17. Множество этих сигналов может затем передаваться управляющему и вычислительному блоку 13. Этот управляющий и вычислительный блок 13 может оценивать сигналы и окончательно формировать рентгеновское изображение, содержащее множество пикселей из блока. Более того, управляющий и вычислительный блок 13 может управлять работой рентгеновского источника 3 и детектора 9.
Чтобы обеспечить формирование рентгеновского изображения с энергетическим разрешением, детектор 9 рентгеновского излучения дополнительно способен различать спектры энергии падающих участков 19 рентгеновского пучка 5. А именно, каждый из детектирующих элементов 17 может отличать падающие рентгеновские фотоны с энергиями ниже порогового значения от рентгеновских фотонов с энергиями выше порогового значения. При этом пороговое значение не является фиксированным, а может быть адаптировано и установлено, например, управляющим и вычислительным блоком 13. В частности, пороговые значения энергии могут быть установлены отдельно для каждого из множества детектирующих элементов 17.
Соответственно, благодаря устройству 1, показанному на фигуре 1, может осуществляться простой вариант осуществления способа формирования рентгеновского изображения с энергетическим разрешением, и он будет описан со ссылкой на блок-схему с фигуры 3.
После начала процедуры получения рентгеновского изображения (этап S1) инициализируют все компоненты устройства 1 и устанавливают параметры работы на предустановленные значения (этап S2). Например, параметры рентгеновского источника 3 предустановлены так, чтобы испускать рентгеновский пучок 5 с предзаданным энергетическим спектром. Кроме того, пороговые значения детектора 9 рентгеновского излучения устанавливают на предзаданные значения. В частности, все пороговые значения энергии для всех детектирующих элементов 17 обычно устанавливают на идентичные предустановленные пороговые значения энергии. Такие предустановленные пороговые значения энергии могут быть определены, например, на основе предшествующего процесса калибровки.
Затем рентгеновский источник 3 работает на испускание и направление рентгеновского пучка 5 сквозь исследуемую область объекта 15. Детектором 9 рентгеновского излучения управляют для получения исходных значений интенсивности рентгеновского пучка, прошедшего сквозь эту ИО (этап S3). Другими словами, перед фактической главной процедурой исследования получают низкодозный предварительный снимок.
Исходные значения интенсивности рентгеновского пучка, то есть низкодозный предварительный снимок, могут быть получены энергоразрешающим или не энергоразрешающим способом. Однако преимущественным может быть получение таких исходных значений интенсивности энергоразрешающим способом, то есть различением первых исходных значений интенсивности рентгеновского пучка, прошедшего сквозь ИО, в первом исходном частичном рентгеновском спектральном диапазоне с энергиями ниже предустановленного порогового значения энергии, и вторых исходных значений интенсивности рентгеновского пучка, прошедшего сквозь ИО, во втором исходном частичном рентгеновском спектральном диапазоне с энергиями выше этого предустановленного порогового значения энергии, для каждого из детектирующих элементов 17.
Далее пороговые значения энергии для каждого из пикселей, то есть для каждого из детектирующих элементов 17, особым образом адаптируют, учитывая ранее полученные значения интенсивности рентгеновского пучка (этап S4). Другими словами, значения интенсивности предварительного снимка используют для пространственной оптимизации пороговых значений. Так как пороговые значения адаптируют в зависимости от ранее полученных значений интенсивности рентгеновского пучка для каждого из пикселей, локальные признаки и свойства объекта 15 учитываются при установке такого порогового значения.
На главном этапе исследования и получения изображения рентгеновский пучок 5 снова направляют сквозь ИО объекта 15 (этап S5), и главные интенсивности рентгеновского пучка измеряют на каждом из детектирующих элементов 17 детектора 9 рентгеновского излучения (этап S6). При этом испускается рентгеновский пучок 5 с рентгеновским спектром, и при получении главных значений интенсивности рентгеновского пучка детектирующие элементы 17 отличают рентгеновские фотоны в первом частичном рентгеновском спектральном диапазоне с энергиями ниже ранее адаптированных пороговых значений энергии, для формирования первого главного значения интенсивности рентгеновского пучка, от рентгеновских фотонов с энергиями во втором частичном рентгеновском спектральном диапазоне выше ранее адаптированных пороговых значений энергии, для формирования вторых главных значений интенсивности рентгеновского пучка.
Наконец, из первого и второго главных значений интенсивности рентгеновского пучка, измеренных детектирующими элементами 17 детектора 9 рентгеновского излучения, можно сформировать рентгеновское изображение с энергетическим разрешением (этап S7).
При этом, например, каждое из главных значений интенсивности рентгеновского пучка может формировать один пиксель конечного рентгеновского изображения с энергетическим разрешением, и при этом первое главное значение интенсивности рентгеновского изображения может содержать информацию о низкоэнергетической составляющей, и второе главное значение интенсивности рентгеновского изображения может содержать информацию о высокоэнергетической составляющей рентгеновского пучка, зарегистрированного соответствующими детектирующими элементами 17. Альтернативно, множество детектирующих элементов 17 могут формировать единственный пиксель конечного рентгеновского изображения с энергетическим разрешением.
В варианте осуществления, описанном со ссылкой на фигуры 1-3, значения интенсивности рентгеновского пучка получают для всего ИО одновременно. При этом получают первый предварительный снимок, предпочтительно при низкой дозе рентгеновского излучения, и затем получают главное изображение. Однако здесь неизбежно имеется временной промежуток между этими двумя получениями изображения, который может привести к размытости изображения. Из-за этой размытости изображения исходные значения интенсивности рентгеновского пучка, полученные для предварительного снимка, могут не внести полезного вклада в конечное рентгеновское изображение. Это может быть в общем неоптимально с точки зрения дозы рентгеновского излучения, и поэтому может потребность минимизировать временной промежуток между получение исходного и главного значений интенсивности рентгеновского пучка. Кроме того, двумерные детекторы-счетчики фотонов сложно и дорого производить.
Вариант осуществления, образующий предпочтительное воплощение настоящего изобретения, будет описан со ссылкой на фигуры 4-7. В нем рентгеновская визуализация с энергетическим разрешением осуществляется сканирующей системой, включающей в себя детекторную установку 9 с несколькими последовательными линиями детекторов 10 рентгеновского излучения, у которых множество детектирующих элементов 17 расположены вдоль линий 18. Примером такой сканирующей системы является маммографическая система «Philips MicroDose».
В ней рентгеновский пучок 5, испускаемый подвижным рентгеновским источником 3, сканируется вдоль пути 21 сканирования через исследуемую область объекта 15, такого как женская грудь.
Как показано на виде сверху с фигуры 5, рентгеновская детекторная установка 9 содержит несколько линий детекторов 18 рентгеновского излучения, причем каждая содержит множество, то есть несколько тысяч, детектирующих элементов 17, расположенных одномерно вдоль линий. Линии детекторов 18 отнесены друг от друга на расстояние S, равное, например, нескольким миллиметрам, тогда как каждый из детектирующих элементов 17 обычно имеет размеры порядка от 50 до 500 мкм. Как показано на фигурах 4 и 5, такие линии детекторов рентгеновского излучения устанавливаются перпендикулярно направлению 21 сканирования.
Хотя многие этапы способа формирования рентгеновского изображения с энергетическим разрешением с использованием такой сканирующей системы похожи на описанные выше со ссылкой на варианты осуществления, показанные на фигурах 1-3, есть также несколько значительных и потенциально выгодных отличий.
Возможно, самым важным является то, что в такой сканирующей системе пороговые значения энергии каждого из детектирующих элементов 17 могут непрерывно оптимизироваться во время процедуры сканирования на основе, например, информации, полученной от детектора 18' первой линии или от детекторов 18'' первой линии во время сканирования.
Другими словами, для установки 9 рентгеновских детекторов с множеством детектирующих линий 18 или элементов 17, признаки объекта 15 в конкретном положении можно оценить по рентгеновскому излучению, зарегистрированному, например, детекторами 18' первой линии детектора 9, проходящему это положение, и могут затем использоваться для оптимизации пороговых значений в детекторах 18'' на линии, проходящих то же положение в более поздний момент времени. Таким образом, временной промежуток между получением исходного и главного значений интенсивности рентгеновского пучка минимизируется.
Например, при запуске процедуры сканирования пороговые значения могут быть установлены с использованием, например, какого-либо обычного способа и наилучшего предположения о возможной структуре объекта. Затем, во время процедуры сканирования, рентгеновский пучок 5 и детектор 9 синхронно сканируются вдоль пути 21 сканирования так, что рентгеновский пучок 5 сканируется через ИО объекта 15 и таким образом одновременно облучает детектирующие элементы 17 детектора 9 рентгеновского излучения. Эти детектирующие элементы 17 для каждого положения детектора 9 во время сканирования формируют подмассив из нескольких пикселей получаемого изображения.
Во время такого сканирования исходные значения интенсивности рентгеновского пучка могут быть получены для каждого из пикселей, когда соответствующий пиксель облучают расположенным выше по потоку участком сканирующего рентгеновского пучка 5 и детектора 9. Другими словами, исходные значения интенсивности рентгеновского пучка всегда могут быть получены одним или несколькими детектирующими элементами 17 первых линий 18' детекторов вдоль направления 21 сканирования. На основе этих исходных значений интенсивности рентгеновского пучка пороговые значения энергии детектирующих элементов 17 последующих линий 18'' детекторов в нижележащем участке детектора 9 могут быть особым образом адаптированы до того, как позднее этими детектирующими элементами 17 будут получены главные первое и второе значения интенсивности рентгеновского пучка.
Другими словами, через регулярные промежутки времени во время сканирования пороги энергии для каждого детектирующего элемента 17 оптимизированы на основе рентгеновских пучков с энергетическим разрешением или без энергетического разрешения, зарегистрированных предыдущими линиями детекторов во время сканирования. Эти моменты времени могут быть согласованы с промежутками между линиями детекторов и со скоростью сканирующего перемещения.
Входными данными для оптимизации может быть модель признаков/состава исследуемого объекта 15 или любая другая схема оптимизации. Для предсказания признаков объекта 15 в положениях, которые еще не сканировались частью детектора 9 для оптимизации пороговых значений первых линий детекторов, может быть сделано предположение о том, что признаки объекта в пространстве меняются медленно, и может быть применена экстраполяционная схема.
Непрерывная оптимизация пороговых значений энергии может осуществляться электронными средствами и/или программными или аппаратными средствами. Например, программные средства в элементе компьютерной программы могут содержать машиночитаемые инструкции, которые подают процессору в управляющем и вычислительном блоке 13 команду осуществить описанный способ получения изображения. Программные средства могут храниться в машиночитаемом носителе, таком как CD, DVD, флэш-память, или могут быть загружены, например, с сервера через интернет.
Описанный выше подход можно обобщить на многорядную спиральную КТ, где первый ряд (ряды) детекторов может использоваться для настройки пороговых значений согласно приведенному выше описанию.
Рентгеновский детектор по любому из описанных выше вариантов осуществления может быть детектором-счетчиком фотонов, таким как система Philips MicroDose, или любым другим детектором с энергетическим разрешением, в котором пороговые значения могут устанавливаться динамически.
Фигура 7 показывает основные принципы детектирующих элементов 17 такого детектора 9 и управляющего и вычислительного блока 13 и для обработки данных, полученных таким детектором 9. Рентгеновский фотон 37 с определенной энергией фотона захватывается детектирующим элементом 17 и образует зарядовую пару между двумя электродами, установленными под высоким напряжением. Сигнал напряжения передается предусилителю 23, формирователю 25, дискриминатору 27, блоку 29 антисовпадений и, наконец, двум счетчикам 31, 33, включенным в управляющий и вычислительный блок 13. Используя такую конфигурацию можно осуществить разрешение по энергиям рентгеновского фотона 37, и, в зависимости от того, находится ли эта энергия выше или ниже порогового значения, можно вычислить количество рентгеновских фотонов 37 одним из счетчиков 31, 33.
Следует отметить, что, по аналогии с вышеописанным единственным рентгеновским источником 3 и множеством столбцов 17 детекторов, возможны также обратные геометрии изображения, когда имеется один детектор и множество рентгеновских источников. Аспекты изобретения можно распространить на такие геометрии, если вместо регулировки порога энергии регулировать входной спектр, например, пиковое напряжение, для фильтрации отдельных рентгеновских источников.
Варианты осуществления изобретения могут использоваться в любых спектральных приложениях. Оптимизированные значения порога могут улучшить выполнение взвешивания энергий, позволяя получать изображения лучшего качества в том, что касается более высокого отношения контраст/шум или сохранения качества изображения при снижении дозы. Оптимизированные пороговые значения также могут быть важны при энергетическом вычитании (также известном как двухэнергетическое вычитание), а также при характеристике ткани, такой как диагностика очага или оценка плотности груди.
СПИСОК ССЫЛОЧНЫХ ПОЗИЦИЙ
1 устройство для формирования рентгеновского изображения с энергетическим разрешением
3 источник рентгеновского излучения
5 рентгеновский пучок
7 коллиматор
9 детектор рентгеновского излучения
10 детектируемая поверхность
11 опора
13 управляющий и вычислительный блок
15 исследуемый объект
17 детектирующий элемент
18 линия детекторов рентгеновского излучения
19 участок пучка
21 путь сканирования
23 предусилитель
25 формирователь
27 дискриминатор
29 блок антисовпадений
31 счетчик
33 счетчик
37 рентгеновский фотон

Claims (27)

1. Устройство (1) для формирования рентгеновского изображения с энергетическим разрешением, содержащего множество пикселей, причем устройство содержит:
- рентгеновский источник (3);
- детектор (9) рентгеновского излучения;
- адаптирующее средство; и
- блок (13) управления и вычисления;
в котором рентгеновский источник (3) предназначен для направления рентгеновского пучка (5) сквозь исследуемую область объекта (15);
в котором детектор (9) рентгеновского излучения предназначен для получения исходных значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, для каждого из пикселей;
в котором адаптирующее средство предназначено для адаптирования порогового значения энергии для каждого пикселя в зависимости от полученного значения интенсивности рентгеновского пучка для каждого из пикселей;
в котором рентгеновский источник (3) дополнительно предназначен для направления рентгеновского пучка с рентгеновским спектром сквозь исследуемую область объекта;
в котором детектор (9) рентгеновского излучения дополнительно предназначен для получения первого главного значения интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, в первом частичном спектральном диапазоне с энергиями ниже адаптированного порогового значения энергии, и для получения второго главного значения интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, во втором частичном спектральном диапазоне с энергиями выше адаптированного порогового значения энергии для каждого из пикселей соответственно; и
в котором управляющий и вычислительный блок (13) предназначен для формирования рентгеновского изображения с энергетическим разрешением на основе первого и второго главных значений интенсивности рентгеновского пучка для каждого из пикселей.
2. Устройство по п. 1, в котором рентгеновский источник (3) дополнительно предназначен для получения рентгеновского пучка (5) и в котором детектор (9) рентгеновского излучения дополнительно предназначен для различения энергий зарегистрированного рентгеновского излучения, находящихся ниже или выше пороговых значений энергии.
3. Устройство по п. 2, в котором рентгеновский детектор является линейным детектором, имеющим несколько детектирующих рентгеновское излучение элементов (17), расположенных на одной линии.
4. Устройство по п. 2, в котором детектор рентгеновского излучения является двумерным детектором, имеющим множество детектирующих элементов, расположенных в виде двумерной матрицы.
5. Способ формирования рентгеновского изображения с энергетическим разрешением, содержащего множество пикселей, содержащий:
- направление рентгеновского пучка (5) сквозь исследуемую область объекта (15) и получение исходных значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, для каждого из пикселей;
- адаптирование порогового значения энергии для каждого пикселя в зависимости от полученного значения интенсивности рентгеновского пучка для каждого из пикселей;
- направление рентгеновского пучка с рентгеновским спектром сквозь исследуемую область объекта и получение первого главного значения интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, в первом частичном спектральном диапазоне с энергиями ниже адаптированного порогового значения энергии, и получение второго главного значения интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, во втором частичном спектральном диапазоне с энергиями выше адаптированного порогового значения энергии для каждого из пикселей соответственно;
- получение рентгеновского изображения с энергетическим разрешением на основе первого и второго главных значений интенсивности рентгеновского пучка для каждого из пикселей.
6. Способ по п. 5, в котором получение исходных значений интенсивности рентгеновского пучка содержит получение первых исходных значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, в первом исходном частичном спектральном диапазоне с энергиями ниже предустановленного порогового значения энергии и получение вторых исходных значений интенсивности рентгеновского пучка, прошедшего сквозь исследуемую область, во втором исходном частичном спектральном диапазоне с энергиями выше предустановленного порогового значения энергии для каждого из пикселей соответственно и в котором пороговое значение энергии адаптируют в зависимости от полученных первого и второго исходных значений интенсивности рентгеновского пучка для каждого из пикселей.
7. Способ по п. 6, в котором пороговое значение энергии адаптируют для каждого из пикселей так, что первые главные значения интенсивности, по существу, равны вторым главным значениям интенсивности для каждого из пикселей.
8. Способ по одному из пп. 5-7, в котором рентгеновский пучок сканируют вдоль пути (21) сканирования через исследуемую область, таким образом одновременно облучая подмассив из нескольких пикселей в участке исследуемой области, и в котором исходное значение интенсивности рентгеновского пучка для каждого из пикселей получают, когда соответствующий пиксель облучается расположенным выше по потоку участком сканирующего рентгеновского пучка, и главные первое и второе значения интенсивности рентгеновского пучка для каждого из пикселей получают, когда соответствующий пиксель облучается расположенным ниже по потоку участком сканирующего рентгеновского пучка, причем выше и ниже по потоку понимается относительно направления сканирования.
9. Способ по п. 8, в котором исходные значения интенсивности рентгеновского пучка и главные значения интенсивности рентгеновского пучка получают с использованием детектора (9) рентгеновского излучения, имеющего несколько линейных детекторов (18), каждый из которых имеет множество детектирующих элементов (17), расположенных на линии.
10. Способ по одному из пп. 5-7, в котором рентгеновский пучок направляют сквозь исследуемую область, одновременно облучая все пиксели всей исследуемой области, и исходные значения интенсивности рентгеновского пучка для каждого из пикселей получают одновременно и в котором на следующем этапе рентгеновский пучок направляют сквозь исследуемую область, одновременно облучая все пиксели, и первое и второе главные значения интенсивности рентгеновского пучка для каждого из пикселей получают одновременно.
11. Способ по п. 10, в котором исходные значения интенсивности рентгеновского пучка и первое и второе главные значения интенсивности рентгеновского пучка получают с использованием детектора рентгеновского излучения, имеющего множество детектирующих элементов, расположенных в виде двумерной матрицы.
12. Способ по одному из пп. 5-7, в котором рентгеновское изображение с энергетическим разрешением формируют на основе комбинации исходных значений интенсивности рентгеновского пучка и первого и второго главных значений интенсивности рентгеновского пучка для каждого из пикселей.
13. Машиночитаемый носитель, содержащий сохраненный на нем компьютерный программный продукт, содержащий машиночитаемую инструкцию, которая, при исполнении компьютером, осуществляет способ по одному из пп. 5-12.
RU2015147861A 2013-10-09 2014-09-25 Способ и устройство для формирования рентгеновского изображения с энергетическим разрешением с адаптированным порогом энергии RU2660386C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13187813 2013-10-09
EP13187813.4 2013-10-09
PCT/EP2014/070422 WO2015052000A1 (en) 2013-10-09 2014-09-25 Method and device for generating an energy-resolved x-ray image with adapted energy threshold

Publications (3)

Publication Number Publication Date
RU2015147861A RU2015147861A (ru) 2017-11-13
RU2015147861A3 RU2015147861A3 (ru) 2018-04-26
RU2660386C2 true RU2660386C2 (ru) 2018-07-06

Family

ID=49303888

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015147861A RU2660386C2 (ru) 2013-10-09 2014-09-25 Способ и устройство для формирования рентгеновского изображения с энергетическим разрешением с адаптированным порогом энергии

Country Status (6)

Country Link
US (1) US9662078B2 (ru)
EP (1) EP2951615B1 (ru)
JP (1) JP6118429B2 (ru)
CN (1) CN105122085B (ru)
RU (1) RU2660386C2 (ru)
WO (1) WO2015052000A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725099B1 (ko) * 2014-12-05 2017-04-26 삼성전자주식회사 컴퓨터 단층 촬영장치 및 그 제어방법
WO2016200983A1 (en) * 2015-06-09 2016-12-15 The Board of Trustees of the Leand Stanford Junior University System for determining tissue density values using polychromatic x-ray absorptiometry
US10165996B2 (en) * 2015-09-30 2019-01-01 General Electric Company Systems and methods for dual-energy computed tomography imaging
DE102015226489B4 (de) * 2015-12-22 2024-05-16 Siemens Healthineers Ag Röntgensystem und Verfahren zur Bildrekonstruktion
US9888901B2 (en) * 2016-02-19 2018-02-13 Toshiba Medical Systems Corporation X-ray diagnostic apparatus and X-ray CT apparatus
US10342505B2 (en) * 2016-03-31 2019-07-09 General Electric Company System and method for adjusting a radiation dose during imaging of an object within a subject
US10054698B2 (en) * 2016-08-31 2018-08-21 General Electric Company Temperature stabilization for detector heads
JP6569070B2 (ja) * 2016-10-04 2019-09-04 株式会社 システムスクエア X線検査装置
EP3327673B1 (de) * 2016-11-29 2019-03-06 Siemens Healthcare GmbH Erzeugen von hochaufgelösten ct-bildern mit spektraler information
WO2018108849A1 (en) * 2016-12-15 2018-06-21 Koninklijke Philips N.V. Ct imaging system and a method for a ct imaging system
JP7321141B2 (ja) * 2017-07-13 2023-08-04 ラッシュ ユニヴァーシティ メディカル センター 放射線療法中におけるエネルギー分解スキャッタ画像化方法、装置およびシステム
DE102017213479A1 (de) * 2017-08-03 2019-02-07 Siemens Healthcare Gmbh Computertomographische Aufnahme mit verschiedenen Energieschwellensätzen
US11497459B2 (en) * 2018-01-26 2022-11-15 General Electric Company Methods and system for optimizing an imaging scan based on a prior scan
DE102018208955A1 (de) * 2018-06-06 2019-12-12 Siemens Healthcare Gmbh Bestimmung eines Schwellwertes für wenigstens ein Energieband eines direkt-konvertierenden Detektors
FR3082650B1 (fr) * 2018-06-19 2021-08-27 Hera Mi Systeme et procede pour le traitement d'au moins une region polluante d'une image numerique d'un element expose a des rayons x
CN110836901B (zh) * 2018-08-17 2020-09-04 同方威视技术股份有限公司 基于k边缘成像的优化阈值方法、装置、设备和介质
CN111281404A (zh) * 2018-12-06 2020-06-16 上海西门子医疗器械有限公司 X线影像设备的成像方法以及x线影像设备
CN110389374B (zh) * 2019-07-05 2020-10-30 东软医疗系统股份有限公司 一种探测器的前端电路及探测器
CN111150418B (zh) * 2019-12-31 2023-07-25 上海联影医疗科技股份有限公司 数据采集同步设备
CN111904446A (zh) * 2020-09-11 2020-11-10 深圳先进技术研究院 乳腺成像系统及其成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070206721A1 (en) * 2004-09-13 2007-09-06 Tkaczyk John E Photon counting x-ray detector with overrange logic control
WO2010001281A1 (en) * 2008-06-30 2010-01-07 Koninklijke Philips Electronics N.V. Spectral ct
WO2010043926A2 (en) * 2007-09-27 2010-04-22 Koninklijke Philips Electronics N. V. Processing electronics and method for determining a count result, and detector for an x-ray imaging device
US20100232669A1 (en) * 2006-03-29 2010-09-16 Koninklijke Philips Electronics N. V. Dynamic optimization of the signal-to-noise ratio of dual-energy attenuation data for reconstructing images
RU2009124914A (ru) * 2006-11-30 2011-01-10 Конинклейке Филипс Электроникс, Н.В. (Nl) Визуализация с энергетическим разрешением
RU2465826C2 (ru) * 2006-12-15 2012-11-10 Конинклейке Филипс Электроникс Н.В. Устройство формирования рентгеновских изображений со спектральным разрешением

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074844A (ja) 1999-09-01 2001-03-23 Matsushita Electric Ind Co Ltd ポケット線量計
US6408050B1 (en) 2000-09-14 2002-06-18 Ge Medical Systems Global Technology Company, Llc X-ray detector and method for tissue specific image
US7894568B2 (en) * 2005-04-14 2011-02-22 Koninklijke Philips Electronics N.V. Energy distribution reconstruction in CT
US7372934B2 (en) 2005-12-22 2008-05-13 General Electric Company Method for performing image reconstruction using hybrid computed tomography detectors
JP4861864B2 (ja) 2007-03-15 2012-01-25 浜松ホトニクス株式会社 閾値決定方法
FR2916117B1 (fr) 2007-05-10 2011-03-18 Centre Nat Rech Scient Dispositif d'imagerie par rayons x a source poly-chromatique
JP5565647B2 (ja) 2008-03-14 2014-08-06 よこはまティーエルオー株式会社 臓器領域特定方法、および臓器領域特定装置
US8503750B2 (en) 2009-10-06 2013-08-06 General Electric Company Method and apparatus for reduction of metal artifacts in CT images
US8422636B2 (en) 2010-10-12 2013-04-16 Ge Medical Systems Israel, Ltd. Photon counting and energy discriminating detector threshold calibration
US9351701B2 (en) * 2011-04-21 2016-05-31 Takara Telesystems Corp. Apparatus for calibrating photon-counting type of radiation detector and method of calibrating the same
EP2751593B1 (en) 2011-12-19 2019-10-16 Koninklijke Philips N.V. X-ray detector
DE102013204264A1 (de) * 2013-03-12 2014-09-18 Siemens Aktiengesellschaft Verfahren zur Aufnahme eines Röntgenbildes und Röntgensystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070206721A1 (en) * 2004-09-13 2007-09-06 Tkaczyk John E Photon counting x-ray detector with overrange logic control
US20100232669A1 (en) * 2006-03-29 2010-09-16 Koninklijke Philips Electronics N. V. Dynamic optimization of the signal-to-noise ratio of dual-energy attenuation data for reconstructing images
RU2009124914A (ru) * 2006-11-30 2011-01-10 Конинклейке Филипс Электроникс, Н.В. (Nl) Визуализация с энергетическим разрешением
RU2465826C2 (ru) * 2006-12-15 2012-11-10 Конинклейке Филипс Электроникс Н.В. Устройство формирования рентгеновских изображений со спектральным разрешением
WO2010043926A2 (en) * 2007-09-27 2010-04-22 Koninklijke Philips Electronics N. V. Processing electronics and method for determining a count result, and detector for an x-ray imaging device
WO2010001281A1 (en) * 2008-06-30 2010-01-07 Koninklijke Philips Electronics N.V. Spectral ct

Also Published As

Publication number Publication date
WO2015052000A1 (en) 2015-04-16
CN105122085A (zh) 2015-12-02
RU2015147861A3 (ru) 2018-04-26
US20160206256A1 (en) 2016-07-21
US9662078B2 (en) 2017-05-30
JP6118429B2 (ja) 2017-04-19
EP2951615B1 (en) 2016-08-24
RU2015147861A (ru) 2017-11-13
EP2951615A1 (en) 2015-12-09
JP2016521580A (ja) 2016-07-25
CN105122085B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
RU2660386C2 (ru) Способ и устройство для формирования рентгеновского изображения с энергетическим разрешением с адаптированным порогом энергии
JP6670586B2 (ja) X線ct装置
US8199875B2 (en) System and method of acquiring multi-energy CT imaging data
US8199874B2 (en) System and method of mitigating low signal data for dual energy CT
US11328391B2 (en) System and method for controlling noise in multi-energy computed tomography images based on spatio-spectral information
US9492132B2 (en) X-ray imaging device and X-ray image forming method
CN101416073B (zh) 用于重建图像的双能量衰减数据的信噪比的动态优化
JP7053650B2 (ja) 放射線検出器における使用のための画素設計
US9320477B2 (en) Method and apparatus for adaptive scatter correction
NL2005317A (en) System and method of fast kvp switching for dual energy ct.
US20140072098A1 (en) X-ray system and method to generate image data
US9589373B2 (en) Monte carlo modeling of field angle-dependent spectra for radiographic imaging systems
JP6595154B2 (ja) X線ctを用いた画像診断装置
WO2015005485A1 (ja) X線ct装置、x線ctシステム及びインジェクター
WO2013128891A1 (ja) 画像処理装置および方法
Inscoe et al. Demonstration of a scatter correction technique in digital breast tomosynthesis
CN108065950B (zh) 一种放射成像方法及其系统
JP2019126581A (ja) 骨密度測定装置および骨密度撮影方法
Szafraniec et al. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor
JP5974059B2 (ja) 医療用x線測定装置及び方法
JP2020103571A (ja) 医用処理装置及びx線診断システム
US7020240B2 (en) Method and apparatus for measuring matter properties
JP2018117779A (ja) X線ct装置
REN et al. X-ray photon counting detectors for preclinical and clinical applications
Bergamaschi et al. A HIGH PERFORMANCE DETECTION SYSTEM FOR BREAST TOMOGRAPHY WITH SYNCHROTRON RADIATION

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190926